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Abstract: Consider a set of terminal nodes K that belong to a network whose
nodes are connected by links that fail independently with known probabilities.
We introduce a method for estimating any performability measure that depends
on the hop distance between terminal nodes. It generalises previously introduced
Monte Carlo methods for estimation of the K-reliability of networks with vari-
ance reduction compared to crude Monte Carlo. They are based on using sets of
edges named d-pathsets and d-cutsets for reducing the variance of the estimator.
These sets of edges, considered as a priori known in previous literature, heaviliy
affect the attained performance; we hereby introduce and compare a family of
heuristics for their selection. Numerical examples are presented, showing the
significant efficiency improvements that can be obtained by chaining the edge
set selection heuristics to the proposed Monte Carlo sampling plan.

Key-words: heuristics, pathset, cutset, Monte Carlo, rare events, reliability,
performability, bounded length, diameter constraints



Une méthode de simulation pour l’estimation de

la performabilité des réseaux utilisant pathsets et

cutsets calculés heuristiquement

Résumé : Considérez un ensemble de nœuds terminaux K appartenant à un
réseau dont les nœuds sont reliés par des liaisons qui échouent indépendamment
avec des probabilités connues. Nous présentons une méthode pour estimer
n’importe quelle mesure de performabilité qui dépend de la distance en sauts
entre les nœuds terminaux. Elle généralise des méthodes de Monte Carlo précé-
demment introduites pour l’estimation de la K-fiabilité des réseaux avec réduction
de la variance par rapport à Monte Carlo standard. Ces méthodes sont basées
sur l’utilisation d’ensembles d’arêtes designés d-pathsets et d-cutsets pour réduire
la variance de l’estimateur. Ces ensembles d’arêtes, considérés comme connus
a priori dans la littérature précédente, affectent fortement les performances
atteintes ; nous introduisons et comparons une famille d’heuristiques pour leur
sélection. Des exemples numériques sont présentés, montrant les importantes
améliorations dans l’efficacité qui peuvent être obtenues par le chaînage de ces
heuristiques avec le plan d’échantillonnage de Monte Carlo proposé.

Mots-clés : heuristiques, pathset, cutset, Monte Carlo, événements rares,
fiabilité, performabilité, longueur bornée, restrictions de diamètre
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1 Introduction

Consider a communication network whose components randomly fail, modelled
as an undirected graph. The most classical reliability analysis model assigns to
the network two possible states determined by the link states; it is operational if
and only if a certain set of distinguished sites, known as terminals, are connected,
otherwise it is failed. A generalization introduced in [12] imposes also an upper
limit in the allowed distance between terminals for the network to be considered
as operational. This generalization, conceived to model situations where limits
exist in the acceptable delay times or the number of hops undergone by data
packets, keeps the binary nature of the network state. But when in comes to
performability, in several contexts there is need to employ metrics defined over
a larger number of network states, characterised by the hop distance between
terminals. For example, in voice-over-IP applications, the perceived quality is
affected by latency, which is in turn determined by the number of links tra-
versed by packets. Quality deteriorates as high hop-distance states occur more
frequently in the network. In web applications with rich interfaces, the quality
perceived by the end user is related to responsiveness, where latency determines
the delay between the user actions and their effect on the output interface. The
same consideration applies to other contexts where costs are born each time a
link is traversed e.g. vehicle or packet routing, where costs can relate to time
spent, tolls, fuel, etc.

Classical reliability analysis consists of computing, estimating or bounding
the probability that the network is operational, that is, the expected value of
the binary variable associated with the network state. Surveys can be found
in [7], [15] and [13]. In particular, many Monte Carlo methods have been pro-
posed for efficient estimation of this expected value. This article introduces a
Monte Carlo method to estimate any performability metric that is defined as
the expected value of a distance-dependent network metric. In real communi-
cation networks, link reliabilities are normally very high. Then, when applying
simulation methods, sampling a ‘high distance’ network state is a rare event.
In the context of Monte Carlo simulations for network reliability analysis, once
fixed a certain confidence interval goal, the needed sample size unboundedly
grows as link reliabilities become higher. Several variance-reduction techniques
can be used to reduce the sample size; surveys can be found in [14], [3] and
[9]; more recent works include [4], [5], [11], [16] and [2]. [10] and [8] introduced
a family of methods for the classical reliability, based on sampling strategies
conditioned by paths and cuts. In [6] it is shown how to extend them to include
diameter constraints, employing sets of edges named d-pathsets and d-cutsets.
The Monte Carlo method hereby proposed generalises these methods in order
to estimate the expected value of a random variable determined by the maximal
distance between pairs of terminals.

The d-pathsets and d-cutsets, that were considered as a priori known in the
previously mentioned literature, heaviliy affect the performance attained by the
simulation methods. We hereby introduce and compare a family of heuristics
for their selection. We present numerical evidence of the significant efficiency
gains attained by chaining these heuristics to the proposed simulation method
when compared to a crude Monte Carlo simulation.

The remainder of the article is organised as follows. Section 2 includes
definitions, notation and model formalisation. Section 3 describes the crude
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Monte Carlo method and the estimators it gives for the metric under study as
well as for its variance. Section 4 describes the suggested Monte Carlo method
and shows the variance reductions achieved relative to the crude one. Section 5
describes the heuristics for selecting the (d-)pathsets and (d-)cutsets that will
be applied in the simulation. Section 6 presents three numerical examples,
based on mesh-like networks. It compares several variations of the heuristic,
the relative efficiency of the proposed Monte Carlo method vs. the crude one
and how it is influenced by link reliabilities. Finally, conclusions and further
work are summarised in Section 7.

2 Definitions and Notation

The network is modelled by an undirected graph G = (V,E) with n = |V |,
m = |E| and E = {e1...em}, whose nodes and edges correspond to the sites and
links of the network respectively. The following definitions and notation are also
employed:

• K ⊆ V : a subset of nodes that corresponds to the distinguished sites
(called terminal nodes or simply terminals);

• Xe: for every e∈E, a random binary variable whose value is 1 if e operates
and 0 otherwise;

• re: reliability of e (the probability that it is operational at any given
instant). The edges are assumed to fail independently of one another;

• X = (X1...Xm) ∈ {0, 1}m: a network configuration (an m-tuple encoding
the states of all edges);

• X : set of the 2m possible network configurations;

• π(x) = Pr(X = x) (probability that the random network configuration is
x);

• ∆ : X → {0, ..., n,∞}: the function that gives the maximum distance ∆(x)
between two terminals in the partial graph of G encoded by a network
configuration x;

• K is d-connected in G if and only if, for each pair of nodes of K, there is
a path between them, whose length is not above the integer d;

• Φ: network parameter to estimate (random variable determined by the
network configurations).

Our goal is to estimate the expected value of the random variable Φ. The
value of this random variable is determined by the network configurations as
follows. The set {0, ..., n,∞} (the codomain of ∆) is partitioned into several
intervals (think of them as ‘quality levels’). Then each interval is mapped to one
value from a setQ ⊂ R with |Q| ≤ r+1. Therefore every network configuration x
belongs to an unique ‘quality level’ that corresponds to a certain Φ value. Then,
our final aim is to estimate the expected value of the function Φ : X → Q.

Figure 1 illustrates the model and notations used. Given r integers 0 <
d0 < · · · < dr−1, let ∆ = {∆0 ∪ ∆1 ∪ · · · ∪ ∆r} be a set of intervals where

RT n° 8267
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∆0 = (0, d0], ∆i = (di−1, di] for i ∈ [1, r − 1] and ∆r = (dr−1,∞]. Let X be
partitioned (and its components called regions) as X = X0 ∪ · · · ∪ Xr where
Xi = {x ∈ X | ∆(x) ∈ ∆i} for i ∈ [0, r]. Let pi denote the probability that
x is one of Xi. Let also zi denote the probability that x is one of Zi, being
Zi ⊆ Xi defined in Section 4. Similarly, Q = {Φ0,Φ1, . . . ,Φr} and Φ : X → Q
gets defined by Φ(x) = Φi ⇐⇒ ∆(x) ∈ ∆i(x).

∆ (0, d0] (d0, d1]
(dr−2,

dr−1]

(dr−1,

∞]

regions X0 X1 Xr−1 Xr

Φ Φ0 Φ1 Φr−1 Φr

X
z0 z1 zr−1 zr

p0 p1 pr−1 pr

Figure 1: Partitions of the network configuration space

3 Crude Monte Carlo Method

A crude Monte Carlo simulation estimates the expected value Φ̄ of Φ by inde-
pendently sampling N network configurations x(1), . . . , x(N), computing Φ for
each one, and building an estimator

Φ̂N =
1

N

∑

i=1..N

Φ(x(i))

whose variance is (EV (·) denotes the expected value)

σ̂2
N =

N

N2
var (Φ) =

1

N
(EV (Φ2)− EV 2(Φ)) =

1

N
(
∑

i=1..N

Φ2
i pi − Φ̄2).

Sampling each x(i) involves m Bernoulli trials for determining the state of
each edge. Computing Φ for x(i) is done by applying a breadth-first-search
(BFS) algorithm starting at every node of K. So each iteration takes a time
that is O(max{m, |K|2}).

4 Proposed Monte Carlo Method

Suppose that certain topological knowledge about G = (V,E) is available in
the form of certain edge sets, called pathsets, cutsets, di-pathsets and di-cutsets

RT n° 8267



Performability Estimation with Edge-sets Heuristics 6

for a given i ∈ [0..r − 1], that we define next. Let P be any subset of E and
G′ = (V, P ) the partial graph of G yielded by P . Then,

• P is a pathset if and only if K is connected in G′;

• P is a d-pathset if and only if K is d-connected in G′;

• a (d-)pathset is said to operate when all of its edges operate.

Similarly let C be any subset of E and G′ = (V,E \C) the partial graph of
G yielded by E \ C. Then,

• C is a cutset if and only if K is not connected in G′;

• C is a d-cutset if and only if K is not d-connected in G′;

• a (d-)cutset is said to fail when all of its edges are failed.

Hereafter, unless otherwise specified or clear by the context, the terms path-
set and cutset refer to any of the above defined sets, regardless of the presence
or absence of a length constraint. In our context, an elementary event is a net-
work configuration X , with operational edges {e ∈ E/Xe = 1} and failed edges
{e ∈ E/Xe = 0}. The sets of operating/failed edges define whether a given
pathset/cutset operates/fails.

Under certain circumstances, the simultaneous occurrence of operating/failed
sets allows to know the value of Φ for a given network configuration. For ex-
ample, suppose that a certain network configuration X is such that a given
5-pathset operates while a given 2-cutset fails. It follows that the maximal
distance between the nodes of K must be any of {3, 4, 5} in the partial graph
encoded by X . If the interval (2, 5] belongs to ∆, then the region to which X
belongs is known, and so is its Φ value. The proposed method takes advantage
of this property as we see next. Assume that the following sets of edges are
known:

• P0: set of some pathsets;

• P1, . . . ,Pr−1: r − 1 sets such that each Pi is a set of some di-pathsets;

• Pr = ∅ (for convenience of notation);

• C0 = ∅ (for convenience of notation);

• C1, . . . , Cr−1: r − 1 sets such that each Ci is a set of some di−1-cutsets;

• Cr: set of some cutsets.

In the previous definitions, the word ‘some’ means that every set can contain
any number of elements ranging from zero to the maximum existing number of
(di-)pathsets or (di)-cutsets. At least one of the sets must be non-empty for the
method to be useful; if all sets are empty then the method coincides with crude
Monte Carlo. Now, the following events can be defined over X :

RT n° 8267
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Ti = (some element of Pi operates) (i = 0, · · · , r − 1)

Kj = (some element of Cj fails) (j = 1, · · · , r)

Z0 = T0

Zh = Th ∧Kh (h = 1, · · · , r − 1)

Zr = Kr

With these definitions, given a network configuration x, it holds that (Z0 →
(∆(x) ∈ (0, d0])) and that (Zi → (∆(x) ∈ (di−1, di])) for i ∈ [1 . . . r]. In other
words, each event Zh=0···r determines a precise Φ value. The events Z0, . . . ,Zr

are subsets of X0, . . . ,Xr respectively and thus pairwise disjoint too. This is also
shown in Figure 1, where pi = Pr(x ∈ Xi) and zi = Pr(x ∈ Zi) for i ∈ [0 . . . r].

In what follows all summations have an implicit subscript i = 0, . . . , r. Sup-
pose that the probabilities z0, . . . , zr are easy to compute. Then it is easy to
compute φ =

∑
Φizi, the part of Φ̄ for which Z accounts. The method de-

scribed below is based on computing the remaining part of Φ̄ (the one given
by the events out of Z) by restricting the sampling space to X\Z. Let z =
Pr(x ∈ Z) =

∑
zi. Our sampling plan estimates Φ̄ by sampling N network

configurations x(1), . . . , x(N) within X\Z (with a probability distribution that
respects the relative probabilities among the network configurations in X\Z),

computing Φ for each one, and building an estimator Φ̃N with variance σ̃2
N as

follows:

Φ̃N =
1

N

(∑

i

Φ(x(i))(1− z)

)
+ φ

whose variance is

σ̃2
N =

N

N2
var ((1− z)Φ) =

(1− z)2

N

(
EV (Φ2)− EV 2(Φ)

)
=

(1− z)2

N


∑

i

Φ2
i (pi − zi)

1− z
−

(∑

i

Φi(pi − zi)

1− z

)2

 =

1

N

(
(1− z)

∑

i

Φ2
i (pi − zi)− (Φ̄− φ)2

)
.

Here the expected values involve probabilities conditioned to X\Z, hence
the application of the correction factor 1/(1− z) to pi − zi.

4.1 Variance Reduction

The variances obtained through the crude and the proposed Monte Carlo meth-
ods are next compared; for simplicity it is done for one single iteration (i.e. the
simulation sample size is one). Single-index summations are over i ∈ {0, . . . , r}
and double-index summations over all pairs (i, j) ∈ {0, . . . , r}2.

RT n° 8267
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σ̂2
1 − σ̃2

1 =
∑

i

Φ2
i pi + (1− z)

∑

i

Φ2
i (pi − zi)− 2Φ̄φ+ φ2 =

z
∑

i

Φ2
i pi − z

∑

i

Φ2
i zi +

∑

i

Φ2
i zi−

2(
∑

i

Φipi)(
∑

i

Φizi) + (
∑

i

Φizi)
2 =

∑

ij

Φ2
i pizj −

∑

ij

Φ2
i zizj +

∑

ij

Φ2
jpizj−

2
∑

ijΦiΦjpizj +
∑

ijΦiΦjzizj =
∑

ij

(Φi − Φj)
2pizj +

∑

ij

(ΦiΦj − Φ2
i )zizj =

∑

ij

(Φi − Φj)
2(pi − zi)zj+

∑

ij

(
(Φi − Φj)

2 +ΦiΦj − Φ2
i

)
zizj =

∑

ij

(Φi − Φj)
2(pi − zi)zj +

∑

ij

(Φj(Φj − Φi))zizj =

∑

ij

(Φi − Φj)
2(pi − zi)zj +

∑

i<j

(Φj − Φi)
2zizj .

The following Lemma characterises the variance reduction in terms of the
regions and their respective subsets determined by the set of pathsets and cut-
sets.

Lemma 1 The difference of the variances σ̂2
1 − σ̃2

1 is always non-negative. Re-
garding strict positivity, it is a necessary and sufficient condition that two non-
empty regions Xi and Xj exist such that their Φ values are different and Zj is
non-empty.

Proof. Observe that both summations in the final form of expression of σ̂2
1− σ̃2

1

only involve non-negative terms, hence the difference of variances is always non-
negative. Regarding strict positivity, assume that two non-empty regions Xi

and Xj exist such that Φi 6= Φj , pi > 0 and zj > 0 (therefore pj > 0). Then,
if pi > zi, the first summation will have a strictly positive term given by the
subindices i, j. If pi = zi, then zi > 0 and therefore the second summation will
have a strictly positive term given by the subindices i, j. This proves the suffi-
ciency of the statement about Xi and Xj . Conversely, assume that σ̂2

1 − σ̃2
1 > 0.

Then there must exist i, j such that at least one of the corresponding terms
in the first and second summation is strictly positive. If the term for the first
summation is strictly positive, then Φi > Φj , pi > zi and zj > 0. Since
(pi > zi → pi > 0) and (zj > 0→ pj > 0) the statement about Xi and Xj holds
true. If the term for the second summation is strictly positive, then Φi > Φj ,
zi > 0 and zj > 0. Again, pi > 0 and pj > 0 and the statement holds true. ♠

RT n° 8267
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4.2 Sampling within X \ Z

Let Ω =
⋃

i=0...r(Pi∪Ci) be the set of all edges occurring in at least one pathset
or one cutset under consideration. Note that the eventZ is independent from the
state of all edges that do not belong to Ω. Then the state of the edges of E\Ω can
be easily sampled with m− |Ω| Bernoulli trials. A general sequential procedure
to sample the state of the edges of Ω is the following. Let (o1 . . . o|Ω|) ∈ {0, 1}

|Ω|

an |Ω|-tuple encoding the sampled states. Assume that o1 . . . or have already
been sampled (being r < |Ω|) and let Er be the event in which the first r edges of
Ω have these sampled states respectively. Then the probability that the r+1-th
edge of Ω is operational is (knowing that the edges of Ω must have states such
that the network configuration belongs to X \ Z):

Pr(or+1 = 1 | X \ Z ∧ Er) = Pr(or+1 = 1)
Pr(X \ Z | Er ∧ or+1 = 1)

Pr(X \ Z | Er)

where Pr(or+1 = 1) is the reliability of the r+1-th edge of Ω. The function
that given the reliabilities ρ1, . . . , ρ|Ω| of the edges of Ω returns the probability
of the event X \Z, is a polynomial P(ρ1, . . . , ρ|Ω|). So, computing Pr(X \Z | Er)
involves replacing ρ1, . . . , ρr by 0 or 1 according to the states sampled for the
first r edges and then evaluating P. Finding (and evaluating) P can be very com-
plex when pathsets and cutsets of the same region highly overlap. Observe that
Pr(X \Z) = 1−Pr(Z) = 1−Pr(

∧
i Zi) = 1−

∑
i Pr(Ti∧Ki) (recall the pairwise

independence of all Zi). To compute each Pr(Ti ∧ Ki), if every edge involved
occurs only in one of Pi and Ci then it is possible to get factorised expressions
(see the Appendix in [6]), and then building and evaluating the polynomial can
be done in time O(|Ω|). The previous considerations about the overlapping of
edge sets within the same region also apply to computing z0, · · · , zr.

For limited cardinalities of Ω an alternative approach can be used, consisting
in precomputing the probability of the occurrence of each of the 2|Ω| possible
sub-configurations that exist when only considering the edges of Ω, in O(2|Ω|)
time. Then, sampling their states just involves choosing a sub-configuration at
random through a cut-point access on a table accumulating the precomputed
probabilities (thus in O(|Ω|) time). This is the fastest way to sample the states
for the edges of Ω, but at the expense of the exponential-in-|Ω| effort for pre-
computing the table, that can limit its applicability on large networks.

5 A heuristic for pathset and cutset generation

In this section we introduce a heuristic that generates pathsets and cutsets for
every region Xi. We develop an algorithm for the two-terminal problem that
can be easily generalised to the problem for general sets K. For every i, we
build a set of di-pathsets and di−1-cutsets, such that no two elements share
edges. This set should ideally be the one that maximises the probability zi that
one d-pathset operates and one d-cutset fails at the same time, to attain the
largest variance reduction that is possible. The basic idea consists of a greedy
randomised generation of paths with lengths in (di−1, di], followed by a greedy
randomised generation of di−1-cutsets, without using any edge included in the

RT n° 8267
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former paths. The cycle is repeated several times and the combination of sets
that yield the higher probability is finally chosen.

5.1 Paths generation

The algorithm shown in Fig. 2 receives the graph G, source and destination
nodes (s, t) and the minimum and maximum distances ℓ1, ℓ2 that define the
region. It returns a random path whose length is in the interval [ℓ1, ℓ2] or
the null (⊥) element if no such path could be found. The algorithm proceeds
with a greedy selection of nodes (currNode) that are added to the path under
construction newPath. It starts by selecting s and ends after reaching t or
achieving a point where it is impossible to complete a path with the required
constraints. In each iteration, the shortest path (shP) between the current
node and t is computed. If there is no such path, or its length exceeds the
difference between ℓ2 and the length of the already built part, the algorithm
returns the null element ⊥. Otherwise, the next edge can be either the first
one of shP, or another one different from it. When there are more than one
feasible edges, the first one of shP is chosen with a probability proportional to
the ratio between the length of shP and the maximum number of edges that can
be added to the path under construction without violating the [ℓ1, ℓ2] constraint.
The function rand() in the algorithm returns a random uniform real number in
[0,1). Therefore the algorithm tends to stick to a shortest path when newPath

has reached a length that leaves few chances to divert. On the contrary, when
there is still room for many more edges than the length of a shortest path, the
algorithm will tend to choose, at random, other directions to extend newPath. In
line 11, care is taken to not repeat a node of shP, which would result in having
cycles within the newPath. Lines 13-16 remove the chosen edge from G for
future iterations, append it to newPath and update its length ℓ and currNode.
Random is therefore introduced in the decision of wheter to make a step in the
direction of a shortest path or not, as well as in the selection of the next node,
in case it was decided not to follow the shortest path.

5.2 Cutsets generation

The algorithm for creating an ℓ-cutset given a certain integer ℓ is shown in
Fig. 3. It receives the graph G, the source and terminal nodes (s, t), the integer
ℓ and a set of edges H . It starts by building a first-in-first-out queue with
all edges of G \ H inserted in increasing order of distance to s. Random is
introduced by shaking these distances prior to insertion. For example, in our
tests we swaped each pair of values in ~d with a probability inversely proportional
to their difference. The queue is later used to add each edge to the cutset under
construction newCut in this shaken order; the idea behind this is that dropping
edges in the vecinity of s is a good strategy to find low cardinality ℓ-cutsets
for s, t. The set H will be used when invoking this algorithm to avoid using
edges already used for other ℓ-pathsets or ℓ-cutsets found prior to the one under
construction. The while loop proceeds adding edges to newCut and dropping
them from G until one of the following occur: i) the distance between s and t is
greater than ℓ (so we have an ℓ-cutset); or ii) the queue is empty (so no ℓ-cutset
exists, which happens if and only if there was a path whose length is not above
ℓ built exclusively with edges of G \ H). After the while loop, newCut is an

RT n° 8267
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Procedure generatePath(G, s, t, ℓ1, ℓ2)

1: ℓ← 0; currNode← s; newPath← ∅
2: while currNode 6= t do

3: shP← shortestPath(G, currNode, t, newPath)
4: dist← length(shP)
5: if (shP = ⊥) ∨ (ℓ+ dist > ℓ2) then

6: return ⊥
7: else

8: if (currNode has only one neighbour in G) ∨ (rand() < (ℓ + dist −
ℓ1)/(ℓ2 − ℓ1)) then

9: next← neighbour of currNode in shP
10: else

11: next← any neighbour of currNode in G \ shp
12: end if

13: remove the edge (currNode,next) from G
14: append the edge (currNode,next) to newPath
15: currNode← next
16: ℓ← ℓ+ 1
17: end if

18: end while

19: return newPath

Figure 2: Heuristic algorithm for generating paths with lengths in [ℓ1, ℓ2]

ℓ-cutset not necessarily minimal (i.e. some edges can be dropped from it and
still be an ℓ-cutset). The for loop builds an ℓ-cutset minCut that is minimal in
this sense (although, in general, it will not be a minimum-cardinality ℓ-cutset).

5.3 The main heuristic

Our main algorithm iterates until a given amount of time is spent. In each
iteration a disjoint set of edges for a certain region Xi is generated. Each
iteration will begin with the generation of one di-pathset and one di−1-cutset.
It then will continue adding more sets, following a certain sequence that defines
a “version” of the algorithm. Each iteration may not exceed a certain parameter
time MAX_TIME; if it does then it is discarded and a new iteration is run. For
each generated sets P and C of di-pathsets and di−1-cutsets, the probability
of the event zi that they define is computed; the P ,C pair with the highest
Pr(zi) is recorded as the algorithm proceeds and returned after timing out. The
algorithm shown in Fig. 4 corresponds to the version where the sequence pathset-
cutset-pathset-cutset is followed in each iteration; we will denote it as PCPC. It
illustrates how to invoke the procedures generatePath and generateCutset.
In Section 6.2 we compare the results obtained with seven different versions.
The algorithm receives the graph G, source and destination nodes (s, t) and
the range of distances allowed for the zone [ℓ1, ℓ2]. It returns the pair (P, C)
whose probability was the highest among all the pairs generated. The pair
is not necessarily built by two pathsets and two cutsets. Note the way that
generatePath and generateCutset are invoked in lines 13 and 19. Passing
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Procedure generateCutset(G, s, t, ℓ,H)

1: ~d← vector of distances between s and every node in G \H

2: randomAlter(~d)
3: queue ← all edges of G\H inserted in increasing order of their values in d̄
4: newCut← ∅; flag← true
5: while flag do

6: shP← shortestPath(G, s, t, ∅)
7: if (shP = ⊥) ∨ (length(shP) > ℓ) then

8: flag← false
9: else if isEmpty(queue) then

10: return ⊥
11: else

12: newEdge← pop(queue)
13: remove newEdge from G
14: add newEdge to newCut
15: end if

16: end while

17: minCut ← ∅
18: for all e ∈ newCut do

19: add e to G
20: shP← shortestPath(G, s, t, ∅)
21: if (shP 6= ⊥) ∧ (length(shP) ≤ ℓ) then

22: remove e from G
23: add e to minCut
24: end if

25: end for

26: return minCut

Figure 3: Heuristic algorithm for generating an ℓ-cutset
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Procedure PCPC(G, s, t, ℓ1, ℓ2)

1: bestP ← ⊥; bestC ← ⊥; highestProb ← 0
2: while ellapsed_time < MAX_TIME do

3: P ← ∅; C ← ∅
4: repeat

5: p ← generatePath(G, s, t, l1, l2)
6: until (p 6= ⊥) or MAX_TRIES attempts were done
7: if (p = ⊥) then continue //aborts current “while” iteration
8: P ← P ∪ {p}
9: repeat

10: c ← generateCutset(G, s, t, l1 − 1,P)
11: until (c 6= ⊥) or MAX_TRIES attempts were done
12: if (c = ⊥) then continue //aborts current “while” iteration
13: C ← C ∪ {c}
14: if Pr(P,C) > highestProb then

15: highestProb ← Pr(P,C); bestP ← P; bestC ← C
16: end if

17: repeat

18: p ← generatePath(G \ P, s, t, l1, l2)
19: until (p 6= ⊥) or MAX_TRIES attempts were done
20: if (p = ⊥) then continue //aborts current “while” iteration
21: P ← P ∪ {p}
22: if Pr(P,C) > highestProb then

23: highestProb ← Pr(P,C); bestP ← P; bestC ← C
24: end if

25: repeat

26: c ← generateCutset(G, s, t, l1 − 1,P ∪ C)
27: until (c 6= ⊥) or MAX_TRIES attempts were done
28: if (c = ⊥) then continue //aborts current “while” iteration
29: C ← C ∪ {c}
30: if Pr(P,C) > highestProb then

31: highestProb ← Pr(P,C); bestP ← P; bestC ← C
32: end if

33: end while

34: return bestP, bestC, highestProb

Figure 4: Pseudo-code for the main heuristic; version PCPC

G \ P and P ∪ C allows respectively to obtain disjoint pathsets and cutsets
respect to those so far generated in the current iteration. If a subprocedure is
invoked MAX_TIMES times without succeeding to return a pathset or cutset,
a new iteration is started. Similar algorithms PP, PPP, ... and CC, CCC, ... are
used for the border regions X0 and Xr, generating only pathsets or only cutsets
(with no length constraint).
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∆ region re = 0.9 re = 0.95 re = 0.99

up to 5 X0 0 0 0

6 to 7 X1 5 30 1,000

above 7 X2 10 60 2,000

disconnected X3 20 120 4,000

Table 1: Test 1: fines per region.

6 Numerical examples

This section provides numerical examples based on mesh-like topologies. The
simulations are inspired on the following situation. There is a contract between
a communication network provider and a customer who needs to periodically
exchange data between two sites s and t. They agree on a scale of fines, to
be paid by the provider, according to the number of hops that each packet
undergoes. The aim is to estimate the expected value of the fines that will be
paid during the contract lifetime. To do so, simulations based on crude Monte
Carlo and the proposed method were run and their results compared. The
methods were implemented in C++ and the tests were run on an Intel Core2
Duo T5450 machine with 2 GB of RAM, executing 107 iterations (sample size).

6.1 Test case 1 - ANTEL’s transport network

Test case 1 is based on the countrywide transport network topology of ANTEL,
the largest telecommunications provider in Uruguay, shown in Figure 5. Nodes
represent the sites whose interfaces perform routing activity, thus adding sig-
nificant latency. Links represent the existing paths between these sites. Three
scenarios are considered, corresponding to interface failure probability values of
0.10, 0.05 and 0.01 respectively. The test illustrates the effect that the rarity of
edge failures has on the attained efficiency relative to crude Monte Carlo. As-
sume that nodes 4 and 14 (shown as squares) are to be connected in a context
where low latencies are desirable. Table 1 lists the scale of fines payed accord-
ing to the hop distance between both nodes. Three scales are used, each one
corresponding to a certain value of link reliability in the network model (0.90,
0.95 and 0.99). The simulations will estimate the expected value of the average
fine as well as its variance. The fine scales were proportionaly adjusted so that
the expected values of the fines to pay were rather similar, by running short
simulations. Note how the fines per region must quickly increase to yield the
same expected value of fines when link reliabilities become higher, due to the
fact that network configurations with high distances, or disconnected, become
rarer events. In other words, this means that the provider can agree on pay-
ing higher fines per region still facing the same fine expected value, because of
improved link reliabilities. Table 2 shows the pathsets and cutsets employed,
using the edge labels of Figure 5.

Table 3 shows Φ̂ and Φ̃ (the expected values of Φ estimated by the crude
and proposed methods respectively); the estimations obtained for σ̂2 and σ̃2;
and the total times (in seconds). As above mentioned the scale of fines was
set up so that the expected values of the fines to pay were approximately the
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Figure 5: Test 2: reduced transport network topology of ANTEL, Uruguay’s
national telecommunications provider

reg. Pi Ci

X0 P0 = {{4, 5, 9, 1}, {11, 12, 2, 8}} C0 = ∅

X1 P1 = {{11, 12, 2, 13, 14, 15}} C1 = {{1, 8}}

X2

P2 = {{4, 17, 10, 18, 19,
20, 21, 22, 15}}

C2 = {{1, 8, 13}}

X3 P3 = ∅ C3 = {{3, 4, 11}, {1, 8, 15}}

Table 2: Test 1: pathsets and cutsets.

same (they ranged from 0.341855 to 0.361926). Times spent are essentially the
same across the three reliability scenarios, with the crude method taking a time
approximately 11% lower than the proposed method. Observe the significant
reductions achieved in the variance by the proposed method (13.63, 45.27 and
940.2 for re equal to 0.90, 0.95 and 0.99 respectively). An efficiency compar-
ison can be reported via the relative efficiency RE, which is a standard ratio
employed in simulation literature (see e.g. [8], [14]), defined as follows:

RE =
var crude

varproposed
×

timecrude

timeproposed
≈

σ̂2

σ̃2
×

timecrude

timeproposed
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. Crude Proposed ratio

re = 0.9

Φ 0.341855 0.341856 -

σ2 4.538235×10−7 3.328820×10−8 13.63

t(s) 290.9 323.7 0.8987

re = 0.95

Φ 0.361926 0.361632 -

σ2 2.467931×10−6 5.451282×10−8 45.27

t(s) 285.8 321.3 0.8896

re = 0.99

Φ 0.338000 0.334667 -

σ2 6.018858×10−5 6.401462×10−8 940.2

t(s) 280.4 321.7 0.8715

Table 3: Test 1: numerical results.

Instance Size s t ℓ1 ℓ2 Pr(zi)

Grid1 8× 8 (2,2) (4,4) 6 10 1.895E-4

Grid2 8× 8 (2,2) (5,5) 8 12 1.974E-4

Grid3 15× 15 (4,7) (11,7) 10 20 2.529E-6

Grid4 15× 15 (4,4) (11,11) 18 24 9.575E-9

Table 4: Test 2: grid-based instances for heuristic tests.

The RE expresses the attained variance reduction adjusted by the spent-
time ratio; in this case, its values are 12.25, 40.27 and 819.4 respectively for
re = 0.90, re = 0.95 and re = 0.99.

6.2 Test 2 - Square grids

This test illustrates the behaviour of seven versions of the heuristic algorithm.
One version (that we call PC) always returns one pathset and one cutset. Two
versions (PCP, PCC) can return one extra pathset or cutset respectively. Fi-
nally, four versions (PCPP, PCPC, PCCP, PCCC) return two, three or four
components whose nature corresponds to each letter. Two network topologies
were employed: square grids with 8× 8 and 15× 15 nodes respectively. Table 4
shows the characteristics of the four instances of the problem that were run
for each version of the algorithm. Nodes s and t are specified by their “x, y
coordinates” in the grid (numbered from zero). The reliability of each edge
was randomically set, according to a triangular distribution (0.985, 0.99, 0.995).
The parameters MAX_TIME and MAX_TRIES were set to 40 seconds and 5
tries. Last column of the table shows the highest probability found among those
returned by each version of the algorithm.

Table 5 shows the results of the four tests; within each one, the algorithms
are sorted by descending order of the probability that each one returned. Col-
umn labelled %best reports the ratio between the returned probability and the
highest one for that particular test. Column #edges reports the total number
of edges involved in the pathsets and cutsets of the returned solution. Columns
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%best #edges 2 sets 3 sets 4 sets best (P,C)

Grid1

PCCP 1.000 22 1,055 726 687 2,2

PCPC 0.998 24 671 637 255 2,2

PCCC 0.911 18 497 336 71 1,3

PCC 0.911 14 1,086 729 0 1,2

PCP 0.509 18 3,186 3,052 0 2,1

PCPP 0.501 18 2,635 2,518 943 2,1

PC 0.465 10 4,135 0 0 1,1

Grid2

PCPC 1.000 28 417 401 152 2,2

PCCP 1.000 28 604 392 377 2,2

PCCC 0.898 20 463 299 266 1,3

PCC 0.898 16 605 387 0 1,2

PCP 0.502 22 2,012 1,907 0 2,1

PCPP 0.501 24 1,709 1,623 621 2,1

PC 0.458 12 2,439 0 0 1,1

Grid3

PCCC 1.000 26 82 55 43 1,3

PCPC 0.772 40 79 61 30 2,2

PCCP 0.769 42 105 73 54 2,2

PCC 0.667 23 110 74 0 1,2

PCPP 0.394 56 286 196 59 3,1

PCP 0.386 37 310 204 0 2,1

PC 0.340 18 380 0 0 1,1

Grid4

PCP 1.000 50 169 105 0 2,1

PCPP 0.996 52 180 98 64 2,1

PCPC 0.996 52 56 27 13 2,1

PCCP 0.988 62 31 21 12 2,2

PC 0.821 28 202 0 0 1,1

PCC 0.821 28 37 17 0 1,1

PCCC 0.821 28 28 17 12 1,1

Table 5: Test 2: ranking of results for the grid-based instances.

2s, 3s and 4s report the number of solutions generated that had two, three
and four components (pathsets plus cutsets). Finally column best(P,C) reports
the number of pathsets and cutsets in the solution returned by each algorithm.
First, note that in all cases there is a significant difference between the best and
worst returned solutions (their ratio ranging from 1,22 to 2,94). Second, three
of the best solutions had four components and the remaining one had three.
These results suggest that it might be worth to spend time looking for solutions
with many components, rather than striving to get the best “one pathset - one
cutset” possible solution, in topologies alike. Third, there is no clear winner,
although PCCC, PCPC and PCCP seem to have the best overall results.
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∆ region re = 0.90 re = 0.95 re = 0.99

up to 5 X0 0 0 0

6 to 12 X1 10 150 85,000

above 12 X2 1,000 15,000 8,500,000

Table 6: Test 3: fines per region.

. Crude Proposed ratio

re = 0.90

Φ 0.928540 0.928373 -

σ2 9.135802×10−5 2.591886×10−6 35.25

t(s) 606.4 975.2 0.6218

re = 0.95

Φ 0.933135 0.915608 -

σ2 1.366002×10−3 6.188060×10−6 220.75

t(s) 586.2 950.4 0.6168

re = 0.99

Φ 0.935000 0.928744 -

σ2 7.232224×10−1 3.217148×10−5 22,480.23

t(s) 513.1 914.4 0.5612

Table 7: Test 3: numerical results.

6.3 Test 3 - Randomised extension of Arpanet

This test illustrates the combined effect of the heuristic algorithm for path-
set and cutset generation and the variance-reduction technique. The network,
shown in Fig 6, has 60 nodes and 110 edges. It was generated by growing the
original Arpanet with 40 nodes according to the random network model of [1].
As in Test 1, three instances were run, each one with all edges set to the same
reliability. In this case the nodes s, t are represented as squares. Table 6 lists
the scale of fines, split in three zones; again they were adjusted so that the ex-
pected value was similar for the different edge reliabilities. The heuristic PCCP
was applied for X1 and it returned a solution built by one 12-pathset and two
5-cutsets. Heuristics PPPP and CCCC where applied to define the zones X0

and X2, returning respectively three pathsets and two cutsets. The parameter
MAX_TIME was set again to 40 seconds. The results of the test are sum-
marised in Table 7; each time reported for the proposed method include the 120
seconds spent generating the pathsets and cutsets. Note the significant relative
efficiencies, in particular for rarer failures, obtained in this test: 21.92, 136.15
and 12,615.39 respectively for re equal to 0.90, 0.95 and 0.99.

7 Conclusions and future work

The proposed simulation method showed its capability to achieve significant
variance reductions when applied on mesh-like networks. The precise conditions
under which there is a reduction in the variance of the estimated parameter,
with respect to the crude method, were shown in Lemma 4.1. The tests also
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s t

Figure 6: Network for Test 3 - Random extension of Arpanet

showed that the proposed heuristic was able to generate sets that exploited the
mentioned variance-reduction potential at significant levels. Even considering
the extra time required for running the heuristic and for sampling with the
proposed plan, the efficiency gains are noteworthy, specially when the links
become more reliable.

The heuristics hereby introduced, yet resulting in important efficiency gains
when chained to the simulation in these simple versions, can be improved in
several ways. The algorithm could adapt the amount of effort spent in searching
higher cardinality sets of pathsets/cutsets according to statistics on the sets so
far found or on the connectivity level of the terminal set. It could also alter the
relative effort devoted to the generation of different sequences of pathsets and
cutsets, reacting to the results so far obtained during execution. The reliability
of each edge should be taken into account when choosing which one to add
to the pathset or cutset under construction, particularly in networks where the
reliabilities significantly differ. The time spent generating the sets MAX_TIME
could also be initially set according to the sample size and the number of edges
and regions (all of which determine at a large extent the time spent by the
simulation). Moreover, it could be adjusted during the algorithm execution in
light of the number and quality of the so far found sets.
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