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1 Introduction 

Over the past decades, due to the increasing 

demands for reliability and survivability in modern 

aircraft, reconfigurable control has been widely 

developed and used in the flight control system (Rose 

et al. 2016; Wang et al. 2017). The planar vertical 

take-off and landing (PVTOL) aircraft is gaining 

more attention during the last few years. Many 

control strategies have been studied in order to fulfill 

the increasing safety demand and flight performance 

(Zhu et al. 2013; Xu et al. 2017; Zhu et al. 2018). As 

a non traditional design strategy, active disturbance 

rejection control (ADRC) was first proposed by Han 

Jingqing in 90s, and was introduced in English 

literature for the first time by Gao Zhiqiang (Han et 

al. 1999; Gao et al. 2001). ADRC can deal with the 

uncertainty of the general system and the complex 

nonlinear time-varying system, such as the coupling 

between the external disturbances, the unmodeled 

dynamics of the system and the unknown parameter 

perturbation. The most significant feature is that the 

disturbance can be estimated in real time by the 

extended state observer (ESO) and compensated by 

the feedback loop. So the output and stability of the 

whole system are adjusted (Zhao et al. 2015). In the 

study of process control, motion control applications 

and control theory, active disturbance rejection 

control is as widely used as PID control. It has a very 

obvious advantage for both high precision control 

and large scale integrated control. The information 

required for the controller only needs to be obtained 

from the input and output data of the object, without 

a precise mathematical model, and is widely used in 

nonlinear time-varying systems such a single input 

single output or multiple input multiple output 

(Sanjay et al. 2010; Zhao et al. 2016). 

The rest of the paper is organized as follows. 

Section 2 is focused on the statement of the dynamic 

model of the PVTOL aircraft and the model 

decoupling. Section 3 describes the reconfigurable 

control strategy. Simulation results are presented and 

discussed in Section 4. Finally, a brief conclusion 

and future work are given in Section 5. 

2 Dynamic Models and Model Decoupling 

2.1 Dynamic Model of PVTOL Aircraft 

The minimum number of state variable and input 

for hovering control of V/STOL aircraft is retained 

by using the PVTOL aircraft model as a benchmark 

model. Figure 1 shows the couple relationship 

between the roll moment and lateral thrust. 

 

In terms of aircraft modelling, the aircraft will be 

considered as a rigid system and the bending effect 

of its fuselage and wings will be ignored. As shown 

in Figure 1, its motion equations can be established 

in the following form: 
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where x  and y  are the horizontal and vertical 

motion of aircraft mass center after simplification;   

is the roll angle which is relative to the x  axis; 1u  

and 2u  are respectively the main thrust and roll 

torque control; [0,1]   is the coupling coefficient 

between the lateral thrust and roll torque and 

immeasurable.  

Remark 1 1u  and 2u  should be not too big due to 

the limitation of aircraft jet engines control and 

1 0u  . y(t) should have a very small amount of 

change or y(t)=0. 

2.2 Model Decoupling 

Consider the control matrix with coupling 

characteristics of the actual PVTOL system (1), the 

controlled variable 1u  and 2u  are led into, as 

follows: 
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Then the PVTOL model (1) can be converted into: 
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We define: 
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Figure1 Schematic drawing of the PVTOL aircraft 



    

sin

cos

x x

y y

 

 

     
      

     
  

             

 (5) 

Hence, the PVTOL aircraft model (3) can be 

transformed to: 
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3 Control Strategies 

In the past twenty years, ADRC has been 

successfully applied to many engineering fields to 

solve control problems, such as non circular 

machining, fault diagnosis, high performance motion 

control, chemical process control, aircraft control, 

robot control, and so on (Jin et al. 2013; Guo et al. 

2015). The active disturbance rejection controller 

(ADRC) mainly includes three parts (Han et al. 

1999). The first one is the tracking differentiator 

(TD). As a part of the control theory, it has been 

widely studied, and the convergence of the nonlinear 

tracking differentiator is also proved. As the second 

part of the ADRC, the extended state observer is 

mainly used to estimate the state of the system and 

the total disturbance. The convergence of the 

observer for the nonlinear expansion state of the 

single input and single output system is proved by 

Guo Baozhu (Huang et al. 2001; Xia et al. 2011; Guo 

et al. 2013). The extended state observer can also be 

widely used as a state observer in control theory, 

such as fault diagnosis. The last part is nonlinear 

state error feedback control law (NLSEF). 

In this paper, the Cascade ADRC is designed in 

the channel where x(t) has a strong coupling with  , 

to sustain the stability of the hovering aircraft during 

lateral maneuver when the fault occurs. Figure 2 

shows the system block diagram of the Cascade 

ADRC method. 

 

In this paper, the Taylor differentiator is designed 

as follows: 
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where v  is given signal, 
1v

 
is tracking signal, 2v

 
is 

tracking speed, 
1

  

is convergence rate. 

The formula (6) can be regarded as the two parts 

of the position subsystem and the attitude subsystem, 

which constitute the outer ring and inner loop of the 

system respectively. The two are series connection 

and can be expressed as: 
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Then the formula (8) can be transformed to: 
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where 1u 

 
and 2u 

is the virtual controlled variable 

respectively. 

For the position subsystem  (8), which is a 2 2  
coupled system, the ESO can be established 

respectively, as follows: 

11 1

11 12 01

12 13 02 1

13 03

( ,0.5, )

( ,0.25, )

e z x

z z e

z z fal e h u

z fal e h









 


 


  
  

     (13) 

21 2

21 22 01

22 23 02 2

23 03

( ,0.5, )

( ,0.25, )

e z x

z z e

z z fal e h u

z fal e h









 


 


  
  

    (14) 

ADRC 2

Attitude 
Subsystem

Position 
Subsystem

ADRC 1 

ADRC 3CADRC

PVTOL
1u 

2u 

,x y,d dx y

1u

1u

2u 

1 2 

 

Figure 2 The schematic of the proposed FTC 



    

where 
01 , 

02  and 
03  are the parameters of 

observer which need to determine. 
11z , 12z , 

13z , 

21z , 22z  and 23z  are the input variables of ESO. 

( ,0.5, )fal e h  and ( ,0.25, )fal e h  are the 

nonlinear function. h  is the integral step. The system 

will be tracked by 
11z , 12z , 

13z , 21z , 22z  and 

23z when the ESO in (14) is tuned properly. 

Then the virtual controlled variable 1u 

 
and 2u 

 

can be obtained: 
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The actual control variable can be obtained by the 

formula (11), (12), (15) and (16): 
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T
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From above, the attitude subsystem (9) and the 

position subsystem are series connected, and then the 

ESO can be established as follows: 
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After disturbance compensation, the control 

variable can be obtained by the error feedback 

control law: 
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where 1 2U u u   . 

As mentioned above, 
01 , 

02  and 
03  need to 

be tuned. (Gao et al. 2001) uses the bandwidth theory 

to determine the relevant parameters. For example, 

the characteristic equation of ESO (16) can be 

expressed, as: 
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It is shown that the estimator is better when the 

characteristic equation (20) is stable and then the 

equation coefficients meet the requirements. 

Defining:  
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Hence, we will obtain a good performance for 

Cascade ADRC by tuning the parameters. 

4 Control Strategies 

In this section, the MATLAB software is used for 

a couple of numerical simulations. For comparison, 

the results under normal and fault are presented 

simultaneously. The initial condition of the aircraft is 

   0 0 0 0 0 0
T T

x y   . Two scenarios are 

considered in the numerical simulations: a jammed 

5° and 10° in elevator respectively.  

As shown in Figure 3, the aircraft has normal 

flight in the first 20 seconds. When the elevator is 

jammed at 5 and 10 degrees respectively, the 

response curve of the system is shown as follows: 

 

 

 

Figure 3 The system output when the elevator is 

jammed 
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are less affected, and the vertical displacement is 

greatly influenced. When the elevator is jammed at 

10 degrees, the horizontal displacement and the roll 

angle oscillation are still not obvious, while the 

vertical displacement is larger than the former. From 

Figure 4, we can see that the impact of aircraft 

jammed fault on aircraft is relatively large. At this 

time, using the method proposed in this chapter, the 

adjustment time of the system will be shortened and 

the amplitude of the oscillation will be reduced. The 

system will be stable soon, and the aircraft will return 

to the expected position after a short wave of 

fluctuation. It shows that the reconfigurable control 

method is effective in fault of the actuator jammed, 

and the system performance is good and stable. 

5 Conclusions and Future Work 

A cascade active disturbance rejection controller is 

presented to accommodate partial loss fault for the 

PVTOL aircraft. According to the position subsystem 

within the multivariable coupling, and the series 

between subsystems of position and attitude, a active 

disturbance rejection controller (ADRC) is used to 

counteract the adverse effects when actuator faults 

occur. In addition, the Taylor differentiator is 

designed to improve the control precision based on 

the detailed research for tracking differentiator. Jams 

in an elevator are considered and the resulting control 

law is validated in the numerical simulations. The 

results demonstrate the satisfactory performance and 

robustness of the proposed method in the event of 

actuator failures. 

The future work is to apply the presented method 

in a VTOL aircraft which is no longer a simplified 

version. The performance and effectiveness will be 

tested in an actual aircraft model and then it could be 

used in real aircrafts for a variety of tasks. 
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