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Abstract 

This work is concerned with the development of an automatic image processing tool 

for DNA microarray images. This paper proposes, implements and tests a new tool for 

cDNA image analysis. The DNAs are imaged as thousands of circularly shaped 

objects (spots) on the microarray image and the purpose of this tool is to correctly 

address their location, segment the pixels belonging to spots and extract quality 

features of each spot. Techniques used for the addressing, segmentation and feature 

extraction of spots are described in detail. The results obtained with the proposed tool 

are systematically compared with conventional cDNA microarray analysis software 

tools. 

 

Keywords: cDNA microarrays, gene expression levels, spot detection, addressing, 
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1 Introduction 

Over the last decade, scientists have been working toward a complete DNA 

sequencing of the human genome. Consequently, the focus of genomic research is 

turning towards looking at how to derive functional information about the newly 

discovered genes from the vast amount of sequencing information that has been 

compiled. The analysis of global gene expression patterns is an important new area of 

genomic research because the development and differentiation of a cell or organism as 

well as its progression to the disease state is determined largely by its profile of gene 

expression.   

 

DNA microarrays, in which thousands of different DNA sequences are arrayed in a 

defined matrix on a glass or silicon support, are part of a new class of 

biotechnologies, which allow the monitoring of expression levels for thousands of 

genes simultaneously. By comparing gene expression in normal and abnormal cells, 

microarrays may be used to identify genes which are involved in particular diseases 

and can then be targeted by therapeutic drugs.  

 

A DNA microarray is an orderly arrangement of DNA samples. It provides a medium 

for matching known and unknown DNA samples based on base-pairing rules and 

automating the process of identifying the unknowns. The first step in the fabrication 

of microarrays is choosing the cell population. Cells from two different tissues are 

specialised for performing different functions in an organism. Comparative 

experiments can reveal genes that are preferentially expressed in specific tissues. 

Some of these genes implement the behaviours that distinguish the cell's tissue type, 

while others ensure that the cell only performs the functions for its type. To 



differentiate between these types of genes, the DNAs are labelled with a reporter 

molecule that identifies their presence. The end product (microarray) is then scanned 

and imaged for further interpretation and analysis. 

 

A key step in experiments using DNA microarrays is locating the thousands of 

individual spots in a scanned array image. Each spot provides quantitative information 

about a distinct DNA sequence, so it is vital that spots are found and quantified 

accurately. Spot finding is complicated by variations in the positions and sizes of 

spots and by the presence of artifacts and background noise in microarray images. 

 

Image analysis is an important aspect of microarray experiments, potentially having a 

large impact on downstream analysis such as clustering or identification of 

differentially expressed genes. In a microarray experiment, the arrays are imaged to 

measure the red and green fluorescence intensities on each spot on the glass slide. 

These fluorescence intensities correspond to the level of hybridisation of the two 

samples to the DNA sequences spotted on the slide. These intensities are stored 

digitally and using image analysis techniques, the data is analysed. 

 

Typically, this task requires carrying out spot detection and segmentation of the pixels 

corresponding to each individual spot, and feature extraction in terms of intensity 

estimation and other image quality features. However, the major sources of 

uncertainty in spot finding are discrete image artefacts, variable spot size and position, 

and variation of the image background. Image filtering operations are then used to 

smooth out noise, while robust shape detection algorithms allow feature extraction for 

each spot.  



 

The spot-finding algorithm is applied to both images (red and green channel) and the 

features of the corresponding spots are compared to analyse the result of the 

biological experiment. Similar features in both images indicate a reaction between the 

two DNAs, whereas spot detection only in one channel is indicative that no such 

reaction has occurred. 

 

This research describes the development of a fully automated image processing tool 

for analysis of microarray images. The tool developed can process and analyse as 

many images as needed without human supervision or intervention. Section 2 

provides a literature survey of the currently available microarray image analysis 

software. Section 3 discusses the type of microarray image data used in this work, 

while section 4 gives an overview of the proposed microarray image analysis system. 

The techniques used for gridding, spot segmentation and feature extraction are 

described in detail in sections 5 through 7. Section 8 provides a comparison of the 

results of the proposed tool with some of the leading software currently available. 

Finally, section 9 summarizes the work carried out in this research and provides 

recommendations for further development of the tool. 

 

2 Overview of existing Microarray Image Analysis techniques 

This section reviews the available literature and software tools proposed by academia 

and industry for the processing of microarrays, with emphasis on image analysis and 

the fundamental problem of spot finding.  

 



We will firstly present the main steps in microarray image analysis. The first step is 

addressing or gridding and is the process of assigning coordinates to each of the 

spots. The second step is segmentation of the desired spots and finally, the third step 

is feature extraction of the corresponding spots.  

 

Gridding 

Most software such as Dapple (Zhou et al., 2001), ImaGene (Groch et al., 1999), 

ScanAlyze (Eisen 1999), GenePix (Axon Instruments, 2002), QuantArray (GSI 

Lumonics, 1999), Spot (Yang et al., 2000) and an algorithm suggested by (Kim et al., 

2001), use the geometry of a microarray, namely, the number and relative spacing of 

grids, in addition to the arrangement and spacing of spots within each grid, to divide a 

microarray image into vignettes which contain individual spots. Some of these require 

manual intervention in order to place the predefined grid over each meta-array. Others 

insert the predefined grid on the image and it is the user who should adjust the grid 

over the meta-arrays.  The main advantage of this approach is the speed of addressing 

and locating the grid. However, there are numerous disadvantages with the greatest 

being user-intervention itself. It is important to automate the entire procedure of 

image processing to minimise errors due to human intervention, as well as alleviate 

human operators from such tedious and time-consuming tasks. 

 

Another method called GLEAMS (Zhou et al., 2001) looks for peaks in the 2D 

periodogram of the image and the distance between the strongest peaks determines the 

size of the sub-array. A template of a sub-array is then made using the latter and the 

number of rows/columns. This is used to determine regions in the image that resemble 

the template. The procedure involves significant pre-processing in terms of image 



smoothing and noise removal, which is described in detail in (Zhou et al., 2001). The 

technique is automated and does not require user intervention, however it is time 

consuming due to computational complexity. Another approach that claims automatic 

gridding is implemented in AutoGene (Kuklin 2000), however no results are shown or 

implementation details discussed.  

 

Segmentation 

Segmentation of an image can generally be defined as the process of partitioning the 

image into different regions, each having certain properties (Soille 1999). In the case 

of microarray image analysis, it is a step to classify the pixels in the image as either 

being the desired spots (foreground) or the background to the image. The pixels 

composing the spots are then examined closely to calculate the fluorescence 

intensities of those particular spots.  There exist four groups of segmentation methods, 

which are explained here. The first method is fixed circle segmentation. This method 

is quite easy to implement and works by fitting a circle with constant diameter to all 

the spots in the image. However, the main disadvantage of this method is that the 

spots on the microarray image need to be circular and of the same constant diameter 

size. ScanAlyze (Eisen 1999) is an example of software using this method. Adaptive 

circle segmentation is the second category, where the circle’s diameter is estimated 

separately for each spot. Two image analysis systems that employ this method are 

GenePix (Axon Instruments, 2002) and Dapple (Buhler et al., 2000). The advantage 

of this method over the last one is the varying diameter size, which can correspond to 

the varying sizes of spots. One of the main disadvantages, however, is the fact that 

some or most spots are not perfectly circular and can exhibit oval shapes (Eisen and 

Brown, 1999). As it is important to have no restriction on the shape of the spots, the 



third category uses adaptive shape segmentation. The two most commonly used 

techniques in this category are the watershed transform (Beucher and Meyer, 1993), 

(Vincent and Soille, 1991) and seeded region growing (SRG) (Adams and Bischof, 

1994). Both these procedures require a starting position (seeds) for the 

commencement of the segmentation process. There are obvious issues with the use of 

this method, namely the number of seeds and the selection of seed positions. 

AutoGene (Kuklin, 2000), ImaGene (BioDiscover, 2001), (Groch et al., 1999) and 

Spot (Yang et al., 2000) make use of this approach. Another category of segmentation 

methods used is histogram segmentation employed in GLEAMS (Zhou et al., 2001) 

and QuantArray (GSI Lumonics, 1999). This class of techniques uses a target mask, 

which is chosen to be larger than all spots on the image. The histogram of pixel values 

for pixels inside the masked area approximates the background and foreground 

intensities for each spot. This method is quite easy to implement but its main 

disadvantage is that quantification is unstable when a large target mask is set to 

compensate for spot size variation (Yang et al., 2000). (Nagarajan and Upreti, 2006) 

use correlation statistics, (Pearson correlation and Spearman rank correlation) to 

segment the foreground and background intensity of microarray spots. It is shown that 

correlation-based segmentation is useful in flagging poorly hybridized spots, thus 

minimizing false-positives. A probabilistic approach to simultaneous image 

segmentation and intensity estimation for cDNA microarray experiments is followed 

in (Gottardo and Besag et. al., 2006). In this work, segmentation is achieved using a 

flexible Markov random field approach, while parameter estimation is tackled using 

two approaches, namely expectation-maximization and the iterated conditional modes 

algorithms, and a fully Bayesian framework. A similar modelling framework based on 

Markov random fields is followed in (Demirkaya and Asyali et. al., 2005). (Lukac and 



Plataniotis, 2006) suggest the use of nonlinear, generalized selection vector filters 

within a vector processing based framework which classifies the cDNA image data as 

either microarray spots or image background. (Baek and Son et al., 2007) proposed a 

new approach to simultaneous cDNA image segmentation and intensity estimation by 

adopting a two-component mixture model. One component of this mixture 

corresponds to the distribution of the background intensity, while the other 

corresponds to the distribution of the foreground intensity.  

 

Feature Extraction 

The final stage of this process is to calculate the foreground and background 

intensities of the spots and some measures of spot quality. In almost all microarray 

image analysis software packages, the foreground intensity is measured as the mean 

or median of pixel intensity values of the pixels corresponding to the spot.  

 

(Figure 1 near here) 

 

Figure 1 shows the regions considered by different software packages for the 

calculation of the background intensity for each spot. QuantArray uses the area 

between two concentric circles (the green circles, which creates a problem when the 

two spots are very close to each other. ScanAlyze considers all the pixels that are not 

within the spot mask but are inside a square centred at the spot centre (blue lined 

square), however this could include some foreground pixels from neighbouring spots. 

One method that safely deals the above problems is the method used in Spot, which 

uses four diamond (pink dashed lines) shaped areas between the spots to calculate the 

local background. (Hua and Liu et. al., 2004) propose microarray BASICA, an 



integrated image processing tool for background adjustment, segmentation, image 

compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-

Whitney test-based algorithm to segment cDNA microarray images and performs 

postprocessing to eliminate the segmentation irregularities. The segmentation results, 

along with the foreground and background intensities obtained with the background 

adjustment, are then used for independent compression of the foreground and 

background. A new distortion measurement for cDNA microarray image compression 

is introduced and a coding scheme is devised by modifying the embedded block 

coding with optimized truncation (EBCOT) algorithm to achieve optimal rate-

distortion performance in lossy coding while still maintaining outstanding lossless 

compression performance. Further information regarding feature extraction 

techniques, is given in an excellent reviews by (Petrov and Shams, 2004) and 

(Rahnenfuhrer, 2005). 

 

3 Experimental Data 

The images used in this work are part of a microarray image of Streptomyces 

coelicolor, which belongs to a family of bacteria known as Streptomycetes. 

Streptomycetes are used to produce the majority of antibiotics applied in human and 

veterinary medicine and agriculture, as well as anti-parasitic agents, herbicides, 

pharmacologically active metabolites and several enzymes important in the food and 

other industries.  

 

The microarrays for S. coelicolor are produced for global analysis of transcription in 

Streptomyces. The arrays are used to investigate changes in gene expression during 

developmental transitions. Streptomyces coelicolor A3(2) has become the paradigm 



for molecular studies in this group of organisms (Flett et al., 1999) and its study was 

carried out to analyse global patterns of gene expression and protein synthesis. The 

sequencing of the 8Mb G+C-rich genome is now almost completed and it is predicted 

to contain about 7,400 genes. Figure 2 shows an image of a microarray, which 

corresponds to the expression of Streptomyces coelicolor. 

 

(Figure 2 near here) 

 

The microarray is expressed in 4×4 blocks (meta-arrays) and each block has 21×21 

spots, hence a total of more than 7000 spots. It is important to note here that each 

microarray is considered in both green and red channel frequencies. The image in 

Figure 2 shows the data in grey-scale, however this image can be synthetically 

coloured red or green corresponding to the dye that the DNAs have been tagged with. 

In the following sections, only a portion of this image will be shown for testing 

purposes. 

  

4 Structure of the Image Analysis System 

As already mentioned in Section 2, there are three distinct tasks that need to be 

tackled during the image analysis of microarray images which are as follows: 

1- Addressing, i.e., the process of assigning coordinates to each spot. The 

outcome of this stage of the system is to superimpose a grid on the image, 

hence it is also known as gridding.  

2- Segmentation, which should correctly find the spots of interest on the image 

and categorically find the pixels that form part of the spot (foreground) or the 

background.  



3- Feature extraction, which includes calculating certain statistical intensity 

features (e.g., mean, median, mode) for each spot and its background. Each 

pixel in the image has a fluorescent intensity corresponding to the level of 

hybridisation at a specific location on the slide. 

 

The purpose of microarray image analysis is to find these statistical features, which 

are subsequently processed by statisticians and biologists, who use mathematical 

modelling and simulation of these features along with specific biological information 

obtained from databases to understand gene expression. This makes the final step 

quite important since statisticians process each spot as a single value (due to large 

processing time and high storage space needed), which is the combination of all the 

pixels producing the spot. Of course, in real terms, each spot is made up of between 

50-200 pixels. Hence, it is quite important that in the first instance, the spot is fully 

segmented and secondly the intensities of the pixels making up the spot contribute 

towards calculating the statistical features of interest. 

 

Estimation of the background intensity is generally considered necessary for the 

purpose of performing background correction. The reason underlying this is that a 

spot’s measured fluorescence intensity includes a contribution, which is not 

specifically due to the hybridisation of the mRNA samples to the spotted DNA (Yang 

et al., 2000). Microarrays are afflicted with discrete image artifacts such as highly 

fluorescent dust particles, unattached dye, salt deposits from evaporated solvents, and 

fibres or other airborne debris. 

 

(Figure 3 near here) 



 

Figure 3 is a top-level breakdown of the system structure of the proposed tool for the 

analysis of microarray images. The following sections concentrate fully on each of the 

three tasks, describing the techniques used for their implementation and their test 

results. 

  

5 Addressing 

Addressing is an important step in the analysis of the microarray image. Even though 

it is always best to take into consideration the highest level of accuracy in developing 

an algorithm, in the case of addressing, it is only necessary to find the approximate 

location of each spot. Most algorithms and software developed for this purpose 

require some level of user interaction. However, since the quality of most microarray 

images is not perfect and there is a requirement for a fully automated system, a novel 

approach has been proposed here and tested with positive results. In this technique, 

the image is enhanced, binarised, circular shapes preserved and a statistical method is 

used to detect the location of each vignette. Figure 4 shows the overall steps 

undertaken to achieve automatic addressing in microarray image analysis. The 

following sub-sections fully explain these steps along with the results of testing the 

corresponding algorithms. 

 

(Figure 4 near here) 

 

5.1 Thresholding 

The addressing algorithm uses morphological operators to preserve shapes and the 

binary version of the image to locate each vignette. For this reason, the image is first 



binarised and hence the first operation applied to the image is thresholding. Otsu’s 

thresholding algorithm (Otsu 1979) is the first technique that was tested with 

microarray images. The algorithm determines a threshold value, which maximises a 

measure of the separability of the two classes, i.e., background and foreground. Otsu’s 

method was unable to find most of the spots in the image since there is a large number 

of noise artefacts in the image. One way of tackling this problem is to require the user 

to intervene by selecting the location of blocks of spots using the mouse (interactive 

thresholding). However, this compromises the objective of automated analysis of the 

tool and hence was not explored further.  

 

In the case of addressing, thresholding is used to extract the spots from the 

background. It is not quite imperative to segment all the pixels that form the spot 

since the addressing of the spots provides just an estimate of their position; however, 

the majority of the pixels contributing to each spot should be found. Following careful 

consideration and systematic application of diverse thresholding values to various 

microarray images, a method of threshold selection has been chosen. The threshold 

value was found empirically to be at about 1% of the maximum grey-level value (i.e., 

600).  

 

(Figure 5 near here) 

 

Figure 5 shows the effect of thresholding with different threshold values. It can be 

seen from these images that the threshold value of 600 provides satisfactory results. 

Lower threshold values classify parts of the background (see Figure 5(a) and (b)) as 

belonging to the foreground; in this case, the majority of the image is classified as 



belonging to the spots (and marked as “white”). Higher threshold values do not detect 

all spots or the majority of their pixels (as is the case in Figure 5(d)).  

 

5.2 Image Smoothing 

In order to tackle noise originating, for instance, from dust, which can sometimes be 

detected, a variety of linear and non-linear filtering techniques were applied, however 

their performance was not deemed satisfactory. Instead it was decided to attempt the 

use of morphological operators as a means of removing noise, while preserving the 

circular shape of the spots. Morphological operators are used predominantly for noise 

filtering, shape simplification, enhancing object structure and of course segmenting 

objects from background.  

 

We apply the opening transformation (Schalkoff 1989), which is generally used to 

preserve specific shapes in the image and a structuring element of a defined shape is 

used to preserve the corresponding shape. Opening can be used in the first instance to 

remove noise from the image and secondly as an operation to preserve circular shapes 

in the image. There are two types of noise in the image that can complicate further 

processing. There are some noise patterns, which typically have a size less than the 

smallest spot size, and some which are considerably larger. The former type of noise 

can be removed when the filter for preserving the spots is applied, however, the latter 

type needs to be targeted first. It is known that the spot diameters are typically 

between 8-16 pixels. Hence, an 18×18 square filter is applied to the image, which 

preserves any shape that corresponds to a large square. This filter obviously targets 

and preserves any object on the image larger than the biggest spot. 

 



(Figure 6 near here) 

 

Figure 6 shows how the first type of noise is removed. First, all objects larger than the 

spots are preserved (using the opening operator), and then the preserved objects are 

removed from the original image to leave an image that does not contain this noise. 

The above images are the top part of the image in Figure 2, which does not contain 

any useful information (no DNA representation) and is made up of noise only. Not 

only is this mask larger than the spot, but it is also square shaped since the spots are of 

circular shape. This will satisfy the requirement that the spots should not be 

preserved. Next, a circularly shaped mask is used to preserve the spots since most 

spots are circular. It has a diameter of nine pixels, which corresponds to the smallest 

possible spot radius. It is important to note that the current pixel where the mask is 

positioned is at the centre of the mask. As it is needed to preserve all the spots on the 

image, the smallest spot (with diameter of nine) is considered so that all spots are 

preserved. Figure 7 shows the result of noise removal and preservation of circularly 

shaped objects. 

 

(Figure 7 near here) 

 

5.3 Grid Placement 

This subsection describes the approach followed for grid placement in microarray 

images. The algorithm is based on the extraction of 1D signatures in the 

horizontal/vertical directions. The proposed techniques make use of the proximity of 

spot objects. Hence, by evaluating the 1D signatures of the DNA image, we can 

ascertain whether there is an accumulation of foreground pixels, which would then 



indicate the presence of a block of spots. The procedure of 1D signature extraction is 

applied to each row/column of the image, by simply counting the number of 

foreground pixels. The primary means of detecting the boundaries was through the 

first- and second-order derivatives of the intensity signal (Schalkoff 1989). The zero-

crossings of the first-order derivatives indicate the position of the peaks and valleys in 

the signal, whereas the sign of the second-order derivative in these locations can 

specify whether that point is a peak or a valley in the signal. However, prior to 

differentiating, the signal should be smoothed with a Gaussian filter to remove false 

peaks/valleys within another peak. These false peaks/valleys arise due to spots not 

being aligned perfectly in one horizontal/vertical line (row/column). 

 

(Figure 8 near here) 

 

Figure 8 shows the 1D signal, its first and second-order derivatives, where the zero 

crossings of the first-order difference signal indicate the location of the peaks and 

valleys in the signal. These are very useful points since they can indicate the location 

of the spot/meta-array boundaries. However, these peaks and valleys are present in the 

noisy section of the signal, thus, further processing is needed to locate the true 

valleys. In order to eliminate the peaks/valleys corresponding to the noisy sections of 

the signal and to choose the correct valleys to designate the location of the spot/meta-

array boundaries, we make use of the procedure of hierarchical clustering. 

A hierarchical clustering algorithm (Arabie et al., 1996) constructs a tree of nested 

clusters based on proximity information. The primary purpose for building a cluster 

hierarchy is to structure and present data at different levels of abstraction. The first 

step in performing hierarchical clustering analysis on a data set is to find similarity or 



dissimilarity between every pair of objects in the data set by calculating the Euclidean 

distance between them. The next stage is to group the objects into a binary, 

hierarchical cluster tree. In this step, pairs of objects that are in close proximity are 

linked using the “shortest distance” information generated in the last step. As objects 

are paired into binary clusters, the newly formed clusters are grouped into larger 

clusters until a hierarchical tree is formed. Finally, the objects in the hierarchical tree 

are divided into clusters by detecting natural groupings in the hierarchical tree or by 

cutting off the hierarchical tree at an arbitrary point.  

The data set input to the hierarchical clustering algorithm is the distance of the peak 

points from the beginning of the signal (i.e., column number). Hierarchical clustering 

is therefore used to determine the closest points. Based on this data set, the shortest 

distance method of cluster tree construction is used. The basis of linking data points 

in this method is grouping points closest to one another. Figure 9 shows the resulting 

tree structure, indicating five distinct clusters, using the shortest distance linking 

method. 

 

(Figure 9 near here) 

 

(Figure 10 near here) 

 

By examining the number of elements in each group of clusters, it can be deducted 

that one cluster is associated with noise and the other four are the true peak points, 

belonging to the four meta-arrays. Figure 10 shows the final outcome of the clustering 

algorithm indicating which peak points belong to which cluster (meta-array). 

 



(Figure 11 near here) 

 

However, the location of peak points does not imply the location of the spot/meta-

array boundaries. These are indicated by the valleys in either side of each peak point. 

The first and last member of each cluster imply the locations of the meta-array 

boundaries, while the ones within each cluster imply the locations of spot boundaries. 

The Gaussian smoothing applied to the original data ensures that the valleys prior and 

subsequent to each peak point inside each cluster are the true valleys, by removing the 

false peaks/valleys at the early stages. Figure 11 shows the final result of 

superimposing the non-uniform grid on the microarray image. 

 

5.4 Locating individual spots 

There are two means of finding the exact co-ordinates of each spot; either with the 

technique used to find meta-array locations or by simply examining each position and 

if the pixels that follow it have intensities in an ascending/descending order, it is the 

starting/ending position of the spots in that row/column. 

 

(Figure 12 near here) 

 

The discontinuities in the data are taken as a probable location for a spot, however 

these discontinuities could correspond to noise in the meta-array. For this reason, for 

every discontinuity, the neighbouring values are examined and if the intensities of the 

pixels preceding it are on the decrease while the ones following it are on the increase, 

the current location is the starting/ending position of the spot. After using the 

horizontal/vertical 1-D signatures of the image to find the coordinates of each meta-



array, and the horizontal/vertical 1-D signatures of each meta-array to find the 

coordinates of spot vignettes, the algorithm is able to superimpose a non-uniform grid 

over the image. Figure 12 shows the result of superimposing the non-uniform grid on 

the image. Determining the approximate positions of the spots was the first part of the 

algorithm. The main part is to locate the pixels that construct a spot, so that their 

fluorescent intensities are extracted. Segmentation is used to locate these pixels. 

 

6 Spot Segmentation 

Segmentation is the process of decomposing images into separate regions such that 

particular features can be extracted from them. A combination of edge detection and 

region analysis techniques were used for spot segmentation in the proposed system. 

Edge detection is the detection of significant changes in some physical aspect of the 

image and is evident in the image as changes in intensity, colour and texture. Since in 

the current approach, edge detection is used in conjunction with region analysis (edge 

detection is used to find the pixels belonging to the spot boundary, followed by region 

analysis to extract all the pixels inside each spot), thus it is important that the resulting 

edges are connected together. Two edge detection techniques that were successfully 

applied are the Canny and Laplacian of Gaussian (LoG). 

 

(Figure 13 near here) 

 

Figure 13 shows the steps in the spot segmentation algorithm. It shows that both 

Canny and LoG edge detection techniques are used, the former using its output as an 

input to the circle detection algorithm to verify and choose spots which are circular, 

whereas, the latter uses its output as the boundary (edges) for every spot. Starting with 



a seed corresponding to the centre of the circle and this boundary, using a flood-filling 

algorithm, all the pixels belonging to a spot are segmented and are ready for 

information extraction. 

 

6.1 Canny Edge Detection 

Canny proposed an optimal approach to edge detection (Canny 1983), (Canny, 1986), 

based on three criteria. Firstly, it is important that edges occurring in images should 

not be missed and that there are no responses to non-edges (low error rate). Next, 

edge points are well localized, i.e., the distance between the edge pixels found by the 

edge detector and the actual edge is minimised. Finally, there is only one response to 

a single edge. Based on these criteria, the Canny edge detector first smoothes the 

image to eliminate noise. It then finds the image gradient to highlight regions with 

high spatial derivatives. The algorithm then tracks along these regions and suppresses 

any pixel that is not an edge (non-maximum suppression). The gradient array is now 

further reduced by hysteresis. Hysteresis is used to track along the remaining pixels 

that have not been suppressed. Hysteresis uses two thresholds, if the magnitude is 

below the first threshold, it is set to zero (set as a non-edge point). If the magnitude is 

above the high threshold, it is labelled as an edge point, and if the magnitude is 

between the two thresholds, then it is set to zero unless there is a path from this pixel 

to a pixel with a gradient above the high threshold. 

 

There are three parameters that need to be selected when using the Canny edge 

detector; these are the sigma value, which determines the size of the Gaussian filter 

and the upper and lower thresholds in the hysteresis stage. Extensive testing was 

carried out to test for different values of these parameters. The results showed that the 



optimal values are a standard deviation of 2.7, an upper threshold of 65% and a lower 

threshold of 25% of the maximum grey value (i.e., 42598 and 16384, respectively 

with the maximum grey level of 16 bits or 65535).  

 

6.2 The Gerig Hough Transform 

The Hough Transform (HT) is a method of detecting complex patterns of points, 

described by analytical equations in image data (Hough, 1962). The HT requires that 

the edge elements are first enhanced/detected and then the edge map image is 

thresholded. The extracted edge pixels are then processed to accumulate a set of 

votes, which designates probabilities for a number of solution categories. The HT can 

be seen as an evidence gathering procedure (Illingworth and Kittler, 1988). 

Particularly, each edge primitive votes for all parameters that could have produced it, 

if it was part of the required shape. After the final votes are collected, the highest ones 

are indicative of the relative likelihood of shapes defined by the parameters 

corresponding to those votes. 

 

One of the problems with the standard Hough Transform is the large storage space 

required when the range of circle radii is large. Gerig (Gerig and Klein, 1986) 

proposed a technique by reordering the HT calculation to replace the 3D accumulator 

of size N3 by three 2D arrays of size N2. The Gerig Hough transform (GHT) performs 

the full HT as a series of HTs in which, at each stage, there is only a single value of 

radius to guide the transform. At each stage, a 2D array acts as working space (CW) 

for transform accumulation and local peak finding. Peaks are characterised by their 

position, their size and the radius for which the transform is accumulated which can 

be recorded in the appropriate bins of two 2D arrays (CP, CR) matching the working 



array. At each stage, the working array is initialised and used to calculate the 

transform for another value of radius r. This process is repeated for all possible 

distinct radii. At the end of the process, the two 2D arrays contain information about 

location, size and radius of transform peaks. We make use of the Gerig HT with 

Gradient information (GHTG). This has low memory requirements, since the three 

accumulators (in an m×n image) require 3×m×n cells in total, hence giving a space 

complexity of O(m×n) at the expense of inability to locate concentric circles; a 3D 

cubic a-b-r accumulator is unnecessary. 

 

Every feature point P casts one vote in CW which in the standard implementation is set 

to one. In order to make the accumulated evidence more objective, every point P 

generates a vote V(P) which depends on its gradient magnitude G(P). This is an 

adaptive incrementation scheme and enables strong edge points to outweigh other 

noisy ones which usually have lower edge magnitudes, resulting in a reduction of 

noise in parameter space. V(P) is bounded by a maximum and a minimum value to 

avoid unreasonable vote values.  In addition, to prevent weaker edges from being 

completely masked off by stronger ones, an exponential voting system can be used 

(Goulermas et al., 1995). Interpreting the transform space is the final task of the HT. 

After the total transform has been accumulated, CP and CR contain information about 

the centres and the radii of the circles. Hence, the next step involves analysing the 

accumulated votes, so that true peaks that indicate the parameters of actual shape 

instances are objectively detected.  

 

(Figure 14 near here) 

 



The simplest method of peak detection (Ballard and Brown, 1982) is the global 

thresholding of the accumulator. A predefined threshold can differentiate between 

peak and non-peak bins. However, problems caused by image discontinuities, 

inaccuracies in edge orientation, noisy feature points and non-perfectly circular 

boundaries add noise to CP, spreading the peak to neighbouring cells and changing its 

height and position. To address this, accumulator filtering is applied (Goulermas et 

al., 1995). CP is sharpened with a high-pass filter, so that the real peaks are 

accumulated and false ones are downcast. After accumulator filtering which also 

sharpens the peaks, thresholding is applied to locate the peaks. Figure 14 shows the 

result of circle detection using the Gerig Hough Transform with gradient information 

for different peak thresholds. 

 

 

6.3 Laplacian of Gaussian Edge Detection 

Even though Canny edge detection provides a suitable input to the GHTG, it is not 

sensitive enough to find weaker pixels that contribute to the spots under investigation. 

Thus, using Canny edge detection does not guarantee that all spots will be accurately 

segmented. On the other hand, the Laplacian of Gaussians (LoG) is quite sensitive 

and can detect pixels which could potentially belong to the corresponding spots. This 

very sensitivity however causes some noise to be detected in the image. 

 

The next step in the development of the tool is to find the variations in parameters in 

the LoG edge detection method. The only parameter that needs to be defined is the 

standard deviation of the Gaussian, or simply, the size of the mask to be applied to the 

image. Small mask size (or small standard deviation) can contribute to less noise 



removed causing the output result to make the edges of the noise connect to the edges 

of the spots. A large mask size would not only remove noise but it could also remove 

some parts of the spots (data) that are very weak. Experimentation with the arrays 

available and the strength ratio of the noise versus image data led to approximating 

the standard deviation value and hence the mask size was chosen to be 9×9. The LoG 

edge detected image along with the circle centres are then used as input to the flood-

filling algorithm to extract all the pixels belonging to a spot. 

 

6.4 Flood-Filling Algorithm 

The Flood-filling algorithm (Liatsis, 2002) is a seeded region growing segmentation 

technique. Using the GHTG, circularly shaped spots were detected and also the 

GHTG was able to find the centre of its proposed circle. The Laplacian of Gaussian 

determined the edges of these spots and hence the boundary that separated the spot 

from the background.  In the flood-filling algorithm, the circle centre is used as a seed 

point and this seed can be grown to find all the pixels that compose the spot. This is a 

recursive algorithm, which operates until all the pixels inside the spot boundary are 

marked as belong to the spot or the boundary. In the proposed tool, a 4-connected 

algorithm is used. The reason behind this choice is the shape and thickness of the 

boundary. The boundary found using the LoG is only one pixel wide and in certain 

cases, the 8-connected algorithm can move across the boundary and hence count the 

background pixels as parts of the spot being investigated. The flood-filling algorithm 

starts from the circle centre coordinates as the seed point and moves to the four 

neighbours of this pixel, checking for the condition that they lie inside the boundary 

of the spot. This is done in one direction (one neighbour) at a time. If the pixel being 

investigated lies inside the boundary, it is flagged and counted as a spot pixel. The 



reason for flagging it is for a pixel not to be counted more than once. The procedure 

continues  until the algorithm comes to a halt in all directions. This ensures that all the 

spot pixels are segmented without moving outside the spot boundary set. The pixels 

are divided into two categories, i.e., edge pixels and spot pixels. 

 

7 Feature extraction 

In the microarray experiments, both DNAs are tagged with different probes. A laser 

excites these probes and they are imaged with a scanning confocal microscope. These 

images are investigated and if the same spot exists in the same location on the two 

images, it means that the complementary DNA and the sample DNA have bonded. 

The whole basis of the tool developed for processing of microarrays is to extract the 

features of the spots found so that they can be compared and contrasted in the two 

channels to analyse if the genetic experiments have been successful. One of the most 

common techniques is to extract the fluorescent intensity for individual spots, 

however as spots are composed of numerous pixels, comparison can be complicated. 

For this reason, the mean, median and mode intensities of each spot are calculated and 

used for comparison. An important issue with the intensity values is that they are 

proportional to the time after the reaction. Since, two images of the same microarray 

in different channels (usually red and green) are taken separately, one could have been 

over-exposed making the comparison difficult. To overcome this, these values need to 

be normalised. This is done by the system biologists and is not within the scope of 

this tool.  

 



Alternative methods of comparison were investigated and integrated as part of this 

tool. One such method exploits the shape parameters of the spots. Spot area, circle 

centre coordinates and spot compactness were used as benchmarks for comparison. 

 

7.1 Intensity extraction 

The proposed tool has successfully located the spots (addressing) and segmented the 

pixels that contribute to the particular spot (segmentation). This step is done 

concurrently with the flood-filling algorithm. As spot pixels are detected, their 

corresponding fluorescent intensity is extracted. The extracted information is stored 

for further processing. 

 

7.2 Background Extraction 

The background surrounding each spot is separated from the rest of the image by the 

non-uniform grid superimposed at the initial stages of the image processing. After the 

flood-filling algorithm, any pixels inside the vignette that are not marked as a 

foreground (spot) pixel are set as background pixels by default. 

 

(Figure 15 near here) 

 

Figure 15 shows the boundaries that contain the pixels making up the background. As 

it can be seen, red and grey indicate extracted spot and edge pixels, respectively. All 

the pixels remaining inside the vignette (made up by white lines) are assumed to be 

part of the background. 

 

  



7.3 Mean, Median and Mode Intensities 

There exist some statistics that characterise the distribution of a random variable. The 

three most commonly used parameters to define the centre of a distribution are mean, 

mode and median. The mean is the centre of gravity of the distribution and can be 

easily found as the sum of all values divided by the number of values. The mode is 

defined as the elementary event for which the probability density function has the 

maximum value. This corresponds to the highest possible value in the distribution. 

And finally, the median is the middle value of the distribution. It is evident that both 

background and foreground intensities stored earlier can be used to calculate the three 

different statistical parameters defined. The above procedures are applied to both 

foreground and background intensities.  

 

7.4 Compactness 

Another property of each spot that can be compared is compactness or circularity. 

This identifies how closely packed the shape is and is defined as perimeter2/area. The 

most compact shape in Euclidean space is the circle having a compactness of 4π, 

hence, if the compactness of each spot is calculated and then divided by 4π, the closer 

the corresponding value is to one, the more circular the shape is. The perimeter of the 

shape is the number of pixels found to be the boundary of each spot (using LoG edge 

detection), while the area is the number of pixels that belong to the spot (found using 

the flood-filling algorithm). These values are then used to calculate the circularity of 

each spot, which can be used as a parameter for comparison between the two images. 

 



8 Comparison of Results 

The software tool developed in this work is compared with three other tools, namely, 

TIGR SpotFinder (TIGR SpotFinder, 2001), ScanAlyze (Eisen, 1999) and ImaGene 

(BioDiversity, 2001). Twenty-five images of Streptomyces coelicolor were used for 

testing.  Figure 16 shows a portion of a microarray image used for testing purposes. 

 

(Figure 16 near here) 

 

One of the main differences in alternative software packages and the tool described 

here is the artificial colouring used in images. This can be easily achieved, however, 

since the tool developed is fully automatic, it does not require any changes to the 

image for human inspection. On the other hand, the other techniques rely on the user 

placing the grid and then the software takes over to start the spot analysis, hence, 

image colouring is one way of helping the user decide on the location of spots. 

 

The first step of analysis is the determination of a grid and addressing of the spots. 

This is the main difference between the tools. In the three tools tested, grid placement 

was the responsibility of the user whereas it is found automatically in the tool 

developed. In all three tools, the user is asked for the number of meta-arrays and 

number of rows and columns of spots inside those arrays, the spacing between spots 

and the spot size (width and length). Using the information input by the user, a grid is 

formed and it is the user’s responsibility to place the grid over the image correctly. 

Next, the user needs to verify and correct the location of each vignette over a spot. On 

each image, there could be as many as 8000 spots and possibly more than a few 

images for each experiment. This is a very time consuming procedure and the user has 



to be present for supervision of every microarray image analysis experiment. 

However, in the tool developed here, we can process as many images as necessary for 

analysis with no user supervision (or intervention). It is important to note that the user 

has the ability to intervene in the analysis of the image if they want to and this is 

facilitated in the tool developed. 

 

The next step in processing microarray images after addressing is segmentation. The 

three tools heavily rely on the addressing (and the grid placed over the image as its 

result) to apply local segmentation inside each vignette. The ScanAlyze software 

package goes one step further and uses the grid positions (and shape) as a priori 

information used for segmentation. The grid placed by the user is of circular shape 

and is used by the tool to segment the spot. 

 

(Figure 17 near here) 

 

Basically, the tool captures all the pixels inside the circular grid as belonging to a 

spot. Figure 17 shows the shortcomings of the segmentation method (fixed circle 

segmentation) used by the ScanAlyze tool. The grid circle could contain some of the 

background while some of the foreground information may be missing. This leads to 

an incorrect output result, which can lead to failure in determining the result of the 

biological experiment. 

 

Figure 18 shows the difference in segmentation between TIGR SpotFinder and the 

tool developed when comparing the segmentation area in corresponding spots. As it 

can be seen, the detected spot area is bigger in the latter and also the segmentation of 



the spot found by the former shows clearly that not all the pixels belonging to the spot 

are segmented. 

 

(Figure 18 near here) 

 

The main advantage of the segmentation technique used in the tool developed over its 

peers is the use of a combination of adaptive shape and circle segmentation. In this 

tool, varying circle size masks are used to locate circular shapes in the image and the 

corresponding spot is segmented no matter what shape it may possess, hence all of its 

pixels are segmented. ImaGene uses an adaptive shape segmentation only which leads 

to some noise to be segmented.  

 

Feature extraction is the most important part of microarray images analysis. Most of 

these tools use the spot and background statistics (mean, median and mode) along 

with the number of pixels making up the spot and the background. Some other 

features are also used, but the basis of all is correct segmentation of the spots. For this 

reason, as it was discussed above, ScanAlyze and TIGR SpotFinder fail in finding 

correct results for any of the above statistics since the segmentation is not satisfactory 

enough to locate all the pixels contributing to the spot and even in some cases some of 

the background is detected.  

Tables 1-4 show a portion of the output result tables from the four tools tested. 

Special notice should be paid to the spot area. In both ScanAlyze (equal number of 

pixels in all spots since fixed circle segmentation is used) and TIGR SpotFinder, this 

area is smaller than the one found by the tool developed here. This can be easily 

verified with the naked eye (as in Figures 17 and 18) to see that some of the pixels 



belonging to the spots are not detected, hence, the resulting mean, median and mode 

intensities are not properly calculated.  

 
Row 
No 

Col 
No 

Mean Spot 
Intensity 

Mean BG 
Intensity 

Median Spot 
Intensity 

Median BG
Intensity 

Total 
Intensity 

Spot 
Area 

BG 
Area 

1 1 6128 97 6530 86 821239 134 1802 
1 2 12306 96 13123 82 1230638 100 1836 
1 3 11004 101 12798 87 1199507 109 1827 
1 4 7878 103 9256 88 1063610 135 1801 
1 5 8236 100 9364 88 938990 114 1822 
1 6 9234 98 10263 90 1172762 127 1809 
1 7 11365 98 13533 84 1420748 125 1811 
1 8 16054 98 17023 84 2038861 127 1809 
1 9 18455 103 19764 82 2011674 109 1827 
1 10 5572 106 6141 84 752317 135 1713 
2 1 16043 101 17324 79 1796927 112 1824 
2 2 12236 105 14163 83 1529506 125 1811 
2 3 11358 98 12873 84 1226672 108 1828 
2 4 2727 92 2981 87 354580 130 1806 
2 5 16919 97 18342 88 2081098 123 1813 
2 6 3020 94 3973 90 413856 137 1799 
2 7 60092 207 64536 97 5588556 93 1893 

Table 1: Portion of the output result table obtained from the proposed tool 

 
Row 
No 

Col 
No 

Mean Spot
Intensity 

Mean BG
Intensity

Median BG
Intensity 

Spot 
Area 

BG 
Area 

1 1 7278 168 85 97 1584 
1 2 12654 99 86 97 1584 
1 3 12166 114 90 97 1584 
1 4 9542 190 86 97 1584 
1 5 9203 130 87 97 1584 
1 6 11293 144 87 97 1584 
1 7 12945 201 85 97 1584 
1 8 19181 253 90 97 1584 
1 9 19579 217 86 97 1584 
1 10 6526 181 89 97 1584 
1 1 19442 128 89 97 1584 
1 2 14594 177 83 97 1584 
1 3 12327 118 85 97 1584 
1 4 3350 108 85 97 1584 
1 5 21252 150 89 97 1584 
1 6 3624 132 86 97 1584 
1 7 53080 749 89 97 1584 

Table 2: Portion of the output result table obtained from ScanAlyze 

 



 

Row 
No 

Col 
No 

Mean Spot 
Intensity 

Total 
Intensity 

Spot 
Area 

1 1 7120 733366 103 
1 2 12696 1218812 96 
1 3 12239 1174976 96 
1 4 9402 940232 100 
1 5 9034 894348 99 
1 6 11290 1095088 97 
1 7 13480 1348028 100 
1 8 20342 2034173 100 
1 9 20825 2040865 98 
1 10 6639 657306 99 
2 1 1980 221762 112 
2 2 8641 872782 101 
2 3 3601 334850 93 
2 4 3069 322290 105 
2 5 2221 228718 103 
2 6 4303 421654 98 
2 7 7259 566172 78 

Table 3: Portion of the output result table obtained from TIGR SpotFinder 

 

However, this area is larger in the output results found by ImaGene. This leads to 

considering some background pixels belonging to the foreground, hence leading to the 

corruption of the statistical data. Since, spot segmentation algorithms in ImaGene are 

not fully described, this tool was tested using its corresponding results.  

 

Testing the different tools we may conclude that firstly, they do not offer a fully 

automatic software, which can process images without user intervention. Secondly, 

methods and algorithms used in segmentation of spots do not locate all the pixels 

belonging to a spot or sometimes include some of the pixels contributing to the 

background. The latter case can damage the result of the analysis. However, the 

software tool developed here works automatically, allows user intervention (if 

necessary) and locates pixels belonging to a spot correctly. 

 



Row 
No 

Col 
No 

Mean Spot 
Intensity 

Mean BG 
Intensity 

Median Spot 
Intensity 

Median BG 
Intensity 

Total 
Intensity 

Spot 
Area 

BG 
Area 

1 1 5554 91 6660 82 833030 150 1875 
1 2 11456 94 13129 85 1237280 108 1872 
1 3 10229 98 12358 88 1207072 118 1906 
1 4 7217 94 8177 82 1082560 150 1875 
1 5 7701 96 9155 84 947270 123 1902 
1 6 8744 93 10102 85 1180454 135 1845 
1 7 10734 97 12373 85 1427673 133 1892 
1 8 15749 96 18837 87 2110300 134 1936 
1 9 17181 93 19163 83 2096130 122 1902 
1 10 5479 97 5964 85 756158 138 1774 
2 1 16269 97 18674 88 1935975 119 1861 
2 2 10809 91 12989 79 1556502 144 1926 
2 3 10662 93 13061 84 1236777 116 1954 
2 4 3019 93 3299 83 350180 116 1908 
2 5 16090 94 19667 88 2156122 134 1890 
2 6 2888 93 3082 84 418811 145 1835 
2 7 58832 281 65535 86 5824408 99 1926 

Table 4: Portion of the output result table obtained from ImaGene 

 

The features of the spot consist of the mean, median and mode of the intensities of the 

pixels composing the signal (foreground) and the background, along with the total 

intensities for the pixels composing the spot and the background are all tabulated in 

the output result. The spot area and perimeter (which are used to calculate the 

compactness of the spot) are followed by the circularity value in the output table. 

Other outputs of this tool are the Canny and LoG edge detected images and also the 

circle-detected image. There is an option for the non-uniform grid to be positioned 

over the image, which should be selected prior to the start of the image processing 

algorithms. 

 

9 Conclusions 

This work presented and discussed the methods and algorithms along with test results 

in the development of a microarray image processing and analysis tool. The tool was 

developed in the three main stages of addressing, segmentation and feature analysis.  



 

It first proposed an algorithm for automatically locating spots on the image leading to 

the superimposition of a non-uniform grid over the image. The scheme used 

morphological opening as both a smoothing operator and also to preserve circularly 

shaped objects in the image. Next, the system used both adaptive shape and circle 

segmentation techniques. The fluorescent intensities of these spots were then 

extracted and these were recorded in a table along with other feature quality analysis 

parameters such as mean, median and mode intensities, signal and background area 

and compactness of the shape detected. 

 

Finally, the tool developed was compared against three other tools to determine the 

advantages/disadvantages of the former over these tools. The most important 

difference was found to be the fact that the tool developed here is fully automatic, 

whereas the three tools tested needed user intervention especially in determining and 

placing a grid over the image. The other main difference was in the techniques used in 

segmenting spots, where the other tools failed to fully segment all the pixels 

composing a spot, and in some cases even some of the background was detected as 

belonging to a spot. 

 

There are various avenues for potential continuation and improvement of the work 

presented here. There exist some images of reduced quality in terms of the presence 

of potential spots. In these images apart from noise, some cDNAs are not detected and 

hence the image provides a poor estimate of spot numbers. On the other hand, the 

gridding algorithm proposed in this contribution depends on the accumulation of spots 

in horizontal/vertical lines before detecting them using statistical techniques. Thus, 



this aspect causes a problem for images with more than half the number of possible 

spots missing in addressing and locating spots.  

 

Another area of improvement follows spot detection. Currently, the proposed tool 

only removes background, i.e., noise that is not attached to spots. This needs to be 

rectified so that noise contributing to spot pixel intensities is eliminated from the final 

output result. Further analysis of the histogram statistics of each spot would provide a 

means for suppressing erroneous information. 

 

In spot segmentation, other techniques should be considered. One such technique is 

seeded region growing (SRG) (Adams and Bischof, 1994). The problem faced in this 

algorithm is the method of automatic seed selection. Alternatively, pulsed coupled 

neural networks (PCNN) (Kuntimad and  Ranganath, 1999) have been utilised in 

image segmentation. The general approach to segment images using PCNN is to 

adjust the parameters of the network so that the neurons corresponding to the pixels of 

a given region pulse together and the neurons corresponding to the pixels of adjacent 

regions do not pulse together.  
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Figure Legends 

 

Figure 1: Image showing different methods of background adjustments. The 

region inside the red circle represents the spot mask and the other regions 

bounded by coloured lines represent regions used for local background 

calculation by different methods. Green: used in QuantArray; blue: used in 

ScanAlyze; and pink: used in Spot (Yang et al., 2000). 

 

Figure 2: Microarray expression of Streptomyces coelicolor. 

 

Figure 3: Overall system structure for the microarray image analysis tool. 

 

Figure 4: Breakdown of the steps in the task of addressing in the microarray image 

analysis tool. 

 

Figure 5: Image thresholded with a value (a) 100 (b) 300 (c) 600 (d) 900. 

 

Figure 6: Noise removal using opening (a) Original image  (b) Noise preserved 

(c) noise removed by using difference image. 

 

Figure 7: Effect of noise filtering (a) Original image, (b) Result of opening 

transformation. 

 

Figure 8: First-order derivative locates the peaks/valleys in the signal. 

 



Figure 9: Clustering tree structure using the short distance linking method. 

 

Figure 10: The four clusters indicating the four meta-arrays. 

 

Figure 11: The non-uniform grid superimposed on the (a) original image, (b) 

opened binary image. 

 

Figure 12: The non-uniform grid superimposed on the image. 

 

Figure 13: Overview of spot segmentation process. 

 

Figure 14: GHTG Circle Detection, different peak size thresholds (a) 2500 (b) 

1100 (c) 900. 

 

Figure 15: (a) Original LoG edge detected image (b) different colours indicate; 

red: foreground/pixel area, blue: background area, white: vignette surrounding 

the spot and grey: edges of the spot. 

 

Figure 16: A testing image showing a meta-grid of 10x10 possible spots. 

 

Figure 17: Grids on the ScanAlyse tool are shown as red circles overlaying the 

image. These are also used for segmenting the spot, however, (a) is smaller than 

(b) and some parts of the spot in (b) are not contributing to the spot intensity 

features. 

 



Figure 18: Comparison of segmentation (a) using TIGR SpotFinder (red line 

shows the segmentation area) and (b) the tool developed (black line shows the 

segmentation area) 
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