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Abstract: We study a new non-classical class of variational problems that is 
motivated by some recent research on the non-linear revenue problem in the 
field of economics. This class of problem can be set up as a maximising 
problem in the calculus of variations (CoV) or optimal control. However, the 
state value at the final fixed time, ( ),y T  is a priori unknown and the integrand 
is a function of the unknown ( ).y T  This is a non-standard CoV problem. In 
this paper we apply the new costate boundary conditions ( )p T  in the 
formulation of the CoV problem. We solve a sample example in this problem 
class using the numerical shooting method to solve the resulting TPBVP, and 
incorporate the free ( )y T  as an additional unknown. Essentially the same 
results are obtained using symbolic algebra software. 
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1 Introduction 

The first result of the calculus of variations (CoV) ever discovered must have been the 
statement that the shortest path joining two points is a straight line segment. Another 
classical variational problem consists in finding, amongst all simple closed plane curves 
of a given fixed length, one that encloses the largest possible area. It is well known since 
ancient times that the circle is the shape that encloses maximum area for a given length of 
perimeter. However, it was not until the 18th century that a systematic theory, the CoV, 
began to emerge. A modern face to the CoV is given by the theory of optimal control. 
Economics is a source of interesting applications of the theory of CoV and optimal 
control. Classical examples include the optimal capital spending problem, optimal 
reservoir control, optimal production subject to royalty payment obligations, optimal 
maintenance and replacement policy, and optimal drug bust strategy (Léonard and Long, 
1992; Sethi and Thompson, 2000). 

The following economics problem (explained briefly here) has motivated this paper 
(Zinober and Kaivanto, 2008). A standard feature of the theory of the firm is that a profit 
maximising firm facing a downward sloping demand curve reacts to an increase in 
marginal cost by reducing output and increasing price. In this context, it is well 
understood that a requirement to pay a flat-rate royalty on sales has just this effect of 
increasing marginal cost and thereby decreasing output while simultaneously increasing 
price. However, the effect of permitting the royalty to take on more general forms leads 
naturally to non-standard CoV problems, and explains why this question has remained 
unaddressed to date (Zinober and Kaivanto, 2008). Recently the effect of piecewise linear 
cumulative royalty schedules on the optimal intertemporal production policy, i.e., an 
optimal economics control problem that does not fit into the classical class of variational 
problems, has been formulated (Zinober and Kaivanto, 2008). The economics problem 
lies in the area of repayable launch investment (RLI). For the purposes of this paper we 
will outline just the mathematical nature of the problem since the precise (non-linear) 
economic details are of secondary importance here. Consider the system in the time 
domain modelled by the differential equation 

( ) ( ), (0) known′ =y t u t y  

with the endpoint state value ( )y T  at time =t T  unknown. We wish to determine the 
control function ( )u t  for [0, ]∈t T  that maximises the return 

0
[ ( )] ( , ( ), ( ), ( )) .⋅ = ∫

T
J u f t y t u t y T dt  
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Note that the integrand depends upon the a priori unknown final value ( ).y T  This class 
of problem is not contained within the classical class of variational problems and the 
present paper indicates how such problems may be solved. 

The manuscript is organised as follows. In Section 2 we develop the necessary 
conditions for the extremising solution. The main idea is borrowed from Malinowska and 
Torres (2008), where appropriate natural boundary conditions are proved for problems of 
the CoV on time scales (Ferreira and Torres, 2008). We then consider two approaches to 
obtain the solution of a sample example with a continuous integrand f  (Section 3). The 
first approach considers the numerical shooting solution (Section 4). The results obtained 
are then validated by symbolic algebra computations (Section 5). We finish with 
conclusions in Section 6. 

2 The non-classical variational problem 

We begin by developing the necessary conditions for the extremising solution. Let J  be 
a functional of the form 

[ ( )] ( , ( ), ( ), ( ))′⋅ = ∫
T

a
J y f t y t y t y T dt  

where 

( , , , ) ( , , , )′ ′→t y y z f t y y z  

is a smooth function and .>T a  We consider the problem of determining the functions 
1( )⋅ ∈y C  such that [ ]⋅J  has an extremum. An initial condition ( ) =y a α  is imposed on 

( ),⋅y  but ( )y T  is free. 
Suppose that [ ]⋅J  has an extremum at ( ).y ⋅  We can proceed as Lagrange did [cf. 

Gelfand and Fomin (1963)], by considering the value of J  at a nearby function 
,= +y y hε  where ε  is a small parameter, 1( )⋅ ∈h C  and ( ) 0.=h a  Because ( )y T  is free, 

we do not require ( )⋅h  to vanish at .T  Let 

( ) [( )( )] ( , ( ) ( ), ( ) ( ), ( ) ( )) .′ ′= + ⋅ = + + +∫
T

a
J y h f t y t h t y t h t y T h T dtφ ε ε ε ε ε  

A necessary condition for ( )⋅y  to be an extremiser is given by 

0( ) | 0 [ ( ) ( ) ( ) ( ) ( ) ( )] 0,′=′ ′= ⇔ + + =∫
T

y y z
a
f h t f h t f h T dtεφ ε  (1) 

where ( ) ( , ( ), ( ), ( )).′= t y t y t y T  Integration by parts gives 

( ) ( ) ( ) ( )] ( ( )) ( ) .′ ′ ′′ = −∫ ∫
T T

T
y y a y

a a

d
f h t dt f h t f h t dt

dt
 

Because ( ) 0,=h a  the necessary condition (1) can be then written as 

( , ( ), ( ), ( ))
0 ( ) ( ) ( ) ( ) ( )′

′
′ ⎫⎡ ⎤⎧⎡ ⎤ ⎪= − + +⎨ ⎬⎢ ⎥⎢ ⎥ −⎣ ⎦⎩ ⎪⎣ ⎦ ⎭

∫
T y

y y z
a

f T y T y T y Td
f f h t f h T dt

dt T a
 (2) 
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for all 1( )⋅ ∈h C  such that ( ) 0.=h a  In particular, equation (2) holds for the subclass of 
functions 1( )⋅ ∈h C  that do vanish at ( ).h T  Thus, the classical arguments apply, and 
therefore 

( ) ( ) 0.′− =y y
d

f f
dt

 (3) 

Equation (2) must be satisfied for all 1( )⋅ ∈h C  with ( ) 0,=h a  which includes functions 
( )⋅h  that do not vanish at .T  Consequently, equations (2) and (3) imply that 

( , ( ), ( ), ( ))
( ) ( ) 0

( ) ( , ( ), ( ), ( )) ( ) 0,

T y
z

a

T

y z
a

f T y T y T y T
f h T dt

T a

h T f T y T y T y T f dt

′

′

′⎡ ⎤
+ =⎢ ⎥−⎣ ⎦

⎛ ⎞′⇔ + =⎜ ⎟
⎝ ⎠

∫

∫
 

that is, 

( , ( ), ( ), ( )) ( ) 0.′ ′ + =∫
T

y z
a

f T y T y T y T f dt  (4) 

We remark that in the classical setting f  does not depend on ( ),y T  that is, 0.=zf  In 
that case (4) reduces to the well known natural boundary condition ( , ( ), ( )) 0yf T y T y T′ ′ =  
(or, from an Hamiltonian optimal control perspective, ( ) 0).=p T We have just proved the 
following result: 

Theorem 2.1: Let a  and T  be given real numbers, .<a T  If ( )⋅y  is a solution of the 
problem 

1

[ ( )] ( , ( ), ( ), ( ))

( ) ( ( ) )

( ) ,

′⋅ = →

=

⋅ ∈

∫
T

a
J y f t y t y t y T dt extr

y a y T free

y C

α  (5) 

then 

( , ( ), ( ), ( )) ( , ( ), ( ), ( ))′ ′ ′=y y
d
f t y t y t y T f t y t y t y T

dt
 (6) 

for all [ , ].∈t a T  Moreover, 

( , ( ), ( ), ( )) ( , ( ), ( ), ( )) .′ ′ ′= −∫
T

y z
a

f T y T y T y T f t y t y t y T dt  (7) 

Remark 2.2: From an optimal control perspective one has 

( ) ( , ( ), ( ) ( )),′ ′= yp T f T y T y T y T  

where ( )p t  is the Hamiltonian multiplier. Theorem 2.1 asserts that the usual necessary 
optimality conditions [the Euler-Lagrange equation (Gelfand and Fomin, 1963) or the 
Pontryagin maximum principle (Pontryagin et al., 1986)] hold for problem (5) by 
substituting the classical transversality condition ( ) 0=p T  with 
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( ) ( , ( ), ( ), ( )) .′= −∫
T

z
a

p T f t y t y t y T dt  (8) 

3 An illustrative example 

We consider an example that illustrates the new class of CoV problem. It has the same 
form as the complicated non-linear optimal intertemporal production policy problem. 
Consider the ODE system described by 

( ) ( ), (0) 0.′ = =y t u t y  (9) 

We wish to maximise 

0
[ ( )] ( , ( ), ( ), ( ))

T
J u f t y t u t y T dt⋅ = ∫  (10) 

where 

3( , , , ) sin( /10)
4

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

f t y u z a u z t uπ  (11) 

is a continuous function. The initial known state is (0) 0=y  and final state value 
( )=z y T  is free. In this example we set 10.=T  The Hamiltonian is 

( , , , ) = − + ⋅H t y u p f p u  and 

( ) ( , ( ), ( ), ( ))

( ) ( , ( ), ( ), ( )).

′ =⎧⎪
⎨ ′ = −⎪⎩

p

y

y t H t y t u t p t

p t H t y t u t p t
 

Function f  does not depend on ,y  and for an optimum (maximum in this example), the 
costate satisfies 

0.′ ′= − ⇔ =yp H p  (12) 

The stationarity condition is 

0=uH  

and this yields 

21( ) ( sin( /10) ( )) .
4

u t z t p tπ= −  (13) 

From (8) 

10

0
( ) ( , ( ), ( ), ( ))′= −∫ zp T f t y t y t y T dt  

holds, i.e., 

10

0
( ) sin( /10) ( ) .p T t u t dtπ= ∫  (14) 
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4 Numerical shooting algorithms 

Let us consider the necessary conditions (NC) that need to be satisfied. For the system of 
ODEs (9) and (12) with control (13), the known zero initial condition (0)y  and a guessed 
initial value (0),p  we need to ensure that the natural boundary condition (14) is satisfied. 

We need to solve the two point boundary value problem. Also we need to iterate the 
value of z  used in (13) to ensure that in fact the value z equals the value obtained for 

( )y t  at .=t T  When one has obtained convergence regarding the values ( )y T  used in 
(13) and ( )p T  (14), then the NC are satisfied and we should have the optimal solution. 

Use the Newton shooting method with two guessed values 1υ  and 2υ  (Betts, 2001). 
We desire 1 (0)v p=  and 2 ( )v p T=  as specified by equation (14). When the program 
obtains results with these two equations holding to a very high degree of accuracy, the 
necessary conditions NC hold and we should have the optimal solution. We have solved 
the shooting method problem using C++ and the highly accurate Numerical Recipes 
library routines (Press et al., 2007): 

We integrate the system ( ( ), ( ), ( ), ( ))py t p t g t J t  with ( )y t  and ( )p t  satisfying the system 
of ODEs (9) and (12), and 

( ) sin( /10) ( ),

( ) ( , ( ), ( ), ( )).
pg t t u t

J t f t y t u t y T

π=

′ =
 

The results are ( ) 0.86928249597392515,=y T  ( ) 0.46111638323272386,= −p T  
( ) 0.46111638323273074pg T = −  and 

( ) 1.85448307363352=J T  (15) 

Perturbations of the optimal control ( )u t  by increasing and decreasing the value of ( )u t  
at a single time instant yield smaller ( )J T  values. See Figure 1 for results on state 
variable ( )y t  and control variable ( ).u t  

Figure 1 Optimal pair ( ( ), ( ))y t u t  to problem (9)–(10) obtained from both symbolic computation 
and the shooting method 

 

A completely different approach, using a non-linear programming technique, was also 
used. This technique may be useful for the actual piecewise constant economics problem. 
We solved this problem using Euler and Runge-Kutta discretisation, and an optimisation 
algorithm to solve for the unknown control variables ku  at each time instant .kt  We 
computed the non-linear programming problem using AMPL (Fourer et al., 2002) with 
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the MINOS solver and NEOS (2009). Using 40 time steps yields a good approximation 
very similar to the optimal results obtained using the precise approach described here. 

5 Symbolic algebra solution 

Consider the ODE system (9) and the associated optimal control problem described by 
(10) and (11). We set this as a minimisation problem. From (10) define 

0
[ ( )] ( , ( ), ( ), ( ))

T

mJ u g t y t u t y T dt⋅ = ∫  (16) 

where 

3( , , , ) ( , , , ) sin( /10)
4

⎛ ⎞= − = + −⎜ ⎟
⎝ ⎠

g t y u z f t y u z z t u a uπ  (17) 

with the final state value ( )=z y T  free and 10.=T  We now use the Euler-Lagrange 
equation (6) to find candidate solutions: 

( , ( ), ( ), ( )) ( , ( ), ( ), ( ))′ ′ ′=y y
d
g t y t y t y T g t y t y t y T

dt
 

for all [0, ].∈t T  Set ′=u y  and ( )=z y T  so 

3/2

( , , , ( )) ( , , , )

3 1 sin
4 102

1 cos .
10 10 4

′ ′ =

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
′⎛ ⎞= +⎜ ⎟

⎝ ⎠

y u
d d
g t y y y T g t y u z

dt dt

d t
z

dt u

t u
z

u

π

π
π

 

Since 0,=yg  using (6) we can find u by solving 

3/2
1 ( )cos 0.

10 10 4 ( )
′⎛ ⎞ + =⎜ ⎟

⎝ ⎠

t u t
z

u t

π
π  

The next result was obtained using Maple: 

2
1( ) .

2 sin
10

u t
t

c z
π

=
⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

We find easily y  from ′ =y u  using integration, e.g., in Maple or Mathematica: 

1 2 2

3

20 tan (2 / ) ( ) ( ) ( ) cos ( )
10

( )
( )

−⎛ ⎞⎛ ⎞⎛ ⎞− + − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠=

t
z D g t c h t g t c zD c g t

y t
c D g t

π

π
 (18) 
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where 

2 2

1
2 2

4 ,

( ) 2 sin ,
10

2 tan
20( ) tan .

4
−

= −

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟=

⎜ ⎟−⎜ ⎟
⎝ ⎠

D c z

t
g t c z

t
z c

h t
c z

π

π

 

Some comments: 

• The function h  is not defined for 10.=t  However one can define h  for 10=t  as 

1
2 2

2 tan
20lim tan .

24
−

→

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟ =

⎜ ⎟−⎜ ⎟
⎝ ⎠

t T

x
z c

c z

π
π  

• Theorem 2.1 assumes 0.∈u C  

• From (17) ( ) 0.≥u t  If 0=u  we have 0mJ =  and we see that this is not the best 
solution. So 0>u  and ( ) 0.= >z y T  

• We must verify 2 24 0− >c z  [see D  in (18)] so two cases are to be investigated: 
2>c z  and 2 .< −c z  

Recall (7): 

( , ( ), ( ), ( )) ( , ( ), ( ), ( )) .
T

y z
a

g T y T y T y T g t y t y t y T dt′ ′ ′= −∫  (19) 

We have 

( , , , ) sin
10
⎛ ⎞= ⎜ ⎟
⎝ ⎠

z
t

g t y u z u
π  

and using ( )⋅u  we obtain 

2

sin
10( , , , ) .

2 sin
10

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

z

t

g t y u z
t

c z

π

π
 

Integrating for the branch 2>c z  we obtain 

1
10

30

220 2 tan
( , ( ), ( ), ( )) .

−⎛ ⎞⎛ ⎞ − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠′ =∫ z

z
z z D

D
g t y t y t y T dt

D

π

π
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The left-hand side of (19) is 

1( , ( ), ( ), ( )) (3 2 ).
4′ ′ = −yg T y T y T y T c  

Solving equation (19) numerically we get 2.42223 =c  and 0.869282.=z  The objective 
value is 1.85448= −mJ  obtained using numerical integration over (16). This compares 
favourably with the result (15). Note that similar calculations for the branch 2 0< <c z  
provide a worse solution with 6.62857= +mJ  ( 7.21816= −c  and 3.14287).=z  

The results obtained here by Symbolic Algebra Computations (SAC) agree with the 
shooting method results in Section 4. 

6 Conclusions 

In this note we have shown how the standard necessary optimality conditions and 
numerical procedures for problems of the CoV and optimal control should be adapted in 
order to cover Lagrangians depending on the free end-point. The numerical techniques 
were validated with a simple sample example that allows symbolic calculations using a 
modern computer algebra system. In the actual optimal intertemporal production policy 
economics problem the Lagrangian may be piecewise continuous and this requires 
amended numerical techniques, such as non-linear programming, for its solution. This 
numerical solution approach will be important for solution of the actual non-linear 
economics problem. 
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