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1 Introduction

Some miscellaneous topics of research in the control
literature are the modelling, identification and control
of systems (Leandro and Kienitz, 2019; Tirandaz, 2019;
Habrache et al., 2019; Fadil et al., 2019; Wang, 2019;
Abdelhedi and Derbel, 2019; Lien et al., 2019a,b;
Vaidyanathan et al., 2019b). Significant research
attention has been devoted to the modelling and
applications of dynamical systems exhibiting chaos and
hyperchaos (Xu et al., 2019; Gusso et al., 2019; Gatabazi
et al., 2019; Singh and Roy, 2019; Cabanas et al.,
2019; Ginoux et al., 2019; Jahanshahi et al., 2019;
Rajagopal et al., 2019b; Daumann and Rech, 2019).
Xu et al. (2019) proposed a chaotic system based
on a circuit design involving a memristor model and
a meminductor model. Gusso et al. (2019) analyzed
the nonlinear dynamical model and the existence of
chaos in suspended beam micro/nanoelectromechanical
(MEMS/NEMS) resonators that are actuated by two-
sided electrodes. Gatabazi et al. (2019) analyzed 2-D and
3-D Grey Lotka-Volterra Models (GLVM) and explored
their application in cryptocurrencies such as Bitcoin,
Litecoin and Ripple. Singh and Roy (2019) studied
microscopic chaos control of a chemical reactor system
via nonlinear active plus proportional integral sliding
mode control. Cabanas et al. (2019) discovered chaos
in driven nano-magnets such as spin valves by using
the magnetic energy and the magnetoresistance. Ginoux
et al. (2019) discovered chaos in a dynamical system
modelling the illicit drug consumption in a population
comprising drug users and non-users. Jahanshahi et al.
(2019) discussed a finance hyperchaos system via entropy
analysis and control methods. Rajagopal et al. (2019)
proposed a new van der Pol-Duffing (MVPD) snap
oscillator exhibiting hyperchaos and implemented the
hyperchaos system in FPGA. Daumann and Rech (2019)
reported hyperchaos in a heat-flux convection model.

Jerk and hyperjerk dynamical systems are important
classes of mechanical systems. If y(t) denotes the
displacement of a moving object, then Dy(t) = dy

dt

represents its velocity, D2y(t) = d2y
dt2 its acceleration,

D3y(t) = d3y
dt3 its jerk and D4y(t) = d4y

dt4 its hyperjerk.
An autonomous jerk differential equation has the

general representation given by

D3y = F (y,Dy,D2y) (1)

An autonomous hyperjerk differential equation has
the general representation given by

D4y = F (y,Dy,D2y,D3y) (2)

The hyperjerk differential equation (2) can be
displayed in a system form as

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = F (y1, y2, y3, y4)

(3)
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Recently, good interest has been devoted to
the finding of both jerk and hyperjerk systems in
the chaos literature (Vaidyanathan et al., 2018a;
Vaidyanathan, 2017; Vaidyanathan et al., 2017;
Vaidyanathan, 2016, 2015e; El-Nabulsi, 2018; Prousalis
et al., 2018; Ahmad and Srisuchinwong, 2018; Tsafack
and Kengne, 2018; Daltzis et al., 2018; Vaidyanathan
et al., 2018b; Wang et al., 2017). Vaidyanathan
et al. (2018a) reported a new chaotic jerk system
with two quadratic nonlinearities and discussed its
applications to electronic circuit implementation and
image encryption. Vaidyanathan (2017) reported a new
3-D chaotic jerk system with two cubic nonlinear
terms and discussed its adaptive synchronisation
using backstepping control. Vaidyanathan et al.
(2017) analyzed a new chaotic jerk system with its
applications for circuit simulation and voice encryption.
Vaidyanathan (2016) announced a new chaotic jerk
system and discussed its adaptive synchronisation using
backstepping control. Vaidyanathan (2015) proposed
a new chaotic jerk system with two quadratic
nonlinearities.

El-Nabulsi (2018) reported jerk and hyperjerk
systems in the study of nonlocal effects in fluids, plasmas
and solar physics. Prousalis et al. (2018) observed
extreme multi-stability in a 4-D hyperjerk memristive
system with infinite number of rest points. Ahmad and
Srisuchinwong (2018) reported a 4-D hyperjerk system
with hyperchaos and having no rest point. Tsafack
and Kengne (2018) reported a 5-D hyperjerk system
with circuit design. Daltzis et al. (2018) reported a 4-
D hyperjerk system with hyperchaos and built a real
circuit design for the hyperjerk system. Vaidyanathan
et al. (2018b) reported a new 4-D chaotic hyperjerk
system and discussed its applications in RNG, image
encryption and steganography. Wang et al. (2017) found
a new 4-D hyperchaotic hyperjerk system with coexisting
attractors.

This work reports a new 4-D dynamical hyperjerk
system with hyperchaos. The proposed nonlinear
mechanical system with hyperchaos has two nonlinear
terms. A novel feature of the proposed hyperjerk system
is the existence of simple Hopf bifurcations emerging
from the two saddle-focus equilibrium points of the
system. A detailed bifurcation analysis of the new
hyperjerk plant with theory and simulations is discussed.

The synchronisation problem of the chaos theory is
to consider a pair of chaotic systems designated as the
master and slave systems and the design goal is to build
feedback control using their state trajectories so as to
drive the states of the slave system to asymptotically
track those of the master system asymptotically
(Vaidyanathan, 2015g; Sundarapandian, 2013). Many
control strategies are available to deal with the control
and synchronisation of chaotic systems such as the
active control (Vaidyanathan, 2015f, 2013, 2011a,b),
adaptive control (Vaidyanathan, 2012, 2015c,d,i,h,a),
passive control (Vaidyanathan et al., 2019c; Gritli and
Belghith, 2016), backstepping control (Vaidyanathan
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et al., 2015; Rasappan and Vaidyanathan, 2012; Ricci
et al., 2018), fuzzy control (Vaidyanathan and Azar,
2016; Boulkroune et al., 2016), etc.

Utkin and Shi (1996) proposed an improved sliding
control method named integral sliding mode control
(ISMC). In contrast with conventional sliding mode
control, the system motion under integral sliding mode
has a dimension equal to that of the state space.
In ISMC, the system trajectory always starts from
the sliding surface. Accordingly, the reaching phase is
eliminated, and robustness in the whole state space is
assured (Utkin and Shi, 1996).

In this work, we use Integral Sliding Manifold Control
(ISMC) for the global hyperchaos synchronisation of
the new hyperjerk system with itself. Sliding mode
controllers have many advantages such as robustness,
fast convergence, etc., and have many applications in
science and engineering (Vaidyanathan, 2015b; Azar and
Zhu, 2015; Vaidyanathan and Volos, 2016; Vaidyanathan
and Lien, 2017).

Finally, a circuit model using MultiSim of the
new hyperjerk system with hyperchaos is designed for
practical implementation. We show that the MultiSim
outputs of the hyperjerk system exhibit a good match
with the MATLAB simulations of the same system.
Circuit realizations of chaos and hyperchaos dynamical
systems are useful for real-world implementations
(Rajagopal et al., 2019a; Nwachioma et al., 2019;
Vaidyanathan et al., 2019a).

2 A new hyperjerk model

In this work, we propose a new hyperjerk model with the
4-D dynamics

ẋ = y

ẏ = z

ż =w

ẇ=−x− y − ax2 − bz + cw − x2|x|w

(4)

which consists of two nonlinear terms in the fourth
differential equation.

To simplify the notation, we denote the state vector
as X = (x, y, z, w) and the parameter set as A = (a, b, c).

We shall show that the hyperjerk model (4) exhibits
hyperchaos when A takes the values

A = (a, b, c) = (0.3, 3.6, 0.1) (5)

The Lyapunov exponents of the 4-D hyperjerk model
(4) for the initial conditions X(0) = (0.1, 0, 0.1, 0) and
the parameter values (a, b, c) = (0.3, 3.6, 0.1) can be
computed as

LE1 = 0.1158
LE2 = 0.0251
LE3 = 0
LE4 =−1.1086

(6)

Figure 1: MATLAB simulation showing the Lyapunov
exponents of the new hyperjerk model (4)

Figure 1 shows the estimation of the Lyapunov
exponents of the hyperjerk model (4).

Since LE1 and LE2 are positive and LE1 + LE2 +
LE3 + LE4 < 0, it is deduced that the 4-D hyperjerk
model (4) has a dissipative and hyperchaotic attractor.
Furthermore, DKY , the Kaplan-Yorke dimension of the
hyperjerk model (4) can be estimated as

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.1271 (7)

Figures 2-5 give MATLAB simulations of the 4-
D hyperjerk model (4) for the hyperchaos case when
(a, b, c) = (0.3, 3.6, 0.1) and the initial state X(0) =
(0.1, 0, 0.1, 0).

Figure 2: MATLAB simulation showing the (x, y)-
planar plot of the hyperjerk model (4) depicting
hyperchaos for X(0) = (0.1, 0, 0.1, 0) and parameter
values (a, b, c) = (0.3, 3.6, 0.1).

3 Dynamic analysis of the hyperjerk system

The four-dimensional hyperjerk system is

ẋ = y (8a)
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Figure 3: MATLAB simulation showing the (x, z)-
planar plot of the hyperjerk model (4) depicting
hyperchaos for X(0) = (0.1, 0, 0.1, 0) and parameter
values (a, b, c) = (0.3, 3.6, 0.1).

Figure 4: MATLAB simulation showing the (z, w)-
planar plot of the hyperjerk model (4) depicting
hyperchaos for X(0) = (0.1, 0, 0.1, 0) and parameter
values (a, b, c) = (0.3, 3.6, 0.1).

ẏ = z (8b)

ż = w (8c)

ẇ = −x− y − ax2 − bz + cw − x2 | x | w (8d)

While the chosen set of parameter values are (a, b, c) =
(0.3, 3.6, 0.1), we find it instructive to explore the
dynamics of system (8) for other parameter values.
In this context, we find the equilibrium states and
determine which bifurcations are possible.

The equilibrium states are found by setting the right-
hand-side (RHS) of (8) to zero. Thus, we get

y = 0 (9a)

z = 0 (9b)

w = 0 (9c)

−x− y − ax2 − bz + cw − x2|x|w = 0 (9d)

Figure 5: MATLAB simulation showing the (x,w)-
planar plot of the hyperjerk model (4) depicting
hyperchaos for X(0) = (0.1, 0, 0.1, 0) and parameter
values (a, b, c) = (0.3, 3.6, 0.1).

From (9a), (9b) and (9c), we see that

y = 0, z = 0, w = 0 (10)

Substituting these values into (9d), we get

−x− ax2 = 0 or − x(1 + ax) = 0 (11)

Hence, we obtain two equilibria: the trivial fixed point
(x, y, z, w)0 = (0, 0, 0, 0) and a nontrivial equilibrium
state: (x, y, z, w)e = (0, 0, 0,−1/a).

The linear stability of the equilibrium states is found
by computing the fourth order Jacobian matrix:

J =


0 1 0 0
0 0 1 0
0 0 0 1

−1− 2ax− 3swx2 −1−b c− sx3

 , (12)

where s = 1 if x ≥ 0 and s = −1 if x < 0. Linear stability
is found by computing the determinant of J − λI4 for
each equilibrium state where λ give the eigenvalues and
I4 is the (4, 4) identity matrix.

(i) If x = 0, we obtain the quartic characteristic
equation:

λ4 − cλ3 + bλ2 + λ+ 1 = 0. (13)

(ii) If x = −1/a, we obtain the quartic characteristic
equation:

λ4 − (c+ s/a3)λ3 + bλ2 + λ− 1 = 0. (14)

3.1 Bifurcations

No steady bifurcations are possible, since λ = 0 cannot
be a root of either (13) or (14). Thus, we consider the
possibility of simple Hopf bifurcations. (Multiple Hopf
bifurcations are also not possible, because the coefficient
of λ in these equations cannot vanish.)
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We firstly investigate whether the trivial equilibrium
solution undergoes a Hopf bifurcation by substituting
λ = iω into (13). This gives the pair of equations

ω4 − bω2 + 1 = 0, cω2 + 1 = 0. (15)

The second of these equations gives ω2 = −1/c > 0,
so that c must be negative, and the frquency of the
oscillation at bifurcation is given by ω =

√
−1/c. For

real roots to the first equation we require

ω2 =
b

2
± 1

2
[b2 − 4]1/2,

so that b > 2 for real solutions. Substituting ω2 = −1/c
into the first equation in (15) gives

c2 + bc+ 1 = 0, (16)

which gives two possible values for c:

c =
1

2
(−b±

√
[b2 − 4]). (17)

When b = 3.6, (17) gives cHB+ = −0.3033 and cHB− =
−3.2966, with frequencies from (15) of ω+ = 0.5507 and
ω− = 1.8157 respectively. Figure 6 shows the variation
of the complex eigenvalues as c varies. The two Hopf
bifurcations, labelled as HB± are given by the two roots
of (16).

Figure 6: A bifurcation plot of the complex
eigenspectrum of (13) as c varies. There are two Hopf
bifurcation points at which the real part of the complex
eigenvalue crosses the imaginary axis (shown as the blue
curve crossing the red line). When the imaginary part
of the spectrum terminates on the zero line, all the
eigenvalues become real.

A Hopf bifurcation is also possible for the nontrivial
equilibrium state x = −1/a. Substituting λ = iΩ into
(14), and again separating into real and imaginary parts,
we obtain

Ω4 − bΩ2 − 1 = 0, (c+ s/a3)Ω2 + 1 = 0, (18)

which combine to give

c+ s/a3 =
1

2
(b±

√
[b2 + 4]). (19)

We can either fix b and a to determine c or fix b and c
to determine a for the existence of a Hopf Bifurcation.
Since Ω2 must be positive in the second equation of (18),
we must take c+ s/a3 < 0. This implies that s = −1,
so that x < 0 and a > 0. From (19), we must therefore
take the negative square root, since

√
[b2 + 4] > b, and

there is only one choice for the Hopf Bifurcation. If we
fix a = 0.3 and c = 0.1, we find that bH = −36.91. If
we fix a = 0.3 and b = 3.6, we find that cHB = 36.778,
whereas if we fix b = 3.6 and c = 0.1, we obtain a =
1.407, with a corresponding frequency of Ω = 1.9645.
Figure 7 shows the corresponding spectrum for the
nontrivial equilibrium state, as a varies for b = 3.6 and
c = 0.1. Because of the modulus sign in (9d), the curves
are reflectionally symmetric about a = 0.

Figure 7: This figure is similar to Figure 6, but it is
plotted as a varies, and includes the real eigenvalues
(magenta) as well as the complex eigenspectrum.

Figure 8 shows the variation of real and complex
eigenvalues for the nontrivial equilibrium state as c varies
for a = 0.3 and b = 3.6. Note the range of c values lies
well beyond the chosen parameter value for c of c = 0.1.

Figure 8: This figure is similar to Figure 6, but it is
plotted as c varies, and includes the real eigenvalues
(magenta) as well as the complex eigenspectrum.
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3.2 Numerical integrations

Figure 9 shows a bifurcation transition plot of xmax

as c varies. There are two regimes. A chaotic region
for c > 0 undergoes a period halving bifurcation to
create a periodic solution, which disappears in the Hopf
bifurcation when c = −0.304. For −3.297 < c < −0.304,
we only find stable steady states. The second Hopf
bifurcation at c = −3.297 gives rise to period-doubling
and halving bifurcations. When we tried to continue the
integrations beyond the two end points of the plot, we
found that the system became unbounded as all three
variables grew.

Figure 9: Part of the bifurcation transition plot of xmax

as c varies. Clearly shown are the two Hopf bifurcation
values, derived in the previous section.

Figure 10: Bifurcation transition plot of xmax as a
varies.

Figure 10 shows the bifurcation transition plot of
the maxima of x over each cycle as a varies. From
the pervious section, we saw that the nontrivial fixed
point can undergo a Hopf bifurcation when a = 1.407
for b = 3.6 and c = 0.1. The range of chaotic states
in Figure 4 lies well inside −1.407 < a < 1.407. If we

set a = 1.4, system (1.1) evolves to a state in which
both x and y grow without bound, z → −1.76718 and
w → 0. Instead if we set a = 1.41, both x and y again
evolve without bound, z → −1.7743 and again w → 0.
These values fall on either side of the Hopf bifurcation
value for the nontrivial fixed point. We conclude that, in
contrast to the trivial fixed point, this Hopf bifurcation
is subcritical.

Figure 11: Bifurcation transition plot of xmax as b
varies.

Figure 11 shows the bifurcation transition plot of
xmax as b varies. For the chosen set of parameter values,
we see that the dynamics falls within the chaotic region.
There are other regions for b that give rise to periodic
states (1.5 < b < 3.2) or mutiply periodic solutions, such
as period-two cycles. Numerical integrations show that
the periodic solution continues beyond b = 15.

4 Hyperchaos synchronisation of the new
hyperjerk dynamical model

As a control application, this section details the control
design of achieving global hyperchaos synchronisation
of the new 4-D hyperjerk dynamical model (4) with
itself (drive-response systems) via integral sliding mode
control (ISMC).

As the drive system, we focus on the nonlinear plant


ẋ1 = y1

ẏ1 = z1

ż1 =w1

ẇ1 =−x1 − y1 − ax21 − bz1 + cw1 − x21 | x1 | w1

(20)

where X1 = (x1, y1, z1, w1) is the state and a, b are
constant parameters.
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As the slave system of the synchronisation process,
we focus on the nonlinear plant



ẋ2 = y2 + νx

ẏ2 = z2 + νy

ż2 =w2 + νz

ẇ2 =−x2 − y2 − ax22 − bz2 + cw2

−x22 | x2 | w2 + νw

(21)

where X2 = (x2, y2, z2, w2) is the state and νx, νy, νz, νw
serve as the sliding controls.

Next, we define the synchronisation error between the
drive system (20) and the response system (21) in the
following manner:


εx = x2 − x1
εy = y2 − y1
εz = z2 − z1
εw =w2 − w1

(22)

The synchronisation error dynamics can be easily
determined as follows:

ε̇x = εy + νx

ε̇y = εz + νy

ε̇z = εw + νz

ε̇w =−εx − εy − bεz + cεw − a(x22 − x21)

−x22 | x2 | w2 + x21 | x1 | w1 + νw

(23)

The integral sliding surface connected with each
error state can be classified according to the following
equations.



σx = εx + λx
t∫
0

εx(τ) dτ

σy = εy + λy
t∫
0

εy(τ) dτ

σz = εz + λz
t∫
0

εz(τ) dτ

σw = εw + λw
t∫
0

εw(τ) dτ

(24)

Using (24), we derive the differential equations of the
integral sliding surfaces as follows:


σ̇x = ε̇x + λx εx

σ̇y = ε̇y + λy εy

σ̇z = ε̇z + λz εz

σ̇w = ε̇w + λw εw

(25)

We suppose that λx, λy, λz, λw are positive constants.
Thus, the Hurwitz condition is satisfied.

Using integral sliding mode control (Vaidyanathan
and Lien, 2017), we take the feedback control as

νx =−εy − λxεx − τxsgn(σx)− κxσx
νy =−εz − λyεy − τysgn(σy)− κyσy
νz =−εw − λzεz − τzsgn(σz)− κzσz
νw = εx + εy + bεz − cεw + a(x22 − x21)

+x22 | x2 | w2 − x21 | x1 | w1

−λwεw − τwsgn(σw)− κwσw

(26)

Substitution of the control law (26) into (23) results
in the closed-loop error system

ε̇x =−λxεx − τxsgn(σx)− κxσx
ε̇y =−λyεy − τysgn(σy)− κyσy
ε̇z =−λzεz − τzsgn(σz)− κzσz
ε̇w =−λwεw − τwsgn(σw)− κwσw

(27)

We apply Lyapunov stability theory (Vaidyanathan
and Lien, 2017) to establish the main control result of
this section, which is stated in the following theorem.

Theorem 1: The new 4-D hyperjerk systems
exhibiting hyperchaos represented by (20) and (21) are
globally and completely synchronised for all initial states
by the integral SMC law (26) where λx, λy, λz, λw, κx,
κy, κz, κw, τx, τy, τz, τw are taken as positive constants.

Proof. As the Lyapunov function, we consider

V (σx, σy, σz, σw) =
1

2

(
σ2
x + σ2

y + σ2
z + σ2

w

)
(28)

It is quite evident to observe that V is a positive
definite, quadratic, function on R4.

The time-derivative of the function V along the error
trajectories is calculated using (27) and (25) as follows:

V̇ =−τx|σx| − τy|σy| − τz|σz| − τw|σw|
−κxσ2

x − κyσ2
y − κzσ2

z − κwσ2
w

(29)

Thus, V̇ is a negative definite function defined on R4.
Hence, the proof is complete by Lyapunov stability

theory (Vaidyanathan and Lien, 2017). �
For numerical simulations in MATLAB, we consider

the parameters as in the hyperchaos case for
the hyperjerk master-slave systems, viz. (a, b, c) =
(0.3, 3.6, 0.1).

The sliding constants are chosen so as to meet the
sliding condition as well as to ensure fast convergence
of the synchronization errors. Thus, we take κx = κy =
κz = κw = 10.

We also take τx = τy = τz = τw = 0.1.
Furthermore, we take λx = λy = λz = λw = 20.
The initial condition of the master system (20)

is taken as x1(0) = 5.2, y1(0) = 3.9, z1(0) = 7.5 and
w1(0) = 4.1.

The initial condition of the slave system (21) is taken
as x2(0) = 2.7, y2(0) = 8.4, z2(0) = 3.4 and w2(0) = 1.9.
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Figures 12-16 illustrate the sliding controller based
global synchronisation between the two hyperjerk
systems (20) and (21).

Figure 12: MATLAB simulation showing the
synchronisation of the states x1 and x2 of the hyperjerk
systems (20) and (21).

Figure 13: MATLAB simulation showing the
synchronisation of the states y1 and y2 of the hyperjerk
systems (20) and (21).

5 Circuit realization of the new 4-D
hyperjerk system with hyperchaotic
attractor

In this section, electronic circuit of the new 4-D
hyperjerk system with hyperchaos attractor is designed
and realized. The complete electronic circuit includes
four capacitors (C1, C2, C3, C4), twenty resistances
(R1, ..., R20), nine operational amplifiers (TL082CD),
two diodes (1N4148) and three multipliers (AD633JN).

Figure 14: MATLAB simulation showing the
synchronisation of the states z1 and z2 of the hyperjerk
systems (20) and (21).

Figure 15: MATLAB simulation showing the
synchronisation of the states w1 and w2 of the hyperjerk
systems (20) and (21).

Figure 16: MATLAB simulation showing the time-
history of the synchronisation errors between the
hyperjerk systems (20) and (21).
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Figure 18: MultiSim circuit simulation of the
hyperchaos attractor of the new 4-D hyperjerk system
(30) in x− y plane

By applying the Kirchhoff laws, the electronic circuit
of system (4) in Figure 17 can be described by the
following equations:



ẋ = 1
C1R1

y

ẏ = 1
C2R2

z

ż = 1
C3R3

w

ẇ=− 1
C4R4

x− 1
C4R5

y − 1
10C4R6

x2

− 1
C4R7

z + 1
C4R8

w − 1
100C4R9

x2|x|w

(30)

The signals (x, y, z, w) come from Eq. (30),
correspond to the state voltages of four channels,
respectively. The values of all electronic components in
Figure 17 are determined as: R6 = 33.33 kΩ, R7 = 27.77
kΩ, R8 = 1 MΩ, R9 = 1 kΩ, R1 = R2 = R3 = R4 =
R5 = R10 = R11 = R12 = R13 = R14 = R15 = R16 =
R17 = R18 = R19 = R20 = 100 kΩ and C1 = C2 = C3 =
C4 = 1nF. The power supplies of all active devices are
± 15 Volts. MultiSim simulation results in Figures 18-21
show hyperchaos attractor, which agree with the Matlab
simulation plots shown Figures 2-5.

6 Conclusions

We reported a new 4-D dynamical hyperjerk system with
hyperchaos with two saddle-focus rest points exhibiting
Hopf bifurcation. As a control application, an integral
sliding mode controller was designed for the global
hyperchaos synchronisation of the new hyperjerk system
with itself. Finally, a circuit model using MultiSim
of the new hyperjerk system with hyperchaos was
designed for practical implementation. As future work,
the proposed hyperjerk system can be implemented for
secure communication devices and encryption.
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