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Abstract

A Quasi-Bilinear Proportional-plus-Integral (QBPI)
controller is proposed for the attitude control of di-
rectional drilling tools for the oil and gas indus-
try; and it is designed based on the proposed quasi-
bilinear model of the directional drilling tool. The
quasi-bilinear model accurately depicts the nonlin-
ear characteristics of the directional drilling tool to
a greater extent than the existing linear model, thus
extends the scope of appropriate performance. The
proposed QBPI control system is an LTI system and
it is shown to be exponentially stable. The proposed
QBPI controller outstandingly diminishes the delete-
rious impact of disturbances and measurement delay
regarding to performance and stability of the direc-
tional drilling tool, and it yields invariant azimuth
responses. Drilling cycle scheme which captures the
drilling cycle and toolface actuator dynamics of the
directional drilling tool, is developed. The servo-
velocity and servo-position loops of the toolface servo-
control architecture are proven to be robustly stable
using Kharitonov’s Theorem.

1 Introduction

The extension of life of existing oilwells and the ex-
ploitation of difficult-to-commercialize and smaller
oilwells are currently done by the used of directional
drilling tools [Pedersen et al., 2009]. Directional
drilling principally requires the control of the incli-
nation and azimuth angles, that is, the attitude con-
trol of the directional drilling tool. With the auto-
matic control of the inclination and azimuth angles

of the directional drilling tool, oil and gas production
is maximised and the cost per foot of the wellbore is
minimised.

The primary elements of a regular directional
drilling system are shown in Figure 1. An integral ele-
ment of the directional drilling system is the Bottom-
Hole Assembly (BHA), and it is made up of stabilis-
ers, steering unit (actuator), control unit, Logging
While Drilling (LWD) subsystem, Power Generation
Module (PGM), Direction and Inclination (D&I) sen-
sor, Measurement While Drilling (MWD) subsystem
and other elements. The BHA in combination with
the drill pipe is known as drill string. The weight
and torque transmission from the top drive (situated
at the surface) to the bit (situated underneath the
earth’s surface) is provided by the drill string. In
the course of the propagation of the wellbore, the
rocks are crushed by the bit and the lubrication and
cooling of the rocks crushing process is done by the
drilling mud. Through the drilling string, the drilling
mud is transmitted from the surface to the bit and
from the bit with the rock-cuttings to the surface
through the annulus - the space between the well-
bore and the drill string. At the surface, after the
rock-cuttings are removed from the drilling mud, the
drilling mud is retransmitted. The curvature and di-
rection of the directional drilling tool are changed as
required through the steering unit (actuator). The
MWD and LWD subsystems handle the assessments,
measurements and surveys of physical parameters and
formation properties, respectively. More details of the
directional drilling system and its functions are pro-
vided in Short [1993], Inyang [2017], Devereux [1999]
and Baker [1996].

The inclination angle, θinc and azimuth angle, θazi
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Figure 1: Schematic of a directional drilling system
and its primary components
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shown in Figure 2 are sensed and measured through
the used of D&I sensor. The θinc ∈ [0◦, 180◦] de-
notes the angular deviation from the vertical with
180◦, 90◦ and 0◦ corresponding to upward, horizontal
and downward, respectively. The θazi ∈ [0◦, 360◦) is
assessed based on the Earth’s magnetic field projec-
tion in the horizontal plane, where due West, South,
East and North depicts 270◦, 180◦, 90◦ and 0◦, re-
spectively.

Figure 2: Typical steering and attitude parameters of
directional drilling tool

During the directional drilling operations, the tra-
jectory and attitude control is done through the im-
plementation of the control algorithms in the control
unit. It is noted that communication between the
downhole and surface is limited [Inyang and Whid-
borne, 2019]. Therefore, the implementation of the
control algorithms must be done downhole. The well-

bore surrounding is extremely harsh, and could be
many kilometres far down from the surface. It is ne-
cessitated that the control algorithms have to sim-
ple because of the extreme harsh surrounding and re-
stricted power supply.

The design of a general system-independent atti-
tude control algorithm for directional drilling tools is
described in this article. In Yonezawa et al. [2002]
and Genevois et al. [2003], the need for attitude con-
trol of directional drilling tools is elucidated, and con-
trol algorithms by holding the toolface angle to con-
trol the orientation of the directional drilling tools is
proposed. Genevois et al. [2003] elucidated that the
azimuth control is the attitude control primary chal-
lenge, and that it is necessary for closed-loop “shoot
and forget systems”. Several azimuth and inclination
control methods highlighted in literature are devel-
oped particularly for precise system configurations.
For example, Yinghui and Yinao [2000] proposed an
Automatic Inclination Controller (AIC) to reduce the
number of round trip of the tool orientation and to
drill economically; and Kuwana et al. [1994], with the
application of double-way telemetry communication
connections with the surface, proposed an azimuth
and inclination control system. Some recent control
algorithms include a Bilinear Proportional plus Inte-
gral (BPI) controller [Inyang and Whidborne, 2019], a
hybrid method consisting of double automation levels
for trajectory control of the tool [Matheus et al., 2014,
2012], a modified Smith predictor-BPI controller [In-
yang and Whidborne, 2017], a model-based robust
controller [Kremers et al., 2016], a Constant Build
Rate (CBR) controller [Panchal et al., 2012], a dy-
namic state-feedback controller design for 3-D direc-
tional drilling systems [van de Wouw et al., 2016],
a modified Smith predictor-CBR controller [Inyang
et al., 2017], a Discrete Time (DT) controller [Pan-
chal et al., 2012], an optimal H∞ controller [Bayliss
and Whidborne, 2015], a linear quadratic Gaussian
controller [Bayliss et al., 2015] and a robust PI con-
troller [Panchal et al., 2010].

With the application of a first-order Taylor series
approximation of nonlinear models at a certain op-
erating point, the dynamics of physical systems are
usually modelled as linear models. Clearly, the linear
models may be inaccurate when considering a broader
operating range as compared to bilinear models which
capture the dynamics of the nonlinear systems more
accurately (see Inyang and Whidborne [2019], Bruni
et al. [1974], Schwarz and Dorissen [1989]). Bilinear
models can describe nonlinear characteristics over a
broader operating range, therefore, extends the scope
of appropriate performance and they are regarded to
be outstandingly beneficial in applications to physical
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systems [Martineau et al., 2002]. Generally, the state
space representation of a Multiple-Input Multiple-
Output (MIMO) bilinear system is given as [Kim and
Lim, 2003]:

ẋ = Ax+

(
B +

N∑

i=1

xiMi

)
u (1)

where N is the number of augmented states and
expansion terms, u ∈ R

m×1 is the control vector,
A,B,C and Mi are constant matrices of appropri-
ate dimensions and x ∈ R

n×1 is the vector of state
variables.

In this article, a quasi-bilinear model of the direc-
tional drilling tool is developed by applying the poly-
nomialisation technique [Gu, 2011]. Quasi-bilinear
system is considered as an approximation of a non-
linear system by a polynomial system and further
simplifying it, without loss of generality, by “freez-
ing” a particular term and considering it as a “quasi”
bilinearising operating point, thereby resulting to a
system which can be expressed in the form of (1).
In this case, with the application of the polynomial-
isation technique, the approximation of the nonlin-
ear system in the polynomial system form is first ob-
tained, and then to further simplify the polynomial
system, without loss of generality, a modelling mod-
ification is made by considering a particular term as
a “quasi” bilinearising operating point to obtain a
quasi-bilinear system. For various reasons, various re-
searchers have presented that modelling modification
can be done to a system without loss of generality.
For example, Tse and Adams [1992] proposed a quasi-
linear model of DC-DC converters by considering the
perturbation of an approximate large-signal equation
around a “varying” operating point in a reduced vari-
able space, White et al. [2007] proposed quasi-LPV
model of missile by the inclusion of explicit depen-
dence of the aerodynamic derivatives on the external
parameters (roll angle, Mach number) and incidences
(state vectors) to the linearised nonlinear model of
the missile.

During directional drilling operations, the tool is
subjected to time delay on the feedback measure-
ments and disturbances. The lengthy time delay is
as a result of the fact that the attitude change of the
tool is measured by the D&I sensor and it is, by ne-
cessity, situated several distance (usually some tens
of feet) behind the bit. The increase of the distance
of the bit from the D&I sensor leads to the increase of
time delay, and conversely, the increase of the Rate of
Penetration (ROP) leads to the decrease of the time
delay. While the disturbance arises due to the vari-
ation of rock formations, a likelihood for the tool to

drop vertically due to gravity, and to drift towards
a horizontal orientation. Though good performance
is provided by the PI controller proposed by Panchal
et al. [2010] for the attitude control of the directional
drilling tool, it is inadequately robust to handle the
deleterious impact of the time delay on feedback mea-
surements and disturbances. Also, the PI controller
proposed by Panchal et al. [2010] provides inconsis-
tent azimuth responses when it operates beyond its
designed operating point.

With the extension of some of the works of Panchal
et al. [2010], this article proposes a Quasi-Bilinear
Proportional plus Integral (QBPI) controller for the
attitude control of the directional drilling tool that is
adequately robust to handle the deleterious impact of
the time delay on feedback measurements and distur-
bances. The QBPI controller provides invariant az-
imuth responses for a broader operating range of the
directional drilling tool operations. The simplicity of
the QBPI controller makes it easy to implement in di-
rectional drilling tools for cost-effective field develop-
ment, more effective drilling and improved capability
of accessing difficult reservoirs.

The remaining part of this article is structured as
follows: Section 2 summarises the earlier work; Sec-
tion 3 presents the development and accuracy of a
quasi-bilinear model of the directional drilling tool;
Section 4 covers the development of a drilling cycle
scheme used for High-Fidelity Model (HFM) simula-
tion analyses, as well as the robust stability analyses
of the servo-velocity and servo-position loops of the
drilling cycle scheme; Section 5 presents the design of
QBPI controller; Section 6 covers the stability anal-
ysis of QBPI controller; Section 7 presents the Low-
Fidelity Model (LFM) and HFM simulation results;
and Conclusions are presented in Section 8.

2 Summary of Earlier Work

The model proposed by Panchal et al. [2010] is illus-
trated in Figure 2 and it is given as:

θ̇inc = Vrop (Udls cosUtf − Vdr) (2)

θ̇azi =
Vrop

sin θinc
(Udls sinUtf − Vtr) (3)

and with the application of control transformation

given as: Udls = Kdls

√
(Uazi)

2
+ (Uinc)

2
and Utf =

ATAN2 (Uazi, Uinc), the model, (2) and (3) is partially
linearised and decoupled as follows [Panchal et al.,
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2010]:

θ̇inc = VropKdlsUinc (4)

θ̇azi =
Vrop

sin θinc
KdlsUazi (5)

where θazi is the azimuth angle, Utf is the toolface
angle control input, Kdls is the open-loop curva-
ture capability of the tool, Uinc is the virtual con-
trol inclination, Vdr is the drop rate disturbance
(Vdr = α sin θinc), Udls is the curvature, also known as
“dogleg severity” which is the product of duty cycle
and Kdls, α is a constant, Uazi is the virtual control
for the azimuth, Vtr is the turn rate bias disturbance,
Vrop is the rate of penetration, a time-varying param-
eter, and θinc is the inclination angle. Matheus et al.
[2014, 2012] (see also Cockburn et al. [2011], Matheus
and Naganathan [2010]) have also used the model, (2)
and (3) in their work with the presentation of field
tested results to show the fidelity of the model.

Based on kinematic considerations of directional
drilling tool, the model, (2) and (3) is derived. It does
not take into consideration the lateral and torsional
dynamics of the BHA and drillstem. Also, it does not
take into consideration the drilling cycle and toolface
actuator dynamics, hence, in Section 4, a drilling cy-
cle scheme which captures the drilling cycle and tool-
face actuator dynamics is developed and is used for
HFM simulation analyses in Section 7. Note that in
(3) there is a singularity when θinc = 0◦, hence, the
model, (2) and (3) is limited to attitudes such that
θinc is not close to 0◦.

3 Quasi-Bilinear Model of Di-

rectional Drilling Tool

In this section, the polynomialisation technique [Gu,
2011] is applied to the partially linearised and decou-
pled system, (4) and (5), to obtain a quasi-bilinear
model of the directional drilling tool. As presented
in the remainder of this section, with the application
of the polynomialisation technique, the approxima-
tion of (4) and (5) in the polynomial system form is
first obtained, and then to further simplify the poly-
nomial system, without loss of generality, a modelling
modification is made by considering a particular term
as a “quasi” bilinearising operating point to obtain a
quasi-bilinear system.

Polynomialisation technique is applied to (4) and

(5) by introducing the following state variables:

x1 = θinc

x2 = θazi

x3 =
1

sin(θinc)
(6)

x4 = sin(θinc)

x5 = cos(θinc)

Differentiating (6) with respect to time and substi-
tuting (4), (5) and (6), the following is obtained:

ẋ1 = θ̇inc = aUinc

ẋ2 = θ̇azi = ax3Uazi

ẋ3 = −
1

[sin(θinc)]2
θ̇inc cos(θinc) = −ax̂2

3x5Uinc (7)

ẋ4 = θ̇inc cos(θinc) = ax5Uinc

ẋ5 = −θ̇inc sin(θinc) = −ax4Uinc

where a = VropKdls, x̂
2
3 is considered as a “quasi” bi-

linearising operating point for x3, that is, x̂2
3 = π/2.

Therefore, the following quasi-bilinear system is ob-
tained:

ẋ1 = aUinc

ẋ2 = ax3Uazi

ẋ3 = −(π/2)ax5Uinc (8)

ẋ4 = ax5Uinc

ẋ5 = −ax4Uinc

and (8) is expressed in the form of (1) as:

ẋ = Ax+ (B + x3M3 + x5 (MA +MB) + x4M4)u

where A = [ ], M1 = [ ], M2 = [ ], M5 = MA +MB ,

u = [Uinc, Uazi]
T
and:

B=




a 0
0 0
0 0
0 0
0 0



, M3=




0 0
a 0
0 0
0 0
0 0



, MA=




0 0
0 0

−(π/2)a 0
0 0
0 0




MB=




0 0
0 0
0 0
a 0
0 0



, M4=




0 0
0 0
0 0
0 0
−a 0




(9)

The proposed quasi-bilinear model is used as the
basis for the QBPI controller design as analysed in
Section 5. In the remaining part of this section, the
accuracy of the proposed quasi-bilinear model of the
directional drilling tool is analysed.
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3.1 Quasi-Bilinear Model Accuracy

The accuracy of the proposed quasi-bilinear model of
the directional drilling tool is demonstrated through
the analysis of the transient azimuth responses for the
open-loop systems using the proposed quasi-bilinear
model and comparing with those from the linear
model and nonlinear model, (2) and (3) (with Vdr

and Vtr ignored) proposed by Panchal et al. [2010].
Given that there is no nonlinearity in the inclination
open-loops of the models, the inclination responses of
the models are expected to be identical. The mod-
els comparison simulation parameters are as follows:
Kdls = 10◦/100 ft, Vrop = 100 ft/hr and θazi = 2.5
rad.

Figure 3: Comparison of azimuth responses of quasi-
bilinear, linear and nonlinear models
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The comparison of the azimuth responses of the
proposed quasi-bilinear, linear (proposed by Panchal
et al. [2010]) and nonlinear ((2) and (3) with Vdr and
Vtr ignored) models of the directional drilling tool are
shown in Figure 3. Based on Figure 3, the azimuth
responses of the proposed quasi-bilinear model con-
verges more closely to the azimuth response of the
nonlinear model than that of the linear model. There-
fore, the proposed quasi-bilinear model depicts the
nonlinear model more correctly than the linear model
proposed by Panchal et al. [2010], hence widening the
degree of appropriate performances, and it is consid-
ered to be outstandingly beneficial in applications to
directional drilling operations.

4 Drilling Cycle Scheme

This section presents the development of a drilling cy-
cle scheme for the directional drilling tool model, (2)
and (3). The developed drilling cycle scheme captures
the drilling cycle and toolface actuator dynamics, and
it is used in Section 7 for the HFM simulation anal-
yses. Here, the developed drilling cycle scheme has a
toolface servo-control architecture which is a combi-
nation of servo-position and servo-velocity loops.

During directional drilling operations, directional
drilling tools in point-the-bit and push-the-bit steer-
ing assembly varieties steer by the application of a
constant force against the formation or by having a
fixed bend. With the continuous rotation of the steer-
ing assembly of the directional drilling tool, straight-
hole sections are formed. Sections of wellbores with
variable curvature, Udls less than the maximum curva-
ture, Kdls, that is, Udls ≤ Kdls can be achieved [Pan-
chal et al., 2011]. To engineer the Udls of the system
given by (2) and (3), the toolface actuation, Utf (con-
trol input) is discretised into duty cycles known as
“drilling cycles” of period, tcycle. To approximate the
Udls control input, tcycle is proportioned into the bias,
tbias and neutral, tneutral phases as shown in Figure 4.
In the tneutral phase, the Utf is cycled at a constant
rate of period, tnutate; while in the tbias phase, the Utf

is a servo-controlled constant which approximates the
Udls control input as:

Udls =
tbias
tcycle

Kdls (10)

Figure 4: Drilling cycle definition
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360◦

tbias
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The toolface is driven by a servo mechanism; hence,
the toolface response to demands in the tool is sub-
ject to lag dynamics. The servo-control architecture
is shown in Figure 5, where ω̂tf is the constant nu-
tate rate demand, Ûtf is the required toolface angle,
Ta is the time constant of the servo loop, kp is the
proportional term in servo-position loop, and the pro-
portional and integral term in the servo-velocity loop
are kvp and kvi, respectively.
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The servo operates as a position control in the bias
phase and as a speed control in the neutral phase. In-
tegral action is placed in the velocity loop to ensure
accurate rotation speed of the toolface in the neutral
phase, which means that integral action is not re-
quired in the outer loop position-control loop; there-
fore, a proportional controller is used. This method
has an added advantage of removing the need for an-
tiwindup and bump-free transfer for the switching be-
tween position and velocity tracking.

Figure 5: Toolface servo-control architecture for
drilling cycle scheme
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kpÛtf
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The toolface controller switch operates such that
during the neutral phase, ω̂tf is applied to the servo-
control system velocity demand. During the bias
phase, Ûtf is applied to the servo-control system angle
position demand.
As shown in Figure 6, at the conclusion of the neu-

tral phase, there is a difference between the required
toolface angle and the actual toolface angle. Hence, at
the beginning of the drilling cycle, there is a change
to time, ∆tneutral when the switch from tneutral to
tbias is calculated. From Figure 6, the calculation is
straightforward and given by:

∆tneutral =
∆Ûtf

ω̂tf

(11)

where ∆Ûtf ∈ [−π, π) is the toolface correction angle
given by:

∆Ûtf = αtf − 2π(round(αtf/(2π))) (12)

where

αtf = ω̂tftneutral − Ûtf(k) + Ûtf(k − 1) (13)

Ûtf(k) represents the toolface demand for the current
(kth) drilling cycle, and Ûtf(k−1) represents the tool-
face demand for the previous ((k−1)th) drilling cycle.
The developed drilling cycle scheme is implemented

with the system given by (2) and (3) for the HFM sim-
ulations analyses with respect to the attitude control
of the directional drilling tool in Subsection 7.2.

4.1 Robust Stability Analysis of

Servo-Velocity Loop

To analyse the stability of the servo-velocity loop of
the toolface servo-control architecture, Kharitonov’s

Figure 6: Calculation of ∆tneutral for kth drilling cycle

t
−π rad
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Ûtf(k)

∆Ûtf

tneutral ∆tneutral

tcycle

Theorem [Kharitonov, 1978] (see Theorem 4.1) is ap-
plied. Kharitonov’s Theorem is used for the robust
stability analysis of an uncertain controlled system
through the definition of four bounding polynomials
and testing each of them with Routh-Hurwitz crite-
rion [Routh, 1905]. It provides a required and ade-
quate form for all polynomials in a particular group
to be Hurwitz stable [Callier and Desoer, 1991].

Considering an interval polynomial given as:

P (s) = a0s
0 + a1s

1 + a2s
2 + a3s

3 + · · ·+ ans
n (14)

where ai ∈ R, ai ∈ [ai, ai] for all i = 0, 1, . . . , n;
ai are the coefficients of the interval polynomial; ai
and ai are the minimum and maximum values of
ai, respectively. It is assumed that the minimum
and maximum values of the coefficient of the highest
order of the polynomial, an and an cannot be zero.
Kharitonov’s Theorem is stated as follows:

Theorem 4.1 [Kharitonov, 1978]. The interval
polynomial, (14) is robustly stable if and only if the
four Kharitonov polynomials

P1(s) =a0s
0 + a1s

1 + a2s
2 + a3s

3+

a4s
4 + a5s

5 + · · · (15)

P2(s) =a0s
0 + a1s

1 + a2s
2 + a3s

3+

a4s
4 + a5s

5 + · · · (16)

P3(s) =a0s
0 + a1s

1 + a2s
2 + a3s

3+

a4s
4 + a5s

5 + · · · (17)

P4(s) =a0s
0 + a1s

1 + a2s
2 + a3s

3+

a4s
4 + a5s

5 + · · · (18)

are stable.

With the application of Routh-Hurwitz criterion
[Routh, 1905] or any other technique, the stability
of the four Kharitonov polynomials can be analysed.

The servo-velocity loop of the toolface servo-control
architecture is shown in Figure 7. Based on Figure 7,
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the closed-loop output response is given as:

ωtf =
kvps+ kvi

Tas2 + (1 + kvp)s+ kvi
ω̂tf (19)

From (19), the closed-loop characteristic equation is
given as:

Tas
2 + (1 + kvp)s+ kvi = 0 (20)

With reference to Theorem 4.1, (20) is in the form of

P (s) = a2s
2 + a1s+ a0 (21)

with

a2 = Ta (22)

a1 = 1 + kvp (23)

a0 = kvi (24)

If the parameters of (20) are bounded as Ta ∈

[T a, T a], kvp ∈ [kvp, kvp] and kvi ∈ [kvi, kvi] with

Ta, kvp, kvi > 0 (25)

then the bounded coefficients, (22)-(24) are obtained
as a2 ∈ [a2, a2], a1 ∈ [a1, a1] and a0 ∈ [a0, a0] where

a2 = T a (26)

a2 = T a (27)

a1 = 1 + kvp (28)

a1 = 1 + kvp (29)

a0 = kvi (30)

a0 = kvi (31)

Figure 7: Servo-velocity loop of toolface servo-control
architecture

ω̂tf kvp +
kvi
s

1
Tas+1

ωtf
+

−

With practical engineering considerations of the
servo-velocity loop, and to analyse the robust sta-
bility of the servo-velocity loop, the parameters of
(20) are considered to be bounded and also sat-
isfy the conditions of (25) as Ta ∈ [0.5, 3] s, kvp ∈

[0.25, 0.7] and kvi ∈ [3, 6] s−1, and based on (26)-
(31), the bounded coefficients, (22)-(24) are obtained
as a2 ∈ [0.5, 3] s, a1 ∈ [1.25, 1.7] and a0 ∈ [3, 6] s−1.
Therefore, the four Kharitonov polynomials are given

as:

P1(s) = 3s2 + 1.25s+ 3 (32)

P2(s) = 0.5s2 + 1.7s+ 6 (33)

P3(s) = 3s2 + 1.7s+ 3 (34)

P4(s) = 0.5s2 + 1.25s+ 6 (35)

The Routh-Hurwitz criterion [Routh, 1905] is used
to test the stability of the Kharitonov polynomials,
(32) - (35). Thus, Routh tables for the Kharitonov
polynomials, (32) - (35) are created as shown in Table
1. Based on the analyses of Table 1, the Kharitonov
polynomials P1(s), P2(s), P3(s) and P4(s) of (32) -
(35), respectively, are stable. Therefore, the servo-
velocity loop of the toolface servo-control architecture
is robustly stable.

Table 1: Routh Tables for Kharitonov Polynomials
(32)–(35)

P1(s)
s2 3 3
s1 1.25 0
s0 3 0

P2(s)
s2 0.5 6
s2 1.7 0
s0 6 0

P3(s)
s2 3 3
s1 1.7 0
s0 3 0

P4(s)
s2 0.5 6
s1 1.25 0
s0 6 0

4.2 Robust Stability Analysis of

Servo-Position Loop

Similar to Subsection 4.1, the stability of the servo-
position loop of the toolface servo-control architec-
ture is analysed by applying Theorem 4.1. The servo-
position loop of the toolface servo-control architecture
is shown in Figure 8.

Based on Figure 8, the closed-loop output response
is given as:

Utf =
(kvps+ kvi)kp

Tas3 + (1+kvp)s2 + (kvi+kvpkp)s+ kvikp
Ûtf

(36)
From (36), the closed-loop characteristic equation is
given as:

Tas
3 + (1+ kvp)s

2 + (kvi + kvpkp)s+ kvikp = 0 (37)

With reference to Theorem 4.1, (37) is in the form of

P (s) = a3s
3 + a2s

2 + a1s+ a0 (38)
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with

a3 = Ta (39)

a2 = 1 + kvp (40)

a1 = kvi + kvpkp (41)

a0 = kvikp (42)

If the parameters of (37) are bounded as Ta ∈

[T a, T a], kvp ∈ [kvp, kvp], kvi ∈ [kvi, kvi] and kp ∈

[kp, kp] with

Ta, kvp, kvi, kp > 0 (43)

then the bounded coefficients, (39)-(42) are obtained
as a3 ∈ [a3, a3], a2 ∈ [a2, a2], a1 ∈ [a1, a1] and a0 ∈

[a0, a0] where

a3 = T a (44)

a3 = T a (45)

a2 = 1 + kvp (46)

a2 = 1 + kvp (47)

a1 = kvi + kvpkp (48)

a1 = kvi + kvpkp (49)

a0 = kvikp (50)

a0 = kvikp (51)

Figure 8: Servo-position loop of toolface servo-control
architecture

actuator

kpÛtf kvp +
kvi
s

1
Tas+1

1
s Utf

+ +

−−

With practical engineering considerations of the
servo-position loop, and to analyse the robust stabil-
ity of the servo-position loop, the parameters of (37)
are considered to be bounded and also satisfy the con-
ditions of (43) as Ta ∈ [0.5, 3] s, kvp ∈ [0.25, 0.7], kp ∈

[0.2, 0.42] s−1and kvi ∈ [3, 6] s−1, and based on (44)
- (51), the bounded coefficients, (39)-(42) are ob-
tained as a3 ∈ [0.5, 3] s, a2 ∈ [1.25, 1.7], a1 ∈

[3.05, 6.294] s−1and a0 ∈ [0.6, 1.26] s−1. Therefore,
the four Kharitonov polynomials are given as:

P1(s) = 3s3 + 1.7s2 + 3.05s+ 0.6 (52)

P2(s) = 0.5s3 + 1.25s2 + 6.294s+ 1.26 (53)

P3(s) = 0.5s3 + 1.7s2 + 6.294s+ 0.6 (54)

P4(s) = 3s3 + 1.25s2 + 3.05s+ 1.26 (55)

The Routh-Hurwitz criterion [Routh, 1905] is used
to test the stability of the Kharitonov polynomials,
(52) - (55). Thus, Routh tables for the Kharitonov
polynomials, (52) - (55) are created as shown in Table
2. Based on the analyses of Table 2, the Kharitonov
polynomials P1(s), P2(s), P3(s) and P4(s) of (52) -
(55), respectively, are stable. Therefore, the servo-
position loop of the toolface servo-control architecture
is robustly stable.

Table 2: Routh Tables for Kharitonov Polynomials,
(52) - (55)

P1(s)
s3 3 3.05
s2 1.7 0.6
s1 1.991 0
s0 0.6 0

P2(s)
s3 0.5 6.294
s2 1.25 1.26
s1 5.79 0
s0 1.26 0

P3(s)
s3 0.5 6.294
s2 1.7 0.6
s1 6.118 0
s0 0.6 0

P4(s)
s3 3 3.05
s2 1.25 1.26
s1 0.026 0
s0 1.26 0

5 QBPI Controller Design

The proposed QBPI controller design scheme is based
on the works of Inyang and Whidborne [2019], and it
is a combination of a standard linear PI controller
and a quasi-bilinear compensator, as shown in Figure
9. To deal with the nonlinear 1/ sin θinc term in (3),
the quasi-bilinear compensator is only incorporated
in the azimuth feedback loop.

Figure 9: QBPI control scheme

QBPI Controller

PI

PI
Quasi-Bilinear
Compensator

Control
Transfor-
mation

Tool
Dyna-
mics

+

rinc

+

razi

einc

eazi Ũazi Uazi

Uinc
Utf

Udls

θinc

θazi

−

−

5.1 PI Controller

Similar to the works of Inyang and Whidborne [2019],
the PI control for the inclination and azimuth control
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channels are as follows, respectively:

Uinc = kpieinc + kii

∫ t

0

eincdt (56)

Ũazi = kpaeazi + kia

∫ t

0

eazidt (57)

where kpi and kpa are the proportional gains in the in-
clination and azimuth feedback loops, respectively; kii
and kia are the integral gains for the inclination and
azimuth feedback loops, respectively; eazi = razi−θazi
and einc = rinc − θinc; razi and rinc are the nominal
operating points for azimuth and inclination, respec-
tively; Ũazi is the control input to the quasi-bilinear
compensator. With practical engineering considera-
tions, the PI controllers gains in the azimuth and in-
clination feedback loops are tuned manually to attain
required performance with reference to minimal over-
shoot, fast settling time and zero steady state error.

5.2 Quasi-Bilinear Compensator

With the assumption that in Figure 9, Uazi = Ũazi,
then only the PI controller is incorporated (see (57)),
and the azimuth feedback loop is expressed as follows:

θ̇azi = a
1

sin θinc
(kpaeazi + kia

∫ t

0

eazidt) (58)

Based on (6) and (8), (58) can further be expressed
as:

θ̇azi = ax3(kpaeazi + kia

∫ t

0

eazidt) (59)

To deal with the nonlinearity in (59), a quasi-bilinear
compensator is proposed for the azimuth feedback
loop which is given by:

Uazi

Ũazi

=
1

x3

(60)

where x3 is defined based on (8) as follows:

x3 = −(π/2)θinc

∫ t

0

x5dt (61)

Note that the nonlinearity of 1/ sin θinc in (58) can be
accounted for by introducing sin θinc as the compen-
sator. However, (60), defined based on states (vari-
ables), is applied, which acts as the sin θinc; thereby,
simplifying and replacing the trigonometry function.
Furthermore, note that when θinc = 0◦, then x3 = 0

and there is a singularity in (60). Nonetheless, as pre-
viously highlighted in Section 2, there is also a singu-
larity in (3) when θinc = 0◦. Therefore, the proposed
QBPI controller is limited to attitudes such that θinc
is not close to 0◦.

The quasi-bilinear compensator increases the per-
formance of the PI controller. The quasi-bilinear com-
pensator, in combination with PI controller, enables
the ensuing QBPI controller to sustain a desired level
of control throughout a wider range of operation.

The proposed QBPI controller is reasonably sim-
ple and it can with ease be applied in the directional
drilling tools for more effective drilling, field develop-
ment and the improvement of the potential of access-
ing difficult reservoirs.

6 Stability Analysis of QBPI

Controller

With the introduction of augmented states, eai and
eaa, representing the accumulated inclination and az-
imuth errors, respectively, and based on Figure 10,
the proposed QBPI control system is written as:

ėai(t) = −θinc(t) (62)

θ̇inc(t) = (kiieai(t)− kpiθinc(t))a (63)

ėaa(t) = −θazi(t) (64)

θ̇azi(t) =
(kiaeaa(t)− kpaθazi(t))a

x3(t) cosβ(t)
(65)

where eai(t), θinc(t), eaa(t), θazi(t) ∈ R
n and t ∈ R

+.
With reference to Figure 10, and based on (4) and (5),
fazi(Uinc) = aUinc = VropKdlsUinc and fazi(Uazi, β) =
aUazi/ cosβ(t) (recall, β(t) = π/2 − θinc(t)), and

Kq(Ũazi, β) is given in (60).
Recall, from (6), x3(t) = 1/ sin θinc(t) = 1/ cosβ(t),

and with its substitution in (65) for β(t) ∈

(−π/2, π/2), (62)-(65) become:

ėai(t) = −θinc(t) (66)

θ̇inc(t) = kiiaeai(t)− kpiaθinc(t) (67)

ėaa(t) = −θazi(t) (68)

θ̇azi(t) = kiaaeaa(t)− kpaaθazi(t) (69)

Note that (66)-(69) is a Linear Time Invariant
(LTI) system and it can be put in the form of:

ẋ(t) = Ax(t), t ≥ 0 (70)

x(0) = x0

where x ∈ R
n denotes the system state,

A ∈ R
n×n denotes system matrix, with x(t) =

[eai(t), θinc(t), eaa(t), θazi(t)]
T
and

A =




0 −1 0 0
kiia −kpia 0 0
0 0 0 −1
0 0 kiaa −kpaa


 (71)
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Figure 10: QBPI control system with augmented states

Azimuth Feedback Loop

Inclination Feedback Loop

∫
kia Kq(Ũazi, β) fazi(Uazi, β)

∫

kpa

−1

ėaa eaa + Ũazi Uazi θ̇azi θazi

+

∫
kii finc(Uinc)

∫
kpi

−1

ėai

eai

+

Uinc θ̇inc

θinc

+

The eigenvalues of A are left-half-plane for all posi-
tive a, kia, kpa, kii and kpi; hence the proposed QBPI
control system given in (71) is exponentially stable.

7 Simulation Results

In this section, the transient simulations are carried
out using MATLAB/Simulink. The stability, robust-
ness and effectiveness of the proposed QBPI controller
are analysed through the transient responses for the
closed-loop controlled system using two models, Low-
Fidelity Model (LFM) and HFM. The LFM and HFM
schemes for the proposed QBPI controller are shown
in Figures 11 and 17, respectively. For the LFM simu-
lation scheme, the nonlinear system given by (2) and
(3), the proposed QBPI controller and the systems
delays are implemented. While the HFM simulation
scheme is similar to the LFM simulation scheme but
with the implementation of the drilling cycle scheme
developed in Section 4. Based on the LFM, simula-
tion results for a variety of responses under different
operating conditions are analysed and compared with
those from the PI controller of Panchal et al. [2010].
With the implementation of the drilling cycle scheme,
the HFM simulation results are analysed to further
show that the proposed QBPI controller still holds
the inclination and azimuth at the desired angles.

To analyse the adverse effects of disturbances and
time delay on the feedback measurements with re-
spect to the stability and performance of the direc-
tional drilling tool, the disturbances are implemented
as Vdr and Vtr (see (2) and (3)), and the system de-
lays are implemented as e−τds, where τd is time delay

which is given by

τd =
dt
Vrop

(72)

where dt is the distance of the bit from the D&I sen-
sor.

7.1 Low-Fidelity Model Simulation

Applying the systems delays, the proposed QBPI con-
troller and the nonlinear system, (2) and (3), MAT-
LAB/Simulink transient simulations are developed
with referencee to the LFM scheme (see Figure 11),
to investigate the stability, robustness and effective-
ness of the proposed QBPI controller over the PI con-
troller proposed by Panchal et al. [2010]. The LFM
simulations parameters are presented in Table 3 and
they are dependent on practical engineering consider-
ations. The saturation effect is removed for the rea-
son of viewing the dynamic responses. To analyse
the invariance of the azimuth responses of the pro-
posed QBPI controller compared to those of the PI
controller proposed by Panchal et al. [2010], a refer-
ence change of 0.015 rad for a set of different azimuth
angles of π/2 rad, π/3 rad, π/6 rad, π/9 rad and π/18
rad are applied.
The azimuth responses of the PI controller pro-

posed by Panchal et al. [2010] and the proposed QBPI
controller for a reference change of 0.015 rad for a
set of different azimuth angles are shown in Fig-
ures 12 and 13, respectively, where τd = 0 min and
∆θazi(t) = θazi(t) − θazi(0). In comparison, the pro-
posed QBPI controller azimuth responses converge to
the nominal operating point of π/2 rad than those of
the PI controller proposed by Panchal et al. [2010].
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Table 3: LFM Simulation Parameters

Parameter Value
razi π/12 + 0.015 rad
rinc π/12 + 0.015 rad
Kdls 8◦/100 ft
Vrop 200 ft/hr
θazi π/12 rad (15◦)
θinc π/12 rad (15◦)
kpi 0.15
Vtr 0.5◦/100 ft
Vdr 1◦/100 ft
τd 4.5 min
dt 14.997 ft
kia 0.01
kpa 0.13
kii 0.01

Figure 11: Simulink diagram of LFM simulation
scheme for QBPI controller
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Therefore, the proposed QBPI controller yields more
invariant azimuth responses over broader degree of
the directional drilling tool applications, than the PI
controller proposed by Panchal et al. [2010].

To analyse the deleterious impacts of time delay on
the feedback measurements and disturbances relating
to the performance and stability of the directional
drilling tool, the azimuth and inclination responses to
step changes, from π/12 rad to π/12 + 0.015 rad and
from π/12 to π/12 + 0.015 rad, respectively, of the
PI controller proposed by Panchal et al. [2010] and
the proposed QBPI controller are shown in Figures
14 and 15, respectively.

As shown in Figure 14, the attitude response of
the PI controller proposed by Panchal et al. [2010]
exhibits oscillations. Thus, the attitude response do
not converge to the desired azimuth and inclination
angles of π/12 + 0.015 rad and π/12 + 0.015 rad, re-
spectively, as the PI controller proposed by Panchal
et al. [2010] is incapable to deal with the deleterious
impacts of the time delay of up to 4.5 min on the
feedback measurements, turn rate bias disturbance of

Figure 12: PI controller azimuth responses
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Figure 13: QBPI controller azimuth responses
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up to 0.5◦/100 ft and drop rate disturbance of up to
1◦/100 ft.

As shown in Figure 15, for the proposed BPI
controller, the attitude responses of the directional
drilling tool converges to the desired azimuth and in-
clination angles of π/12+0.015 rad and π/12+0.015
rad, respectively. Therefore, the proposed QBPI con-
troller diminishes the deleterious impacts of the time
delay of up to 4.5 min on the feedback measurements,
turn rate bias disturbance of up to 0.5◦/100 ft and
drop rate disturbance of up to 1◦/100 ft relating to
the performance and stability, than the PI controller
proposed by Panchal et al. [2010].

The azimuth and inclination errors for the proposed
QBPI controller are shown in Figure 16. Within 72
min, the proposed QBPI controller is capable of con-
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Figure 14: PI controller attitude response
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Figure 15: QBPI controller attitude response
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verging the azimuth and inclination errors directly to
zero.

7.2 High-Fidelity Model Simulation

Similar to the LFM simulation highlighted in Sub-
section 7.2, MATLAB/Simulink transient simulations
are developed with reference to the HFM simulation
scheme, shown in Figure 17, where the drilling cycle
scheme (developed in Section 4) is incorporated to
further investigate the effectiveness, robustness and
stability of the proposed QBPI controller. The HFM
simulations parameters are presented in Table 4 and
they are dependent on practical engineering consider-
ations.

For the proposed QBPI controller, the inclination

Figure 16: Attitude error for QBPI controller with
LFM
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Table 4: HFM Simulation Parameters
Parameter Value
θinc 7π/18 rad (70◦)
θazi 7π/18 rad (70◦)
Vrop 200 ft/hr (1.0158 m/min)
Kdls 8◦/100 ft (4.5809× 10−3 rad/m)
rinc 7π/18 + 0.015 rad
razi 7π/18 + 0.015 rad
kpi 0.15
kii 0.01
kpa 0.13
kia 0.01
Ta 0.05 s (8.333× 10−4 min)
kp 1 s−1 (60 min−1)
kvp 0.5
kvi 6 s−1 (360 min−1)
tcycle 10 s (0.1667 min)
ω̂tf 2π rad/s (376.991 rad/min)
dt 14.997 ft (4.5711 m)
τd 4.5 min
Vdr 1◦/100 ft (5.7261× 10−4 rad/m)
Vtr 0.5◦/100 ft (2.8631× 10−4 rad/m)

Figure 17: Simulink diagram of HFM simulation
scheme for QBPI controller
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Figure 18: QBPI controller attitude response with
HFM
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Figure 19: Attitude error for QBPI controller with
HFM
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and azimuth responses to step changes, from 7π/18
rad to 7π/18 + 0.015 rad and from 7π/18 rad to
7π/18 + 0.015 rad, respectively, are shown in Fig-
ure 18. The proposed QBPI controller still holds
the azimuth and inclination of the directional drilling
tool at the desired angles of 7π/18 + 0.015 rad and
7π/18 + 0.015 rad, respectively. Therefore, the pro-
posed QBPI controller is robust, stable and effective
to deal with the deleterious impacts of the time delay
of up to 4.5 min on the feedback measurements, turn
rate bias disturbance of up to 0.5◦/100 ft and drop
rate disturbance of up to 1◦/100 ft and some other
uncertainties (such as drilling cycle and tool actuator
dynamics) in the attitude control of the directional

drilling tool.

The azimuth and inclination errors for the proposed
QBPI controller are shown in Figure 19. Within 180
min, the proposed QBPI controller is capable of con-
verging the azimuth and inclination errors directly to
zero.

8 Conclusions

This article proposes a quasi-bilinear model of di-
rectional drilling tool. The proposed quasi-bilinear
model accurately depicts the nonlinear characteris-
tics of directional drilling tool to a greater extent
than the existing linear model. Therefore, it extends
the scope of appropriate performance and it is con-
sidered to be outstandingly beneficial in application
to directional drilling operations. Based on the pro-
posed quasi-bilinear model, a quasi-bilinear controller
(QBPI controller) is designed for the attitude control
of directional drilling tool.

The proposed QBPI control system is an LTI sys-
tem and it is shown to be exponentially stable. The
proposed QBPI controller is capable of holding the at-
titude of the directional drilling tool at the desired az-
imuth and inclination angles, yields invariant azimuth
responses over broader scope of directional drilling op-
erations and outstandingly diminishes the deleterious
impacts of the time delay of up to 4.5 min on the
feedback measurements, turn rate bias disturbance of
up to 0.5◦/100 ft and drop rate disturbance of up
to 1◦/100 ft and some other uncertainties (such as
drilling cycle and tool actuator dynamics) in the at-
titude control of the directional drilling tool.

The proposed QBPI controller is reasonably sim-
ple and it can with ease be applied in the directional
drilling tools for more effective drilling, field develop-
ment and the improvement of the potential of access-
ing difficult reservoirs.

Furthermore, this article presents the development
of a drilling cycle scheme which captures the drilling
cycle and toolface actuator dynamics of the direc-
tional drilling tool, and it is suitable for High-Fidelity
Model (HFM) simulation analyses with respect to the
attitude control of the directional drilling tool. The
servo-velocity and servo-position loops of the toolface
servo-control architecture for the drilling cycle scheme
are proven to be robustly stable using Kharitonov’s
Theorem.

Stability proof of the proposed QBPI controller
with measurement delay remains an open problem.
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