
Int. J. Modelling, Identification and Control, Vol. X, No. Y, 200x 1 

Copyright © 200x Inderscience Enterprises Ltd. 

Modelling and compilation method for multi-PLC 
control program 

Chen Chen and Chongquan Zhong* 
School of Electronic and Information Engineering, 
Dalian University of Technology, 
No. 2 Linggong Rd, 
Dalian 116023, Liaoning, China 
E-mail: chenchendcce@163.com 
E-mail: zhongcq@dlut.edu.cn 
*Corresponding author 

Wenyan Wu 
Faculty of Arts and Creative Technologies, 
Staffordshire University, 
Beaconside Stafford, ST18 0DF, UK 
E-mail: w.wu@staffs.ac.uk 

Abstract: For the large-scale multi-PLC control system, a network-oriented programming 
method is proposed. Regarding the control network as a large-scale virtual PLC device, the 
engineers can program the whole system using all of the resources in the control network 
directly. A modelling and compilation method for control program is also put forwarded and an 
event graph model for the programs is created. The serial control program can be decomposed 
into parallel tasks by event graph model analyse and traversal rule. According to the topology of 
control network, the event graphs are grouped, and the instructions can be downloaded to the 
corresponding PLC automatically. The variables of devices can be synchronised through network 
communication. The experimental result shows that this method can improve the program 
efficiency of the networked PLC control system, and keep the running logic according with the 
original program. 

Keywords: networked PLC control system; system modelling; program compilation; discrete 
event system; event graph. 

Reference to this paper should be made as follows: Chen, C., Zhong, C. and Wu, W.  
(xxxx) ‘Modelling and compilation method for multi-PLC control program’, Int. J. Modelling, 
Identification and Control, Vol. X, No. Y, pp.xxx–xxx. 

Biographical notes: Chen Chen received his BSc from Dalian University of Technology in 
2006. He is currently working towards his PhD from the School of Electronic and Information 
Engineering, Dalian University of Technology, China. His recent work focuses on field bus, 
programmable logic control, monitoring configuration. 

Chongquan Zhong received his BSc, MSc and PhD from Dalian University of Technology in 
1988, 1991 and 2007. Currently, he is Professor and Doctoral Tutor of School of Electronic and 
Information Engineering in Dalian University of Technology, China. His main research interests 
include industrial control network technology, testing technology, embedded application 
technology. 

Wenyan Wu received her BSc and MSc in Electronic Engineering and Computer Aided Design 
from Dalian University of Technology, China. She received her PhD in Water Quality Modelling 
and Optimisation in Water Distribution System from Harbin Institute of Technology China in 
1999 and received her second PhD in 3D Visualisation and Virtual Reality from University of 
Derby, UK in 2003. She is a Professor in Digital Design and Technologies at Staffordshire 
University. Before she joined in Staffordshire University, she was a Senior Lecturer in 
Department of Computing in Harbin Institute of Technology, China and a research fellow in 
water software system in De Montfort University, UK. Her research covers smart sensors and 
sensor network, intelligent monitoring, modelling and optimisation for urban water. Simulation 
and data visualisation, digital processing and advanced interface. She managed the research 
group SMART through government and European commission funding. 

 



2 C. Chen et al.  

This paper is a revised and expanded version of a paper entitled ‘Compilation method for control 
program based on event graph method’ presented at the 19th International Conference on 
Automation & Computing, Uxbridge, UK, 13–14 September 2013. 

 

1 Introduction 

As the development of computer, communication and 
network control technology, programmable logical 
controller (PLC) plays an increasingly important role in the 
field of industry control. The control mode is changing from 
traditional single PLC control/network communication 
toward large scale multi-PLC network control system. Since 
the low cost, easy maintenance and great flexibility, the 
networked control system becomes a hot topic. Yin et al. 
(2013) put forward a modelling and controller design 
method of networked control system over the integrated 
management platform system (IPMS). Zhu and Guo (2012) 
proposed an optimal controller to stabilise the closed-loop 
networked control system with access constraints and 
network-induced delays. Zhang et al. (2012) presented a 
quasi T-S fuzzy model which includes the performance of 
network with time-delay and packet dropouts. However in 
engineering applications, there are still many limitations and 
inconveniences in the programming operation of networked 
multi-PLC control system. 

Usually the developers need to understand the topology 
of the control system and program for each controller 
respectively. It will become difficult when the number of 
controllers is large and the control logic is complex. For 
multi-PLC control system, the program should be developed 
in a network-oriented way. The control network should be 
regarded as a large virtual PLC and the developer can use 
all of the resources in the network directly. The program 
should be analysed and decoupled into parallel tasks by 
compiler, and downloaded into each corresponding device 
automatically. Among the recent PLC program compilation 
methods, Yan and Chen (2010) proposed a method to avoid 
the execution of partially useless instructions in PLC 
program. Tang et al. (2011) analysed the compiling of the 
PLC ladder diagram, and presented a node compilation 
method for soft PLC in the VC++ environment. Deveza and 
Martins (2009) proposed a translation methodology to 
emulate PLC control program in the MATLAB environment 
for program simulation. Chmiel et al. (2002) presented a 
program interpretation method of ladder diagram for a small 
compact type of PLC. Liu (2009b) used the state space 
compilation for program simplification. Xu (2009) used the 
linear matrix inequality compilation for hybrid variable 
separation. These methods realise the program compilation, 
optimisation and simulation from different aspects for a 
single controller. There is no sufficient method to realise the 
network-oriented programming for networked multi-PLC 
control system right now. 

Discrete event system is a common tool of analysing the 
dependency relationship of events, which is widely used in 
various areas in industrial engineering (Luo et al., 2007). In 
the context of this paper, we convert the control system into 

discrete event system, and analyse the dependencies of 
variables and instructions of the program, transit serial 
control programs into parallel discrete events, then assign 
the variables and instructions to different devices. Recently, 
discrete event system modelling tools include Automata, 
timed petri-net, event graph, etc. Since the difficulty of 
analysis is increasing with the complexity of the system, the 
automata and timed petri-net are difficult to apply in 
complicated control systems. Event graph, with simplified 
expression method and powerful modelling capacity, 
received a wide application in discrete event system  
(Xia et al., 2012) and becomes a hot topic right now. Nazari 
et al. (2012) proposed a determination method of 
component blocking and network blocking in Fully 
Connected event graphs. Declerck (2011) analysed external 
trajectories and token deaths in event graphs. Amari et al. 
(2012) gave a max-plus control design for temporal 
constraints meeting in timed event graphs. 

The major contributions of this paper are as follows: 

• a network-oriented programming method for networked 
multi-PLC control system is proposed 

• a modelling and compilation method for  
network-oriented program based on event graph is put 
forwarded. 

The rest of the paper is organised as follows. Section 2 
presents the event graph modelling method for a control 
program. Section 3 describes how to distribute the program 
into different PLCs and realise variable and logic 
synchronisation. Section 4 presents the operating example 
of the modelling and compilation method. Section 5 gives a 
summary of the conclusions and future work. 

2 Control program modelling 

2.1 Network-oriented programming method 

Network is the basis of device management and program 
development in a networked multi-PLC control system. For 
different kinds of devices, parameters, variables and 
registers can be acquired by the device description. Running 
status and parameter configuration can be achieved by 
listening, inquiring and request/response operation. The 
name and input/output parameters of instructions can be got 
from the instruction description, and the control program of 
the whole network can be developed in one editing 
environment. 

As shown in Figure 1, via the network-object 
programming method, the developer can operate the 
resources in PLC1, PLC2 and PLC3 directly and define 
intermediate variables such as _swt1, _swt2, _tmpOut 
according to the requirement. There’s no need to program 



 Modelling and compilation method for multi-PLC control program 3 

for each controller separately, and device topology is no 
longer necessary. These works will be completed by the 
compiler. There are 4 major tasks in compilation method: 

• create an event graph model for converting serial 
control programs to discrete event systems 

• analyse the dependency relationships to identify the 
parallel task sequences of the modelling by an 
improved depth first search method 

• group the event sequence and distribute the control 
program into corresponding PLCs 

• insert communication instructions to assure the variable 
and logic synchronisation. 

2.2 Discrete event system and control program 

Discrete event system refers to a dynamic event-driven 
system with a hopping change of system state. In this kind 
of system, events trigger the transition of states at an 
instantaneous and discrete time point (Liu, 2009a). Control 
program describes resource allocation and executing logic 
of the controller, which consists of variables and 
instructions. Variables store information and instructions 
process information. The state of PLC control system only 
changes when instructions executing, and completes 
instantly at a time point. Thus a complete PLC program can 
be converted into a discrete event system (Chen et al., 
2012). In control system, PLC is the basic physical object 
and it is the entity of the discrete event system; Variables 
and parameters of PLC are the attributes of an entity; the 
collection of all the PLCs’ variables and parameters are the 
state of the control system; the execution of the instructions 
leads to the change of system state, thus it is the event of the 
system. 

The event graph is a modelling method of graphical 
discrete event. It describes the dynamic characteristic 
through the logic of events and temporal relations (Savage 
et al., 2005). State changes are associated with the 
occurrence of a system event and are pictured as event 

vertices. The edge between two event vertices represents the 
conditions under which one event might cause the 
occurrence of the other event as well as the time interval 
between the two events (Schruben L and Yucesan E, 1994). 

Figure 2 is the example of event graph, if condition en1 
is true when event e1 is trigged at clock c1, event e3 will be 
trigged after t1 delays. Similarly, if condition en3 is true 
when event e3 is trigged at clock c3, event e5 will be trigged 
after t3 delays. The advantage of event graph is that the 
scheduling relations of events can be expressed visually and 
it can support the scheduling analysis and optimisation of 
events based on graph theory (Liu, 2009a). 

To facilitate the subsequent discussion, the event  
graph can be expressed by a two-tuple G = (E, A). The  
E = {e1, e2, …, e3, …} represents the set of e nodes in the 
graph, e represents single event object and ei represents the 
number i event. A = {a1, a2, …, ai, …} is the set of directed  
arc a. ai = f(en, em) = (c, en, t) is defined as a triple on  
the arc between en and em, in which en is the schedule 
condition, t is schedule delay, c is the event scheduling 
marking, which represents the effects of en and em at the 
number c time point in one circle of task execution process  
(Cordes et al., 2010). 

In the PLC control system, control program constituted 
by the commands and variables. Controllers follow the 
order ‘from left to right, top to bottom’ to implement the 
cyclic scanning，and any execution of an instrument 
trigged the variable change event. Set I = {i1, i2, …, ij, …} 
as instruction set, ii = f(vn, vm) = (C, EN, T)  represents a 
unique variable in control program. C represents the 
instruction execution sequence, EN represents the value of 
‘EN’ pin parameter of an instruction, T represents 
instruction execution time. Every change of the variables 
triggered by instructions is an event. Picture a variable as an 
event node, and when the node is traversed, the variable 
change event happened. Set V = {v1, v2, …, vi, …} as the 
variable change events collection, and P = (V, I) is an event 
graph which describes the interactions between variables 
and instructions in a control program. 

Figure 1 Network-object programming method (see online version for colours) 

 

 

 

  



4 C. Chen et al.  

Figure 2 Example of event graph 

 

2.3 Modelling the control program 

Event graph modelling is the basis of analysis and 
compilation of PLC program. The model can be set 
gradually by analysis the variables and instructions and 
transforming the instruction into relationships between input 
and output parameters. In one PLC program, if the value of 
variable vm must be determined before that of variable vn, 
then vm depends on vn. Dependency relationship is the basis 
of analysis control program logic. If there are N input 
variables and M output variables, then there exists N * M 
groups of dependency relationship. The dependency 
relationship of each group will correspond to one 
scheduling activity in event graph, which is a direct arc 
connecting two event nodes. The start node of an arc is the 
event occurred at the prior moment, and the closed node is 
the event occurred at the posterior moment. Then the 
instruction ij can be expressed as: 

( )
( )( ) ( )1 1 1 2 2 2

, ,

, , , , ... , ,
j j j j

m n m n m n

i C EN T

c en t c en t c en t∗ ∗ ∗

=

=
 (1) 

Instruction collection I can be expressed as: 

( )
( )

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 11

2 2 22

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, ,
, ,

, ,

, , , , , ,
, , , , , ,

, , , , , ,

n n nn

a a a

b b b

n n n n n n nk nk nk

C EN Ti
C EN Ti

I

C EN Ti

c en t c en t c en t
c en t c en t c en t

c en t c en t c en t

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪

⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (2) 

Each row vector in equation (2) represents a set of schedule 
arcs of an instruction. The number of the scheduling arc 

corresponding to each instruction is different. So there are 
different count of members in each row, namely, the value 
of a, b and k is independent and it only relates to their own 
corresponding instructions. The instruction set and variable 
change events set is two basic elements of the modelling. 
The main steps of modelling are as follows: 

• use template variables to substitute logical connections, 
and convert the control program to instruction sequence 

• map variables to the event vertices 

• converting each instruction into sub event graphs 
including vertices and arcs 

• connect each sub graphs with the same event vertices. 

In the program shown in Figure 1, there are 11 variables, six 
instructions and two logical connections. It needs two pairs 
of template variables to substitute logical connections. 
Mapping relationships between events and variables are 
shown in Table 1. 

Table 1 Mapping relationships between event nodes and 
variables 

Event node Variable Remark 
v11 PLC1_Enable IO resource (PLC1) 
v12 TMP1 Temporary variable 
v21 PLC3_Targ IO resource (PLC3) 
v22 para_PB Internal variable 
v23 para_TI Internal variable 
v24 para_TD Internal variable 
v25 PLC3_Temp IO resource (PLC3) 
v26 PLC3_DO0 IO resource (PLC3) 
v31 _swt1 Internal variable 
v41 _swt2 Internal variable 
v51 PLC2_SW1 IO resource (PLC2) 
v52 TMP2 Temporary variable 
v61 _tempOut Internal variable 

The instruction sequence is shown in Figure 3. 
The numbers in the figure are the instruction ID ordered 

by execution sequence. Sub event graphs corresponding to 
each instruction are shown in Table 2. 

Figure 3 Command sequence 

 



 Modelling and compilation method for multi-PLC control program 5 

Table 2 Command and event graph 

ID Schedule arcs Event graph 

1 (1, 1, t11)  
 

2 (2, 1, t21) (2, v12, t22) (2, v12, t23) (2, v12, t24) 
(2, v12, t24) (2, v12, t25) (2, v12, t26) 

3 (3, 1, t31)  
 

4 (4, 1, t41)  
 

5 (5, 1, t51) (5, 1, t52)  
 

6 (6, 1, t61) 

 
 
Event graph model is built by connecting each sub graphs, 
shown in Figure 4. 

Figure 4 Example of constructing event graph 

 

3 Modelling analysis and program downloading 

The event graph model describes the dependency 
relationship of the variables in PLC program. The serial 
control program can be decomposed into parallel tasks by 
modelling analyse and traversal. According to the topology 
of control network, the event graphs are grouped, and the 
instructions can be downloaded to the most appropriate PLC 
automatically. The variables of devices can be synchronised 
through network communication. 

3.1 Traversal algorithm of event graph 

An event graph traversal rule should be put forward in order 
to analyse the dependency relationship of the variables in 
PLC program. Based on improved Depth First 
Search(Cordes et al., 2010), the event graph can be 

disintegrated into several event sequences, so that PLC 
program can be decoupled. These event sequences are 
called event tree. One event tree includes the information of 
events and scheduling activities. It describes that how a 
variable influences the other variables by specific 
instructions. Construction of the event trees is the 
intermediate process which PLC program should be 
disintegrated into parallel discrete events. 

Depth first search is similar to the first traversal of a tree 
structure. It traverses from the vertex to each possible 
branch until every vertex is visited. Recursion includes 
following operations: 

a visit the neighbour which has not been accessed 

b set the visited property of the node to be True 

c if the node has neighbours which have not been 
accessed, visit one of the neighbours in the same way, 
otherwise go back to the former node and continue 
searching until all vertices are visited. 

In depth first search algorithm, the access order of nodes 
and arcs is random. However in PLC control program, 
instructions are always executed in the order from left to 
right, top to bottom. In event graph, parameter c in equation 
(2) represents the execute sequence of the correspond 
instrument. The arcs with smaller c value should be 
scheduled preferentially. Therefore the access order of 
neighbours in recursion operation c should be restricted. 
According to the in-degree and out-degree of the event 
nodes, which are classified into eight types: zero-input 
single output, zero-input multi-output, single-input  
single-output, single input multi-output, multi-input  
single-output, multi-input multi-output, single-input  
zero-output, multi-input zero-output. The improved DFS 



6 C. Chen et al.  

algorithm has different traversal rules to process these 
different kinds of nodes. To facilitate discussion, set 
scheduling marking parameter c to be the weight of arcs in 
event graph. 

Table 3 shows the method of path selection in recursion 
operation. Once traverse, a new node, the current node and 
the arc connection betweenthem should be inserted into 
event tree. Among traversal rules in Table 3, the process of 
multi-input single-output node is relatively complex. It 
describes the situation that the value of an instruction’s 
input parameter is modified by many other instructions in 
the program. The processing method depends on the 
execution order of these instructions. The pseudo code of 
the process method is shown in Figure 5. It is also the 
foundation of process of multi-input multi-output and  
multi-input zero-output nodes. 

Table 3 Improved DFS traversal rules 

Node type Traversal rule 

Zero-input 
single output 

Vertex, visit the next adjacent node. 

Zero-input 
multi-output 

Vertex, visit the adjacent node 
Corresponding to the smallest weight arc. 

Single-input 
single-output 

Visit the next adjacent node. 

Single-input 
multi-output 

Visit the adjacent node corresponding to the 
smallest weight arc. 

Multi-input 
single-output 

Choose the traversal path according to the 
weight of input and output arcs, algorithm is 
shown in Figure 5. 

Multi-input 
multi-output 

Randomly select a certain output arc in turn. 
Consider the present node as multi-input 
single-output node. After that select the next 
input arc, repeating the above operation. 

Single-input 
zero-output 

Add the present node into event tree and 
Stop traverse this path. 

Multi-input 
zero-output 

Consider the present node as multi-input 
single-output node, and the weight of output 
arc is infinity. 

Figure 5 Process of multi-input single-output node 

IF (OUT < INNOW) { 
FOREACH (INX) { IF (INX < OUT || INX > INNOW) END; } 
} 
ELSE { 
 FOREACH (INX) { IF (INNOW < INX < OUT) END; } 
} 
ADDTOEVENTTREE (CURRENTNODE); 

The weight of the unique output arc is out, and innow 
represents the weight of the arc which is accessed by current 
traverse path. inx is the weight of any other input arcs of the 
node. The pseudo code shows that if the weight of current 
arc innow is less than output arc out, the node can be inserted 
into event tree only if there is no arc satisfied the condition 
of innow < inx < out. That means if a variable is used once 

and it is modified by many instructions before use, only the 
last modified instruction is effective. Otherwise if the 
weight of current arc innow is greater than output arc out, the 
node can be inserted into event tree only if there is no arc 
satisfied the condition of inx < out or inx > innow. That means 
if the value is modified only after used, the last modified 
instruction is effective. 

3.2 Program distributed downloading 

The input and output variables of the control system may 
locate at different devices. Due to the low transmission 
efficiency of industrial field bus, the bottleneck of  
large-scale data processing lies in the network bandwidth 
rather than device performance. Through optimising the 
parallel event sequence, get the calculation closer to the IO 
source. The network bandwidth can be saved and achieve  
high-efficiency computing performance. Industry evaluates 
it as “moving computing is more economical than moving 
data” (Hu and Feng, 2010). 

Event Tree describes the interaction relationships of 
variables. One instruction may exist in many event trees, 
and different variables may influence a same variable by 
one instruction. Thus, event trees need to be grouped to 
guarantee variables in one Event Tree cannot be affected by 
other trees. The optimising process is as follow: 

a at the beginning, divide each event tree into an 
independent group 

b inspect whether the two event trees contain the same 
weights of arcs 

c if containing the arcs with same weight and the 
destination nodes of the arcs are the same, two trees can 
be combined into one event tree 

d repeat the second step until any two event trees do not 
fulfil the condition of the third step. 

Thus, an event diagram shown in Figure 4 can be divided 
into the following four groups: 

There is no coupling relationship between events and 
schedule activities in grouped events trees, and these trees 
can be assigned to different devices. The compiler must 
guarantee the regular communications and control logic, 
and also the overloading of single Device should be 
avoided. Therefore, there are two fundamental modes: 
Synchronised optimisation, decrease communication delay 
between devices and keep the synchronisation of control 
logic as much as possible; load balance, calculate and 
compare the expected scheduling time of each assignment 
scheme, get the shortest one to reduce the execution cycle of 
single device (Yong et al., 2010). 

After the optimisation, each group of event trees which 
is independent from each other can be distributed to 
different devices. One event tree can be downloaded into 
different devices. If there exists a set of N groups of event 
trees = {T1, T2, …, TN}, Ti contains the set of variables  
Vi = {vi1, vi2, …, vik}, 1 ≤ i ≤ N, The basis of the 
optimisation of device assignment is the position of physical 



 Modelling and compilation method for multi-PLC control program 7 

IO. If there exists a set of devices D = {d1, d2, …, dM}, di is 
the device containing practical IO, di contains the variable 
set VDi = {vi1, vi2, …, vik}, the elements in VDi is the 
physical IO of the device and 1 ≤ i ≤ M. If Øab is the time of 
transmitting one variable between da and db, the 
measurement unit is (ms), ρi1a is the number of elements 
contained in Vi ∩ VDa, Wi = {wi1, wi2, …, wiM} is the 
communication time which is produced after li is allocated 
to each device. The communication time which li is 
allocated to device da is shown by equation (3). 

1 1 2 2Ø Ø Øia i a i a iM aMw ρ ρ ρ= × + × + + ×  (3) 

Ti should be assigned to the device which produces the 
minimum communication time. If wia = wib, then assigned Ti 
to the device who has less instructions. 

Set the event tree shown in Figure 6 as an example. 
There exists device set D = {dA, dB, dC} and event tree set T 
= {T1, T2, T3, T4}. If ØAB =50, ØBC =20, ØAC =80, in event 
tree T1, w1a = 240, w1b =290, w1c =50, and w1c is the 
minimum, so allocate a to device dc. In the similar way, 
communication time of other events trees and devices is 
shown in Table 4. In event tree T4, both w4b and w4c are the 
minimums. Since the number of instructions in device db is 
smaller, T4 is assigned to device db. 

Table 4 Communication delay list 

Event 
tree i wia (ms) wib (ms) wic (ms) Target 

device 

1 240 290 50 dc 
2 80 20 0 dc 
3 80 20 0 dc 
4 130 20 20 db 

3.3 Variable synchronisation 

Different event trees may contain same event. After 
assigning devices for event tree, the same variable may exist 
in different devices. In the example shown in Figure 6, 
variable v12 will be assigned to device da, db and dc. In order 
to guarantee the correct logic of the program, devices 
should read the real time data from other devices and 
synchronise to the local corresponding variable (Liao and 
Hu, 2009). The basic principles of variable synchronisation 
are as follow: 

a if a variable is allocated to two or more devices, it will 
be duplicated into many replicas and executed in each 
device 

b allocate buffers for each device and store the value of 
the replicas of which are read from different devices 

c insert communication instructions, read the value of 
from other devices into local input buffer or write the 
value of into output buffer of other devices. 

 

 

Figure 6 Event graph grouping 

 

 

Usually input parameters of instructions need to be 
synchronised. Communication instruction should be 
inserted at the beginning of the program. Read the value of 
variables into local input buffer and use replicas to replace 
the variable. Sometimes output parameters need to be 
written to the physical output interface of other devices. 
Communication instruction should be inserted into the end 
of program and write the value of parameter into the output 
buffer of the other device. Insert instructions into the other 
device to read the data from the output buffer, so that the 
output variable synchronisation will be realised. 

Figure 7 shows the variable synchronisation operation of 
events trees in Fig.6. Event tree T1 is assigned to device dc, 
so instructions need to be inserted into the beginning of 
program in dc to read the value of variable v11 in da. The 
value should be stored into buffer and replace the variable 
v11 in event tree T1. Similarly Event tree T4 is assigned to 
device db, instructions need to be inserted into the beginning 
of program in db to read the value of variable v12 in dc, The 
value should be stored into buffer and replace the variable 
v12 in event tree T4. 

Figure 7 Synchronisation demonstration 

 

 



8 C. Chen et al.  

4 Operating examples and analysis 

The modelling and complication method for multi-PLC 
control program proposed by this paper has already been 
applied and verified in the central control system of a 
compressor station in a shipbuilding industry group. The 
networked multi-PLC control system monitors and controls 
eight groups of compressors, dryers and air filters, and six 
groups of pumps and cooling towers. Also the system 
monitors the total tank pressure and air consumption of the 
factory. Topological structure of system is shown in  
Figure 8. 

The engineer station executes programming software. 
Engineers programmed the whole system using the 
network-oriented program and compilation method 
proposed in this paper, and replaced the original program; 
The monitor and control centre monitoring manual 
operation signal and displaying human machine interface; 
Networked control system is made up by 20 PLCs. It 
monitors the speed, Shaft vibration and movement, surge, 
and also the pressure and temperature of compressors; and 
controls the temperature and humidity of dryers, speed and 
flow velocity of pumps and the pressure and temperature of 
inflow and outflow of the cooling towers. 

We have upgraded the program software and used the 
program developed by new method proposed in this paper 
to replace the original one. During daily operation, the 
control logic was consisted with the original program. But 
the efficiency of development was greatly improved since 
the engineer could regard the whole network as a large 
virtual PLC without concerning the topology of the 
controllers any more. The modelling and compilation 
method is demonstrated by using the example of dryer 
temperature control program, shown in Figure 9. Here is the 
explanation for the devices and variables in this figure. 

Device ConDev : located in monitoring centre, collect the 
manual operation; ConDev_Dry1: the start and stop control 
variable of 1# dryer; Device DryDev1 : the temperature 
control device of 1# dryer; DryDev1_Temp: the temperature 
as the PID instruction’s feedback input parameter; 
DryDev1_DO0: the first digital output signal of device 
DryDev1, controls the heating of 1# dryer; TargVal, 
para_PB, para_TI and para_TD are internal variables, 
record the target temperature and PB, TI, TD parameters set 
by customers. Temperature control program for 1# and 2# 
dryers is shown in Figure 9 and the other dryers’ program 
are similar to it. 

According to the modelling building method in  
Section 2, an event graph model can be built for the 
program, as shown in Figure 10. The graph consists 14 
nodes and 17 arcs, in which, tmp1~tmp3 are automatically 
inserted temporary variables which replace the logical 
connections. Other mapping relationships between nodes 
and variables are list in the right part of the figure. 

By using traversal rules and event tree grouping 
methods in Section 3, the event graph in Figure 10 can 
generate two event trees with no coupling relationships. The 
event trees will be download separately to device DryDev1 
and DryDev2, shown in Figure 11. 

The control program is compiled and downloaded to 
different controllers and its logic is parallel running. The 
control logic is consisted with the original program. To 
evaluate the modelling a compilation method, we compare 
the program distributed into each sub system with the 
original one, and count the number of instructions and 
communication instructions inserted into the program by the 
compiler. 
 

Figure 8 System topological structure (see online version for colours) 

 

 



 Modelling and compilation method for multi-PLC control program 9 

Figure 9 Temperature control program for 1#and 2# dryers 

 

Figure 10 Discrete event model 

 

 

Figure 11 Optimised grouped event trees 

 

 

 



10 C. Chen et al.  

Table 5 Dispersed effect of downloading control programs 

Sub system Instructions 
count 

Added 
instructions 

Original 
program 

Network-oriented 
program 

1,776 NA NA 

Compressor sys 696 16 649 
Dryer and filter 
sys 

584 40 552 

Pumps control sys 180 12 166 
Cooling tower sys 348 30 261 
Monitoring centre 66 0 80 

The control program is downloaded to five sub control 
systems. As other systems need to read the control 
command from the monitoring centre, network 
communication instructions are added by the compiling 
algorithm. As the existence of numerous monitoring 
parameters, program needs many serial communication 
instructions to read and write these parameters from the 
compressor controllers. Consequently, the number of 
instructions is relatively big. At the meantime, we can also 
observe a big amount of communication instructions 
inserted by the compiler because the dryers and air filters 
and cooling tower control system need to read parameters 
from monitoring centre. The data in Table 5 illustrates that 
the number of instructions of programs downloaded in each 
sub system is similar to the original programs’. Without 
considering the developers’ habit, the compilation algorithm 
generated a group of communication instructions for each 
shared variable. However, the developer allocated the 
shared variables at a consecutive address in original 
program then synchronised them together at the beginning 
and the end of the program. As a result, the number of 
communicated instructions in original program is smaller 
than the ones inserted by the compiler which is the point 
need to be optimised in this compilation algorithm. 

5 Conclusions 

Considering the large-scale multi-PLC control system, a 
network-oriented programming method is proposed. 
Regarding the control network as a large-scale virtual PLC 
device, the engineers can program the whole system using 
all of the resources in the control network directly. It 
prevents the inconvenient artificial operations of current 
method such as device topology analysing, individually 
programming, and variable and logic synchronisation. 
Consequently, it reduces the difficulty of system 
development and improves the programming efficiency. On 
this basis, an event graph model for the programs is created. 
The serial control program can be decoupled into parallel 
tasks by the analyse and traversal rule of the event graph. 
And the program can be dispersed downloaded into 
different devices by method of event tree grouping and 
variable synchronisation. The method has been applied and 
verified in a local shipbuilding industry group. The 
application result shows that the compile method can 

improve the program efficiency of the networked PLC 
control system and satisfied the application requirement. It 
has a high application value of the program design and 
compilation in multi-PLC control system. 

The limitation is that the expected execution time needs 
to be calculated and compared for all of the devices and the 
event trees at the device assignment operation. It will reduce 
the compilation efficiency when there is a large number of 
event trees and devices. And the variable synchronisation 
method needs to be optimised as shown in the last part of 
Section 4. Further research is needed to address these 
points. 

Acknowledgements 

The authors gratefully acknowledge support from the 
National High Technology Research and Development 
Programmre of China (2013AA040303), National  
Science and Technology Support Progmeram of China 
(2012BAH68F02), and EU FP7-SmartWater Project 
(PIRSES-GA-2012-318985). 

References 
Amari, S., Demongodin, I., Loiseau, J.J. and Martinez, C. (2012) 

‘Max-plus control design for temporal constraints meeting in 
timed event graphs’, IEEE Transactions on Automatic 
Control, Vol. 57, No. 2, pp.462–467. 

Chen, Y., Xi, N. and Li, H. (2012) ‘Event-based control theories 
and applications’, Journal of Mechanical Engineering,  
Vol. 48, No. 17, pp.152–158. 

Chmiel, M., Hrynkiewicz, E. and Muszynski, M. (2002) ‘The way 
of ladder diagram analysis for small compact programmable 
controller’, The 6th Russian-Korean International Symposium 
on Science and Technology, pp.169–173, KORUS. 

Cordes, D., Marwedel, P. and Mallik, A. (2010) ‘Automatic 
parallelization of embedded software using hierarchical task 
graphs and integer linear programming’, International 
Conference of Parallel Architectures and Compilation 
Techniques, pp.267–276, Scottsdale. 

Declerck, P. (2011) ‘From extremal trajectories to token deaths in 
p-time event graphs’, IEEE Transactions on Automatic 
control, Vol. 56, No. 2, pp.463–467. 

Deveza, T. and Martins, J.F. (2009) ‘PLC control and 
Matlab/Simulink simulations a translation approach’,  
IEEE Conference on Emerging Technologies & Factory 
Automation, pp.1–5, Mallorca. 

Hu, Y. and Feng, J. (2010) ‘Distributed search engine using 
hadoop’, Computer Systems & Applications, Vol. 19, No. 7, 
pp.224–228. 

Kwong, R.H. and Yonge-Mallo, D.L. (2011) ‘Fault diagnosis in 
discrete-event systems: incomplete models and learning’, 
IEEE Transactions on Systems, Man, and Cybernetics, Part 
B: Cybernetics, Vol. 41, No. 1, pp.118–130. 

Li, D., Lan, W., Zhou, H. and Shao, S. (2009) ‘Control of fuzzy 
discrete event systems and its application to air conditioning 
system’, Int. J. Modelling, Identification and Control, Vol. 8, 
No. 2, pp.122–129. 



 Modelling and compilation method for multi-PLC control program 11 

Liao, Y. and Hu, J. (2009) ‘Communication of the multi-PLC 
distributed control system’, Mining & Processing Equipment, 
Vol. 37, No. 14, pp.38–41. 

Liu, G. (2009a) Research on Component-based Visual Modeling 
Technology for Parallel Discrete Event Simulation, Thesis 
from College of Computer Science and Technology of 
National University of Defense Technology, Hu Nan, China. 

Liu, J. (2009b) Research and Implementation of FBD Program 
Model and Optimization Technology, Thesis from Control 
Theory and Control Engineer of Dalian University of 
Technology, Liaoning, China. 

Luo, J., Wu, W., Su, H. and Chu, J. (2007) ‘Combined controller 
synthesis for marked graphs’, Acta Automatica Sinica,  
Vol. 33, No. 2, pp.218–221. 

Nazari, J.G.S. (2012) ‘Blocking in fully connected networks of 
arbitrary size’, IEEE Transactions on Automatic Control,  
Vol. 57, No. 5 pp.1233–1242. 

Savage, E.L., Schruben, L.W. and Yücesan, E. (2005) ‘On the 
generality of event-graph models’, INFORMS Journal on 
Computing, Vol. 17, No. 1, pp.3–9. 

Tang, Z., Wang, T., Dong, J. et al. (2011) ‘Compiling ladder 
diagram based on node method’, International Conference on 
Control, Automation and Systems Engineering, pp.1–4, 
Singapore. 

Xia, W., Yao, Y., Mu, X. and Liu, L. (2012) ‘Parallel model 
checking for discrete event simulation models based on event 
graphs’, Journal of Software, Vol. 23, No. 6, pp.1429–1443. 

Xu, W. (2009) A Transformation Technique of PLC Function 
Block Diagram and Sequential Function Chart based on LMI, 
Control Theory and Control Engineer of Dalian University of 
Technology, Liaoning, China. 

Yan, Y. and Chen, H. (2010) ‘An optimizing compiler method to 
avoid partial invalid PLC instructions’, IEEE International 
Symposium on Industrial Electronics, pp.80–83, Bari. 

Yin, Y., Xia, L., Song, L. and Ren, Z. (2013) ‘The ship IPMS 
networked control system modelling and design’, Int. J. 
Modelling, Identification and Control, Vol. 20, No. 3, 
pp.234–241. 

Yong, Y., Wang, Y. and Liu, Z. (2010) ‘An algorithm  
used to improve task parallelization for directed acyclic 
graphs’, International Conference of Advances in the 
Dempster-Shafer Theory of Evidence, pp.238–240,  
Hong Kong. 

Zhang, H., Fang, H., Ren, X. and Qian, T. (2012) ‘Stability 
analysis of networked control system based on quasi T-S 
fuzzy model’, Int. J. Modelling, Identification and Control, 
Vol. 16, No. 1, pp.41–49. 

Zhu, C. and Guo, G. (2012) ‘Optimal control of networked control 
systems with limited communication and delays’, Int. J. 
Modeling, Identification and Control, Vol. 17, No. 1,  
pp.55–60. 


