
 1

Personalised Correction, Feedback, and Guidance in an Automated 
Tutoring System for Skills Training 

 
Abstract 
In addition to knowledge, in various domains skills are equally important. Active learning 
and training are effective forms of education. We present an automated skills training system 
for a database programming environment that promotes procedural knowledge acquisition 
and skills training. The system provides support features such as correction of solutions, 
feedback and personalised guidance, similar to interactions with a human tutor. Specifically, 
we address synchronous feedback and guidance based on personalised assessment. Each of 
these features is automated and includes a level of personalisation and adaptation. At the core 
of the system is a pattern-based error classification and correction component that analyses 
student input. 
 
Keywords 
automated tutoring; correction; personalisation; feedback; guidance; skills training; database 
programming. 
 
 
1 Introduction 
 
The delivery of feedback is an integral part of learning processes (Heaney and Daly, 2004). A 
human tutor offers the student various forms of feedback; an automated online tutor should 
also do this. This feedback should be relevant, precise and understandable. The level a 
student reaches when learning is often proportional to a student’s engagement with a teacher 
or an activity. In computer-aided learning, feedback is of central importance in particular if a 
human tutor is not always available. 
 
We present an automated, computer-based tutoring system that supports a skills training 
environment for the database language SQL. Database programming and querying is one of 
the core skills for computer scientists and software developers, but is also important for other 
information technology users. In the computing domain, formalisable languages such as SQL 
are particularly suitable to be supported by automated tutoring systems. SQL is vital for the 
definition, manipulation and retrieval of information from a database system (Pahl, Barrett 
and Kenny, 2005). We refer to this system as a tutor as it offers features that a human tutor 
would offer:  
• In particular, it provides feedback for the student that is of a contextually high quality. 

The system allows a knowledge- or skills-level interaction with the content through 
programming activity and synchronous contextual feedback (Ravenscroft, Tait, and 
Hughes, 1998). 

• Furthermore, by automating the tutoring process, students can individually tailor their 
learning environment by defining feedback preferences and choosing their own learning 
paths through the system’s curriculum.  

The student benefits from a system that is always available and that analyses and corrects a 
submission and offers feedback and personalised guidance based on the analysis results. 
 
Our primary objective is to investigate an integrated approach to correction, domain-specific 
feedback and personalised guidance features. Tutoring systems have often neglected the 
guidance dimensions, which supports a learner over longer sessions and beyond. At the core 



 2

of this approach is a correction technique that allows personalised domain-specific feedback 
and guidance. 
• We develop techniques to analyse the SQL select statement in order to ascertain 

difficulties a typical novice student might encounter while creating these statements. 
These errors are categorised according to a multi-dimensional error classification scheme.   

• We determine adaptivity techniques for use in a knowledge-based feedback and guidance 
system. These are used to develop a system that lets content and navigation be adapted by 
feedback and guidance features.  

The system is evaluated through a combination of different instruments. SQL is a suitable 
topic to explore these issues, but they apply equally to other computer-processable languages, 
ranging from textual to graphical languages (Kenny, 2006).  
 
 
2 Background 
 
Guidance, Feedback, and Personalisation 
 
In the educational context, feedback is strategically useful advice given to a student based on 
tasks previously attempted. Its objectives are self-reliant learning and competency in a 
domain. Feedback can be defined as being local or global [Melis and Ullrich, 2003). Local 
feedback aims to help correct the student’s attempt at solving a specific problem. Global 
feedback uses several aspects of the whole learning process to coach the student in a more 
general manner.  
 
The challenge in computer-aided learning is to achieve personalisation in a learning 
experience based on skills training and activity. Adaptive hypermedia systems are 
personalisation systems that build a model of the goals, preferences and knowledge of each 
individual user, and use this model throughout the interaction with the user in order to adapt 
to the needs of the user (Brusilovsky, 2000). Adaptive teaching and learning can be provided 
at two main levels (Boyle, 1997). The first is the adaptation of presentation of content. The 
second is navigational guidance at the link level (De Bra and Stash, 2004). Guided discovery 
places an emphasis on the student’s ability to proactively seek information. It is a move from 
teacher-controlled learning to student-controlled learning and learning organisation 
(Stephenson, 2001).  
 
Intelligent Tutoring Systems and Pattern Matching 
 
An Intelligent Tutoring System (ITS) is a computer-based instructional system with models 
of instructional content that specify what to teach, along with teaching strategies that specify 
how to teach (Murray, 1999). ITSs have been shown to be highly effective at increasing 
students’ performance and motivation (Beck, 1996), although ITS in the past have often been 
restrictive, limiting the student’s control of the learning experience. A traditional ITS has four 
distinct components – an expert model, a student model, an instructional or pedagogical 
model, and an instructional environment or user interface (Boyle, 1997).  
• The expert model, or domain model, contains knowledge of the domain or subject area 

that needs to be communicated to the student. Knowledge is normally represented as a set 
of facts or rules (Chou, 2002).  

• The student model holds information about the student (personal details, learning style, 
learning preferences, etc.), along with a representation of the knowledge s/he holds 
(which is matched against the expert model).  



 3

• The pedagogical model has knowledge of teaching strategies to determine when and how 
to instruct the student. It makes decisions about the topic, the problem, and feedback. 

• The interface acts as the means of communication between the student and the ITS, 
receiving input and presenting information. 

 
Pattern matching or pattern recognition is a method that can be used in ITS to define ideal 
solutions or ideal learning paths. For instance, it can be used as a means of correcting student 
work. CAPIT’s student modeller, for instance, is a pattern matcher that takes a learner’s 
solution to a problem and determines which constraints are violated (Mayo and Mitrovic, 
2001). Pattern matching can also be used to ascertain a higher level of student understanding. 
The Tactical Action Officer TAO applies pattern-matching rules to detect sequences of 
actions that indicate whether the student understands an activity (Stottler and Vinkavich, 
2000).  
 
Skills Training, Apprenticeships, and Scaffolding 
 
Stephenson (2001) argues that experience is the foundation of and the stimulus for learning. 
Learning is primarily developed through activity. Skills training involves higher levels of 
activity and interaction than typical acquisition of declarative knowledge. The student trains 
mainly by practising a task. An apprenticeship is concerned with procedural knowledge 
acquisition and skills training. Traditional apprenticeship is a form of teaching and learning 
that has been used successfully throughout the ages, primarily for practical tasks. 
Apprenticeship is a three-step process involving a master and an apprentice. Initially the 
master demonstrates the completion of the various stages of a task while the apprentice 
observes. The apprentice works at the task while the master observes and offers advice. The 
apprentice practises in a controlled environment. The apprentice eventually achieves 
competency and self-reliance. Traditional apprenticeship is a blend of scaffolding, fading and 
coaching. 
• Scaffolding is a temporary support while completing a task or activity. The key idea 

behind scaffolding is to provide a student with timely support at an appropriate level. 
Collins et al. (1991) refer to scaffolding as being a set of limited hints and feedback.  

• Ideally, scaffolding will be faded, meaning it will be removed gradually, thus 
encouraging the student to work in a self-reliant manner.  

• Coaching is the process of overseeing the student’s learning (Collins et al., 1991). It 
involves formulating the course of work the learner should take, providing timely 
scaffolding at the appropriate level and fading it accordingly, and offering meaningful 
feedback and encouragement.  

 
Cognitive apprenticeship moves the traditional apprenticeship into the classroom and the 
cognitive domain (Collins et al., 1991). A major principle of cognitive apprenticeship is 
collaboration and conversation with a master (Winnips, 2003). Cognitive apprenticeship uses 
the idea of situated learning, whereby the learner is placed in a real-world environment 
(Collins, 1988). The virtual apprenticeship model (Murray et al., 2003) applies cognitive 
apprenticeship to the Web context, and is therefore a suitable concept for web-based learning. 
This model uses scaffolding and activity-based learning to allow the student to construct 
knowledge, practise skills and gain experience. The construction of artefacts and a realistic or 
even authentic setting are vital (Herrington and Oliver, 2000). 
 
 
3 System Architecture and Component Functionality 



 4

 
System Architecture 
 

 
 

Figure 1. Architecture of SQL Tutoring System 
 
The tutoring system is a learning coach for students studying SQL that offers a range of 
exercises (SQL questions). We use a component-based architecture similar to ITS 
architectures, see Figure 1, with an interface, an expert model (here called the correction 
component), a student component and a pedagogical component. The main components are 
supported by information objects, which store: 
• the tables that the student should query in the various exercises, 
• a collection of ideal solutions that are used by the correction component, 
• student records to store general and topic-specific information about the student, 
• content that the student may be directed towards by the pedagogical component.    
 
The student component is responsible for arranging information about the student for storage, 
and for retrieving relevant student information from the database. The correction component 
sends to the student component information regarding the total number of attempts and the 
number and types of errors made by the student for each question, which can be retrieved per 
session or per set of sessions. We outline interface and pedagogical component now and 
discuss the correction component later on in detail. 
 
Interface Component 
 
The navigation approach is based on a virtual apprenticeship format and guided discovery. 
Our tutoring system accommodates the second and third stages of the apprenticeship model 
by allowing students to practise a task with and without help from the system. Virtual 
apprenticeship dictates that the student’s learning should be supported by scaffolding. Within 
the guided discovery paradigm, the student assumes control of some learning experience 
factors. The student can control and view feedback and guidance at a chosen level. A default 
system setting in the pedagogical component, which implements scaffolding and fading, 
changes the levels of feedback and guidance based on number and success of student 
attempts.  



 5

 
The student selects a question and submits a solution attempt. The number of attempts and 
successes is recorded in the student records. The student’s query is sent to the correction 
model for correction. A correct query is sent to a database server and a result is returned. The 
correction model returns an error flag to the interface. If the question is answered incorrectly, 
the student may, depending on chosen preferences, receive scaffolding in the form of 
feedback or guidance, which includes hints and, after a number of unsuccessful attempts, also 
correct solutions.  
 
Pedagogical Component 
 
The pedagogical component contains the teaching strategies of the system. This component 
decides what level of feedback and guidance to return to the student by examining the 
personal preferences and the errors made in the questions attempted. It is the element in 
charge of the personalisation of scaffolding. 
 
The pedagogical process is initiated by the interface. If the student has made one or more 
errors in a particular question the interface sends the student’s feedback and guidance 
preferences to the pedagogical model. The system offers a mixed locus of control of feedback 
and guidance, meaning the student or the system can choose the type and level of feedback to 
be displayed. The pedagogical model determines, according to preferred feedback and 
guidance levels, the further actions to be taken. In the default option, the system gradually 
increases the levels from minimum to maximum as the student repeatedly unsuccessfully 
attempts a question. The scaffolding will plateau at the maximum levels possible. This 
increase of feedback and guidance is a form of scaffolding, and so it is also faded. 
Consequently, both forms of scaffolding are gradually decreased.  
 
 
4 Error Classification and Correction Component 
 
Error classification is the first step to providing the student with adequate and constructive 
personalised feedback. The SQL select statement is the focus of our error classification. 
Multiple concepts covered by select statements can be applied to other SQL statements, 
which make it a suitable topic from an educational point of view. 
 
SQL Problems and Solutions  
 
The select statement is a fundamental SQL statement, used to query and extract information 
from a database (Ramakrishnan and Gehrke, 2003). It can be made up of six clauses, but we 
focus here on the three central ones – SELECT, FROM, WHERE – whereas the others are 
dealt with in (Kenny, 2006). These map to input elements (from), a condition that is the 
extraction filter (where), and an output description (select). An example is: 
 

SELECT colour FROM parts WHERE weight > 10 and city = “Paris”. 
 
A list of database table names can be provided in the FROM clause. The SELECT clause can 
contain a list of column names of tables named in the from-list, possibly combined with 
aggregation operators such as minimum or average. The qualification in the WHERE clause 
is a condition or filter constraint based on logical and comparison operators. 
 



 6

The nature of SQL select statements means there is not always a single correct solution for a 
given question. However, we can produce an ideal solution that will contain the minimum 
number of elements possible in a correct solution. Some semantically equivalent variations 
between the student solution and the ideal solution are, however, accepted: 
• the re-ordering of attributes and table names within the one clause, 
• syntactical equivalence or operators, 
• sometimes, using attribute prefixes is semantically equivalent to the absence of prefixes, 
• redundant elements that are not part of the select clause do not affect output, 
• using table aliases results in the same output as their non-use. 
An example for the first case are SELECT A, B FROM C, D and SELECT B, A FROM D, C, 
an example for the second are <> and != as inequality operators.  
 
Abstract Notation for Ideal Solutions 
 
Each question posed by our tutoring system addresses a specific SQL problem or SQL 
construct. Targeted constructs and problems are usually only part of a full select statement. 
Consequently, the statement, be it the ideal solution or the student attempt, needs to be 
decomposed into individual elements. An abstract notation was developed to allow the 
system to identify element types in a solution.  
 
We chose a pattern matching approach as the classification and correction technique. An 
abstract notation is used to classify any errors the student has made by matching the student’s 
solution with an abstracted form of an ideal solution. The proposed ideal solution is a 
statement that contains the minimum amount of constructs needed to correctly answer the 
question. The aim of the abstraction is to cater for semantically equivalent solutions. We refer 
to basic expressions in the ideal solution schema (e.g. attributes or tables) as elements. Each 
relates to a string token in the ideal solution. The grammar of the SQL language serves as the 
basis of the pattern-based matching by providing these element types as abstractions. Every 
element in the abstract notation has a particular purpose within the query and is derived from 
the grammar. We can therefore directly equate our SQL elements with an SQL grammar. 
 

Table 1. SQL Query Example with Ideal Solution and Solution Schema 
  
Question text Get distinct colour and city for non-Paris parts with weight greater than 10 
Proposed ideal 
solution 

       SELECT distinct colour, city  
       FROM p  
       WHERE city <> ‘Paris’ and weight > 10 

Ideal solution 
schema  

       SELECT misc attr attr  
       FROM table  
       WHERE att cop misc lop att cop misc 
with 
       table: a table name 
       attr: an attribute name 
       prefix: a table name prefix 
       cop: an SQL comparison operator 
       lop:  an SQL logical operator 
       misc: a miscellaneous item 

 
We can see from the ideal solution in the example in Table 1 that there are a minimum 
number of elements present to fulfil the question requirements. Each element maps directly to 



 7

its type in the solution. The correction model can ascertain the specific elements that need to 
be part of the student’s solution, and the types of these elements. In the example, the system 
would know that p is the name of a table, colour and city are attributes, <> is a comparison 
operator, and distinct, ‘Paris’ and 10 are miscellaneous items. 
 
Error Classification for SQL Select Statements 
 
We introduce a multi-dimensional error categorisation scheme (summarised in Figure 2) that 
incorporates the dimensions formal language facets, clause types and common elements to 
locate where and how the student has made a mistake. This allows us, using the instructor’s 
experience, to put the error classification in an educational perspective. It is important to base 
error categories on typical difficulties the students may encounter. The correction component 
uses the error categorisation scheme to determine the type of mistake made by the student 
and the pedagogical model presents these to the student in a personalised and educationally 
sound way.  
 

 
 

Figure 2. Multi-dimensional Error Classification Scheme 
 
As SQL is a formal language, its aspects can be classified into syntactic or semantic. Errors 
made by the student can be categorised in this first dimension into two central categories: 
• Syntax errors are caused by problems with the actual syntax of the language; for example, 

misspelling a keyword or selecting an attribute that does not exist. 
• Semantic errors occur when a statement is created that is syntactically correct, but which 

does not reflect the student’s intentions correctly. Suppose a student wishes to select the 
names of employees who are over the age of thirty. Instead of using the greater-than 
symbol (>) the less-than symbol (<) might be used. The names of employees under the 
age of thirty instead of over would be selected. 

 
The second dimension is based on the clauses of the SQL statement. Each clause performs a 
particular function and so addresses a different semantic issue. For instance, the select clause 
specifies the output of the query. We categorise any errors made by the student based on 
these SQL select statement clauses, which allows us to identify the semantic difficulty that a 
student is having in relation to the specific function of a clause. 
 
In addition to the clause-specific error dimension, we also categorise any errors made by the 
student based on these elements used in the clauses in this third dimension, which 
complements the clause-specific errors: 
• Table names: Students may select the wrong tables, particularly when more than one table 

is to be selected, or when a table needs to be selected but will not appear in the result. 
• Attributes: Students may select incorrect attributes, particularly when the attribute will 

not appear in the result. 



 8

• Prefixes: Prefixes may be needed in a statement where two or more attributes with the 
same name exist in different tables.  

• Comparison operators: A student may inappropriately use a comparison operator.  
• Aggregate functions: The student may use an incorrect aggregate function. 
• Miscellaneous items: This category is included for minor aspects that do not adhere to the 

above categories.  
The element errors are object-specific, whereas the clause errors are function-specific. 
 
The multi-dimensional error categorisation scheme shall be illustrated. Consider two tables, s 
and sp, that capture information about suppliers and shipments of parts.  
• Question: Get the numbers and names of all suppliers. 

Student Answer (incorrect): SELECT sno, name FROM s. 
System Diagnosis: This statement is incorrect because the student has tried to select the 
attribute “name”. We assume that the correct attribute is “sname”. This can be identified 
as primarily a function-specific error in the select clause, i.e. the output of the statement is 
affected through an attribute element. 

• Question: Get the maximum status of suppliers in Paris. 
Student Answer (incorrect): SELECT min(status) FROM s WHERE city = ‘Paris’ . 
System Diagnosis: In this case, the student has selected the minimum status instead of the 
maximum status. Here, the system identifies a primarily element-specific semantic error 
due to the misuse of the aggregate function “min” on element “status” in the select clause. 

The identification of the primary error is based on heuristics defined by database instructors. 
The system also identifies the categories of errors when the student has made more that one 
mistake. The number and ordering of displayed errors depends on the student’s scaffolding 
preferences and the heuristics-based prioritisation of errors by the instructor.  
 
Correction Component 
 
The correction component (Figure 3) is a central component. Developing an accurate means 
of correction is the main challenge. We have chosen a pattern matching-based method of 
correction. This method permits us to create a flexible correction component that is more 
efficient to implement than constraint-based solutions, which depend on extensive rule 
repositories. Since SQL is a relatively small-scale formal language, pattern matching 
techniques are sufficient to correct a range of query variations. Pre-defined ideal solutions are 
dynamically matched against the solution submitted by the student and inconsistencies are 
identified.  
1. A syntactically correct query is matched against an ideal solution for possible semantic 

errors. A segmenter splits the query into segments based on the clauses. The segmenter 
also partitions the ideal solution from a solution repository.  

2. Having been split into segments, the student’s and the ideal query are normalised for 
easier matching. This step consists of removing an extraneous elements and standardising 
certain miscellaneous items and operators. 

3. When normalised, all segments are then sent to the pattern matching component. Queries 
are matched segment by segment. This allows the correction model to identify the clauses 
and elements that are violated. Each token in the ideal solution is necessary and needs to 
appear in the student solution. Any extra words that appear in the student’s solution may 
affect the resulting table, which is analysed as well. The type of missing elements is 
recorded.  

The correction component deals with semantic errors, as syntactic errors are identified by an 
incorporated database system in our system. 



 9

 

 
 

Figure 3. Correction Component Zoom 
 
With this method of correction, a student query is marked correct if it has the correct 
attributes even if the ordering is different from the ideal solution.  
• Representation. Based on an SQL grammar, the ideal solution can be represented in form 

of an abstract syntax, as depicted in Figure 4. Concrete ideal solution elements are 
associated with the abstract schema elements.  

• Normalisation. The student solution is normalised. The representation in the form of an 
abstract syntax tree identifies already some syntactically different, but semantically 
equivalent formulations. A simple example is the same meaning of the keywords 
UNIQUE and DISTINCT. Further equivalences are captured by abstract grammar-based 
rules that describe semantically equivalent reformulations of the abstract syntax tree 
through, for instance, reordering or truncation of irrelevant subtrees.  

• Pattern Matching. The segmented and normalised student solution (and its rule-based 
variations) needs to fit into the solution schema-based tree structure given by the ideal 
solution tree. Redundant expressions from the student solution are removed in the 
normalisation. Therefore, a 1:1 association between ideal schema and student solution is 
needed for semantically correct answers.  

Different orderings of attributes, tables, or operands and operators, as in the attribute list in 
the example, are addressed by the pattern matcher through the equivalence rules. The 
component also checks the output of the two solutions when actually executed. This acts as 
verifier for the pattern matcher and increases the accuracy of the correction component.  
 
In the example, SELECT distinct pname, colour FROM p WHERE city = ‘Paris’ and weight 
> 10, the student has made two errors. Instead of selecting colour and city, the selected 
attributes are colour and pname. S/he has also specified Paris parts instead of non-Paris parts 
(i.e. wrongly used the equality operator).  
 



 10

 

 
 

Figure 4. Ideal Solution Tree Structure 
 
The accuracy of error classification for languages such as SQL is a central challenge. While 
SQL is a relatively simple programming language, many variations of a single statement 
correctly answer a question – which we have captured with the abstract syntax tree 
representation and the equivalence rules. With larger numbers of correct answers, the 
accuracy of the correction technique is the key difficulty as all equivalences have to be fully 
captured. The method of correction can lead to an error in the diagnosis when permitted 
variations are not adequately dealt with. The combination of a larger number of these 
variations significantly increases the complexity, making it difficult in practice to actually 
produce a fully accurate technique, whether it is based on pattern matching or on any other 
technique like constraint-based reasoning. A heuristic approach to accuracy improvement is 
often necessary. 
 
A high degree of accuracy would even allow the correction component to be used to grade 
student solutions. The tutoring system could be used to return percentage marks and 
potentially to mark coursework. This could be implemented by linking a severity level to 
errors and linking an importance level to elements in the clause. Students could be given full 
marks initially, which are decreased in varying amounts by the correction model based on the 
severity of errors and the absence of vital elements. 
 
 
5 Feedback and Guidance 
 
Feedback 
 
Feedback can be defined in the educational context as immediate, or synchronous advice 
given to a student, based on a solution s/he has submitted, that aims to support the student’s 
learning experience. In our system, feedback is an umbrella term for hints about mistakes 
along with links to relevant background material.  
 
Based on the correction component and the representation of error categories, our tutoring 
system provides five levels of increasing feedback. Hints and links to supplementary material 
are predefined in order to make pedagogical sense when combined. The principle is that the 
student examines the hint, reassesses the requirements of the question, and re-formulates the 
solution.  



 11

• While the hints aim to be helpful they do not reveal the complete answer. The formulation 
of hints requires the expertise of an instructor to reflect common errors and their cause. 

• The hints are weighted, reflecting the different severities of individual errors. For 
semantic errors, we consider clause hints being the most important, then element hints – 
which is reflected in the organisation of levels. 

The feedback decision procedure is directly based on the error diagnosis, i.e. is based on the 
three error categories and the student’s preferred feedback level. 
• Level 1: one SQL clause hint. 
• Level 2: one SQL clause hint + one SQL element hint. 
• Level 3: all SQL clause hints + all SQL element hints. 
• Level 4: all SQL clause hints + all SQL element hints + required elements. 
• Level 5: all SQL clause hints + all SQL element hints + required elements + links. 
Solutions are additionally available as part of the scaffolding after a number of unsuccessful 
attempts – which is an adaptive feedback element. For our example from the previous 
section, for each level the following hints are added: 
• Level 1: there was an error in the select clause. 
• Level 2: there was an error with an attribute that was selected. 
• Level 3: there was an error in the where clause; there was an error with a symbol that was 

used. 
• Level 4: you need to include the following element: “colour … <> …”  . 
• Level 5: try the following links: – 1 – 2 – 3  . 
 
Feedback is a synchronous reply, only determined by the most recent student-system 
interaction. In order to maximise the potential of tutoring systems, a more long-term 
personalised form of feedback is needed, but which is often lacking, in particular in SQL 
tutoring systems. This form of global feedback is called guidance. 
 
Guidance 
 
Guidance means to offer the student advice and recommendations about subject areas to 
concentrate on based on a more comprehensive assessment than a single correction. This 
determination may be a single session, but typically it is data collected over a number of 
sessions. Our system uses the student records to offer personalised guidance based on a 
student’s overall activity in the system. The virtual apprenticeship model and the guided 
discovery format, both of which we are incorporated in this guidance approach, assume that 
the student will take a degree of responsibility for her/his learning experience. Guidance only 
suggests areas that the student should relearn or pay particular attention to. 
 
The pedagogical model retrieves the information on all errors made by the student from the 
student model. There are four levels of guidance. As with the feedback feature, each level 
builds on the previous level. The decision is based on the complete error diagnosis and the 
preferred guidance level. 
• Level 1: one SQL clause judgement. 
• Level 2: one SQL clause judgement + one SQL element judgement. 
• Level 3: all SQL clause judgement (graded) + all SQL element judgement (graded). 
• Level 4: all SQL clause judgement (graded) + all SQL element judgement (graded) + 

menu of relevant questions to practise. 
For instance, the following guidance advice could be given: 
• Level 1: your greatest amount of errors involves the WHERE clause. 



 12

• Level 2: your greatest amount of errors involves the WHERE clause, using symbols. 
• Level 3: you are having major problems with the WHERE clause; you are having minor 

problems with the SELECT clause. 
• Level 4:  try the following questions: here (follow the link). 
Guidance can be given on request or at the beginning or end of a session. Internally, based on 
the activity log, error categories are ranked and the highest ranking ones are given first in the 
guidance to the student. 
 
 
7 Discussion 
 
Evaluation of the Tutoring System 
 
Student attainment is one of the factors that determine the system’s effectiveness and success. 
Over the last years, we have achieved an exam mark increase by 2% annually through regular 
improvements. While during the introduction of our tutoring system, all other factors 
remained constant, the relevant exam results have increased by 5.4% on the previous year.  
 
Student opinion is another crucial success criterion. Over 90% agreed, some strongly, that the 
tutoring system was a useful teaching and learning tool in its own right. The majority of 
students agreed or strongly agreed that the system is easy to use in general. The feedback and 
personalised guidance features are seen as an important part of the tutoring system. Our 
survey results imply that the idea of providing both feedback and guidance has its merits. One 
critical aspect, however, is worth noting. Unintended higher levels of inaccuracy of the initial 
prototype have led to a more critical evaluation by students. Accuracy is the crucial property 
of the correction feature, even if it is not used for grading. 
 
Students were asked to rate five statements about the system. Students indicated that the most 
important aspect of the system is its focus on active skill-oriented learning rather than a 
passive lecture-based approach. The second most important aspect is that the system is 
always available and enables self-paced learning, which would otherwise only have been 
possible during supervised lab times. 
 
General information about student behaviour and usage of the system can be determined 
through web usage mining, which we have used to validate and complement the results of 
both the attainment evaluation and student survey. Although this evaluation often shows 
examples of just-in-time learning, we observed that this is complemented by long-term and 
pre-emptive use. The majority of usage occurred outside of the scheduled lab sessions, which 
demonstrates its value as a self-study tool following the apprenticeship philosophy.  
 
Related Work 
  
Our system is based on the virtual apprenticeship model, enabling activity-based learning and 
training based on an ITS-style architecture. We describe three systems that combine 
personalisation and ITS properties with SQL tutoring. These systems are similar in their aims 
and interfaces, but they each have differing architectures and methods of correction. We are 
particularly interested in the correction, scaffolding, and feedback/guidance methods 
employed by the systems.  
• SQLator (Sadiq, Orlowska, Sadiq, and Lin, 2004) corrects a student’s submission by 

equating it with the corresponding English question – the authors refer to this as 



 13

evaluating the student’s submission rather than correcting it. The system’s equivalence 
engine judges if the student’s SQL solution correctly corresponds to the given English 
question, without actually executing the query at correction stage. This correction 
approach is currently limited to a selection of select statement errors.  

• Acharya (Bhagat, Bhagat, Kavalan, and Sasikumar, 2002) uses a three-step process – pre-
processing, atom processing and truth table processing – to correct the student’s proposed 
solution. This process assumes that the sets of atoms in two expressions are the same. The 
process will fail if one of the expressions is made up of more atoms than the other, so the 
correction method is not as robust as it might need to be. Also, the where clause is the 
only clause that is analysed, which leads to accuracy problems. 

• SQL-Tutor (Mitrovic and Ohlson, 1999) uses constraint-based reasoning to correct 
queries submitted by the student. The system’s constraints deal with syntax errors as well 
as semantic errors, as the student’s proposed solution is not actually executed. The system 
checks each submitted query for relevant constraints that have been violated. This method 
of correction can yield a high level of accuracy, depending on the extent of the constraint 
base. In order to provide for the large range of possible errors the developers have created 
a large number of constraints over a number of years and versions of the system. The 
required investment for this one component is not always a feasible option. 

Another, related approach to correcting SQL queries exist. Based on (Brass and Goldberg, 
2006), the authors have developed a correction tool that gives feedback on general queries 
without an ideal solution using heuristics about the general consistency of the query. While 
this would provide a useful complement to a training or development environment for 
databases, it does not provide an adequate degree of feedback in an automated tutoring 
setting. 
 
The three systems offer some form of scaffolding in the form of feedback to the student. 
• SQLator’s automatic feedback consists of an error flag telling the student if an answer has 

been marked as correct or incorrect. Asynchronous feedback is offered by allowing staff 
members to email or post messages to address submissions. A synchronous hint-based 
feedback system, which we consider essential for automated tutoring, is proposed as an 
extension. 

• Acharya provides feedback in the form of error flagging and hints. Hints are comprised of 
text and links. Only one hint is displayed at a time. Allowing the user to have an option 
here would be preferable. This system does not offer guidance based on the student’s 
previous actions. 

• SQL-Tutor provides advanced feedback, offering both hints and partial solutions. There 
are five levels of feedback ranging from a simple correctness indication to offering the 
complete solution. Feedback is in text form only and relevant links are not offered. Links 
to relevant topics are often useful to students and put errors into context. There is no 
additional guidance based on the student’s previous actions. 

Both Acharya and SQL-Tutor suggest the next question for the student to attempt. The 
reasons for this system recommendation are, however, not made explicit to the student as in 
our guidance component and the student is not given a choice of recommended questions. 
 
 
8 Conclusions 
 
Automated tutoring systems have become an accepted method of instruction. Students reach 
a higher level of understanding when they are actively engaged in these systems. Our 
automated tutoring system provides a realistic training environment for database 



 14

programming. The apprenticeship theory is particularly suited to skills training. An important 
feature of this theory is scaffolding, of which feedback is a classic example. Feedback can be 
global or local, which we have addressed through synchronous local feedback and global 
guidance based on the student’s overall performance. Automated tutoring is time and location 
independent. It can be developed to mimic the action of a human tutor – correcting, providing 
feedback, presenting an assortment of questions, etc. In addition, tutoring systems are moving 
towards adaptive flexible tutoring rather than imposing a strict learning path on the student.  
 
Some difficulties need to be addressed in the implementation of automated tutoring systems. 
A system’s accuracy and the student’s trust level are important for its success. Designing and 
implementing a flawless correction method is, however, the challenge. Trust in a system will 
increase as correction errors are lessened; students will be confident that their errors are 
accurately diagnosed and the scaffolding provided is relevant. For certain topics it may be 
difficult to create a perfect method of correction. This leads to either fallibility within the 
system or high development costs. While these limitations exist, an automated tutoring 
system is nonetheless a beneficial learning tool. Our main aim here was to introduce 
techniques and to demonstrate: 
• the potential of advanced tutoring for a computer language based on a pattern matching 

approach to automated correction, 
• the benefits of integrated feedback and personalised guidance based on pattern-based 

correction. 
 
Content domains focusing on formal languages lend themselves to automated tutoring – their 
structure makes them relatively easy to analyse. The student can make submissions to the 
system and receive results based on automated correction. The presented correction approach 
using grammar-based pattern matching can in general be transferred to similar learning and 
training domains where computer-processable languages, both textual and diagrammatic, can 
be processed automatically based on an explicitly formulated grammar.  
 
An automated system can never fully replace human tutoring in terms of its quality. This can 
only be alleviated to some extent by providing an interesting and, importantly, useful system 
with greatly improved accessibility and availability. Personalised guidance complements 
immediate correction and feedback – and should be present in any tutoring system. 
 
 
References 
 
Bhagat, S., Bhagat, L., Kavalan, J. and Sasikumar, M. (2002). Acharya: An intelligent 
tutoring environment for learning SQL. Proceedings of Vidyakash 2002 – International 
Conference on Online Learning.  
 
Beck, J., Stern, M. and Haugsjaa, E. (1996). Applications of AI in education. ACM 
Crossroads, The Student Journal of the association for Computing Machinery, 3 (1). 
 
Boyle, T. (1997). Design for multimedia learning. Prentice Hall Europe. 
 
Brass, S. and Goldberg, C. (2006). Semantic errors in SQL queries: A complete list.  Journal 
of Systems and Software 79:630-644. 
 



 15

Brusilovsky, P. (2000). Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-
based education. Proceedings of 5th International Conference on Intelligent Tutoring 
Systems, ITS 2000. Springer Verlag. pp. 1-7. 
 
Chou, C.-Y., Chan, T.-W. and Lin, C.-J. (2002). Redefining the learning companion: the past, 
present, and future of educational agents. Computers & Education, 40 (3), pp. 255-26. 
 
Collins, A. (1988). Cognitive apprenticeship and instructional technology. Technical Report 
No. 6899. BBN Labs Inc., Cambridge, MA, USA. 
 
Collins, A., Brown, J.S. and Holum, A. (1991). Cognitive Apprenticeship: Making thinking 
visible. American Educator, Winter edition. 
 
De Bra, P. and Stash, N. (2004). Multimedia adaptation using AHA! Proceedings of ED-
MEDIA 2004 World Conference on Educational Multimedia, Hypermedia & 
Telecommunications. pp. 563-570. 
 
Heaney, D. and Daly, C. (2004). Mass production of individual feedback. Proceedings of 
ITiCSE’04. ACM Press. pp. 117-121. 
 
Herrington, J. and Oliver, R. (2000). An instructional design framework for authentic 
learning environments. Educational Technology Research and Development, 48 (3), pp. 23-
48. 
 
Kenny, C. (2006). Automated Tutoring for a Database Skills Training Environment. M.Sc. 
Thesis. Dublin City University, School of Computing. 
 
Kenny, C. and Pahl, C. (2005). Automated tutoring for a database skills training environment. 
Proceedings of ACM SIGCSE Symposium 2005. ACM Press. pp. 58-62. 
 
Mayo, M. and Mitrovic, A. (2001). Optimising ITS behaviour with Bayesian Networks and 
Decision Theory. International Journal of Artificial Intelligence in Education, 12, pp. 124-
153. 
 
Melis, E. and Ullrich, C. (2003). Local and global feedback. Proceedings of AIED2003, 11th 
International Conference in Artificial Intelligence in Education. 
 
Mitrovic, A. and Ohlsson, S. (1999). Evaluation of a Constraint-Based tutor for a database 
language. International Journal of Artificial Intelligence in Education, 10, pp. 238-256. 
 
Murray, T. (1999). Authoring Intelligent Tutoring Systems: An analysis of the state of the art. 
International Journal of Artificial Intelligence in Education, 10, pp. 98-129. 
 
Murray, S., Ryan, J. and Pahl, C. (2003). A tool-mediated Cognitive Apprenticeship approach 
for a computer engineering course. Proceedings of International Conference on Advanced 
Learning Technologies ICALT2003. IEEE Press. pp. 2-6. 
 
Pahl, C., Barrett, R. and Kenny, C. (2004). Supporting active database learning and training 
through interactive multimedia. Proceedings of ITiCSE’04, The 9th Annual Conference on 
Innovation and Technology in Computer Science Education,  



 16

 
Ramakrishnan, R. and Gehrke, J. (2003). Database management systems. McGraw Hill. 
 
Ravenscroft, A., Tait, K. and Hughes, I. (1998). Beyond the media: Knowledge level 
interaction and guided integration for CBL systems. Computers in Education, 30 (1/2), pp. 
49-56. 
 
Sadiq, S., Orlowska, M., Sadiq, W. and Lin, J. (2004). SQLator – an online SQL learning 
workbench. Proceedings of ITiCSE’04, June 2004. pp. 223-227. ACM Press. 
 
Stephenson, J. (ed) (2001). Teaching and learning online. Kogan Page. London. 
 
Stottler, R.H. and Vinkavich, M. (2000). Tactical Action Officer Intelligent Tutoring System 
(TAO ITS). Proceedings of the 2000 Interservice/Industry Training, Simulation and 
Education Conference (I/ITSEC-2000). 
 
Winnips, K. (2001). Scaffolding-by-design as a model for online learner support. Ph.D. 
thesis, Faculty of Educational Science and Technology, University of Twente, Netherlands. 
 
  
 


