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Abstract: This paper presents a comparison between three new hybridisations 
using three particle swarm optimisation (PSO) variants: The Barebones PSO 
(BPSO), the comprehensive learning PSO (CLPSO) and the cooperative 
learning PSO (CoLPSO). The goal of these hybridisations is to improve the 
exploration and the exploitation of the search space from these three variants 
and contributes to PSO on high scale continuous optimisation problems. The 
performance of these three new hybrids, named HCLBPSO-Half, HBPSO+CL 
and HCoCLPSO, are compared with the original methods on which they are 
based. The comparison is done using six classical continuous optimisation 
functions with dimensions set to 50, 100 and 200, and all 15 continuous 
optimisation functions from the CEC’15 benchmark with dimensions set to 10, 
30, 50 and 100. The results are compared using the mean and median of 
executions. 
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1 Introduction 

Metaheuristics are widely used methods for solving complex optimisation problems, of a 
continuous or combinatorial nature (Talbi, 2009). They are useful when an optimal 
solution is not mandatory to profit a shorter execution time. In the light of the  
‘no-free-lunch’ theorem (Wolpert and Macready, 1997), there is no single method that 
effectively solves every known optimisation problem. This theorem states that if an 
algorithm works well in solving a particular problem, it will inevitably be less efficient 
over many others. However, one interesting idea to get closer to this idealistic situation is 
to combine the forces of several metaheuristics by putting each one’s particular 
advantages up front. This technique is called hybridisation. 

In operations research, hybridisation is a well-known area of study which has proven 
powerful and has recently accomplished a great deal (Blum and Raidl 2016). It can be 
made in many ways using two (or more) optimisation methods. It is possible to observe 
many examples of hybridisations in the literature, e.g., using an ant colony optimisation 
algorithm, a genetic algorithm, a variable neighbourhood search and a tabu search (Raidl 
2006). 

Banks et al. (2008), as well as Jordehi and Jasni (2015), highlighted many articles in 
which the particle swarm optimisation algorithm (PSO) is used in hybridisation. 
According to these authors, the PSO is a well-known metaheuristic that has been proven 
useful in solving continuous optimisation problems. Even if this method has been 
enhanced over the years to get better results, it has however demonstrated difficulties in 
solving high dimensional problems (Van den Bergh and Engelbrecht, 2004). Some of 
these enhancements change the nature of the PSO. Others add some components to its 
behaviour. Three variants have shown potential in solving various optimisation  
problems: The Barebones PSO (BPSO) (Kennedy, 2003), the comprehensive learning  
PSO (CLPSO) (Liang et al., 2006) and the cooperative learning PSO (CoLPSO)  
(Van den Bergh and Engelbrecht, 2004). 

Because each of these three variants has performed well in solving continuous 
optimisation problems, it is natural to hybridise them to further improve the solutions and 
to contribute to PSO on large-scale continuous optimisation problems. The goal of this 
paper is to improve the PSO and its applicability in optimising high dimensional 
problems. It proposes three new hybrids based on the BPSO, the CLPSO and the 
CoLPSO which can get better results than these three methods executed separately. 
Section 2 reviews the literature on the PSO and its variants. Section 3 introduces three 
new PSO hybrids (HCLBPSO-Half, HBPSO+CL and HCoCLPSO). Section 4 shows the 
results of an analysis of these three new methods compared to the BPSO, the CLPSO and 
the CoLPSO. It also shows the results of the new hybrids compared to a recent algorithm, 
dynFWACM (Yu et al., 2015). This paper concludes in Section 5 by highlighting the best 
hybrid method and indicating some future work. 

2 PSO evolution 

The PSO (Eberhart and Kennedy, 1995) is an evolutionary algorithm where a population 
improves with the help of all individuals on each generation. It replicates the behaviour 
of birds in a flock or fish in a school as they are looking for food. It uses cooperation  
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inside the swarm (flock, school) so that every particle (bird, fish) can improve with the 
aid of the rest of the swarm. When a particle is looking for a good solution (food source), 
it exchanges information with the swarm on the solutions observed so that all particles 
can potentially help each other to reach an optimum. The PSO algorithm evolved through 
the years. Variants have been proposed, like the BPSO, the CLPSO and the CoLPSO, to 
improve the results obtained with the PSO on different sets of problems. 

Figure 1 Organisational chart for the PSO algorithm 

 

Note: A1 frames the part of the algorithm responsible for the update of a particle 

2.1 The PSO algorithm 

Some features have been added to the original formulation of the PSO to help improve 
particle behaviour (Shi and Rc, 1998). This improvement is done by controlling the 
relative importance of each component used in the movement for each particle i in the 
swarm: its position (noted by xi), its velocity (vi), its best position so far (pi), and the best 
global position of the swarm (g). A parameter (w) has been added for the inertial weight, 
which is used to moderate the velocity of a particle. Two coefficients, c1 and c2, are used 
to vary the importance of the best position visited by a particle and the best global 
position respectively. First, a particle i in generation t evolves in a swarm by updating its 
velocity vi using equation (1), where the numbers r1 and r2 are randomly generated 
between 0 and 1. This particle is then updated using its position xi (with dimension D) 
and the updated velocity according to equation (2). 

   1
1 1 2 2

t t t t
i i i i iv w v c r p x c r g x            (1) 

1 1t t t
i i ix x v    (2) 
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A summary of the PSO is illustrated in Figure 1. After initialising the components, the 
algorithm iterates on each particle i. A1 frames the part of the algorithm responsible for 
the update of a particle. It begins by updating its velocity and its position for each 
dimension. The particle is then evaluated according to the fitness function f(ꞏ) before 
being compared to its best-known position pi and the best global position g of the swarm. 
The new value is copied at its place if the solution improved. The process goes on until 
all N particles have been updated for T generations. 

A technique widely used in the literature is to vary the inertial weight (w) across the 
generations. This is done in order to help improve exploration at the beginning of the 
algorithm and exploitation at the end. Instead of using a fixed inertial weight, it is 
possible to reduce its value every generation. It has been shown that linearly lowering the 
inertial weight in each generation helps improve PSO performances (Eberhart and Shi 
2001). According to these authors, its initial value (w0) is set to 0.9 and its final value 
(w1) is set to 0.4. This decrease is constant across the generations. A variant of this 
approach consists of using equation (3) as a formula to diminish the inertial weight value. 
This equation is based on the generation t and the maximum number of generations T 
(Ratnaweera et al., 2004). This technique is used for every new hybrid method that is 
explained in Section 3. 

 0 1
0

t w w
w w

T

 
   

 
 (3) 

2.2 Barebones PSO (BPSO) 

Metaheuristics are well-known for using many parameters. This adds an additional 
challenge to optimisation. It is indeed necessary to find the best parameters to optimise 
algorithm performance. The BPSO helps optimisation by getting rid of parameters 
without compromising results (Kennedy, 2003), thus simplifying the challenge related to 
PSO. 

The PSO swarm uses the best global position g and the best cognitive position pi to 
update its velocity vi. The position xi obtained with these pieces of information acts like 
an oscillation centre for the other particles from the swarm as they are updated. When 
particles are getting close to each other, their velocities decrease significantly relative to 
the best cognitive position pi and the best global position g. The author of the BPSO 
eliminated the concept of velocity from the PSO to prevent particles from moving 
directly towards potentially the same solution. He replaced the equation to update the 
position of a particle by an equation generating a number from a normal distribution 
among all the potential solutions. This update calculates a mean μ and a variance σ for 
each dimension d of a particle i using equation (4) and equation (5). The particle’s 
position is then updated using equation (6) instead of equation (2) before being 
constricted within the scope. 

 0.5 iμ p g   (4) 

iσ p g   (5) 

1 norm _ distr( , )t
ix μ σ   (6) 
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This modification allows the particles to prevent them from orbiting close to the same 
position for too many generations t. A summary of this method is illustrated in Figure 2. 
A2 frames the part of the algorithm responsible for the update of a particle. It begins by 
calculating the mean and the variance before updating the new position. Once every 
dimension has been updated, the solution is evaluated before being compared with its 
best-known position pi and the global best position g. The process is repeated until every 
particle is updated for every generation. 

Figure 2 Organisational chart for the BPSO algorithm 

 

Note: A2 frames the update of a particle responsible for the update of a particle. 

Source: Kennedy (2003) 

There are several variants of the BPSO in the literature. Whereas the BPSO uses a 
Gaussian distribution of numbers to update a particle’s position, a variant uses a Lévy 
distribution instead (Richer and Blackwell, 2006). Other authors added a jump 
component to the displacement of a particle, thus allowing stuck solutions in local optima 
to jump elsewhere in the search space (Al-Rifaie and Blackwell, 2012). A similar process 
has also been elaborated with some minor differences, including the use of a Cauchy 
distribution of numbers (Krohling and Mendel, 2009). 

2.3 Comprehensive learning PSO 

The CLPSO is a metaheuristic developed to help the particles to get out of a local 
optimum when optimising continuous multimodal functions (Liang et al., 2006). When 
the best global solution g stops evolving and stays the same during several generations, 
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every particle is drawn toward this position even if it is not a good solution. CLPSO helps 
to palliate this problem by adding a comprehensive learning process modifying the best 
cognitive solution pi and getting rid of the best global solution g in the update of a 
particle. Instead of using equation (1) from the PSO, the CLPSO uses the equation (7) to 
update the velocity of a particle. 

 1
1 1

t t t
i i i iv w v c r p x        (7) 

This algorithm is unique for its use of the comprehensive learning process, modifying the 
best cognitive solution pi. Every time pi is not improved when the update of a particle is 
completed, the value of the flag (mi) corresponding to this particle is increased by 1. 
When it reaches the value M, chosen to be 7 by the authors, the comprehensive learning 
process is triggered. This modifies the composition of pi based on a tournament selection 
for each dimension d of a particle i. Figure 3 presents a summary of this method, where N 
is the total number of particles in the swarm. 

Figure 3 Organisational chart for the CLPSO 

 

Note: A3 frames the part of the algorithm responsible for the update of a particle. 

Source: Liang et al. (2006) 

A3 frames the update of a particle. It begins by verifying if a particle has been stagnant 
for too many generations. If it has, the comprehensive learning process is triggered in , 
which is detailed in Figure 4. This process is based on a comprehensive probability Pci 
calculated specifically for each particle of the swarm. The value of this parameter is fixed 
according to equation (8), which is calculated at the beginning of the algorithm along 
with the other components. It remains constant for every generation. 
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 

10 ( 1)
exp 1

1
0.05 0.45

exp(10) 1i

i

N
Pc

          


 (8) 

When the process is triggered as shown in Figure 4, a random number r1 (between 0  
and 1) is generated for each dimension d of a particle. If this number is lower than the 
comprehensive probability of the particle, then two other particles (i1 and i2) are 
randomly drawn from the swarm based on other random numbers (r2 and r3). Regarding 
their respective fitness score, the better of the two particles is used to copy the content of 
the dimension treated to the corresponding dimension in the particle i. 

1i dp  and 
2i dp  

represent the value contained at the dimension d for the best cognitive solution pi of the 
particle randomly selected (i1 and i2). Once it is completed, the algorithm pursue its 
course by updating the particle before evaluating it with the fitness function f(ꞏ). The best 
cognitive solution and the best global solution are then compared to the new solution that 
has been calculated with the particle. The update is repeated for T generations. 

Figure 4 Organisational chart for the tournament selection for a particle i of the CLPSO 

 

Source: Liang et al. (2006) 

The CLPSO is used in the literature, among other problems, to solve the reactive  
power dispatch problem (Mahadevan and Kannan 2010) and the constrained mixed 
variable-optimisation problem (Gao and Hailu, 2010). Like the BPSO, the CLPSO has 
also been improved. Some authors added a concept of solution oppositions (Wang et al., 
2011), which has previously proven to be useful in the differential evolution algorithm 
(Clerc, 1999). 
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2.4 Cooperative learning PSO (CoLPSO) 

The CoLPSO is a metaheuristic developed to help optimise high scale continuous 
optimisation problems (Van den Bergh and Engelbrecht, 2004). The authors of this 
method indicate that the performance of the PSO declines the more dimension is added to 
the problem. This variant gets around this weakness by separately optimising each 
dimension of the standard PSO algorithm. To do so, the dimension loop and the particle 
loop from the PSO are swapped. Instead of updating all D dimensions for one particle at 
a time, the algorithm optimises N particles for each dimension individually. Instead of 
using only N particles (as it is in the standard PSO), this results in having D*N particles 
where each dimension of the solution has its own population (sub-swarm) of N 
unidimensional particles. This allows the algorithm to update each dimension without 
being influenced by the fitness of the other dimensions from a single solution. 

The use of a context vector (cv) is required to evaluate each particle. This is needed 
considering that each dimension d consists of a sub-swarm and that each of these  
sub-swarms cannot communicate between each other. The context vector contains the 
best solution obtained from each sub-swarms. Many swarm best solutions are set, one for 
each of these sub-swarms (gd). 

Figure 5 Organisational chart for the CoLPSO 

 

Note: A4 frames the part of the algorithm responsible for the update of a sub-swarm. 

When a sub-swarm is updated, the particles are evaluated by replacing their specific 
value in the corresponding dimension inside the context vector. The cv is then evaluated 
according to the fitness function f(ꞏ). This method is illustrated in Figure 5. A4 frames the 
part of the algorithm responsible for the update of a sub-swarm. It begins with the update 
of each particle i according to equation (1) and equation (2). The new generated position 
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xid
t+1 is then placed into the context vector at the corresponding dimension. The cv is 

evaluated according to the fitness function f(ꞏ). If the new position helps to improve the 
cv, this position replaces the best-known solution pid of the particle. The best global 
solution of the sub-swarm is also replaced the new position helped to improve the best 
global solution gd of the sub-swarm. Once all N particles has been updated, the best value 
from the sub-swarm replaces the corresponding value in the cv if it helped enhance the 
fitness. This process is repeated for all D sub-swarms across T generations. 

3 PSO hybridisations 

A hybrid metaheuristic may have undergone modifications in several forms. Sometimes 
the nature of the optimisation method is preserved, other times some core processes are 
completely changed. As stated by Raidl (2015), choosing an adequate hybrid approach is 
determinant for achieving top performance in solving many real-world problems. Some 
authors suggested a classification method to better understand the complexity of this field 
of study, such as Talbi (2002) and Raidl (2015). They both give a taxonomy to classify 
hybrid metaheuristics. 

Talbi (2002) suggested a classification according to two criteria: the level  
(low-level/high-level) and the behaviour (relay/teamwork). A low-level indicates that a 
given function of a metaheuristic is replaced by another metaheuristic. A high-level 
indicates that metaheuristics that are used are self-contained and have no direct 
relationship with the internal workings of a metaheuristic. A relay hybrid indicates that a 
set of metaheuristics is applied one after the other as a pipeline. A teamwork hybrid 
indicates that the metaheuristics help each other in a parallel fashion. This classification 
is the one used in this paper for its simplicity. 

Many PSO hybridisations exist in the literature. Each one of them tries to palliate the 
lacunas of the PSO by improving either the exploration or the exploitation of the search 
space (Van den Bergh and Engelbrecht, 2004). The methods described in this section 
propose three original hybridisations based on the BPSO, the CLPSO and the 
HCoCLPSO. The first hybrid divides the population to make half of the particles act like 
the BPSO and the other half act like the CLPSO. The second hybrid inserts the 
comprehensive learning process from the CLPSO at the beginning of the BPSO 
algorithm. The third hybrid uses the CoLPSO algorithm and adds the comprehensive 
learning process from the CLPSO at the beginning of the update of a sub-swarm. The 
main goal in these hybridisations is to ensure that most of the search space is surveyed, so 
that when the BPSO, the CLPSO or the CoLPSO can’t explore some parts of it, one of 
the other algorithms compensates for it. 

3.1 HCLBPSO-Half 

The first new hybrid method is named HCLBPSO-Half (hybrid comprehensive learning 
barebones PSO). It is classified as a low-level teamwork algorithm according to Talbi 
(2002). This hybrid uses the benefits of both methods (BPSO and CLPSO) 
simultaneously, by separating the entire population into two groups of equal size: one 
with the behaviour of the BPSO, and the other with the behaviour of the CLPSO. The 
summary of this hybrid is illustrated in Figure 6. The assignment between the two 
selected methods is done at the beginning of the algorithm, right before setting the initial 
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position of the population. At each generation, every particle will be updated regarding 
their respective method, beginning with the particles with CLPSO behaviour in Frame 
A3, which is the same algorithm as it is shown in Figure 3. The particles with the BPSO 
behaviour are then updated in Frame A2, which is the same algorithm as it is shown in 
Figure 2. The main advantage of this hybrid method is the mutual help between the 
groups of particles so that the exploration of the search space is improved. The BPSO 
uses the best global position g to determine the values of μ and σ. This best position can 
come either from a CLPSO particle or a BPSO particle. On one hand, this BPSO benefits 
from the exploration of the CLPSO. On the other hand, the CLPSO particles may trigger 
the comprehensive learning process after M stagnant generations of identical best 
cognitive solutions. During the tournament selection in this process, one of the two 
particles randomly selected comes from the BPSO population and the other from the 
CLPSO population. The CLPSO can then benefit from the exploration of the search space 
from the BPSO. Once the generation is completed, the best global position g is updated. 
With this hybrid, each method should benefit from the progression of the results obtained 
from the other one. 

Figure 6 Organisational chart of HCLBPSO-Half with the particle division at the beginning of 
the algorithm 

 

3.2 HBPSO+CL 

The second new hybrid method is named HBPSO+CL (hybrid barebones PSO with 
comprehensive learning). It is classified as a high-level cooperative algorithm according 
to Talbi (2002). It adds the comprehensive learning process from the CLPSO at the 
beginning of the BPSO. The use of this component allows the BPSO to benefit from a 
more radical change in the composition of a solution when the fitness score for this 
particle is stagnant for several generations. Even if the Gaussian number generator from 
the BPSO helps the particles to get out of a local optimum, the use of the comprehensive 
learning process further increases this ability. This is done according to the 
comprehensive probability Pci of a particle i calculated with equation (8). This hybrid is 
illustrated in Figure 7. It begins with the activation of this comprehensive learning 
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process if the flag mi gets higher or equal to the value M. This process may change the 
fitness score of the best cognitive solution pi. The algorithm continues with Frame A2 
from the BPSO. This process is repeated for every particle and every generation t until all 
N particles have been updated and all T generations have been executed. These 
modifications are rather handy when many unidentical particles are in the same local 
optimum and quite close to each other. 

Figure 7 Organisational chart of HBPSO+CL 

 

3.3 HCoCLPSO 

The third new hybrid method is named HCoCLPSO (hybrid cooperative comprehensive 
learning PSO). It is classified as a high-level cooperative algorithm according to Talbi 
(2002). It is inspired by the work of Maitra and Chatterjee (2008) that was used to solve 
the image segmentation problem using multilevel thresholding. Figure 8 illustrates this 
method where Frame A5 represents the part of the algorithm responsible for the update of 
a sub-swarm. This method adds a comprehensive learning process from the CLPSO into 
the CoLPSO structure for each sub-swarm. These sub-swarms from the CoLPSO might 
undergo changes due to stagnant generations according to the comprehensive learning 
process, thus helping to attain a good level of exploration of the search space. This 
process is triggered in  if the flag md from each sub-swarm stays the same for at least M 
generations. As shown in Figure 9, instead of a tournament selection for the 
comprehensive learning process, the method finds the best and the worst particle for each 
dimension and replaces the worst particle with the best one. The rest of the algorithm in 
Figure 8 is similar to Frame A4 from the CoLPSO detailed in Section 2.4. The main 
difference can be observed with the addition of the flag md at the end of the update of a 
sub-swarm. The flag is increased by one if the sub-swarm’s current best global solution 
gd

t did not improve and is set to zero if it did improve. 
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Figure 8 Organisational chart of HCoCLPSO 

 

Note: A5 frames the part of the algorithm responsible for the update of a sub-swarm. 

Figure 9 Organisational chart of the process replacing the tournament selection from the CLPSO 

 

4 Experimentation 

Six classical continuous optimisation functions (Dixon and Szego, 1978; Molga and 
Smutnicki, 2005) and 15 continuous optimisation functions from the CEC’15 benchmark 
set (Liang et al., 2014) have been selected. The names and attributes of these functions 



   

 

   

   
 

   

   

 

   

    Solving high dimensional multimodal continuous optimisation problems 251    
 

    
 
 

   

   
 

   

   

 

   

       
 

are given in Table 1. They are divided into four categories: unimodal, multimodal, hybrid 
and composition. The chosen functions are significant in the way that they can be 
resolved with a dimension set to any number, thus being relevant in high-scale 
optimisation. 

Table 1 List of all continuous optimisation functions used to compare algorithms 

Attribute No. Name of the function 

Classical 

A1 Sphere Unimodal 

A2 Rosenbrock 

A3 Ackley 

A4 Griewank 

A5 Rastrigin 

Multimodal 

A6 Schwefel 

CEC’15 benchmark set 

B1 Rotated high conditioned elliptic function Unimodal 

B2 Rotated cigar function 

B3 Shifted and rotated Ackley’s function 

B4 Shifted and rotated Rastrigin’s function 

Multimodal 

B5 Shifted and rotated Schwefel’s function 

B6 Hybrid function 1 (3 functions) 

B7 Hybrid function 2 (4 functions) 

Hybrid 

B8 Hybrid function 3 (5 functions) 

B9 Composition function 1 (3 functions) 

B10 Composition function 2 (3 functions) 

B11 Composition function 3 (5 functions) 

B12 Composition function 4 (5 functions) 

B13 Composition function 5 (5 functions) 

B14 Composition function 6 (7 functions) 

Composition 

B15 Composition function 7 (10 functions) 

Each test function is configured to be solved in a search space of [–100. 100]D. 
Experiments have been carried out for a dimension set to 50, 100 and 200 for each 
classical function, and a dimension set to 10, 30, 50 and 100 for the CEC’15 benchmark 
set. Most algorithms used a total number of particles (N) equal to 40, except for the 
CoLPSO and the HCoCLPSO. This number has been chosen according to Pluhacek et al. 
(2016). They suggested that PSO variants perform well using 40 particles. The CoLPSO 
and the HCoCLPSO both use a total number of particles equal to 20. The number is 
lowered compared to other algorithms because they need more evaluations on each 
iteration due to the need of a bigger population function properly. We conducted some 
empirical tests regarding the best value for these two algorithms and 20 particles is the 
one that allowed them to perform slightly better than using 40 particles. Coefficients c1 
and c2 are both set to 1.49445, a number proven to be efficient for the PSO (Eberhart and 
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Shi, 2000). A varying inertial weight factor w is also used according to the diminution 
proposed by Ratnaweera et al. (2004), which is detailed in Section 2.1. w0 is then set to 
0.9, and w1 to 0.4. This allows the algorithm to have a great balance between exploration 
and intensification of the search space. These parameters are set according to a study by 
Schutte and Groenwold (2005) stating that dynamic inertia reduction is less sensitive to 
parameter variations. They also proved that it performs better for problems of higher 
dimensionality. 

The comparison between hybrids is done in a similar way as what is proposed in a 
recent paper by Yu et al. (2015). The total number of evaluations is set to 10,000 x D for 
each method. Tests have been executed 50 times for each test function while retaining the 
history of the global best solutions among all executions. The mean and the median from 
the global best solutions are used to identify significant differences between hybrids and 
their original PSO variants. The best method among all six is then compared with the 
algorithm proposed by Yu et al. (2015). Note that for the CEC’15 benchmark set (Liang 
et al., 2014), a value of 100 was added to function 1, 200 to function 2, and so on for all 
15 functions from the dataset. All these values were subtracted in further tables from the 
calculated values so that the best value remains 0 instead of the suggested increments. 
This has been done in order to better compare the results with the values provided by Yu 
et al. in their paper. 

4.1 Results for classical functions 

Tables 2 to 3 summarises the performance of the PSO variants (BPSO, CLPSO and 
CoLPSO) and all three hybrids (HBPSO+CL, HCLBPSO-Half and HCoCLPSO). These 
tables show the results on the 6 classical functions listed in Table 1. Table 2 shows the 
results for the PSO variants from which the hybrids are elaborated. Table 3 shows the 
results for the hybrids. The best and worst solutions, the medians, the mean values and 
the standard deviations are shown for each dimension tested. Note that all values less 
than 1x10-15 are rounded to 0 and considered equivalent. 

Table 4 compares the median and mean values of each PSO variants with each 
hybrid. The numbers in bold and highlighted represent the best values for each type of 
data for all algorithms. The numbers in bold but not highlighted represent the second-best 
values. This table helps to determine which algorithm performs the best between all six 
algorithms. 

Table 4 shows that the CoLPSO is the method that outperformed the others with a 
dimension set to 50 and 100. It obtained a higher number of best medians and mean 
values for these dimensions. The HCoCLPSO comes close second with pretty good 
results at these dimensions when compared to the other five algorithms. However, the 
HCoCLPSO is the method that shows better results when using a dimension set to 200 by 
having a higher number of best medians and mean values compared to all other 
algorithms. 

Furthermore, the HCoCLPSO is getting more best values with an increasing 
dimension. On problems with a dimension set to 100, the HCoCLPSO begins to show 
promising results by obtaining six times second-best values and three times best values 
from medians and means. On problems with a dimension set to 200, it obtains two times 
second-best values and six times best values from medians and means. All best values are 
for multimodal functions. The better is the algorithm compared to others when more 
dimensions are added to the problem. 
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Table 2 Results for the BPSO, the CLPSO and the CoLPSO on 6 classical functions for a 
dimension set to 50, 100 and 200 
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Table 3 Results for the HBPSO+CL, the HCLBPSO-Half and the HCoCLPSO on 6 classical 
functions for a dimension set to 50, 100 and 200 
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Table 4 Comparison between the median and the mean values for all six methods with a 
dimension set to 50, 100 and 200 (see online version for colours) 
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Table 5 Comparison between the CLPSO, the CoLPSO and the HCoCLPSO with a dimension 
set to 200 (see online version for colours) 
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The results from CoLPSO and HCoCLPSO show that optimising each dimension 
separately helps to get good results on multimodal functions. The dominance of the 
HCoCLPSO over the CoLPSO on problems with a dimension set to 200 shows that the 
use of using a comprehensive learning process to get out of local optima is a good way to 
keep enhancing the results on high dimensional problems once they stop improving. To 
better prove the contribution from each method, Table 5 shows more detailed results for 
the test conducted with a dimension set to 200 with the HCoCLPSO and its two PSO 
variants from which it is elaborated: the CLPSO and the CoLPSO. The numbers in bold 
and highlighted represent the best values for each type of data on each function, except 
for the worst solutions for which the highlights represent the worst values instead. The 
highlighted numbers int Table 5 show that the HCoCLPSO outperforms its two PSO 
variants on multimodal functions by having more best median and mean values than the 
other algorithms. It may not have the highest number of best solutions, but it is the 
steadiest algorithm for it is the one with the highest number of best standard deviations. It 
is also the method that gets the least amount of worst solutions. In the light of these 
results, the HCoCLPSO is the method that shows great potential on high dimensional 
functions and that retains our attention to pursue further tests on the CEC’15 benchmark 
set. 

4.2 Results for CEC’15 benchmark set 

Tables 6 to 9 summarises the performance of the HCoCLPSO compared with the 
dynFWACM algorithm from Yu et al. (2015) on all 15 functions from the CEC’15 
benchmark set for the competition on learning-based real-parameter single objective 
optimisation. Each dimension tested is shown separately in Table 6 (10D), Table 7 (30D), 
Table 8 (50D) and Table 9 (100D). The best and worst solutions, the medians, the mean 
values and the standard deviations are shown. A value is in bold and highlighted for each 
type of data in Tables 6 to 9 whenever a method has the best value over the other method, 
except for the worst solution for which it represents the worst value instead. The last line 
of each table, entitled total, shows the number of times a method gets the best value for 
each data type. 

According to the results showed in Tables 6 to 9, dynFWACM is the best method for 
problems with a dimension set to 10, 30 and 50. It has more best solutions, medians, 
mean values and standard deviations and less worst solutions than HCoCLPSO. 
However, Table 9 shows that HCoCLPSO gets better results with a dimension set to 100. 
It has more best solutions, medians and mean values and less worst solutions than 
dynFWACM. It is also worth noticing that HCoCLPSO gets better results in multimodal 
functions, which corresponds to functions labelled as multimodal, hybrid and 
composition by the benchmark. 

Tables 6 to 9 also shows that HCoCLPSO gets better results compared to 
dynFWACM with an increasing dimension value. The higher is the dimension, the better 
are the results. HCoCLPSO gets a significant decrease in the number of worst solutions, 
passing from 11 out of 15 worst solutions in Table 6 to 3 out of 15 worst solutions in 
Table 9. It also gets a significant increase in the number of best medians and mean values 
from a dimension set to 50 in Table 8 to a dimension set to 100 in Table 9. 
Experimentations would have been even more interesting if the CEC’15 benchmark 
proposed dataset with higher dimensionality, i.e., with a dimension set to 200 like it has 
been done with the classical functions. 
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Table 6 Comparison between the dynFWACM and the HCoCLPSO (see online version  
for colours) 
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Table 7 Comparison between the dynFWACM and the HCoCLPSO (see online version  
for colours) 
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Table 8 Comparison between the dynFWACM and the HCoCLPSO (see online version  
for colours) 
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Table 9 Comparison between the dynFWACM and the HCoCLPSO (see online version  
for colours) 
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5 Conclusions 

In this research, we presented three new hybrid methods based on three PSO variants that 
performed well in the literature: the BPSO, the CLPSO and the CoLPSO. One of the 
hybrids, named HBPSO+CL, adds a specific component from the CLPSO at the 
beginning of the BPSO: the comprehensive learning process. A second hybrid, named 
HCLBPSO-Half, has half the population behaving like that of the BPSO, and the other 
half like that of the CLPSO. A third hybrid, named HCoCLPSO, uses the CoLPSO 
algorithm and adds a modified comprehensive learning process from the CLPSO at the 
beginning of the update of a sub-swarm. The first part of this paper was to determine if 
PSO hybrid methods can improve the results of the PSO variants from which they are 
conceived when solving high dimensional continuous optimisation problems. The 
original methods and the hybrids were tested and compared on six classical continuous 
optimisation functions from the literature: Sphere, Rosenbrock, Ackley, Griewank, 
Rastrigin, Schwefel. The second part of this paper was to compare the best hybrid with 
another algorithm from the literature on a more recent benchmark. The HCoCLPSO was 
then tested and compared with the dynFWACM on the CEC’15 benchmark set for the 
competition on learning-based real-parameter single objective optimisation. The goal was 
to bring out the best hybrid when solving multimodal high dimensional continuous 
optimisation problems. 

The tests executed indicate that HCoCLPSO is the hybrid that offers overall better 
results than the other algorithms on high dimensional multimodal problems when solving 
classical functions and the CEC’15 benchmark set. The other two hybrids (HBPSO+CL 
and HCLBPSO-Half) performed well on low dimensional unimodal problems, but their 
performances lowered drastically with the use of higher dimensions. 

With the HCoCLPSO showing the more promising results, this hybrid shows that it is 
possible to further improve the results while solving high dimensional multimodal 
problems with PSO. Hybridising the CoLPSO with another PSO variant, the CLPSO, 
helps to improve the results on such problems. It would be interesting in future works to 
test the HCoCLPSO on even higher dimensional problems and to hybridise the CoLPSO 
with other PSO variants to know which one improves the CoLPSO the most. It would 
also be interesting to test the HCoCLPSO with discretisation techniques to see how well 
it performs on combinatorial problems. 
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