

International Journal of Learning Technology

ISSN online: 1741-8119 - ISSN print: 1477-8386
https://www.inderscience.com/ijlt

Visual programming and computational thinking environments
for K-9 education: a systematic literature review

Dimitrios Trakosas, Christina Tikva, Efthimios Tambouris

DOI: 10.1504/IJLT.2023.10056591

Article History:
Received: 21 January 2022
Last revised: 26 April 2022
Accepted: 18 July 2022
Published online: 06 June 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijlt
https://dx.doi.org/10.1504/IJLT.2023.10056591
http://www.tcpdf.org

 94 Int. J. Learning Technology, Vol. 18, No. 1, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

Visual programming and computational thinking
environments for K-9 education: a systematic
literature review

Dimitrios Trakosas, Christina Tikva* and
Efthimios Tambouris
University of Macedonia,
156 Egnatia Street, GR-546 36 Thessaloniki, Greece
Email: dimitristrakosas@gmail.com
Email: ch.tikva@uom.edu.gr
Email: tambouris@uom.edu.gr
*Corresponding author

Abstract: Teaching programming and computational thinking to young
students has gained increasing attention in recent years. This great attention is
attributed partially to the emergence of easy-to-use visual programming
environments. These environments help students focus on the logic and
concepts of programming and at the same time enhance their engagement. It
has been shown that the characteristics of visual programming environments
influence students’ engagement with programming. However, there is still no
systematic investigation of these characteristics. This study aims to provide
insights on the characteristics of visual programming environments for K-9
education based on a systematic literature review of 83 empirical studies on
K-9 teaching and learning programming. These characteristics are analysed
based on the following four levels: a) functional features; b) student
experience; c) teacher experience; d) disadvantages. Finally, herein we discuss
the features that a programming environment for K-9 education could have to
improve the experience of students and teachers.

Keywords: visual programming environments; computational thinking
environments; K-9 education.

Reference to this paper should be made as follows: Trakosas, D., Tikva, C. and
Tambouris, E. (2023) ‘Visual programming and computational thinking
environments for K-9 education: a systematic literature review’, Int. J.
Learning Technology, Vol. 18, No. 1, pp.94–121.

Biographical notes: Dimitrios Trakosas is a graphic designer and a children’s
book, comic and application illustrator in Thessaloniki, Greece for the last nine
years. He holds a Bachelor’s degree in Fine Arts from the University of
Ioannina, an MSc in Graphic Design from the University of Lancaster, UK and
an MSc in Information Systems from the University of Macedonia,
Thessaloniki, Greece. He is a PhD candidate at the University of Ioannina and
his research interests include graphical interfaces, picture books and computer
and arts education in K-12.

Christina Tikva is a Computer Science Teacher at Secondary Education in
Thessaloniki, Greece, for the last 13 years. She holds a Bachelor’s degree in
Applied Informatics from the University of Macedonia and an MSc from

 Visual programming and computational thinking environments 95

Aristotle University of Thessaloniki, Greece. She is a PhD candidate at the
University of Macedonia and her research interests include computational
thinking and programming in K-12 and higher education.

Efthimios Tambouris is an Assistant Professor at the Applied Informatics
Department at the University of Macedonia, Thessaloniki, Greece. Before that,
he served at Research Centers CERTH/ITI and NCSR ‘Demokritos’ as well as
the IT industry. He holds a Diploma in Electrical Engineering from the
National Technical University of Athens, Greece, and an MSc and PhD from
Brunel University, UK. During the last 20 years, he has initiated and managed
several research projects, e.g., LLP EATrain, Erasmus+ ODEdu, PBL_LA and
flip2G. He has also participated in numerous research projects, service
contracts, and standardisation activities. He has more than 150 publications in
e-government, e-participation, e-learning and information systems.

1 Introduction

Recently, teaching of programming to young students has gained increasing interest
worldwide (Moreno-León et al., 2016). This is evident from the growing number of
studies (e.g., Keane et al., 2019) focusing on teaching and learning programming to
young students (Zhang and Nouri, 2019). Researchers in these studies (e.g., Fokides,
2017b; Kalelioǧlu, 2015) argue that programming and algorithmic skills should be
developed at an early age to lay the foundation for the future, as they enhance the
scientific skills of K-9 students (Weintrop et al., 2015). To this end, many countries
around the world have reformed their curricula to teach programming to younger students
(Kalelioǧlu, 2015).

Lye and Koh (2014) attribute the recent interest in teaching and learning
programming for young students to the availability of easy-to-use visual programming
environments. Their easy-to-use design is due to the visual characteristics, the provision
of phrase library, the drag-and-drop mechanism and the fact that the blocks are more
legible than plain text (Lin and Weintrop, 2021). These tools also prevent syntax errors
and encourage students to focus on programming logic and concepts (Fronza et al., 2017;
Lye and Koh, 2014; Sengupta et al., 2013; Tikva and Tambouris, 2021). In addition,
visual programming environments focus on design and creation (Grover and Pea, 2013a),
enhancing student engagement in programming by providing fun, motivation, enthusiasm
(Lazarinis et al., 2018; Sáez-López et al., 2016). As an interactive technology, they can
also enhance expressiveness (Papadakis, 2022). They are based on the constructionist
tradition that emphasises on the self-directed learning through art, games and interactive
stories (Weintrop and Wilensky, 2015). Such engaging and fun environments can lead
young students to want to learn text-based programming in the future (Lin and Weintrop,
2021). In contrast, text-based programming environments are not considered
developmentally appropriate for younger students in K-9 education who are in the early
stages of learning to read (Papadakis, 2021). Due to the aforementioned characteristics,
visual programming environments are often exploited in studies involving young learners
(e.g., Kalelioǧlu 2015; Moreno-León et al., 2016; Sáez-López et al., 2016; Zhong et al.,
2016).

 96 D. Trakosas et al.

However, previous research reveals that specific characteristics of programming
environments such as gaming, provision of interaction and reward systems may affect
students’ engagement (Hershkovitz et al., 2019). Therefore, it is important to investigate
the characteristics of these environments, as well as the user experience they offer, in
order to provide a holistic overview of the programming and computational thinking tools
aimed at young students.

The development of relevant research has led to the publication of reviews that
investigate programming tools and technologies used in early years education. These
efforts (e.g., Ching et al., 2018; Tang et al., 2019) mainly provide an overview of
available tools and technologies by classifying them into general categories. However,
apart from documenting and classifying these tools, there is a lack of investigation into
the specific characteristics of visual programming environments used for teaching and
learning programming in early years of education.

This work aims to provide insights into the characteristics of visual programming
environments used in K-9 education, by reviewing empirical studies focusing on K-9
teaching and learning programming and computational thinking. The characteristics of
visual programming environments are analysed based on the following four levels:

a functional features

b student experience

c teacher experience

d disadvantages.

2 Background work

The accumulation of previous research has led to the publication of relevant reviews
(e.g., Ching et al., 2018) with the aim of providing an overview of programming and
computational thinking tools and environments aimed at young students. Additionally,
several literature reviews (e.g., Buitrago Flórez et al., 2017; Grover and Pea, 2013a;
Hsu et al., 2018; Lye and Koh, 2014) include topics such as programming tools and
environments, among others. Most of these reviews focus on issues such as the role of
these tools in learning programming and developing computational thinking, as well as
recording the tools used for this purpose in previous studies.

Hsu et al. (2018) found that the tools used for teaching and learning computational
thinking include programming environments, computer games, robots, board games,
instant response system and videos. Ching et al. (2018) reviewed technologies aimed at
developing computational thinking for young students by analysing them based on:

a the design of the tools (agents’ type and manipulatives occurrence)

b their pedagogical possibilities regarding the concepts (sequence, loops, conditionals,
operators) that students can learn.

To this end, they classify the aforementioned technologies in programming toys, board
games, robot kits, programming applications/websites and animation/game development
tools. In the same line, Buitrago Flórez et al. (2017) described the most powerful and
useful tools for novice programming learners and classify them in Virtual approaches

 Visual programming and computational thinking environments 97

(Scratch, Logo, Python), Real life experiences (LEGO®, LEGO® Mindstorms) and
Game programming. Lin and Weintrop (2021) defined the approaches used in
transitioning young learners from block-based to text-based programming environments.

Grover and Pea (2013a) highlighted some of the features that effective computational
thinking tools should have, including low floor and high ceiling. This means that tools
should enable novice learners to easily create working programs; while at the same time
must be powerful enough to create advanced programming projects. The low floor
feature, as pointed out by Lin and Weintrop (2021), should be the main goal of all visual
programming environments. Other studies (e.g., Papadakis, 2022; Resnick and
Silverman, 2005) also emphasise the importance of low floor-high ceiling. Other
significant features are the iterative exploration of computational thinking, the
elimination of syntax errors, the motivation and engagement they offer and the ability to
be used to bridge the gender gap in the programming field.

Several studies support that visual programming tools allow students to better
understand the principles of programming and computational thinking as they avoid
unnecessary syntax such as the use of parentheses, questionmarks, etc. Additionally,
students in most cases place code in the editor using drag and drop functionality. In these
ways, students are helped to focus on the logic and concepts of programming (Grover and
Pea, 2013a; Lye and Koh, 2014) and consequently develop new expressive and emotional
ways (Papadakis, 2021). Several studies (e.g., Fokides, 2017a; Grover and Pea, 2013a;
Hsu et al., 2018) also emphasise that teachers find visual programming more appealing to
students. This is especially true for young students involved in programming.

Visual programming environments can provide significant opportunities for learning
programming and developing computational thinking to young students. However,
investigation of their characteristics is still missing. This study aims to provide insight
into visual programming environments’ characteristics and therefore could help educators
identify the most appropriate environment in relation to their and their students’ needs.

3 Method

3.1 Study goal and research questions

This study aims to provide insight into visual programming environments’ characteristics
aimed at K-9 education. To this end, the following research questions are answered.

RQ1 What are the visual programming environments aimed at K-9 education?

RQ2 What are the characteristics of the visual programming environments aimed at K-9
education?

3.2 Procedure

A systematic literature review based on Webster and Watson’s (2002) methodology was
applied. The steps and results of the three phases of the procedure are presented in
Figure 1.

 98 D. Trakosas et al.

Figure 1 Procedure

3.2.1 Keywords identification
During this phase, we identify the programming environments applied in K-9 education
that serve as keywords for our search strategy. Figure 2 presents the steps of the
Keywords Identification phase and the related results.

Figure 2 Steps of the keywords identification phase and related results

We started by doing a manual search in journals for reviews regarding programming and
computational thinking in K-9 education. We searched for reviews dating back to 2006
when Wing (2006) re-introduced ‘computational thinking’. We then applied the
following inclusion criteria to the search results:

a the main educational focus of the review is K-9 education

b the scope of the review includes tools and environments for programming and
computational thinking.

Since only one review met the first criterion while did not meet the second, we replaced
the first inclusion criterion with the following: the main educational focus of the review is
K-12 education. Subsequently, we listed the programming environments included in the
selected reviews. Finally, we applied the following inclusion and exclusion criteria to the
recorded programming environments.

Inclusion criteria:

 Visual programming and computational thinking environments 99

• Active user: programming environments that are designed to encourage students to
be creators of programming artefacts and not just consumers. This means that the
final derivative of the process of learning is a functional program, a game, an
animation or a programming artefact that a third person can use as a consumer
(Dunjohn, 2013).

• Visual programming: programming environments that include visual programming.

• Exclusion criteria: programming environments that include an electronic physical
agent and manipulatives for programming, robot kits, microcontrollers and board
games.

3.2.2 Study selection
We searched for studies in the following scientific databases: ACM digital library, IEEE
Xplore, ScienceDirect, ResearchGate and Google Scholar using as keywords the selected
programming environments derived from the Keywords Identification phase described in
Section 3.1.1. We then checked the results by reading all the titles and abstracts and
removed studies that were not written in English language or we could not have full
access to them. Finally, we scrutinised the remaining studies against inclusion and
exclusion criteria presented in Table 1.
Table 1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria
Journals, conferences or books. Theoretical research and opinion articles.
Empirical research where participants are K-9
students or teachers.

Studies that focus on grades greater than 9th
grade, higher or adult education.

3.2.3 Classification and data extraction
During this step, we applied content analysis to the list of selected primary studies, as
well as inspected the programming environments and their official websites. For each
case we recorded the characteristics of the programming environments included in the
case. Subsequently, we grouped them into the following four levels:

a functional features

b advantages in relation to the user experience for students

c advantages in relation to the user experience for teachers

d disadvantages.

4 Results

4.1 Visual programming environments targeting K-9 education

In order to identify the programming environments targeting K-9 education we followed
the procedure describe in Section 3.2.1. The search resulted in 12 reviews from which the
following three (Ching et al., 2018; Grover and Pea, 2013a; Lye and Koh, 2014) met the

 100 D. Trakosas et al.

inclusion and exclusion criteria. We then, recorded 39 programming environments listed
in the aforementioned reviews and removed three duplicates.

Finally, the following 11 programming environments met the inclusion and exclusion
criteria: AgentCubes, AgentSheets, Alice, Code.org, Game Maker, Hopscotch, Kodu,
MIT App Inventor, Scratch, Snap!, Tynker

4.2 Characteristics of visual programming environments

4.2.1 Overview
Study selection phase is described in Section 3.2.2. Initially, the searches resulted in
225 studies. Finally, the review includes 83 primary studies that met the inclusion and
exclusion criteria. In addition, the official websites of the programming environments are
also included in the review. The total cases are presented in Appendix.

Most of the selected studies (67.47%) apply qualitative research methods, but without
much difference with those that use quantitative research methods (59.03%). A 26.5%
percentage of the selected studies use both qualitative and quantitative methods. Table 2
presents the classification of studies by followed method.
Table 2 Method followed

Research method Case (id) Sum
Qualitative
research

C1, C4, C6, C9, C12, C13, C15, C16, C20, C21, C25, C27,
C28, C31, C32, C34, C38, C40, C41, C46, C47, C50, C55,
C56, C58, C59, C62, C63, C66, C68, C70, C76, C77, C78

34

Quantitative
research

C2, C5, C7, C8, C10, C11, C17, C23, C24, C33, C37, C44,
C45, C48, C49, C52, C60, C61, C64, C65, C67, C69, C71,

C73, C74, C80, C82

27

Both C3, C14, C18, C19, C22, C26, C29, C30, C35, C36, C39, C42,
C43, C51, C53, C54, C57, C72, C75, C79, C81, C83

22

Figure 3 Interventions per programming environment

5 4

10

4 5
2

9

17

34

2 1
0

5

10

15

20

25

30

35

40

 Visual programming and computational thinking environments 101

The programming environment most used in the selected studies is Scratch
(34 interventions) followed by MIT App Inventor (17 interventions), Alice
(ten interventions) and Kodu (nine interventions). The remaining programming
environments appear in less of five interventions in the selected studies. The number of
interventions per programming environment is presented in Figure 3.

4.2.2 Functional advantages of programming environments
Investigation of the selected studies reveals the following functional advantages of visual
programming environments targeting K-9 students: object-oriented programming, visual
to text-based language translator, open-source code, online project library, connectivity
with other programming environments, and connectivity with external agents. Table 3
presents the classification of programming environments in each functional advantage.
Table 3 Functional advantages

Advantages Programming environment Case (id)
Object-oriented
programming

AgentCubes, AgentSheets,
Alice, Game Maker,

Hopscotch, Kodu, MIT App
Inventor, Scratch, Snap!,

Tynker

C1, C3, C6, C9, C10, C11, C23,
C24, C26, C27, C36, C41, C47,
C51, C53, C55, C58, C60, C61,
C68, C71, C73, C74, C75, C76,

C77, W2, W4, W10
Visual to text-based
language translator

Alice, Code.org, Game
Maker, Tynker

C38, C41, W2, W3, W4, W10

Open-source code Code.org, MIT App Inventor,
Scratch, Snap!

W3, W7, W8, W9

Online project library AgentCubes, AgentSheets,
Hopscotch, Kodu, MIT App

Inventor, Scratch, Snap!

C6, C13, C19, C52, C55, C61, C63,
C73, W1, W5, W6, W9

Internet security Hopscotch W5
Connectivity with other
programming
environments

Hopscotch, Tynker W5, W10

Connection with external
agents

Hopscotch, MIT App
Inventor, Scratch

C19, C25, C31, C50, C63, C70,
C71, C72, W5, W7, W8

Ten of the 11 programming environments follow the principles of object-orientated
programming by allowing users to apply classes, abstraction, inheritance and
encapsulation. Only five of them have methods that are either ready-made or allow users
to make their own (AgentCubes, AgentSheets, Alice, MIT App Inventor, Snap!).

Four of the listed programming environments include visual to text code translation.
This feature allows translation of visual programming blocks into text programming
languages as follows: Java (Alice), JavaScript (Code.org, Tynker), Python
(Tynker),GameMaker (Game Maker Language).

Only four of the selected programming environments are open-source. Open-source
allows programming environments to be improved and customised according to existing
needs, thus making a programming environment useful to almost everyone, as new or
existing features can be added or changed.

Seven programming environments include an online project library. Allowing
students to upload their projects, which can then be downloaded by other students and

 102 D. Trakosas et al.

worked on or improved upon can provide additional motivation and inspiration. It can
also increase collaboration between students in the classroom and the wider online
community (Papadakis et al., 2014; Resnick et al., 2009) as well as give an open-source
character to students’ creations (Perdikuri, 2014). However, only Hopscotch provides
Internet Security features for young primary school students. Internet Security applies to
cases where an online project accepts feedback from other users, checking whether there
is a risk of cyber bullying.

Connectivity with other programming environments allows easy transfer of projects
between environments. For example, Hopscotch and Tynker provide the ability to import
projects made with Scratch (Dunjohn, 2013). This function, of course, is difficult to
achieve for all environments as they do not have similar functions, or even the operating
systems they run on are different.

4.2.3 Advantages related to the user experience of teachers
The investigation of the selected studies reveals the following advantages related to the
user experience of teachers: easy to learn/teach, multidisciplinary/intersectionality,
classroom management tool, real-time project analysis or grading, online community, and
support material. Table 4 presents the classification of programming environments in
each advantage regarding the user experience of teachers.
Table 4 Advantages related to the user experience of teachers

Advantages Programming Environment Case (id)
Easy to learn / teach AgentSheets, Game Maker,

Kodu, MIT App Inventor,
Scratch, Snap!

C6, C7, C12, C18, C20, C24,
C26, C38, C42, C47, C48,
C49, C51, C56, C57, C58,

C59, C63, C73, C76
Multidisciplinary /
intersectionality

Alice, Code.org, Game Maker,
Hopscotch, Kodu, MIT App

Inventor, Scratch, Snap!, Tynker

C11, C12, C14, C15, C16,
C17, C18, C20, C24, C26,
C32, C41, C43, C50, C51,
C52, C57, C58, C59, C62,

C68, C69, C73, C80, C83, W2,
W5, W10

Classroom management tool Code.org, Hopscotch, Tynker C43, W3, W5, W10
Real-time project analysis or
grading

AgentCubes1, Tynker C9, W10

Online community Code.org, Game Maker,
Hopscotch, Kodu, Scratch,

Snap!, Tynker

C13, C60, C68, C82, C83, W3,
W4, W5, W6, W8, W9, W10

Supporting material Alice, Code.org, Game Maker,
Hopscotch, Kodu, MIT App

Inventor, Scratch, Snap!, Tynker

C2, C43, C56, C68, C83, W2,
W4, W5, W6, W8, W9, W10

Note: This feature is only supported in the online version of AgentCubes
Source: Basawapatna et al. (2015)

For six of the 11 programming environments there are reports of ease of learning by the
teachers themselves. Consequently, when teachers can easily learn a programming
environment, they can teach their students more easily. It is easier to learn and teach a
programming environment when it avoids the need to memorise complex syntax

 Visual programming and computational thinking environments 103

(Kalelioǧlu and Gülbahar, 2014; Lazarinis et al., 2018; Morelli et al., 2010). Additional
ease can be provided by the hypertonicity of the blocks while the code is executed as it
happens in Code.org and Scratch (Papadakis et al., 2014).

Interdisciplinary features are observed in nine programming environments.
Interdisciplinarity can help introduce programming to students through courses that are
not directly related to programming (Lewis, 2010; Rodger et al., 2010).

Only three out of ten programming environments have a class management tool.
Creating an online classroom and having it managed by teachers is a very powerful tool
for both teachers and students. Important functions are the possibility of enrolling and
accepting students, receiving detailed reports on student progress (Kalelioǧlu, 2015) and
creating courses and exercises in addition to the ready-made ones offered. Another
function considered important is the automatic analysis and advice to teachers
(Basawapatna et al., 2015) or, as in Tynker, the automatic correction and grading of
students’ projects. In addition, a classroom management tool feature can increase
collaboration between students and enhance work outside the classroom (Kalelioǧlu,
2015).

Seven programming environments have an official online community. An active
online community can help teachers exchange opinions and ideas, lesson plans, solve
questions with the help of other teachers who are currently online, and also find tutorials
and educational materials (Resnick et al., 2009).

Finally, nine programming environments provide teachers with supporting material,
such as exercise booklets, instructional videos and syllabi for programming or other
courses.

4.2.4 Advantages related to the user experience of students
The investigation of the selected studies reveals the following advantages related to the
user experience of students: Focus on programming concepts, computational thinking
development, creativity, development of problem-solving skills, code blocks
categorisation by colour, ability to create new blocks of code, immediate explanation of
code blocks, instant code feedback, hypertension of corresponding blocks of code during
execution, automatically prevent incorrect code input, translated into other languages,
low floor/high ceiling, create or import of custom graphics, motivation for teamwork,
additional incentives for use. Table 5 shows the classification of programming
environments in each advantage in terms of students’ user experience.

Ten of the 11 programming environments have code-generating mechanisms
designed in such a way that students can focus on the concepts and logic of programming
and not get stuck in writing code that can frustrate them (Cooper, 2010; Cooper et al.,
2003; Costa and Miranda, 2016; Sykes, 2007). As Repenning (2017) mentions, in the
complex mechanisms of constructing a function, there must be a way to simplify it so that
students do not get bored.

All programming environments focus on the development of computational thinking.
Its development through a programming environment can be achieved through interactive
simulations, testing of the theories taught, visualisation of the actions taken to solve a
problem and more generally through the exploration of other scientific fields through
programming (Basawapatna et al., 2013a; Lazarinis et al., 2018). Ten of them particularly
focus on the development of students’ problem-solving abilities.

 104 D. Trakosas et al.

Table 5 Advantages related to the user experience of students

Advantages Programming Environment Case (id)
Focus on
programming
concepts

AgentCubes, AgentSheets,
Alice, Code.org, Game
Maker, Hopscotch, MIT
App Inventor, Scratch,

Snap!, Tynker

C2, C4, C5, C7, C11, C13, C16, C17,
C18, C24, C25, C30, C33, C35, C36,
C38, C41, C43, C44, C45, C47, C48,
C49, C50, C51, C52, C53, C55, C56,
C58, C61, C64, C67, C69, C70, C71,
C72, C73, C74, C75, C83, W2, W10

Computational
thinking
development

AgentCubes, AgentSheets,
Alice, Code.org, Game

Maker, Hopscotch, Kodu,
MIT App Inventor, Scratch,

Snap!, Tynker

C1, C3, C4, C7, C9, C10, C13, C17,
C18, C20, C23, C24, C29, C30, C32,
C35, C36, C38, C39, C41, C43, C44,
C47, C48, C53, C55, C56, C58, C61,
C62, C64, C67, C69, C70, C71, C72,
C74, C76, C77, C81, C82, W2, W10

Creativity AgentCubes, AgentSheets,
Alice, Code.org, Game

Maker, Hopscotch, Kodu,
MIT App Inventor, Scratch,

Snap!, Tynker

C3, C4, C11, C13, C24, C31, C36, C38,
C41, C42, C43, C47, C51, C53, C56,
C62, C63, C72, C73, C75, C76, C79,

C80, C81, C82, W1

Development of
problem-solving
skills

AgentCubes, AgentSheets,
Alice, Game Maker,

Hopscotch, Kodu, MIT
App Inventor, Scratch,

Snap!, Tynker

C1, C3, C4, C5, C7, C12, C17, C19,
C23, C24, C25, C30, C32, C36, C41,
C42, C44, C47, C48, C54, C56, C57,
C58, C61, C63, C72, C74, C76, C77,

C79, C81, C82
Code blocks
categorisation by
colour

Code.org, Hopscotch,
Kodu, MIT App Inventor,

Scratch, Snap!, Tynker

C13, C47, C53, C60, C61, C71, C72,
C73, C76, C78, W3, W5, W6, W8, W9,

W10
Ability to create
new blocks of code

AgentCubes, AgentSheets,
Scratch, Snap!

C33, C51, W1, W8, W9

Immediate
explanation of code
blocks

Kodu, Scratch, Snap!,
Tynker

C51, C53, C76, W9, W10

Instant code
feedback

Code.org, Game Maker,
Tynker

C41, W3, W4, W10

Hypertension of
corresponding
blocks of code
during execution

Code.org, Kodu, Scratch,
Snap!

C60, W3, W6, W9

Automatically
prevent incorrect
code input

Alice, Kodu, Scratch C18, C49, C60, C68, C75, C76, C77,
C78, C82

Translated into
other languages

Code.org, Hopscotch, MIT
App Inventor, Scratch,

Snap!

W3, W5, W7, W8, W9

Low floor / high
ceiling

AgentCubes, AgentSheets,
Alice, Code.org, Game

Maker, Hopscotch, Kodu,
MIT App Inventor, Scratch,

Snap!, Tynker

C6, C18, C31, C34, C38, C45, C47, C48,
C58, C63, C68, C74, C76, C82, W1, W2,

W3, W9, W10

 Visual programming and computational thinking environments 105

Table 5 Advantages related to the user experience of students (continued)

Advantages Programming Environment Case (id)
Create or import of
custom graphics

AgentCubes, AgentSheets,
Alice, Code.org, Game
Maker, Hopscotch, MIT
App Inventor, Scratch,

Snap!, Tynker

C11, C12, C21, C25, C36, C51, C53,
C60, C62, C68, W1, W2, W3, W5, W9,

W10

Motivation for
teamwork

AgentSheets, Alice,
Code.org, Game Maker,

Kodu, MIT App Inventor,
Scratch, Snap!

C6, C14, C23, C24, C25, C26, C28, C29,
C32, C37, C38, C39, C41, C42, C43,

C44, C54, C58, C60, C68, C80

Additional
incentives for use

AgentCubes, AgentSheets,
Alice, Code.org, Game

Maker, Hopscotch, Kodu,
MIT App Inventor, Scratch,

Snap!, Tynker

C1, C2, C3, C4, C5, C6, C7, C8, C11,
C12, C13, C14, C15, C16, C20, C24,
C25, C26, C33, C34, C35, C36, C38,
C40, C41, C43, C46, C47, C48, C50,
C52, C53, C56, C58, C59, C60, C62,
C64, C65, C67, C69, C70, C72, C74,

C75, C76, C79, C80, W10

Focusing on some of the more technical features that aid learning, seven programming
environments were found to provide block categorisation by colour according to their
type of functionality.

Only four of the 11 programming environments allow students to create their own
blocks of code and add them to the code library according to their needs. Therefore,
students are not limited to using only predefined blocks. At the same time, by creating
new solutions and blocks, students’ creativity is enhanced (Repenning and Sumner,
1995).

Instant explanation of the ready-made blocks of code in the library is offered by four
programming environments. In Scratch, when students click on the desired block, they
discover its function as it is executed on the screen (Maloney et al., 2008) while in
Tynker, an explanatory video is displayed. Kodu has descriptive tiles (WHEN-DO), so
practically students can immediately see what a piece of code can do (Aggarwal et al.,
2018). In addition, three programming environments give direct feedback on the
generated code after its execution.

In addition, highlighting the code snippet while it is running can help students
understand it better. This feature, which is only available at Code.org, Kodu, Scratch and
Snap!, can be very useful as it facilitates the control of large programs (Papadakis et al.,
2014).

Three programming environments do not allow students to enter a piece of code that
is incorrect (Cooper, 2010; Cooper et al., 2003; Costa and Miranda, 2016; Resnick et al.,
2009; Sykes, 2007). However, this function is controversial, as according to some
studies, (e.g., Cooper et al., 2003; Sykes, 2007) it does not allow students to learn from
their mistakes.

All of the selected programming environments are designed to be equally interesting
to both beginners and advanced learners, as they allow beginners to learn relatively
easily, while providing experienced users with features and mechanisms that allow them
to create more complex programs. Thus, the risk of frustration for beginners and the
boredom for students with previous programming experience can be avoided
(Basawapatna et al., 2013b; Ioannidou et al., 2009; Repenning, 2012).

 106 D. Trakosas et al.

In ten programming environments students can design or import custom graphics
based on their own needs. This process can increase their interest (Resnick et al., 2009).
However, it should not be too complicated and difficult to avoid the opposite effect
(Remshagen et al., 2018; Rodger et al., 2010).

Eight programming environments provide some motivation to increase students’
teamwork and collaboration. For example, Alice encourages students to unite their
worlds and create larger or online libraries with comments received from other students.
Other environments (e.g., Scratch, Tynker) encourage students to create group projects
(Chuter, 2016; Cooper et al., 2003; Padlipsky, 2018; Werner et al., 2012).

In addition, all 11 programming environments provide additional incentives for
students. Some examples are the transfer and execution of student projects on everyday
objects, such as smartphones (Grover and Pea, 2013b; Papadakis et al., 2014; Perdikuri,
2014), the use of the reward system with the distribution of points or stars after the
completion of the project, the use of familiar objects in projects (Cooper, 2010; Empson,
2014; Kalelioǧlu, 2015; Sykes, 2007) and the provision of everyday life problems to be
solved (Trory et al., 2018). In addition, the combination of the reward system with the
simultaneous existence of multiple solutions where the optimal solution gets more points,
can increase motivation (Kalelioǧlu, 2015) but also competitiveness in the classroom
(Gedik et al., 2017).

4.2.5 Disadvantages of the studied programming environments
Examination of the selected studies reveals the following disadvantages: future difficulty
in logical connection with real (text-based) programming, hard to understand
programming language, difficult to detect errors or relations between objects, repetition,
disorientation from programming, limited graphics, mandatory Google account,
bugs/problems, quite complicated, especially at younger ages, feedback error messages
can discourage the students. Table 6 presents the classification of programming
environments in each disadvantage.

Particular attention should be given to how programming is introduced in K-9
education. If too much emphasis is placed on non-programming elements, such as
animation, students may in the future find it difficult to relate the knowledge they have
acquired to text programming, as observed in Alice (Lewis, 2010). In the same line,
Maloney et al. (2008) point out that the students who participated in their study were
distracted from learning programming and its concepts by things that are too impressive
to the child’s eye, such animations in Scratch. On the other hand, in the studies of
Kalelioǧlu and Gülbahar (2014) and Fokides (2017a), students and teachers complained
about the limited graphics provided in Scratch.

The level of difficulty of the respective programming environment should be also
taken into account. For example, Repenning (2017) found that the programming language
of AgentCubes and AgentSheets was extremely difficult for the elementary school
students who participated in his study, even the most eager of them. In addition, in the
aforementioned programming environments and App Inventor, debugging proved to be
very difficult especially in large programs (Monteiro et al., 2017; Papadakis et al., 2014).

 Visual programming and computational thinking environments 107

Table 6 Disadvantages

Disadvantages Programming environment Case (id)
Future difficulty in logical connection with
real (text-based) programming

Alice C49

Hard to understand programming language AgentCubes, AgentSheets C55
Difficult to detect errors or relations between
objects

AgentCubes, AgentSheets,
MIT App Inventor

C55, C60

Forgotten hidden objects can result to
underperforming programs

AgentCubes, AgentSheets C55

Repetition Scratch C60
Disorientation from programming Scratch C53
Limited graphics Kodu, Scratch C3, C26,

C42, C66
Mandatory Google account MIT App Inventor, Tynker C63, W10
Bugs / Problems AgentCubes, AgentSheets,

Alice, MIT App Inventor,
Tynker

C19, C55,
C63, C75

Quite complicated, especially at younger ages Game Maker C41
Feedback error messages can discourage the
students

Game Maker C41

Available only on one platform Hopscotch C34, C74,
C83

Mandatory Software Installation AgentCubes, AgentSheets,
Kodu

C59, W1

Working with multiple screens MIT App Inventor C57

Some other problems regarding the use of the selected programming environments
include:

• Slow or sudden loss of connection to the main server (MIT App Inventor).

• Sudden program errors leading to project loss (Alice).

• Malfunction of the recycling bin (MIT App Inventor).

• Unable to save large projects (Alice).

• Missing ‘undo’ function (MIT App Inventor).

• Limited version on mobile devices (Tynker).

• Overlay elements without indication, so only the top element is visible (AgentCubes,
AgentSheets).

• Problems with the simultaneous use and real time updating of projects by two or
more students. This was observed during the simultaneous operation of Scratch and
specifically during saving, where the user who saves last does the work of the
previous one on the same project, to be lost (Remshagen et al., 2018).

 108 D. Trakosas et al.

5 Discussion and recommendations

The analysis of the selected programming environments targeting K-9 education
highlights important features that could enhance the learning and teaching of
computational thinking and programming at K-9 education but also shortcomings. In the
following paragraphs we discuss these features as well as their presence in the selected
environments.

The selected programming environments use visual programming. This type of
programming helps beginners become familiar with programming and easily develop the
skills needed to create complex programs. In addition, these environments are suitable
for the entire age range of students in K-9 education with the aim of developing
problem-solving skills, creativity, collaboration and participation. They also enable
students to develop their own projects involving emotional and cognitive processes. In
this way, learning programming becomes more accessible and exciting for students. This
is consistent with studies (e.g., Dunjohn, 2013, Sáez-López et al., 2016) showing that
students get excited when they create their own games. However, if the tools are too
complicated, then the risk of abandonment and frustration with programming increases.

The results suggest that increasing student motivation is of significant importance. All
11 programming environments include incentive features for students. Besides the
interest in the final project being created, rewards and unlocking additional features could
be additional ways to increase motivation. Additional characters could also be used to
engage students. Other ways include using high scores and leader boards. The most
important motivation, however, is for students to be involved in problem solving with
examples from their own reality that are important to them.

Open-source environments can be customised to the students’ and teachers’ needs in
order to offer specialised motivation. In this way, an open-source environment has the
potential to be constantly improved with new features. However, only four of the selected
programming environments are open source, with two of them being the most popular
among researchers in the selected primary studies (MIT App Inventor and Scratch). Alice
which is the third most popular application in the selected studies has only a few
open-source modules. This suggests the need for open-source programming environments
that can be configured with the aim of further improving them and consequently
improving the learning process.

Regarding the functional characteristics of the environments, a gap in compatibility
between different environments was observed. In addition, although visual block
programming favours the use of these environments on mobile devices, few of them
include the feature of connectivity with external devices such as GPS and sensors.

The use of these environments from an early age increases the need for security.
However, this is the biggest gap that has been observed, especially with regard to the
creations that students upload to online libraries. There is a need for greater control over
how students upload their creations, who has access to these online libraries and to what
extent each user can access them.

From the teacher’s point of view, the analysis revealed important characteristics
found in the majority of the selected environments (9 out of 11). Based on this, it is
proposed that programming environments aimed at K-9 education should include the
following features. First, they should be easy to use even by teachers with no previous
programming experience. Second, they must be able to be used in subjects besides
Computer Science, especially in lower grades where the goal is to develop computational

 Visual programming and computational thinking environments 109

thinking and problem-solving skills rather than coding skills. Third, the environments
should provide various supporting materials for teacher training and use in the classroom.

A classroom management tool is an additional feature that helps teachers to better
organise their lessons and monitor students’ progress, identifying where they are having
difficulty and providing them with more focused assistance. The existence of this feature
did not prove to be very widespread in the selected environments, while its individual
functions such as automatic grading and student feedback are even more limited.

Various factors, such as educational objectives, gender and age of the students,
determine which of the characteristics described in the results section can be considered
of major importance. Therefore, teachers are likely to consider different characteristics as
important based on the specific purposes of their educational process. For example,
teachers who aim to prepare their students for text programming languages are expected
to focus on programming environments that include an optical to text-based language
translator. The present study can therefore facilitate teachers in selecting the appropriate
environments for them by presenting and categorising their characteristics. Future
research could focus on investigating the relationships between the characteristics
presented herein with specific educational objectives and students’ engagement and
motivation, providing more insights in this direction.

6 Limitations

The limitations of the study are reported in this section. The limitations concern the
non-inclusion of all relevant research based on specific criteria applied by the authors. In
the present study, only research written in English and published after 2006 was selected.
In addition, searches were contacted for programming environments targeting K-9
education based on keywords derived from the analysis of other reviews. This has led to
the inclusion of certain programming environments listed in these reviews. Therefore, the
study does not include all of the visual programming environments that may be targeted
at K-9 education because they have not been studied in scientific papers. Lastly, the
inclusion of only visual programming environments where students are active users could
be an additional limitation.

References
Aggarwal, A., Touretzky, D. S., and Gardner-McCune, C. (2018) ‘Demonstrating the ability of

elementary school students to reason about programs’, SIGCSE ‘18: Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, Association for Computing
Machinery, New York, NY, USA, pp.735–740.

Basawapatna, A., Repenning, A., Koh, K.H. and Nickerson, H. (2013a) ‘The zones of proximal
flow: guiding students through a space of computational thinking skills and challenges’,
ICER 2013 – Proceedings of the 2013 ACM Conference on International Computing
Education Research, Association for Computing Machinery, New York, NY, USA, pp.67–74.

Basawapatna, A., Repenning, A. and Lewis, C. (2013b) ‘The simulation creation toolkit: an initial
exploration into making programming accessible while preserving computational thinking’,
SIGCSE 2013 – Proceedings of the 44th ACM Technical Symposium on Computer Science
Education, Association for Computing Machinery, New York, NY, USA, pp.501–506.

 110 D. Trakosas et al.

Basawapatna, A.R., Repenning, A. and Koh, K.H. (2015) ‘Closing the cyberlearning loop: enabling
teachers to formatively assess student programming projects’, SIGCSE ‘15 Proceedings of the
46th ACM Technical Symposium on Computer Science Education, Association for Computing
Machinery, New York, NY, USA, pp.12–17.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S. and Danies, G. (2017)
‘Changing a generation’s way of thinking: teaching computational thinking through
programming’, Review of Educational Research, Vol. 87 No. 4, pp.834–860.

Ching, Y-H., Hsu, Y-C. and Baldwin, S. (2018) ‘Developing computational thinking with
educational technologies for young learners’, TechTrends, Vol. 62, No. 1, pp.563–573.

Chuter, A. (2016) Can You Code on a Mobile Device? – Critically Examining mLearning Tools for
K-12 Programmers and Coders [online] https://ict4kids.ca/2016/08/24/can-you-code-on-a-
mobile-device-critically-examining-mlearning-tools-for-k-12-programmers-and-
coders/#respond (accessed 17 January 2019).

Cooper, S. (2010) ‘The design of Alice’, ACM Transactions on Computing Education, Vol. 10,
No. 4, pp.1–16.

Cooper, S., Dann, W. and Pausch, R. (2003) ‘Teaching objects-first in introductory computer
science’, SIGCSE ‘03 Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education, Association for Computing Machinery, New York, NY, USA,
pp.191–195.

Costa, J. and Miranda, G. (2016) ‘Relation between Alice software and programming learning: a
systematic review of the literature and meta-analysis’, British Journal of Educational
Technology, Vol. 48, No. 6, pp.1464–1474.

Dunjohn, C. (2013) Tynker Introduces your Kids to Programming Code Either at Home or at
School [online] https://newatlas.com/tynker-programming-for-kids/28598/ (accessed 17
January 2019).

Empson, R. (2014) With 5M Users Already On Board, Tynker Goes Mobile To Help Kids Learn To
Code On The iPad [online] https://techcrunch.com/2014/03/12/with-5m-users-already-on-
board-tynker-goes-mobile-to-help-kids-learn-to-code-on-the-ipad/ (accessed 17 January
2019).

Fokides, E. (2017a) ‘Digital educational games and mathematics. Results of a case study in primary
school settings’, Education and Information Technologies, Vol. 23, No. 2, pp.851–867.

Fokides, E. (2017b) ‘Tablets, very young primary school students, and basic programming
concepts’, Asian Journal of Education and e-Learning, Vol. 5, No. 3, pp.86–94.

Fronza, I., El Ioini, N. and Corral, L. (2017) ‘Teaching computational thinking using agile software
engineering methods: a framework for middle schools’, ACM Transactions on Computing
Education, Vol. 17, No. 4, pp.1–28.

Gedik, N., Cetin, M. and Koca, C. (2017) ‘Examining the experiences of preschoolers on
programming via tablet computers’, Mediterranean Journal of Humanities, Vol. 7, No. 1,
pp.193–203.

Grover, S. and Pea, R. (2013a) ‘Computational thinking in K-12: a review of the state of the field’,
Educational Researcher, Vol. 42, No. 1, pp.38–43.

Grover, S. and Pea, R. (2013b) ‘Using a discourse-intensive pedagogy and android’s App Inventor
for introducing computational concepts to middle school students’, SIGCSE 2013 –
Proceedings of the 44th ACM Technical Symposium on Computer Science Education,
Association for Computing Machinery, New York, NY, USA, pp.723–728.

Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., and Guenaga, M.
(2019) ‘Creativity in the acquisition of computational thinking’, Interactive Learning
Environments, Vol. 27, Nos. 5–6, pp.628–644.

Hsu, T-C., Chang, S-C. and Hung, Y-T. (2018) ‘How to learn and how to teach computational
thinking: suggestions based on a review of the literature’, Computers and Education, Vol. 126,
pp.296–310.

 Visual programming and computational thinking environments 111

Ioannidou, A., Repenning, A. and Webb, D.C. (2009) ‘AgentCubes: incremental 3D end-user
development’, Journal of Visual Languages and Computing, Vol. 20, No. 4, pp.236–251.

Kalelioǧlu, F. (2015) ‘A new way of teaching programming skills to K-12 students: Code.org’,
Computers in Human Behavior, Vol. 52, pp.200–210.

Kalelioǧlu, F. and Gülbahar, Y. (2014) ‘The effects of teaching programming via Scratch on
problem solving skills: a discussion from learners’ perspective’, Informatics in Education,
Vol. 13, No. 1, pp.33–50.

Keane, T., Chalmers, C., Boden, M. and Williams, M. (2019) ‘Humanoid robots: learning a
programming language to learn a traditional language’, Technology, Pedagogy and Education,
Vol. 28, No. 5, pp.533–546.

Lazarinis, F., Karachristos, C.V., Stavropoulos, E.C. and Verykios, V.S. (2018) ‘A blended
learning course for playfully teaching programming concepts to school teachers’, Education
and Information Technologies, Vol. 24, No. 1, pp.1237–1249.

Lewis, C.M. (2010) ‘How programming environment shapes perception, learning and goals:
Logo vs. Scratch’, SIGCSE’10 – Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, Association for Computing Machinery, New York, NY, USA,
pp.346–350.

Lin, Y. and Weintrop, D. (2021) ‘The landscape of Block-based programming: characteristics of
block-based environments and how they support the transition to text-based programming’,
Journal of Computer Languages, Vol. 67, No. 4, pp.1–18.

Lye, S.Y. and Koh, J.H.L. (2014) ‘Review on teaching and learning of computational thinking
through programming: what is next for K-12?’, Computers in Human Behavior, Vol. 41,
pp.51–61.

Maloney, J., Peppler, K., Kafai, Y., Resnick, M. and Rusk, N. (2008) ‘Programming by choice:
urban youth learning programming with Scratch’, SIGCSE ‘08 Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education, Association for Computing
Machinery, New York, NY, USA, pp.367–371.

Monteiro, I.T., Salgado, L.C.D., Mota, M.P., Sampaio, A.L. and de Souza, C.S. (2017) ‘Signifying
software engineering to computational thinking learners with AgentSheets and PoliFacets’,
Journal of Visual Languages and Computing, Vol. 40, pp.91–112.

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E. and Uche, C. (2010) ‘Can
Android App Inventor bring computational thinking to K-12?’, The Humanitarian Foss
Project [online] http://www.hfoss.org/index.php/publications-etc (accessed 14 April 2019).

Moreno-León, J., Robles, G. and Román-González, M. (2016) ‘Code to learn: where does it belong
in the K-12 curriculum?’, Journal of Information Technology Education: Research, Vol. 15,
No. 1, pp.283–303.

Padlipsky, S. (2018) Using Offline Activities to Enhance Online Cybersecurity Education,
Unpublished Master Thesis, Faculty of California Polyethnic State University, San Luis
Obispo, USA.

Papadakis, S. (2021) ‘The impact of coding apps to support young children in computational
thinking and computational fluency. A literature review’, Frontiers in Education, Vol. 6
[online] https://www.frontiersin.org/articles/10.3389/feduc.2021.657895/full (accessed 07
April 2022).

Papadakis, S. (2022) ‘Can preschoolers learn computational thinking and coding skills with
ScratchJr? A systematic literature review’, International Journal of Educational Reform,
pp.1–34 [online] https://journals.sagepub.com/doi/pdf/10.1177/10567879221076077 (accessed
14 April 2022).

Papadakis, S., Kalogiannakis, M., Orfanakis, V. and Zaranis, N. (2014) ‘Novice programming
environments. Scratch and App Inventor: a first comparison’, IDEE ‘14 Proceedings of the
2014 Workshop on Interaction Design in Educational Environments, Association for
Computing Machinery, New York, NY, USA, pp.1–7.

 112 D. Trakosas et al.

Perdikuri, K. (2014) ‘Students’ experiences from the use of MIT App Inventor in classroom’,
PCI ‘14 Proceedings of the 18th Panhellenic Conference on Informatics, Association for
Computing Machinery, New York, NY, USA, pp.1–6.

Remshagen, A., Gray, K. and Lee, T. (2018) ‘A Scratch hackathon for teens’, Proceedings of the
2018 International Conference on Frontiers in Education: Computer Science and Computer
Engineering (FECS’18), CSREA Press, pp.136–140.

Repenning, A. (2012) ‘Education: programming goes back to school’, Communications of the
ACM, Vol. 55, No. 5, pp.38–40.

Repenning, A. (2017) ‘Moving beyond syntax: lessons from 20 years of blocks programing in
AgentSheets’, CU Experts, Vol. 3, No. 1, pp.68–91.

Repenning, A. and Sumner, T. (1995) ‘Agentsheets: a medium for creating domain-oriented visual
languages’, Computer, Vol. 28, No. 3, pp.17–25.

Resnick, M. and Silverman, B. (2005) ‘Some reflections on designing construction kits for kids’,
Proceedings of the 2005 Conference on Interaction Design and Children, Association for
Computing Machinery, New York, NY, USA, pp.117–122.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009) ‘Scatch:
programming for all’, Communications of the ACM, Vol. 52, No. 11, pp.60–67.

Rodger, S.H., Bashford, M., Dyck, L., Hayes, J., Liang, L., Nelson, D. and Qin, H. (2010)
‘Enhancing K-12 education with Alice programming adventures’, ITiCSE’10 – Proceedings of
the 2010 ACM SIGCSE Annual Conference on Innovation and Technology in Computer
Science Education, Association for Computing Machinery, New York, NY, USA,
pp.234–238.

Sáez-López, J.M., Román-González, M. and Vázquez-Cano, E. (2016) ‘Visual programming
languages integrated across the curriculum in elementary school: a two year case study using
“Scratch” in five schools’, Computers and Education, Vol. 97, No. 3, pp.129–141.

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G. and Clark, D. (2013) ‘Integrating
computational thinking with K-12 science education using agent-based computation:
a theoretical framework’, Education and Information Technologies, Vol. 18, No. 2,
pp.351–380.

Sykes, E.R. (2007) ‘Determining the effectiveness of the 3D Alice programming environment at
the computer science I level’, Journal of Educational Computing Research, Vol. 36, No. 2,
pp.223–244.

Tang, K-Y., Chou, T-L. and Tsai, C-C. (2019) ‘A content analysis of computational thinking
research: an international publication trends and research typology’, Asia-Pacific Education
Researcher, Vol. 29, No. 4, pp.9–19.

Tikva, C. and Tambouris, E. (2021) ‘Mapping computational thinking through programming in
K-12 education: a conceptual model based on a systematic literature review’, Computers and
Education, Vol. 162, article 104083.

Trory, A., Howland, K. and Good, J. (2018) ‘Designing for concreteness fading in primary
computing’, IDC 2018 – Proceedings of the 2018 ACM Conference on Interaction Design and
Children, Association for Computing Machinery, New York, NY, USA, pp.278–288.

Webster, J. and Watson, R. (2002) ‘Analyzing the past to prepare for the future: writing a literature
review’, MIS Quarterly, Vol. 26, No. 2, pp.13–23.

Weintrop, D. and Wilensky, U. (2015) ‘To block or not to block, that is the question: students’
perceptions of blocks-based programming’, IDC ‘15: Proceedings of the 14th International
Conference on Interaction Design and Children, 21–24 June, pp.199–208, doi: 10.1145/
2771839.2771860.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. and Wilensky, U. (2015)
‘Defining computational thinking for mathematics and science classrooms’, Journal of
Science Education and Technology, Vol. 25, No. 1, pp.127–147.

 Visual programming and computational thinking environments 113

Werner, L., Campe, S. and Denner, J. (2012) ‘Children learning computer science concepts via
alice game-programming’, SIGCSE ‘12 Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, Association for Computing Machinery, New York, NY,
USA, pp.427–432.

Wing, J.M. (2006) ‘Computational thinking’, Communications of the ACM, Vol. 49, No. 3,
pp.33–35.

Zhang, L. and Nouri, J. (2019) ‘A systematic review of learning computational thinking through
Scratch in K-9’, Computers and Education, Vol. 141, article 103607.

Zhong, B., Wang, Q., Chen, J. and Li, Y. (2016) ‘An exploration of three-dimensional integrated
assessment for computational thinking’, Journal of Educational Computing Research, Vol. 53,
No. 4, pp.562–590.

Appendix

Table A1 Selected cases

id Source Environment
C1 Aggarwal, A., Touretzky, D. S., and Gardner-McCune, C. (2018)

‘Demonstrating the ability of elementary school students to reason
about programs’, SIGCSE ‘18: Proceedings of the 49th ACM

Technical Symposium on Computer Science Education, Association
for Computing Machinery, New York, NY, USA, pp.735–740.

Kodu

C2 Aivaloglou, H. and Hermans, F. (2019) ‘Early programming
education and career orientation: the effects of gender, self-efficacy,
motivation and stereotypes’, SIGCSE ‘19: Proceedings of the 50th

ACM Technical Symposium on Computer Science Education,
Association for Computing Machinery, New York, NY, USA,

pp.679–685.

Scratch

C3 Akcaoglu, M., and Santos Green, L. (2018) ‘Teaching systems
thinking through game design’, Educational Technology Research

and Development, Vol. 67, No. 1, pp.1–19.

Kodu

C4 Allsop, Y. (2018) ‘Assessing computational thinking process
using a multiple evaluation approach’, International Journal of

Child-Computer Interaction, Vol. 19, pp.30–55.

Alice, Scratch

C5 Barmpoutis, A. and Huynh, K. (2019) ‘Name tags and pipes:
assessing the role of metaphors in students’ early exposure to

computer programming using emoticoding’, Advances in Human
Factors in Training, Education, and Learning Sciences, Vol. 785,

pp.194–202.

Tynker

C6 Basawapatna, A., Koh, K.H. and Repenning, A. (2010) ‘Using
scalable game design to teach computer science from middle school
to graduate school’, ITiCSE‘10 Proceedings of the Fifteenth Annual

Conference on Innovation and Technology in Computer Science
Education, Association for Computing Machinery, New York, NY,

USA, pp.224–228.

AgentSheets

C7 Basawapatna, A., Repenning, A., Koh, K.H. and Nickerson, H. (2013)
‘The zones of proximal flow: guiding students through a space of

computational thinking skills and challenges’, ICER 2013 –
Proceedings of the 2013 ACM Conference on International
Computing Education Research, Association for Computing

Machinery, New York, NY, USA, pp.67–74.

AgentSheets

 114 D. Trakosas et al.

Table A1 Selected cases (continued)

id Source Environment
C8 Basawapatna, A., Repenning, A. and Lewis, C. (2013) ‘The

simulation creation toolkit: an initial exploration into making
programming accessible while preserving computational thinking’,

SIGCSE 2013 – Proceedings of the 44th ACM Technical Symposium
on Computer Science Education, Association for Computing

Machinery, New York, NY, USA, pp.501–506.

AgentCubes,
AgentSheets

C9 Basawapatna, A.R., Repenning, A. and Koh, K.H. (2015) ‘Closing the
cyberlearning loop: enabling teachers to formatively assess student
programming projects’, SIGCSE ‘15 Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Association

for Computing Machinery, New York, NY, USA,
pp.12–17.

AgentCubes

C10 Basawapatna, A.R., Repenning, A. and Savignano, M. (2019)
‘The zones of proximal flow tutorial: Designing computational

thinking cliffhangers’, SIGCSE ‘19: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Association

for Computing Machinery, New York, NY, USA, pp.428–434.

AgentCubes

C11 Basu, S. (2019) ‘Using rubrics integrating design and coding to assess
middle school students’ open-ended block-based programming
projects’, SIGCSE ‘19: Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.1211–1217.

MIT App
Inventor,
Scratch

C12 Bell, S., Frey, T. and Vasserman, E. (2014) ‘Spreading the word:
introducing pre-service teachers to programming in the K-12

classroom’, SIGCSE ‘14 Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.187–192.

Scratch

C13 Brennan, K. and Resnick, M. (2012) ‘New frameworks for studying
and assessing the development of computational thinking’,
Proceedings of the 2012 Annual Meeting of the American

Educational Research Association, AERA, Washington, DC, USA,
pp.1–25.

Scratch

C14 Buelin-Biesecker, J.K. (2012) Fostering and Assessing Creativity in
Technology Education, Unpublished PhD thesis, North Carolina State

University, Raleigh, NC, USA.

Game Maker

C15 Burke, Q. and Kafai, Y.B. (2010) ‘Programming and storytelling:
opportunities for learning about coding and composition’, IDC‘10:
Proceedings of the 9th International Conference on International

Design and Children, Association for Computing Machinery, New
York, NY, USA, pp.348–351.

Scratch

C16 Burke, Q. and Kafai, Y. B. (2012) ‘The writer’s workshop for youth
programmers: digital storytelling with Scratch in middle school

classrooms’, SIGCSE‘12 Proccedings of the 43rd ACM Technical
Symposium on Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.433–438.

Scratch

C17 Calao, L.A., Moreno-Leon, J., Correa, H.E. and Robles, G. (2015)
‘Developing mathematical thinking with Scratch: an experiment with
6th grade students’, EC-TEL 2015: Design for Teaching and Learning

in a Networked World, Springer-Verlag, Berlin, Heidelberg, pp.17–
27.

Scratch

 Visual programming and computational thinking environments 115

Table A1 Selected cases (continued)

id Source Environment
C18 Cetin, I. (2016) ‘Preservice teachers’ introduction to computing:

exploring utilization of Scratch’, Journal of Education Computing
Research, Vol. 54, No. 7, pp.997–1021.

Scratch

C19 Chatzinikolakis, G. and Papadakis, S. (2014) ‘Motivating K-12
students learning fundamental computer science concepts with App

Inventor’, 2014 International Conference on Interactive Mobile
Communication Technologies and Learning (IMCL2014), IEEE

Publications, pp.152–159.

MIT App
Inventor

C20 Chiazzese, G., Fulantelli, G., Pipitone, V. and Taibi, D. (2018)
‘Engaging primary school children in computational thinking:

Designing and developing videogames’, Education in th Knowledge
Society, Vol. 19, No. 2, pp.63–81.

Kodu

C21 Cooper, S., Rodger, S.H., Schep, M., Stalvey, R.H. and Dann W.
(2015) ‘Growing a K-12 community of practice’, SIGCSE ‘15

Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, Association for Computing Machinery, New

York, NY, USA, pp.290–295.

Alice

C22 Dag, F. (2019) ‘Prepare pre-service teachers to teach computer
programming skills at K-12 level: experiences in a course’, Journal of

Computers in Education, Vol. 6, No. 2, pp.277–313.

Alice, Scratch

C23 Denner, J., Werner, L., Campe, S. and Ortiz, E. (2014)
‘Pair programming: under what conditions is it advantageous for
middle school students’, Journal of Research on Technology in

Education, Vol. 46, No. 3, pp.277–296.

Alice

C24 Dong, Y., Catete, V., Lytle, N., Isvik, A., Barnes, T., Jocius, R.,
Albert, J., Joshi, D., Robinson, R. and Andrews, A. (2019) ‘Infusing

computing: analyzing teacher programming products in K-12
computational thinking professional development’, ITiCSE ‘19:
Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.278–284.

Snap!

C25 Ferreira, M.N.F., Gresse von Wangenheim, C., Missfeldt Filho, R.,
Pinheiro, F. and Hauck, J.C.R. (2019) ‘Learning user interface design

and the development of mobile applications in middle school’,
Interactions, Vol. 26 No. 4, pp.66–69.

MIT App
Inventor

C26 Fokides, E. (2017) ‘Digital educational games and mathematics.
Results of a case study in primary school settings’, Education and

Information Technologies, Vol. 23, No. 2, pp.851–867.

Kodu

C27 Gedawy, H., Razak, S., and Alshikhabobakr, H. (2019)
‘The effectiveness of creating localized content for middle school

computing curriculum’, ITiCSE ‘19: Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Science

Education, Association for Computing Machinery, New York, NY,
USA, pp.478–484.

Alice

C28 Gestwicki, P. and Ahmad, K. (2011) ‘App Inventor for Android with
studio-based learning’, Journal of Computing Sciences in Colleges,

Vol. 27, No. 1, pp.55–63.

MIT App
Inventor

 116 D. Trakosas et al.

Table A1 Selected cases (continued)

id Source Environment
C29 Grover, S. (2015) ‘“Systems of assessments” for deeper learning of

computational thinking in K-12’, Annual Meeting of the American
Educational Research Association, AERA, Washington, DC, USA.

Scratch

C30 Grover, S. and Basu, S. (2017) ‘Measuring student learning in
introductory block-based programming: examining misconceptions

loops, variables, and boolean logic’, SIGCSE ‘17: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science

Education, Association for Computing Machinery, New York, NY,
USA, pp.267–272.

Scratch

C31 Grover, S. and Pea, R. (2013) ‘Using a discourse-intensive pedagogy
and android’s App Inventor for introducing computational concepts to

middle school students’, SIGCSE 2013 – Proceedings of the 44th
ACM Technical Symposium on Computer Science Education,
Association for Computing Machinery, New York, NY, USA,

pp.723–728.

MIT App
Inventor

C32 Hart, M., Early, J.P. and Brylow, D. (2008) ‘A novel approach to
K-12 CS education: linking mathematics and computer science’,

ACM SIGCSE Bulletin, Vol. 40, No. 1, pp.286–290.

Alice

C33 Hermans, F. and Aivaloglou, E. (2017) ‘Teaching software
engineering principles to K-12 students: a MOOC on Scratch’,

IEEE/AMC 39th International Conference on Software Engineering:
Software Engineering Education and Training Track, IEEE

Publications, pp.13–22.

Scratch

C34 Hill, C. (2015) Programming Environments for Children: Creating a
Language that Grows with You, Unpublished Master thesis,

University of California, Santa Barbara, CA, USA.

Scratch

C35 Hu, Y., Li, Y.H. and Su, C.Y. (2019) ‘Perceptions of teachers toward
game-based programming tools in K-12 classrooms’, International
Journal on Computer Science and Information Systems, Vol. 14,

No. 1, pp.17–30.

Code.org

C36 Ioannidou, A., Repenning, A. and Webb, D.C. (2009) ‘AgentCubes:
incremental 3D end-user development’, Journal of Visual Languages

and Computing, Vol. 20, No. 4, pp.236–251.

AgentCubes

C37 Iskrenovic-Momcilovic, O. (2019) ‘Pair programming with Scratch’,
Education and Information Technologies, Vol. 24, No. 6,

pp.2943–2952.

Scratch

C38 Jenson, J. and Droumeva, M. (2016) ‘Exploring media literacy and
computational thinking: a game maker curriculum study’, Electronic

Journal of e-Learning, Vol. 14, No. 2, pp.111–121.

Game Maker

C39 Jenson, J., Black, K. and de Castell, S. (2018) ‘Digital game-design:
effects of single sex groups on student success’, in Ciussi, M. (Ed.):

ECGBL 2018- Proceedings of the 12th European Conference on
Game-Based Learning, pp.258–265.

Game Maker

C40 Jimenez, Y. and Gardner-McCune, C. (2015) ‘Using App Inventor
and history as a gateway to engage African American students in

computer science’, 2015 Research in Equity and Sustained
Participation in Engineering, Computing, and Technology

(RESPECT), IEEE Publications, pp.1–2.

MIT App
Inventor

 Visual programming and computational thinking environments 117

Table A1 Selected cases (continued)

id Source Environment
C41 Johnson, C. (2017) ‘Learning basic programming concepts with game

maker’, International Journal of Computer Science Education in
Schools, Vol. 1, No. 2, pp.1–20.

Game Maker

C42 Kalelioglu, F. and Gulbahar, Y. (2014) ‘The effects of teaching
programming via Scratch on problem solving skills: a discussion

from learners’ perspective’, Informatics in Education, Vol. 13, No. 1,
pp.33–50.

Scratch

C43 Kalelioglu, F. (2015) ‘A new way of teaching programming skills to
K-12 students: Code.org’, Computers in Human Behavior, Vol. 52,

No. 3, pp.200–210.

Code.org

C44 Ketenci, T., Calandra, B., Margulieux, L. and Cohen, J. (2019)
‘The relationship between learner characteristics and student

outcomes in a middle school computing course: An exploratory
analysis using structural equation modeling’, Journal of Research on

Technology in Education, Vol. 51, No. 1, pp.63–76.

MIT App
Inventor

C45 Kozuh, I., Krajnc, R., Hadjileontiadis, L. and Debevc, M. (2018)
‘Assessment of problem solving ability in novice programmers’,

PLoS ONE, Vol. 13, No. 9, pp.1–21.

MIT App
Inventor,
Scratch

C46 Kraleva, R., Kralev, V. and Kostadinova, D. (2019) ‘A methodology
for the analysis of block-based programming languages appropriate

for children’, Journal of Computing Science and Engineering,
Vol. 13 No. 1, pp.1–10.

Code.org,
Scratch

C47 Kwon, K. and Cheon, J. (2019) ‘Exploring problem decomposition
and program development through block-based programs’,

International Journal of Computer Science Education in Schools,
Vol. 3 ,No. 1, pp.1–14.

Scratch

C48 Lazarinis, F., Karachristos, C.V., Stavropoulos, E.C. and
Verykios, V.S. (2018) ‘A blended learning course for playfully

teaching programming concepts to school teachers’, Education and
Information Technologies, Vol. 24, No. 1, pp.1237–1249.

Scratch

C49 Lewis, C.M. (2010) ‘How programming environment shapes
perception, learning and goals: Logo vs. scratch’, SIGCSE’10 –

Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, Association for Computing Machinery, New

York, NY, USA, pp.346–350.

Scratch

C50 Liu, J., Lin, C.H. Potter, P., Hasson, E.P., Barnett, Z.D. and
Singleton, M. (2013) ‘Going mobile with App Inventor for Android:

a one-week computing workshop for K-12 teachers’, SIGCSE ‘13
Proceedings of the 44th ACM Technical Symposium on Computer
Science Education, Association for Computing Machinery, New

York, NY, USA, pp.433–438.

MIT App
Inventor

C51 Liu, J., Wilson, J., Hemmenway, D., Xu, Y. and Lin, C.H. (2015)
‘Oh Snap! A one-week summer computing workshop for K-12

teachers’, 2015 10th International Conference on Computer Science
and Education (ICCSE), IEEE Publications, pp.663–668.

Snap!

 118 D. Trakosas et al.

Table A1 Selected cases (continued)

id Source Environment
C52 Makris, D., Euaggelopoulos, K., Chorianopoulos, K. and

Giannakos, M.N. (2013) ‘Could you help me to change the
variables?: Comparing instruction to encouragement for teaching
programming’, WiPSE ‘13: Proceedings of the 8th Workshop in
Primary and Secondary Computing Education, Association for

Computing Machinery, New York, NY, USA, pp.79–82.

Scratch

C53 Maloney, J., Peppler, K., Kafai, Y., Resnick, M. and Rusk, N. (2008)
‘Programming by choice: urban youth learning programming with
scratch’, SIGCSE ‘08 Proceedings of the 39th SIGCSE Technical

Symposium on Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.367–371.

Scratch

C54 Marcelino, M., Pessoa, T., Vieira, C., Salvador, T. and Mendes, A.
(2017) ‘Learning computational thinking and Scratch at distance’,

Computers in Human Behavior, Vol. 80, No. 3, pp.470–477.

Scratch

C55 Monteiro, I.T., Salgado, L.C.D., Mota, M.P., Sampaio, A.L. and de
Souza, C.S. (2017) ‘Signifying software engineering to computational
thinking learners with AgentSheets and PoliFacets’, Journal of Visual

Languages and Computing,
Vol. 40, pp.91–112.

AgentSheets

C56 Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E. and
Uche, C. (2010) ‘Can Android App Inventor bring computational

thinking to K-12?’, The Humanitarian Foss Project [online]
http://www.hfoss.org/index.php/publications-etc (accessed 14 April

2019).

MIT App
Inventor

C57 Ni, L., Schilder, D., Sherman, M. and Martin, F. (2016) ‘Computing
with a community focus: outcomes from an App Inventor summer

camp for middle school students’, Journal of Computing Sciences in
Colleges, Vol. 31, No. 6, pp.82–89.

MIT App
Inventor

C58 Nikou, S.A. and Economides, A.A. (2014) ‘Transition in student
motivation during a scratch and an App Inventor course’, 2014 IEEE

Global Engineering Education Conference (EDUCON), IEEE
Publications, pp.1042–1045.

MIT App
Inventor,
Scratch

C59 Nygard, S., Kolas, L. and Sigurdardottir, H. (2015) ‘Teachers’
experiences using Kodu as a teaching tool’, in Munkvold, R. and

Kolas, L. (Eds.): ECGBL 2018 – Proceedings of the 9th European
Conference on Games Based Learning, Academic Conferences and

Publishing International Limited, Reading, pp.416–422.

Kodu

C60 Papadakis, S., Kalogiannakis, M., Zaranis, N., and Orfanakis, V.
(2016) ‘Using Scratch and App Inventor for teaching introductory
programming in secondary education. A case study’, International

Journal of Technology Enhanced Learning, Vol. 8, Nos. 3/4,
pp.217–233.

MIT App
Inventor,
Scratch

C61 Park, Y. and Shin, Y. (2019) ‘Comparing the effectiveness of Scratch
and App Inventor with regard to learning computational thinking

concepts’, Electronics, Vol. 8, No. 11, pp.1269–1281.

MIT App
Inventor,
Scratch

C62 Patton, R.M. (2013) ‘Games as an artistic medium: investigating
complexity thinking in game-based art pedagogy’, Studies in Art

Education, Vol. 55 No. 1, pp.35–50.

Game Maker

 Visual programming and computational thinking environments 119

Table A1 Selected cases (continued)

id Source Environment
C63 Perdikuri, K. (2014) ‘Students’ experiences from the use of MIT App

Inventor in classroom’, PCI ‘14 Proceedings of the 18th Panhellenic
Conference on Informatics, Association for Computing Machinery,

New York, NY, USA, pp.1–6.

MIT App
Inventor

C64 Perez-Marin, D., Hijon-Neira, R., Bacelo, A. and Pizarro, C. (2018)
‘Can computational thinking be improved by using a methodology
based on metaphors and scratch to teach computer programming to

children?’, Computers in Human Behavior, Vol. 105.

Scratch

C65 Piech, C., Sahami, M., Huang, J. and Guibas, L. (2015)
‘Autonomously generating hints by infering problem solving
policies’, L@S ‘15 Proceedings of the Second (2015) ACM

Conference on Learning @ Scale, Association for Computing
Machinery, New York, NY, USA, pp.195–204.

Code.org

C66 Remshagen, A., Gray, K. and Lee, T. (2018) ‘A Scratch hackathon
for teens’, Proceedings of the 2018 International Conference on

Frontiers in Education: Computer Science and Computer
Engineering (FECS’18), CSREA Press, pp.136–140.

Scratch

C67 Repenning, A., Lamprou, A., Petralito, S., and Basawapatna, A.
(2019) ‘Making computer science education mandatory: Exploring a
demographic shift in Switzerland’, ITiCSE ‘19: Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer

Science Education, Association for Computing Machinery, New
York, NY, USA, pp.422–428.

AgentCubes

C68 Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J.,
Silverman, B. and Kafai, Y. (2009) ‘Scatch: programming for all’,

Communications of the ACM, Vol. 52, No. 11, pp.60–67.

Scratch

C69 Rodger, S., Hayes, J., Lezin, G., Qin, H., Deborah, N. and Tucker, R.
(2009) ‘Engaging middle school teachers and students with Alice in a

diverse set of subjects’, SIGCSE ‘09 Proceedings of the 40th ACM
technical symposium on Computer Science Education, Association

for Computing Machinery, New York, NY, USA, pp.271–275.

Alice

C70 Roy, K. (2012) ‘App Inventor for Android: report from a summer
camp’, SIGCSE ‘12 Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, Association for
Computing Machinery, New York, NY, USA, pp.283–288.

MIT App
Inventor

C71 Ruan, L., Patton, E. and Tissenbaum, M. (2017) ‘Evaluations of
programming complexity in App Inventor’, in Kong, S.C. et al.
(Eds.): CTE 2017 International Conference on Computational

Thinking Education, pp.2–5.

MIT App
Inventor

C72 Saez-Lopez, J.M., Sevillano-Garcia, M.L. and Vazquez-Cano, E.
(2019) ‘The effect of programming on primary school students’

mathematical and scientific understanding: educational use of mBot’,
Educational Technology Research and Development, Vol. 67, No. 3,

pp.1405–1425.

Scratch

 120 D. Trakosas et al.

Table A1 Selected cases (continued)

id Source Environment
C73 Smith, N., Sutcliffe, C. and Sandvik, L. (2014) ‘Code club: bringing

programming to UK primary schools through Scratch’, Proceedings
of the 45th ACM Technical Symposium on Computer Science

Education, Association for Computing Machinery, New York, NY,
USA, pp.517–522.

Scratch

C74 Sung, W., Choi, A. and Black, J. (2017) ‘Incorporating touch-based
tablets into classroom’, in Mentor, D. (Ed.): Handbook of Research in

Mobile Learning in Contemporary Classrooms, IGI Global,
Pennsylvania, pp.378–406.

Hopscotch

C75 Sykes, E.R. (2007) ‘Determining the effectiveness of the 3D Alice
programming environment at the computer science I level’, Journal
of Educational Computing Research, Vol. 36, No. 2, pp.223–244.

Alice

C76 Touretzky, D.S. (2014) ‘Teaching Kodu with physical
manipulatives’, ACM Inroads, Vol. 5 No. 4, pp.44–51.

Kodu

C77 Touretzky, D.S., Gardner-McCune, C. and Aggarwal, A. (2016)
‘Teaching “lawfulness” with Kodu’, SIGCSE‘16: Proceedings of the
47th ACM Technical Symposium on Computing Science Education,

Association for Computing Machinery, New York, NY, USA,
pp.621–626.

Kodu

C78 Touretzky, D.S., Gardner-McCune, C. and Aggarwal, A. (2017)
‘Semantic reasoning in young programmers’, SIGCSE‘17:

Proceedings of the ACM SIGCSE Technical Symposium on Computer
Science Education, Association for Computing Machinery, New

York, NY, USA, pp.585–590.

Kodu

C79 Werner, L., Denner, J., Bliesner, M. and Rex, P. (2009)
‘Can middle-schoolers use storytelling Alice to make games? Results

of a pilot study’, FDG ‘09 Proceedings of the 4th International
Conference of Foundations of Digital Games, Association for

Computing Machinery, New York, NY, USA, pp.207–214.

Alice

C80 Werner, L., Campe, S. and Denner, J. (2012) ‘Children learning
computer science concepts via Alice game-programming’, SIGCSE

‘12 Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, Association for Computing Machinery, New

York, NY, USA, pp.427–432.

Alice

C81 Wong, G.K.W. and Cheung, H.Y. (2018) ‘Exploring children’s
perceptions of developing twenty-first century skills through

computational thinking and programming’, Interactive Learning
Environments, Vol. 28, No. 4, pp.438–450.

Kodu, Scratch

C82 Yildiz Durak, H. and Guyer, T. (2019) ‘Programming Scratch in
primary school, indicators related to effectiveness of education

process and analysis of these indicators in terms of various variables’,
Gifted Education International, Vol. 35, No. 3, pp.237–258.

Scratch

C83 Zha, S., Jin, Y., Moore, P. and Gaston, J. (2019) ‘Hopscotch into
coding: Introducing pre-service teachers computational thinking’,

TechTrends, Vol. 64, No. 1, pp.17–28.

Hopscotch

 Visual programming and computational thinking environments 121

Table A2 Selected programming environments

id Official website Programming environment
W1 https://agentsheets.com AgentCubes, AgentSheets
W2 https://www.alice.org Alice
W3 https://code.org Code.org
W4 https://www.yoyogames.com/gamemaker Game Maker
W5 https://www.gethopscotch.com Hopscotch
W6 https://www.kodugamelab.com Kodu
W7 https://appinventor.mit.edu/ MIT App Inventor
W8 https://scratch.mit.edu/ Scratch
W9 https://snap.berkeley.edu/ Snap!
W10 https://www.tynker.com Tynker

