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Abstract: A vector model representing laser beam propagation into a two-axis laser scanhead is 
proposed. The model based on mathematical principles is classified as a stochastic model in which at 
least one of the input or output variables is probabilistic. The purpose of the model is to understand 
the behaviour of the scanhead system particularly in relation to the errors incurred from its design and 
the laser beam. Using this model, simulation looks into reproducing the marking results of a 
commercially available scanhead, effects of aperture misalignment, 3D ray tracing and Gaussian 
beam relations. 
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1 Introduction 

A focused laser beam can only be useful to the user if it can be effectively, safely and accurately 
controlled to follow a defined motion. A common solution is the use of an optical scanning technique 
designated to a specific application. The most common and efficient scanning technique in laser 
material processing is galvanometer scanning. Galvanometer scanners and their auxiliary components 
are assembled in what is referred to as a scanhead. Hence, a laser scanhead is a device which focuses a 
laser beam and guides the focused spot according to the user’s targeted outcome by means of an 
objective lens and mirrors respectively. 

a)  

 

     b) 

        
Figure 1 Principle arrangement for 2D galvanometer scanning (a) and an industrial realization of a 
scanhead, e.g. Raylase SuperScan-LD (b) (Raylase, 2012) 

There has been a wide range of studies in terms of scanhead functionality, particularly in marking field 
correction algorithms. Thus, there are many resources and different approaches as how to simulate a 
two-axis scanhead to determine the output image on the marking field and subsequently outlining a 
method of correction. In the ideal approach, it is necessary to model the physical layout of a scanhead 
in order to determine the output image and thus provide a means of field correction. The following 
explains current results with respect to modelling and/or simulating laser scanning methods: 

Verboven (1988) uses trigonometric analysis to determine the image on the marking field, and 
introduces a method to electronically correct the position of the imaged distortion by establishing at 
which angles the mirrors must be rotated to attain the desired image values using a fifth-order series 
expansion. Li and Katz (1995, 2008) present an approach of modelling the generated marking field 
results of various types of scanning architectures (e.g. galvanometer, polygon, single mirror, etc.) 
analytically. Vector analysis is carried out in order to understand and predict the image, optical 
distortions, spot characteristics, and linearity results on the marking field. The developed algorithms 
and coordinate system are unified and can be applied to other architectures of scanning systems 
independent of the number of mirrors and arrangement thereof.  Hafez, Sidler and Salathé (2003) use 
vector analysis to firstly determine beam propagation, outline the dominating parameters that cause 
image distortion and finally compensation algorithms for these distortions. The model is based upon 
one scanning mirror which has two degrees of freedom; the mirror is able to tip and tilt the laser beam 
onto the marking field. Bessmeltsev, Goloshevsky and Smirnov (2010) offer an advanced explanation 
of integrating the developed model into the controller of each respective galvanometer of a scan 
system by creating a relation between the position of the laser beam on the marking field, the angular 
deflections of the mirrors and the applied voltages to the galvanometers. The model is unique since it 

  



takes into account a marking field that is in motion, e.g. a conveyor line. Tamura et al. (1994) develop 
a robust model for the application of high precision 3D measurements. The developed model 
encompasses principles such as coordinate transformations of the laser beam and marking field, 
rotation about an arbitrary axis and calibration. Gandhi and Deshmukh (2010) carry out an optical 
analysis of four types of scanning architectures. Matlab® and OSLO® simulation programs are used to 
compare and develop a new optical scanning scheme for the application of microstereolithography. 
Ray analysis, spot size and intensity profile determination, resolution of spot positioning through 
induced misalignments, scan speed and linear range of scanning are predicted. Bai and Wang (2011) 
model the dynamics of a gimbal scanner for a laser tracking system using Lagrange-Euler equations of 
motion. The three coordinate frames and axes displacement are considered, similar to the displacement 
found in galvanometer scanning. Additionally, simplifications to characterise the unique kinematic 
architecture of a gimbal is proposed. The model is used to develop a control system for each scanning 
motor.  However, an in-depth explicit explanation of mathematically modelling and simulating a two-
axis scanhead using Matlab® has yet to be presented.  

2 Model setup 

The main goal of this paper is to develop a mathematical model which represents a two-axis 
galvanometer scanning system. Additionally, the model is expected to simulate the image on the 
marking field, observe the effects of beam aperture misalignment, and observe the change in beam 
shape and intensity during mirror rotation. This allows for an improved understanding into the 
behaviour of the system particularly in relation to the errors from its design and the laser beam. The 
model of this discussion will focus mainly on a mathematical approach. Therefore, it is classified as a 
stochastic model in which at least one of the input or output variables is probabilistic (Garrido, 2009). 
Since the behaviour of scanhead mirrors are known from experimentation, the behaviour of the 
scanhead as a whole is investigated in order to vary and observe the inputs and outputs respectively, as 
well as offer insight to predictions. 

The derived model is based upon many of the fundamental principles as discussed in the previous 
section. The use of vector analysis and principles according to Hafez et al. and Tamura et al. 
respectively will form the basis of modelling a scanhead based on a pre-objective scanning 
architecture. This allows for the analysis of a laser beam striking the scanning mirrors in an arbitrary 
position, takes into account mirror thickness distortion, does not assume geometric symmetries and 
offers clear insight into the laser beams projected path at each stage of its propagation. There are a 
number of assumptions that are made, but simplifications in terms of the geometric design of the 
system are not present. The model is to replicate the functionality of the Raylase Superscan Low Drift 
(LD) scanhead. The resting angle of incidence of the x-mirror and y-mirror is 45° and 38° 
respectively. Furthermore, the x-mirror is rotated about the x-axis 11.5° clockwise. This allows for a 
more compact design, i.e. the beam displacement is reduced. Finally, the objective lens follows the f-
theta condition. The procedure of how to model beam propagation into and out of a scanhead will now 
be explained in terms of vector analysis such that one refers to Figure 2 for variable notations. 

 

  



 

Figure 2 Vector and coordinate system notations 

The vector from the origin of the global coordinate system (GCS) to the first point of impact, , on the 
x-mirror is given by: 

 

such that  is the unit vector in the direction of propagation of the laser beam, (1,0,0),  is the 
magnitude of laser beam propagation distance between its initial start position, e.g. (5, 5, 5), and point 
of impact, , and   is the vector from the origin of the GCS to the start position, point . The scalar, 

, is given by: 

 

such that  is the half-width of the mirror’s thickness,  is the normal vector of the x-mirror’s 

surface and  is the vector from the origin of the GCS to a point along rotation axis of the x-mirror. 
In order to calculate , three arbitrary points are selected from the surface of the x-mirror. In turn, 
two vectors are generated. By taking the cross product and then normalizing, one is able to obtain the 
normal unit vector of the x-mirror. Therefore: 

 

In doing so, it is assumed that the surface of each mirror is an infinite plane. Using Equation 2 and 
Equation 3, one can calculate the point of impact, , of the laser beam on the x-mirror with respect to 
the GCS using Equation 1. Upon calculating , one can proceed to calculating the vector from the 

origin of the GCS to the point of impact, , on the y-mirror which is given by: 

 

such that  is the unit vector along the reflected beam, i.e. coincident to . It is noticeable that the 
unit vectors ,  and  form a third plane according to the law of reflection. More specifically, the 

  



angle between  and , the incidence beam angle, and the angle between  and , the reflected 
beam angle, are equal according to this law. For example, this angle for the x-mirror when at its initial 
rest position is 45°. As a result, for convenience,  can be expressed in terms of  and . Firstly, 

 is decomposed into components, which is parallel to , and  which is perpendicular to : 

 

 

The reflection caused by the x-mirror inverts the direction of  and retains the direction of . 

Decomposing  into components using the terms expressed in Equation 5 results in the following: 

 

 can be rewritten according to the following equation: 

 

Substituting Equation 8 into Equation 6, and subsequently Equation 8 and the modified Equation 6 
into Equation 7, results in  being expressed in terms of  and : 

 

The scalar, , is given by: 

 

such that  is the normal vector of the y-mirror’s surface and  is the vector from the origin of the 

GCS to a point along rotation axis of the y-mirror. In order to calculate , the same procedure is used 

as in Equation 3. Equation 4 to Equation 10 are repeated for the y-mirror and when striking the f-theta 
lens aperture. To simulate the rotation of the mirrors, it is necessary to use a rotation matrix. As the 
mirror rotates, , , , and  are reconfigured by this rotation matrix such that  and  are 

subsequently recalculated. In effect, the reflected beam which is dependent on  and  can be 

manipulated based on the angle of rotation. This rotation matrix rotates about a user defined axis and 
point other than the axes or zero point of the GCS. This is because neither, the axis of rotation of each 
mirror lay coincident to the GCS axes, nor are they parallel as in the case of the x-mirror (rotated 11.5° 
about the x-axis). Firstly, the following unit vector defines the axis of rotation of either the x-mirror or 
the y-mirror: 

 

Secondly, the following 3x3 rotation matrix is used to rotate about an arbitrary axis in the x-, y- and z-
directions: 

  



 

such that  is the angle of rotation of the mirror ranging from -11.25° up to +11.25°. The mirrors 
rotate about the end point of  and  for the x- and y-mirror respectively. This results in the final 

4x4 rotation matrix which now considers a defined rotation point other than the zero point of the GCS. 
For the x-mirror as an example: 

 

For example, the adjusted vector of  is carried out as follows given a 2° angle of rotation: 

 

such that . Now, calculations take a different approach and additional variables are outlined 

in Figure 3. For reference purposes, all calculations will be based upon the propagation of the laser 
beam from  to a point on the marking field  with respect to a local coordinate system 
(LCS). 

 
Figure 3 Vector and coordinate system notations 

 
Initially, a vector is generated using the difference between  and : 

 

Subsequently, an arbitrary vector is created based on the end point of  denoted as coordinate 

position . Its direction is parallel to the z-axis (i.e. optical axis) and normal to the aperture of 
the f-theta lens. This vector is denoted as . Accordingly, one can then determine the zenith angle 
measured from the vertical  to . This indicates the deflection angle from the optical axis: 

  



 

The azimuthal angle, , measured counter-clockwise from the x-axis is dependent at which quadrant 
the point  strikes the f-theta lens aperture. Therefore, given the fact that the azimuthal angle 
must be calculated in the range of 0 to 2π so that a full image can be achieved, the following piecewise 
function expresses this concept: 

 
 
The angle  with respect to point  is equal for point . To take into account the effect 
of the f-theta objective lens in terms of the laser beams position as it strikes the marking field, the f-
theta condition is used. This implies that the use of an f-theta objective lens results in the displacement 
of the focal spot from the optical axis, , to be linearly proportional (proportionality factor is the lens 
focal length, ) to the deflection angle, , i.e. . This equation is expressed in terms of 
polar coordinates and can be converted to Cartesian coordinates as follows: 

 

 

3 Results and Discussion 

The principles explained in Section 2 give the position of one point on the marking field given a 
defined angle of rotation of each respective mirror. Hence, it only takes into account a laser beam 
striking two stationary mirrors. In fact, in a laser scanhead, these mirrors move about its axis back and 
forth,  = ±11.25°, in order to generate the desired image (e.g. barcode, pore structures). The 
subsequent section will depict the propagation of the laser beam on the lens aperture and marking field 
during the entire range of rotation of the mirrors. 

3.1 Marking field simulation 

Each point in the subsequent figures (Figure 4) represents a unique rotation of each mirror in which 
both mirrors rotate about their entire oscillating range (from -11.25° to +11.25°) in increments of 2°. 
As shown in Figure 4a, one can observe the distortion caused by the mirrors thickness and beam 
displacement at the entrance surface of the f-theta lens. This is referred to as axis alignment error. 
Subsequently, in Figure 4b, one can observe the combination of pin cushion and barrel distortion as 
the beam propagates through the f-theta lens and strikes the marking field. This is referred to as lens 
image distortion. The magnitude of distortion varies according to the focal length of the objective lens. 
The offset points shown in Figure 4c are used to correct and shift the points in Figure 4b to obtain the 
ideal marking field geometry shown in Figure 4d. This is referred to as passive correction in which the 
angles of the mirrors are adjusted by a calculated difference and thus the image is corrected. This 
means of correction, typically in the form of a correction file, is supplied by the manufacturer of the 

  



scanhead which depends mainly on the focal length of the f-theta lens and input diameter of the laser 
beam into the entrance aperture. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 4 Points on the f-theta lens aperture (a), marking field after the f-theta lens (b), offset points 
(c), ideal marking field (d)   

Now that both axis alignment error and lens image distortion have been discussed, it is interesting to 
understand what occurs during entrance aperture alignment errors. This is an extremely common error 
and its definition implies that the axis of the laser beam is misaligned with the axis of the scanhead’s 
entrance aperture. This typically occurs when several bending mirrors are necessary to guide the laser 
beam into the aperture. In the presented case, the beam is shifted by 2 mm in the negative z- and y-
directions. This shift is denoted as  and . Furthermore, this shift occurs 300 mm away from 

the entrance aperture. With this information, one can calculate the angular deviation from the optical 
axis and substitute this angle in a rotation matrix to alter the unit vector of laser propagation,  
Accordingly, one can observe this alignment error shown in Figure 5.  

a) 

 

b) 

 
Figure 5 Schematic (a) and result (b) of a 2 mm shift in laser beam aperture alignment on the marking 
field 

What can be deduced from this figure is that the points are shifted in the direction of the induced 
misalignment. Given that the deviation is directed to the bottom left hand corner, then this is replicated 

  



on the marking field with a shift in the bottom left hand corner. Sources and expressions of laser 
scanning errors are further explained by Luo et al. (2011) for the application of a range finder coupled 
with a scanning strategy. Although the errors are derived from a unique environment, the principles 
hold true and could be applied to the purpose of this publication. Axis alignment errors can be 
corrected by calculating a new set of offset points in-process or out-of-process by means of curve 
fitting, surface functions and other corrective transformations.  

3.2 Beam shape 
 
As explained in Section 2, the point of impact (i.e. the centre point of the beam) has been calculated, 
hence, Equation 20 – Equation 22 will characterize the shape of the beam in 2D and latter on the 
definition of ray tracing will characterize the beam in 3D. The following calculations are based on a 
Gaussian laser beam such that the calculated beam radius is based on when the intensity of the beam 
falls to  times the maximum value. Since all laser beams cannot achieve perfect collimation, the 
divergence half angle is calculated by: 

 

and the expansion in beam radius within the scanhead, given a propagation distance, denoted as  
(Equation 2 and Equation 10), is calculated by: 

 

such that ,  and  is the beam quality factor, beam radius at the entrance aperture of the scanhead 
and wavelength of laser radiation respectively. The focal spot radius on the marking field given the 
beam radius at the aperture of the f-theta lens aperture, , is calculated by: 

 

When the laser beam strikes the mirror, its shape will be elliptical since it strikes at an angle of 
incidence of 45° for the x-mirror and 38° for the y-mirror with a oscillation range of ±11.25°. One can 
use trigonometric principles to calculate the minor and major axes of the elliptical beam on each 
respective mirror and at each respective angle of incidence. The ellipticity of the beam is shown in 
Figure 6. 

a) 

 

b) 

 

 
 

 
 

Figure 6 Simulation of beam shape normal to x-mirror (a) and y-mirror (b) throughout its oscillation 
range 
 
 
 
 

  



3.3 Ray tracing  
 
It is known that light, more specifically a laser can be described by rays. Thus, the definition of ray 
tracing is the propagation of such rays through an optical system. This allows one to predict, design 
and optimize the given optical system. The path and geometry of a bundle of rays which comprises the 
laser beam is determined given that its propagation makes contact with a surface, e.g. a lens, beam 
splitter, prism, etc. Afterwards, laws of refraction, reflection, etc. are applied and the new propagation 
direction is retraced. Ray tracing provides an excellent means of visual understanding of laser beam 
propagation as it passes through several optical elements (Träger, 2007).  

Since the beam radii, which were determined in Section 3.2, at each respective surface are known 
throughout its propagation path, i.e. entrance aperture, x-mirror surface, y-mirror surface, f-theta lens 
aperture and focal spot, the features of ray tracing can be simulated with the aid of Matlab® software 
as shown in Figure 7. The marking field dimensions are scaled for visual purposes. This is because the 
size and position of marking field is far greater in magnitude compared to the size of the mirrors.  

 

Figure 7 Simulation image of the visual functionality of a 2-axis laser scanhead 

The propagation direction of each ray between the entrance aperture and x-mirror surface, the x-mirror 
surface and y-mirror surface, the y-mirror surface and f-theta lens aperture is based on , , and  
respectively. The end and start position of each ray is determined from the shape and position of the 
beam radius at each respective surface. The shape of the beam based on Section 3.2, and the end and 
start position is based on the initial start position, (5, 5, 5), , , and  or rather  respectively.  

3.4 Gaussian Beam 

The purpose of this section is to further characterize the laser beam from simply being a bundle of rays 
to a more real characterization of electromagnetic radiation. Ray tracing proves valuable for beam 
propagation, but this section proves valuable to understand the evolved properties of the beam during 
propagation. This allows for future and more complex investigative topics such as heat interaction, 
optimized dielectric mirror design and damage thresholds. Since a scan system involves a laser beam 
in free space, three important assumptions will be made for which the following equations will be 
based on: 

1. The beam’s centre point does not lie at the origin,    
2. The beam’s radius is not symmetric, i.e. elliptical,   

3. The minor or major axis of the beam is not parallel to the horizontal axis 

The following Gaussian intensity function characterizes such a laser beam in three dimensions: 

  



 

 

such that, , is the intensity amplitude at a defined propagation distance, which is conveniently 
expressed in terms of laser power, , and the far field beam radius, , which is calculated from 
Equation 21. If one is interested in the near field beam radius (i.e. a focused beam), then one must 
refer to , which is calculated from Equation 22. In this section, we are interested in the Gaussian 

intensity distribution on the mirror’s surface, hence the beam is unfocused. Please note that when 
, then the beam radius given no propagation distance is  . Given a propagation 

distance, the radius typically increases since a laser beam can never achieve perfect collimation as 
previously stated. Equation 23 is generalized using the binomial theorem: 

 

such that one can then define the angle, , between the horizontal axis and either the minor or major 
axis of the elliptical beam, given in the coefficients from Equation 25: 

 

 

 

Given that  is the intensity distribution, then it could be normalized by dividing  with . 
The above equations output the spatial Gaussian intensity distribution. It is more interesting though to 
observe the radial Gaussian intensity distribution as shown in Figure 8. The purpose is to compare the 
beam shape on the x-mirror shown in Fig. 6a with the Gaussian intensity distribution shown in Fig. 8 
throughout its oscillating range. For simplicity purposes, the centre of the beam is located at the origin 
and  = 5W.   

a) 

 

b)  

 

c) 

  
 

Figure 8 Radial intensity profiles when the laser strikes the x-mirror when  = -11.25° (a), 0° (b) and 
+11.25° (c) 

  



It is important to understand the characteristics of the laser beam intensity, firstly, to optimize the 
dielectric coating layers of the scanning mirrors so as to maximize reflection, and secondly, to be able 
to predict the thermal stresses which can deform the surface of the mirror. Shen et al. (2007) 
investigate this dilemma with respect to the laser forming of steel plates. The temperature gradient on 
a steel surface is derived from a Gaussian heat source and the deformation of the plate can therefore be 
predicted.  

4 Conclusions   

A two-axis laser scanhead was modelled using in-depth vector analysis then simulated using Matlab® 
software. Simulation results of the Raylase SuperScan-LD include: 1) understanding the generated 
images with respect to mirror oscillation, 2) results of errors caused by limitations of the scanhead and 
the user, 3) change in beam shape during mirror oscillation which is then related with the Gaussian 
beam intensity distribution, 4) and realizing beam propagation by means of ray tracing. The outlined 
principles can be further extended to model and simulate a three-axis laser scanhead by simply 
including information about a focus shifting lens. Furthermore, it is known that a change in mirror 
characteristics arises from high accelerations of the galvanometers and thermal influences from the 
laser beam and scanhead electronics. Thus, by changing the surface topography and geometry of the 
mirrors, one can more accurately understand the deviation of the focal spot on the marking field.  
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