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Abstract: In this paper, a control law that enforces the tracking of a boundary controlled
output for a bilinear distributed parameter system is developed in the framework of
geometric control. The dynamic behavior of the system is described by two weakly coupled
linear hyperbolic partial differential equations. The stability of the resulting closed-loop
system is investigated based on eigenvalues of the spatial operator of a weakly coupled
system of balance equations. It is shown that, under some reasonable assumptions, the
stability condition is related to the choice of the tuning parameter of the control law. The
performance of the developed control law is demonstrated, through numerical simulation,
in the case of a co-current heat exchanger. The control objective is to control the
outlet cold fluid temperature by manipulating its velocity. Both tracking and disturbance
rejection problems are considered.
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1 Introduction The early lumping approach consists in
approximating the PDE model by a set of ordinary
differential equations (ODEs), i.e., the DPS is reduced
to a lumped parameter system (LPS). This approach
can be seen as model reduction. The equivalent LPS
model is obtained by approximating either the PDEs
or their solutions (Wang et al., 2011; Ray, 1989; Li
and Qi, 2010). The resulting reduced model is then
used to design the controller in the framework of the
control theory of LPSs. However, the early lumping
approach presents significant drawbacks. First, reducing
the DPS to LPS does not preserve the fundamental
control properties (controllability, observability and
stability) of the original DPS (Ray, 1989; Singh and
Hahn, 2007). Secondly, ensuring a good approximation
of the distributed behavior of DPS requires a high order
reduced model, which makes the control design step
more difficult. Thirdly, the dimension of the resulting
controller is important, which makes it difficult to
implement. In addition, neglecting the distributed
nature of the DPS often leads to a controller with a
poor performance (Christofides, 2001a).

The late lumping approach represents the effective
alternative to the early lumping approach (Christofides
and Daoutidis, 1996; Christofides, 2001a). This approach
directly uses the PDEs model, without any reduction, for
the design of the controller. Therefore, the distributed
nature of the DPS and its fundamental control properties
are preserved (Ray, 1989; Christofides, 2001a). This
approach yields a controller of distributed nature that
enhances the performance in closed loop (Christofides
and Daoutidis, 1996).

In this work, following the late lumping approach,
a control law that enforces both output tracking and
disturbance rejection is developed for a bilinear DPS
in the framework of geometric control. By assuming
a boundary output, it is shown that the obtained
control law, which is of finite dimensional nature,
yields a time-varying bilinear system in closed loop.
Then, based on the mathematical properties of the
spatial operator of the resulting closed-loop system, the
stability condition is established. The performance of the
developed control law is evaluated in the case of a co-
current heat exchanger. The problem is to control the
outlet temperature of the cold fluid by manipulating its
inlet velocity.

The paper is structured as follows: The control
problem of a bilinear DPS is presented in Section 2.
Section 3 gives the main results concerning the stability
of coupled linear hyperbolic PDEs. Section 4 is devoted
to the control law design and to the stability analysis of
the resulting closed-loop system. Numerical simulation
results that show the performance of the control law, in
the case of a co-current heat exchanger, are reported in
Section 5. Section 6 concludes the paper.

Although several interesting control strategies have been 
developed for nonlinear distributed parameter systems 
(DPSs) (Chen et al., 2001; Dai et al., 2015; Wang 
et al., 2011; Christofides, 2001a,b; Dubljevic et al., 
2004; Padhi and Faruque Ali, 2009; Maidi and Corriou, 
2011, 2014; Ding and Gu, 2010), control design for 
this class remains a challenging problem (Christofides, 
2001b). If, for linear DPSs, a general control theory 
is developed by means of semigroup theory (Curtain 
and Zwart, 1995), for nonlinear DPSs, this is difficult 
and the investigation is made by assuming certain 
particular classes. Among these classes, can be cited 
the first-order hyperbolic PDEs (Hanczyc and Palazoglu, 
1995; Christofides and Daoutidis, 1996; Garćıa-Sandoval 
et al., 2008; Gundepudi and Friedly, 1998), the quasi-
linear parabolic partial differential equations (PDEs)
(Dubljevic et al., 2004) and the nonlinear parabolic PDE 
(Maidi and Corriou, 2014).

An important class of DPSs encountered in a wide 
variety of practical applications is described by coupled 
linear hyperbolic PDEs issued from first principles 
(Bartecki, 2016). In this case, two kinds of DPSs can 
be distinguished: strongly and weakly coupled (Bartecki, 
2016). When both temporal and spatial derivatives of 
different state variables are involved in each equation of 
the model, the system is said to be strongly coupled. In 
the other case, when each equation of the model contains 
only the temporal and spatial derivatives of the same 
state variable, the system is weakly coupled. Note that, 
under certain assumptions, a strongly coupled system 
can be transformed into a weakly one by means of a 
decoupling procedure (Bartecki, 2016).

Heat exchangers, electrical transmission lines, 
irrigation channels and transportation pipelines are some 
examples of DPSs whose dynamic behavior is described 
by coupled hyperbolic PDEs (Xu and Dubljevic, 2016; 
Bartecki, 2016). For these DPSs, for certain practical 
considerations, some parameters of the model are taken 
as control variables. As an example, in the case of 
heat exchanger, manipulating a fluid velocity is more 
practical than manipulating its inlet temperature. Thus, 
the system is turned into a bilinear one, which represents 
another interesting particular class of nonlinear DPSs.

When a parameter is taken as a manipulated 
variable to control a boundary output, a weakly 
coupled DPS is characterized by a finite characteristic 
index (Christofides and Daoutidis, 1996), which is a 
generalization of the notion of the relative degree of 
lumped parameter systems (LPSs) (Isidori, 1995). In 
addition, the stability analysis of a weakly coupled DPS 
can be done easily by examining the eigenvalues of the 
spatial operator. These interesting properties motivate 
the use of geometric control for bilinear DPSs to design 
a control law following the late lumping approach.

Designing a controller for a DPS can be done 
using two possible approaches (Ray, 1989; Christofides, 
2001a): early lumping and late lumping.
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2 Problem formulation

Let us consider a linear 2× 2 system issued from first
principles balances described by the following hyperbolic
coupled PDEs (Bartecki, 2016)

∂x1(z, t)

∂t
= −u1

∂x1(z, t)

∂z
+ α1 (x2(z, t)− x1(z, t))

(1)

∂x2(z, t)

∂t
= −u2

∂x2(z, t)

∂z
+ α2 (x1(z, t)− x2(z, t))

(2)

with the following boundary conditions

x1(0, t) = x10 (3)

x2(0, t) = x20 (4)

and initial conditions

x1(z, 0) = x0

1
(z) (5)

x2(z, 0) = x0

2
(z) (6)

In this model, t ∈ [0, ∞) and z ∈ [0, l] represent the
time and spatial variables, respectively. α1, α2, x10 and
x20 are constant positive parameters. The variables u1

and u2 can be assumed as manipulated variable and
disturbance, respectively and vice versa, depending on
the considered control configuration. x1 and x2 are the
state variables assumed to be in Hilbert space L2([0, l])
while x0

1
and x0

2
are the initial spatial profiles.

To simplify the presentation, it is assumed in the
following that our aim is to control the following
boundary output

y(t) = x1(l, t) (7)

by manipulating the variable u1 whereas u2 is a
disturbance.

Assuming this control configuration, the model (1)–
(6) represents a bilinear DPS (Ouzahra, 2016; Bühler
and Franke, 1980). This particular class of DPSs is
termed weakly coupled or decoupled systems since the
terms that contain derivatives are not coupled (Bartecki,
2016).

To solve this formulated control problem, the
following assumptions are made.

Assumption 1: The spatial profile x1(z, t) is a
monotonic function with respect to z at given t,
furthermore assumed increasing (Ayres, 1952).

Assumption 2: At z = 0, the boundaries conditions
are such that x2(0, t)− x1(0, t) > 0, that is, x20 − x10 >
0.

Remark 1: For the distributed parameter system (1–
2), since u1, u2, α1 and α2 are positive parameters,
assumption 2 implies that x2(z, t)− x1(z, t) > 0 for z ∈
[0, l].

Before addressing the control law design, the stability
issue of the system (1)–(6) is discussed in the following
section.

3 Stability of linear hyperbolic systems of

balance laws

The stability of the semigroup or of its generator
(operator), i.e. the stability of DPS, can be investigated
using some tools from spectral theory (Engel and Nagel,
2006). Thus, if all the eigenvalues of the operator are
negative real or complex with negative real part, the
semigroup is stable, i.e. the DPS is stable.

Let us write the PDEs model (1–6) under the
following operator form

∂x(z, t)

∂t
= H x(z, t) (8)

where x(z, t) = [x1(z, t), x2(z, t)]
T is the vector of state

variables and the spatial operator H is defined as follows

H = A
∂

∂z
+ B (9)

with

A =

[

−u1 0
0−u2

]

(10)

and

B =

[

−α1 α1

α2 −α2

]

(11)

The stability of the linear hyperbolic systems issued
from balance laws has been investigated in the literature
(Russell, 1978; Diagne et al., 2012). The aim of this
section is to give the condition that ensures the
exponential stability developed based on the spectral
theory (Engel and Nagel, 2006). This theory provides the
qualitative behavior of the semigroup generated by the
spatial operator H (Engel and Nagel, 2006).

Given the boundary conditions (3)–(4), since the
eigenvalues of the matrix A are negative, the eigenvalues
of the spatial operator H are complex and equal to
(Christofides and Daoutidis, 1996; Russell, 1978)

λk = −∞+ k π i, k = −∞, . . . , +∞ (12)

with i is the imaginary unit, which implies that the
system (8) is exponentially stable, i.e., the spatial
operator H generates a stable semigroup. Consequently,
the PDEs model (1)–(6) is exponentially stable if the
parameters u1 and u2 are positive.
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4 Control law design and closed loop

stability analysis

In this section, the control problem formulated above is
solved in the framework of geometric control using the
characteristic index concept introduced by (Christofides
and Daoutidis, 1996), which is a generalization of the
relative degree of a finite dimensional system (Isidori,
1995).

4.1 Control law design

The calculation of the first time derivative of the
controlled output (7) yields

dy(t)

dt
=

∂x1(z, t)

∂t

∣

∣

∣

∣

z=l

(13)

= −u1

∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

+ α1 (x2(l, t)− x1(l, t))

(14)

hence, from (14) it follows that the manipulated variable
u1 appears linearly in the first time derivative of the
controlled variable y(t). This suggests requesting a first-
order dynamical behavior between an external variable
yd(t) and the controlled output y(t), i.e.,

τ
dy(t)

dt
+ y(t) = yd(t) (15)

where τ is the desired time constant.
Now, Assumption 1 ensures that

∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

6= 0 (16)

thereafter, the substitution of the first time derivative
of the controlled output y(t) by its expression (14) into
(15), and by solving the resulting equation with respect
to the manipulated variable u1, the following control law
results

u1 =
y(t)− yd(t) + τ α1 (x2(l, t)− x1(l, t))

τ
∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

(17)

with y(t) = x1(l, t).

Remark 2: The developed control law (17) involves
the first spatial derivative of the state x1 at z = l, which
can be approximated by the following finite difference at
right

∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

=

x1(l, t)− 4 x1(l −∆z, t) + 3 x1(l − 2∆z, t)

2∆z

(18)

where ∆z is the discretization spatial step.
Hence, for practical implementation, one needs the

measurements at both positions z = l −∆z and z =
l− 2∆z. These measurements can be provided from
the measurement of the controlled output y(t) = x1(l, t)
using an observer.

4.2 Closed-loop stability

The control law (17) yields, in closed-loop, the finite
dimensional system (15), which is externally stable. In
this subsection, the internal stability of the resulting
closed-loop system (15) is analyzed.

The internal representation of the resulting closed-
loop is obtained by substituting the manipulated
variable u1 by its expression (17) into the system to be
controlled (1)–(6). In this case, the closed-loop can be
written under the form operator (8) with

A =













−









y(t)− yd(t) + τ α1 (x2(l, t)− x1(l, t))

τ
∂x1(z, t)

∂z

∣

∣

∣

∣

z=l









0

0 −u2













(19)

and B remains unchanged.
Note that, since the obtained control law (17) is of

finite dimensional nature, hence the obtained closed-loop
can be assumed as a bilinear parameter-varying system
(Briat, 2015). Thus, according to the development given
in Section 3, if the eigenvalues of the matrix (19) are
negative, consequently the closed-loop (15) is internally
stable. The condition that ensures the stability of the
matrix (19) is provided by Proposition 1.

Proposition 1: If τ ≥ 1/α1, the eigenvalues of the
operator (19) are negative.

Proof. Since u2 > 0, it remains to show that

y(t)− yd(t) + τ α1 (x2(l, t)− x1(l, t))

τ
∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

(20)

is positive.
Assumption 1 implies that

∂x1(z, t)

∂z

∣

∣

∣

∣

z=l

> 0 (21)

and since the time constant τ > 0, consequently the
denominator of (20) is positive.

To have the condition (20) satisfied, it remains to
show that the numerator of (20) is also positive, that is,

τ α1

(

x2(l, t)− x1(l, t)
)

> yd(t)− y(t) (22)

Now, if yd(t)− y(t) > 0, according to Remark 1, it
follows that the condition (22) holds since both τ and
α1 are positive, consequently the numerator of (20) is
positive.

If yd(t)− y(t) < 0, that is, yd(t)− x1(l, t) < 0, the
numerator of (20) is positive if the following condition
holds

τ α1

(

x2(l, t)− x1(l, t)
)

>
∣

∣yd(t)− y(t)
∣

∣ (23)
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According to Remark 1, we have

x2(l, t) > x1(l, t) (24)

and since

x1(l, t) ≥ yd(t) (25)

therefore

x2(l, t)− x1(l, t) >
∣

∣yd(t)− y(t)
∣

∣ (26)

If we take τ such as τ α1 ≥ 1, that is, τ ≥ 1/α1, then

τ α1

(

x2(l, t)− x1(l, t)
)

≥ x2(l, t)− x1(l, t) (27)

and according to (26), one concludes that

τ α1

(

x2(l, t)− x1(l, t)
)

>
∣

∣yd(t)− y(t)
∣

∣ (28)

which implies that the numerator of (20) is positive.

Remark 3: From Proposition 1, it follows that the
internal stability condition is related to the choice of the
tuning parameter τ of the control law (17).

5 Application example

In this section, the performance of the designed control
law is evaluated in the case of the co-current heat
exchanger depicted in Figure 1. A cold fluid enters at
temperature Tc,0 and flows through the internal tube, of
length l, with a velocity vc.

This cold fluid exchanges heat with the hot fluid
that flows in the external tube, in the same direction as
the cold fluid, with a velocity vh. The hot fluid enters
at temperature Th,0. The cold and hot fluids leave at
temperatures Tc,l and Th,l, respectively. The dynamic
behavior of the co-current heat exchanger is described by
the following system of one dimensional linear hyperbolic
PDE energy balances (Maidi et al., 2010)

Cold fluid

Hot fluid

0
l

z

Tc,0(t) Tc(z, t) Tc,l(t)

Th,0(t)

Th(z, t)

Th(z, t)

Th,l(t)

Figure 1: Co-current heat exchanger.

∂Th(z, t)

∂t
= −vh

∂Th(z, t)

∂z
+ αh (Tc(z, t)− Th(z, t))

(29)

∂Tc(z, t)

∂t
= −vc

∂Tc(z, t)

∂z
+ αc (Th(z, t)− Tc(z, t))

(30)

Th(0, t) = Th,0(t) (31)

Tc(0, t) = Tc,0(t) (32)

Th(z, 0) = T 0

h(z) (33)

Tc(z, 0) = T 0

c (z) (34)

where Th(z, t) and Tc(z, t) are the temperatures of the
hot and cold fluids, respectively. αh and αc are the
heat transfer coefficients. T 0

h and T 0

c are the initial
spatial temperature profiles of the hot and cold fluids,
respectively.

Let us assume that the objective is to control the
outlet cold fluid temperature, that is,

y(t) = Tc(z, t)|z=l (35)

= Tc,l(t) (36)

by manipulating the velocity vc. Th,0, Tc,0 and vh
represent external disturbances that affect the heat
exchanger.

In this case, both assumptions 1 and 2 hold
for the co-current heat exchanger since Tc(z, t) is a
monotonic increasing function with respect to z and,
∀ t ∈ [0, ∞), Th(z, t)− Tc(z, t) > 0. Consequently, the
proposed design methodology can be applied.

According to the development given in the
Subsection 4.1, the following state feedback results

vc =
Tc,l(t)− T d

c,l(t) + τ αc (Th(l, t)− Tc(l, t))

τ
∂Tc(z, t)

∂z

∣

∣

∣

∣

z=l

(37)

The performances are evaluated by simulation and
the closed-loop system is simulated using the method
of lines (Vande Wouwer et al., 2001) by assuming a
number of discretization points equal to 100. The spatial
derivatives are approximated using finite differences.

The parameters of the heat exchanger are
summarized in Table 1. The initial temperature profiles
T 0

h(z) and T 0

c (z) are the spatial profiles at steady-state
obtained by considering the boundary conditions and
the velocities reported in Table 2. The controller tuning
parameter τ that satisfies the condition of Proposition 1
is taken equal to 6 s.

In the performed simulation runs, to avoid sudden
variations of the controlled output Tc,l(t), the desired
set-point T d

c,l(t) is smoothed using a first-order filter
that yields the filtered set-point or reference trajectory
T fd
c,l (t), i.e.

τf
dT fd

c,l (t)

dt
+ T fd

c,l (t) = T d
c,l(t) (38)
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0 20 40 60 80 100 120

Time [s]

25

30

35

40

45

50

55
y
(t
)
=

T
c
(l
,t
)
[◦
C
]

Set-point

Filtered set-point

Controlled output

Figure 2: Set point tracking: evolution of the outlet cold
fluid temperature Tcl(t).

where τf is the time constant of the filter taken equal to

5 s. Thus, considering the filtered set point T fd
c,l (t) instead

of the set point T d
c,l(t), the control law (37) takes the

following form

vc =
Tc,l(t)− T fd

c,l (t) + τ αc(Th(l, t)− Tc(l, t))

τ
∂Tc(z, t)

∂z

∣

∣

∣

∣

z=l

(39)

Remark 4: According to proposition 1, the condition
of the choice of τ ensures that both vh and vc have the
same sign (both positive). This means physically that
both cold and hot fluids flow in the same direction, which
is characteristic of a co-current heat exchanger.

5.1 Set point tracking

The first simulation run deals with the tracking problem.
Thus, in order to evaluate the tracking capability of the
control law (39), two step set points T d

c (t) = 50◦C and
T d
c (t) = 35◦C have been specified at t = 5 s and t = 60 s,

respectively. Figure 2 shows clearly that the outlet cold
fluid temperature Tc,l(t) tracks perfectly the imposed set
point. The output-tracking is achieved with a smooth
evolution of the velocity vc (Figure 3). The performance
of controller is confirmed by the 3D temperature profiles
given by Figure 4.

5.2 Disturbance rejection

The second performed test deals with disturbance
rejection. For this test, a sudden change of −60% of the

Table 1 Heat exchanger parameters.

Parameter Value

αh 0.3 [s−1]

αc 0.2 [s−1]

l 1.0 [m]

Table 2 Boundary conditions and steady-state velocities.

Variable Value

Th,0 80 [◦C]

Tc,0 25 [◦C]

vh 10 [m · s−1]

vc 5 [m · s−1]

0 20 40 60 80 100 120

Time [s]

0

1

2

3

4

5

6

v
c
(t
)
[m

·
s−

1
]

Figure 3: Set point tracking: evolution of the cold fluid
velocity vc(t).

hot fluid velocity vh is applied at t = 10 s. Figure 5 shows
variations of the cold fluid temperature at some positions
along the heat exchanger. From the obtained results, one
clearly notices that the disturbance effect observed at
z = 0 is attenuated and becomes invisible at the outlet
z = 1 of the heat exchanger (Figure 5), that is, on the
controlled variable. This attenuation is achieved by a
slight variation of the cold fluid velocity vc as shown by
Figure 6.

Remark 5: From a practical point of view, the
velocity or flow rate variation is achieved by a valve that
is characterized by a limited range. This means that some
desired temperatures cannot be achieved if they need
variations that exceed the specified range of the valve or
an important inlet hot fluid temperature. Thereby, the
analysis of the controllability and reachability properties
of the heat exchanger is an important step to specify
the set of the reachable set points. These questions, that
have been investigated in the literature (Alotaibi et al.,
2004; Sano, 2007), are out of the scope of the present
work.

6 Conclusion

The control of a linear 2× 2 system of hyperbolic
PDEs issued from first principles balances, based on
the input-output linearization approach, is investigated
in this paper. The manipulated variable is taken as
a parameter of the system to control a boundary



Feedback control of bilinear distributed parameter system by input-output linearization 7

Figure 4: Set point tracking: 3D temperature profiles.
Top: hot fluid temperature profile. Bottom: cold fluid
temperature profile.

output. This control configuration transforms the system
equations as a bilinear DPS. Then, based on the
notion of characteristic index that is a generalization
to the infinite dimensional systems of the well-known
concept of relative degree, a control law, of finite
dimensional nature, that ensures both tracking output
and disturbance rejection is developed. This control law
yields a linear time-varying 2× 2 system of hyperbolic
balance laws in closed loop. The stability condition of
the closed-loop is derived based on the stability of the
eigenvalues of the spatial operator in closed loop.

The tracking and disturbance rejection capabilities
of the control law developed are evaluated through
numerical simulation runs in the case of a co-current heat
exchanger. The obtained results show that the stated
feedback achieves good performance in both output
tracking and disturbance rejections.
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Figure 5: Disturbance rejection: effect of the disturbance vh(t) on the cold temperature Tc(z, t) at some positions in
the internal tube.
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