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Abstract. In this paper, we consider partial Lagrangian relaxations of
continuous quadratic formulations of the Quadratic Assignment Problem
(QAP) where the assignment constraints are not relaxed. These relax-
ations are a theoretical limit for semidefinite relaxations of the QAP
using any linearized quadratic equalities made from the assignment con-
straints. Using this framework, we survey and compare standard semidef-
inite relaxations of this classical NP-hard problem. In particular, this
approach is a simple way to prove that some well-known semidefinite
relaxations for the QAP are equivalent. Nevertheless, these relaxations
have a different numerical behavior and practical usefulness depending
on the semidefinite programming solver. We discuss such issues by re-
porting some computational experiments.

Keywords: Quadratic Assignment Problem, Semidefinite Programming, La-
grangian relaxation.

1 Introduction

The Lagrangian approach provides a unified framework which helps to design
and compare linear and non-linear relaxations for many combinatorial problems
(Geoffrion 1974, Poljak, Rendl and Wolkowicz 1995, Guignard 2003, Lemaréchal
2003). For a given problem, there are usually several possible Lagrangian relax-
ations and refinement techniques. A recent example is (Litvinchev 2007) where
the author obtains an improved Lagrangian bound by introducing an auxil-
iary problem involving complementary slackness conditions of linear programs.
Besides, although some of these relaxations are not computationally tractable,
others have a practical value since they can be explicitly stated as familiar mathe-
matical programs (and thus one can solve them efficiently with standard solvers).
For instance, a particular semi-Lagrangian relaxation is presented in (Beltran,
Tadonki and Vial 2006). This relaxation generates an optimal integer solution
for a 0-1 linear programming formulation of the p-median problem which allows
to solve large-scale instances.



We are going to use such an approach to survey the semidefinite relaxations
proposed for the Quadratic Assignment Problem (QAP), as well as their dom-
inance relationships by comparing them with particular partial Lagrangian re-
laxations. The optimal values of these relaxations are actually a theoretical limit
for the bounds one can obtain by using the standard semidefinite approach (Faye
and Roupin 2007).

The paper is organized as follows. Section 2 is a short literature survey about
the Quadratic Assignment Problem. In Section 3 we recall some results about the
links between semidefinite, total and partial Lagrangian relaxations of general
and 0-1 quadratic problems. Then, using these results, we survey and compare
semidefinite relaxations for the QAP in Section 4. Finally, we discuss numerical
issues by giving some experimental results in Section 5.

2 Literature survey

The Quadratic Assignment Problem is a classical and very challenging NP-
hard combinatorial problem. It has brought considerable attention since many
industrial and real life applications can be modeled as QAPs (F.Çela 1998):
facilities location problems (Koopmans and Beckman 1957), scheduling prob-
lems, the traveling salesman problem, placement of interconnected electronic
components such as the wiring of computer backboards (Steinberg 1961), dart-
board design (Eiselt and Laporte 1991), typewriter keyboard design (Burkard
and Offermann 1977). There exist several forms to state QAPs. Here, we shall
use (QAP ), the standard 0-1 quadratic formulation of the Quadratic Assignment
Problem:

(QAP )





min
∑

i,j,k,l Cijkl xijxkl +
∑

i,j cijxij

s.t.
∑n

i=1 xij = 1 j = 1, . . . , n∑n
j=1 xij = 1 i = 1, . . . , n

x ∈ {0, 1}n2

For instance, consider the case of a facilities location problem. The decision
variable xij equals 1 if and only if facility i is assigned to location j, the ”as-
signment constraints” being modeled by the linear constraints in (QAP ). When
facilities i and k are assigned to locations j and l, respectively, cij and ckl are
the costs of this assignment, and Cijkl represents here the distance-flow product
between locations j and l.

In order to obtain lower bounds for the QAP, relaxations based on various
mathematical programs have been studied : linear programming and polyhe-
dral approaches (Adams and Johnson 1994, Kaibel 2000, Blanchard, Elloumi,
Faye and Wicker 2003), convex quadratic bounds (Anstreicher and Brixius 2001,
Anstreicher, Brixius, Goux and Linderoth 2002), and Reformulation-Linearization
Techniques (Adams, Guignard, Hahn and Hightower 2007). It is beyond the
scope of this paper to review all the exact or heuristic algorithms that have been
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proposed to solve the QAP. Therefore we refer the reader to (Anstreicher 2003)
and (Loiola, de Abreu, Boaventura-Netto, Hahn and Querido 2007) for recent
surveys.

We are going to focus on the Semidefinite Programming (SDP) approach
which has been intensively studied during the last ten years because it pro-
vides tight lower bounds for the QAP (Karisch 1995, Zhao, Karish, Rendl and
Wolkowicz 1998, Roupin 2004, Burer and Vandenbussche 2006, Povh and Rendl
2006, Rendl and Sotirov 2007, de Klerk and Sotirov 2007). We shall detail in
section 4 the different models and SDP relaxations used in these papers. But
as of now, let us point out that the design of these semidefinite relaxations has
strongly depended on the SDP solvers available at the moment and even on
memory limitations in some cases. In particular, the existence of strictly feasi-
ble points has played a crucial role. Moreover, authors have often used different
stopping criterions in their numerical tests, and the bounds presented does not
always correspond to the optimal values of the semidefinite relaxations. Besides,
for some solvers (like SB (Helmberg 2004)), adding redundant constraints to
the semidefinite programs (although it is theorically useless) can speed up the
solving process. This means that paradoxically, solving an equivalent and larger
semidefinite program can require less time (Faye and Roupin 2005). These ex-
perimental results can lead to the belief that some semidefinite relaxations are
tighter than others, or (because of the chosen solver) are useless from a practi-
cal point of view. Hence, the main contribution of this paper is to obtain and
compare all these semidefinite relaxations by using a standard Lagrangian frame-
work, independently from the SDP solvers.

3 Partial Lagrangian relaxations of 0-1 Quadratic
problems

In this section we recall some results about the links between partial Lagrangian
and semidefinite relaxations of general and 0-1 quadratic programs. Consider
(Q), a 0-1 quadratic program which contains some linear equalities:

(Q)





min xT Qx + cT x
s.t. Ax = b

xT Bix + dT
i x + ei = ( or ≤)0 i ∈ I

x ∈ {0, 1}n

where A is a p × n matrix, I is a finite set of indices, Bi are symmetric
n × n matrices, di are n-vectors, and ei ∈ <. In order to obtain a continuous
formulation of (Q) we can replace the constraints x ∈ {0, 1}n by x2

k = xk for all
k ∈ {1, . . . , n}. In 0-1 or general quadratic programming, a common approach
to obtain better linear or semidefinite relaxations is adding valid quadratic
equalities or inequalities to the initial problem then linearize them (Adams and
Sherali 1986, Laurent 2003). From a Lagrangian point of view this can be seen
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as a reduction of the duality gap by dualizing these additional constraints. Con-
sequently, we are interested here by the set of null quadratic functions over
{x : Ax = b} ∩ {0, 1}n.

Recall that the set J of all quadratic constraints which are satisfied for x
such that Ax = b is characterized thanks to the following result proven in (Faye
and Roupin 2007):

Theorem 1 A quadratic function is constant over A = {x : Ax = b} if and only
if it is equal to FW,α(x) = xT

(
AT WT + WA

)
x +

(
AT α− 2Wb

)T
x, where W

is a n× p-matrix, and α is a p-vector.

For vectors belonging to A, one can verify that FW,α(x) = αT b. Hence,
when applying a Lagrangian approach one can add to (Q) any subset of J by
choosing some matrices Wj and vectors αj for j in J , a finite set of indices. In
the general case, the set of null quadratic functions over {x : Ax = b}∩{0, 1}n is
obviously larger than J . Nevertheless, for particular values of A and b, this set
is entirely described (see e.g. (Billionnet and Elloumi 1992)). Therefore, one can
also consider to add to (Q) a set K containing some of these valid quadratic
constraints. This set K may also include any valid inequalities, for instance
triangle inequalities or any others specific to (Q). Hence, in the general case, an
equivalent formulation of (Q) that one can use in the first step of a Lagrangian
approach is:

(QJ,K)





min xT Qx + cT x
s.t. Ax = b

xT Bix + dT
i x + ei = ( or ≤)0 i ∈ I ∪K

hj(x) = xT
(
AT WT

j + WjA
)
x

+
(
AT αj − 2Wjb

)T
x− bT αj = 0 j ∈ J

x2
k = xk k = 1, . . . , n

In the following, for better readability, the sign constraints over the Lagrange
vectors will be assumed to hold when needed (and thus they will not be written).
Denote by diag (y) the diagonal matrix made from any real vector y and define:

Q(µ, ν, ω) = Q + diag (µ) +
∑

i∈I∪K

ωiBi +
∑

j∈J

νj

(
AT WT

j + WjA
)

c(µ, ν, ω, λ) = c− µ + AT λ +
∑

i∈I∪K

ωidi +
∑

j∈J

νj

(
AT αj − 2Wjb

)

e(ν, ω, λ) = ωT e− bT


∑

j∈J

νjαj + λ




Then the total Lagrangian relaxation of (QJ,K) is:

(DTJ,K) sup
µ, ν, ω,λ

inf
x∈<n

xT Q(µ, ν, ω)x + c(µ, ν, ω, λ)T x + e(ν, ω, λ)
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The Lagrangian function being a simple unconstrained quadratic function,
the semidefinite program (SDPJ,K) is the dual of an explicit semidefinite for-
mulation of (DTJ,K) (see e.g. (Lemaréchal and Oustry 2001)):

(SDPJ,K)





min Q •X + cT x
s.t. Bi •X + dT

i x + ei = ( or ≤)0 i ∈ I ∪K
Ax = b
Hj(X, x) =

(
AT WT

j + WjA
) •X

+
(
AT αj − 2Wjb

)T
x− bT αj = 0 j ∈ J

Xii = xi i = 1, . . . , n[
1 xT

x X

]
º 0

where A•B =
∑n

i=1

∑n
j=1 AijBij is the standard inner product of two n×n

real symmetric matrices A and B, and A º 0 means that A is positive semidefi-
nite. Note that (SDPJ,K) is a semidefinite relaxation of (QJ,K). Indeed, as shown
in (Lemaréchal and Oustry 2001) in the general case, bidualizing (QJ,K) leads
to a convexification of (Q) into a semidefinite program.

Let us point out that in (SDPJ,K), we can add to Hj(X,x) = 0 any lin-
ear combination

∑n
i=1 βi(Xii − xi) (which is equal to zero). Thus, thanks to

the continuous formulation of the 0-1 constraints, the general expression of re-
dundant quadratic constraints which are used here is xT

(
AT WT + WA

)
x +(

AT α− 2Wb
)T

x− αT b +
∑n

i=1 βi(x2
i − xi) = 0 where Wj ∈ <n×p, α ∈ <p and

β ∈ <n.

Now, recall that A = {x : Ax = b}, and denote by (DPJ,K), the partial La-
grangian relaxation of (QJ,K) where the constraints Ax = b are not relaxed. Then
each constraint hj(x) = 0 is satisfied and does not appear in the associated par-
tial Lagrangian function. Consequently, it is useless to add these constraints to
(Q) : for any sets J and K of additional constraints, we can only consider the
partial Lagrangian relaxations:

(DPK)

sup
µ,ω

inf
x∈A

xT

(
Q + diag (µ) +

∑

i∈I∪K

ωiBi

)
x +

(
c− µ +

∑

i∈I∪K

ωidi

)T

x + ωT e

It is straightforward to verify that given K and for any set of redundant
quadratic constraints {hj(x) = 0 : j ∈ J} ⊂ J the value of (DTJ,K) is less or
equal to the value of (DPK), since less constraints have been dualized.

In (Lemaréchal and Oustry 2001) the authors prove that if one uses C ={
h(x) = xT AT Ax− 2bT Ax + bT b = 0

} ⊂ J then the optimal values of (DTJ,K)
and (DPK) are equal. This constraint, which can be seen as a penalty term
in the Lagrangian function, is obtained by taking α = −b and W = 1

2AT in
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the general formula of Theorem 1. But the existence of an optimal solution is
not guaranteed, and thus the optimal value of the associated total Lagrangian
relaxation may not be achieved by a feasible solution. An analogous result for
general quadratic programming is given in (Faye and Roupin 2007): if (µ∗, ω∗)
is an optimal solution of (DPK) and if there exists a real vector ν such that
Q(µ∗, ω∗, ν) is positive semidefinite then the values of (DTJ,K) and (DPK) are
equal. This hypothesis can be satisfied by choosing the set P (Faye and Roupin
2007):

P =

{
hij(x) =

n∑

k=1

Ajkxkxi − bjxi = 0 ; ∀i ∈ {1, . . . , n} , ∀j ∈ {1, . . . , p}
}

These functions are obtained from the general formula of Theorem 1 by taking
αij = 0 and Wij = 1

2Eij , where Eij is a matrix with all zero entries except in the
intersection row i, column j where the entry equals 1. In other words, these re-
sults allow to transform a constrained problem (a partial Lagrangian relaxation)
into an unconstrained one (a total Lagrangian relaxation). Consequently, the
two corresponding semidefinite relaxations (SDPP) and (SDPC) are equivalent.
Note that for general quadratic programming, a direct proof without consider-
ing the dual programs is given in (Faye and Roupin 2007) when A is a full rank
matrix.

(SDPP)





min Q •X + cT x
s.t. Bi •X + dT

i x + ei = ( or ≤)0 i ∈ I ∪K
Ax = b∑n

j=1 AkjXij = bkxi i = 1, . . . , n

k = 1, . . . , p
Xii = xi i = 1, . . . , n[

1 xT

x X

]
º 0

(SDPC)





min Q •X + cT x
s.t. Bi •X + dT

i x + ei = ( or ≤)0 i ∈ I ∪K

AT A •X − 2bT Ax + b
T

b = 0
Xii = xi i = 1, . . . , n[

1 xT

x X

]
º 0

The constraint Ax = b has been removed from (SDPC) because it is implied by
AT A •X − 2bT Ax + bT b = 0 and X − xxT º 0. In summary, we can conclude
that given a set K, the optimal value of the best semidefinite relaxation that one
can obtain by this approach is thus equal to the value of (DPK). Moreover, this
value is achieved by the semidefinite programs (SDPC) and (SDPP).
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4 Semidefinite relaxations of the QAP from a Lagrangian
point of view

Now, we are going to apply the results of the previous section to (QAP ), the
standard 0-1 quadratic formulation of the Quadratic Assignment Problem given
in Section 2. The first step is to find the largest possible set of null quadratic
functions over the feasible set of (QAP ). This can be done by taking advantage
of the particular values of A and b.

Consider the Quadratic semi-assignment Problem (QSAP). This problem is
a variant of QAP, and several classical combinatorial problems such as task-
assignment or graph partitioning problems can be formulated as QSAP. It can
be stated as:

(QSAP )





min
∑

i,j,k,l Cijkl xijxkl +
∑

i,j cijxij

s.t.
∑m

j=1 xij = 1 i = 1, . . . , n

x ∈ {0, 1}n×m

In (Billionnet and Elloumi 1992), in order to to obtain the best reduction of
this problem, the authors give the general expression of a null quadratic function
Γ (x) over the feasible set of (QSAP ):

Γ (x) =
n∑

i=1

λigi(x) +
n∑

i=1

n∑

k=1, k 6=i

m∑

j=1

δijkxkjgi(x) +
n∑

i=1

m−1∑

j=1

m∑

l=j+1

µijlxijxil

where λi, δijk, and µijl are any real numbers and gi(x) =
∑m

j=1 xij − 1. This
formula can be extended for the QAP straightforwardly by taking m = n and
by defining g

′
j(x) =

∑n
i=1 xij − 1 for j in {1, . . . , n}. By this way, we get a sim-

ilar function ∆(x) formed by three linear combinations of the functions g
′
j(x),

xkig
′
j(x) and xjixli. It is easy to verify that Γ (x) + ∆(x) is a null quadratic

function over the feasible of set (QAP ). Conversely, we conjecture that any null
quadratic function over the feasible set of (QAP ) can be expressed in this form.
In fact, we have obtained n3 − n2 new elementary null quadratic functions over
the feasible set of (QAP ): fijl(x) = xijxil and gijl(x) = xjixli for i in {1, . . . , n},
j in {1, . . . , n− 1} and l > j. Any linear combination of constraints made from
these functions can be added to the set K. The other functions are particular
cases of FW,α(x) +

∑
i,j βi(x2

ij − xij) (see Section 3, and especially the set P).
Therefore, it is useless to add them to K.

Now, following the approach recalled in Section 3, we can add any other valid
inequalities to K then formulate the resulting problem as a continuous quadratic
program by replacing the constraints x ∈ {0, 1}n2

by x2
ij = xij for all i and j in

{1, . . . , n} to obtain (QAPK).
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(QAPK)





min
∑

i,j,k,l Cijkl xijxkl +
∑

i,j cijxij

s.t. xT Bkx + dT
k x + ek = ( or ≤)0 k ∈ K∑n

i=1 xij = 1 j = 1, . . . , n∑n
j=1 xij = 1 i = 1, . . . , n

x2
ij = xij i, j = 1, . . . , n

Here, A = {x : Ax = b} is the set of x ∈ <n2
such that

∑n
i=1 xij = 1

∀i ∈ {1, . . . , n} and
∑n

j=1 xij = 1 ∀j ∈ {1, . . . , n}. Thus, the partial Lagrangian
relaxation of (QAPK) where the constraint x ∈ A is not relaxed is:

(DP )K
QAP

sup
ω,µ

inf
x∈A

xT

(
C + diag (µ) +

∑

k∈K

ωkBk

)
x +

(∑

k∈K

ωkdk + c− µ

)T

x + ωT e

µ and ω are the Lagrangian vectors associated to the constraints x2
ij − xij = 0

and to the valid equalities and inequalities of K, respectively. Thanks to the
results of Section 3, we know that two (equivalent) semidefinite formulations of
(DP )K

QAP are (QAPP)K and (QAPC)K .

(QAPP)K





min C •X + cT x
s.t. Bk •X + dT

k x + ek = ( or ≤)0 k ∈ K∑n
i=1 xij = 1 j = 1, . . . , n∑n
j=1 xij = 1 i = 1, . . . , n∑n
i=1 Xijkl = xkl j, k, l = 1, . . . , n∑n
j=1 Xijkl = xkl i, k, l = 1, . . . , n

Xijij = xij i, j = 1, . . . , n[
1 xT

x X

]
< 0

(QAPC)K





min C •X + cT x
s.t. Bk •X + dT

k x + ek = ( or ≤)0 k ∈ K
AT A •X − 2bT Ax + bT b = 0
Xijij = xij i, j = 1, . . . , n[

1 xT

x X

]
< 0

Recall that we use the notations of section 3 for (QAPC)K : A and b (here the
all ones 2n-vector) correspond to the assignment constraints. Now, by choosing
different sets K, we can survey the semidefinite relaxations of the QAP proposed
in the literature.

The weakest relaxation is obtained of course by taking K = ∅. (QAPP)∅

(which is equivalent to (QAPC)∅) is considered in (Karisch 1995) and denoted by
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(QAPR1). This program has no strictly feasible points but, as recalled in (Burer
and Vandenbussche 2006), the semidefinite dual of (QAPP)∅ has an interior-
point. Thus there is no duality gap and optimality is attained in (QAPP)∅.
Nevertheless, because of the algorithm used to solve this semidefinite program,
an equivalent formulation is proposed in (Karisch 1995) to get into the relative
interior of the feasible set:

(QAPR1)





min C •X + cT x

s.t. V̂ RV̂ T =
[

1 xT

x X

]

Xijij = xij i, j = 1, . . . , n
R < 0

where R is a ((n − 1)2 + 1) × ((n − 1)2 + 1) real symmetric matrix, and V̂
is a constant matrix (see (Karisch 1995) for details). Now, one can formulate
(QAPR1) only by using the matrix R, and get an semidefinite program which
admits strictly feasible points. In particular, it is proved in (Karisch 1995) (see
lemma 4.3.6) that the feasible matrices Z = V̂ RV̂ T of (QAPR1) satisfy all the
contrains of (QAPP)∅. Hence, one can start from this formulation of (DP )∅QAP

or from (QAPP)∅ to build stronger semidefinite relaxations for the QAP. In
fact, the choice mainly depends on the method used to compute the bounds.

Now, take K = O = {∑n
i=1 fijl(x) =

∑n
i=1 xijxil = 0,

∑n
i=1 gijl(x) =∑n

i=1 xjixli = 0 : j < l; j, l = 1, . . . , n}. These constraints are particular lin-
ear combinations of the null quadratic functions fijl and gijl over A ∩ {0, 1}n2

.
In several papers, these constraints are called ”orthogonality” contraints since
they actually correspond to the inner products between two different lines (or
columns) of x.

(QAPC)O





min C •X + cT x
s.t.

∑n
i=1 Xijil = 0 j < l; j, l = 1, . . . , n∑n
i=1 Xjili = 0 j < l; i, l = 1, . . . , n

AT A •X − 2bT Ax + bT b = 0
Xijij = xij i, j = 1, . . . , n[

1 xT

x X

]
< 0

By this way, we obtain (QAPP)O and (QAPC)O. As proposed in (Karisch
1995), one can add to (QAPR1) the same ”orthogonality” contraints. This will
lead to an equivalent relaxation, denoted by (QAPR2) in (Karisch 1995). Note
that this latter semidefinite program and (QAPC)O contain O(n2) linear con-
traints. Therefore, although the bounds obtained by using this set K are quite
poor, they can be computed into a reasonable time (by an interior point method
for the one presented in (Karisch 1995)). In a recent paper (Povh and Rendl
2006), a similar semidefinite relaxation is obtained from a copositive represen-
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tation of the QAP:

(QAPAW1)





min (C + diag (c)) •X
s.t.

∑n
i=1 Xijil = 0 j < l; j, l = 1, . . . , n∑n
i=1 Xjili = 0 j < l; j, l = 1, . . . , n∑n
i=1 Xijij = 1 j = 1, . . . , n∑n
j=1 Xijij = 1 i = 1, . . . , n∑
i,j,k,l Xijkl = n2

X < 0

Recall that diag (c) is the diagonal matrix made from the vector c. Using the
results of Section 3 and by noticing that

∑
i,j,k,l Xijkl = n2 is the linearization

of the null quadratic function
∑

i,j,k,l xijxkl = n2 over A, it is straightforward to
verify that the optimal value of (QAPAW1) is less than or equal to the optimal
value of (DP )OQAP which is equivalent to (QAPC)O and (QAPR2).

For K = G = {xijxil = 0, xjixli = 0 : j 6= l; i, j, l = 1, . . . , n}, (QAPP)G

corresponds to the ”Gangster” semidefinite relaxation denoted by (QAPR3) in
(Karisch 1995), and also used but denoted (QAPR2) in (Zhao et al. 1998, Rendl
and Sotirov 2007). It contains O(n3) linear constraints. Note that one can also
consider the equivalent semidefinite relaxation (QAPC)G:

(QAPC)G





min C •X + cT x
s.t. Xijil = 0 j 6= l; i, j, l = 1, . . . , n

Xjili = 0 j 6= l; i, k, l = 1, . . . , n
AT A •X − 2bT Ax + bT b = 0
Xijij = xij i, j = 1, . . . , n[

1 xT

x X

]
< 0

This semidefinite relaxation is stronger than (QAPP)O and (QAPC)O, since the
constraints in G obviously imply the constraints in O.

For K = LS = {xijxkl ≥ 0 : i, j, k, l ∈ {1, . . . , n}}, we obtain the equivalent
semidefinite relaxations (QAPC)LS and (QAPP)LS which involve O(n4) linear
constraints. (QAPC)LS , which is thus (QAPC)G with the additional constraints
Xijkl ≥ 0 (for all i j, k, l), is used in a recent paper (de Klerk and Sotirov 2007),
where the authors write the ”Gangster” constraints as a single constraint thanks
to these non-negativity constraints. Moreover, in this particular case, the con-
straints Xijij = xij for all i and j are redundant and AT A•X−2bT Ax+bT b = 0
simplifies to

∑
i,j Xijij − 2

∑
i,j xij + n = 0.

Numerical results for (QAPP)LS are given in (Roupin 2004) using the SDP
solver SB (Helmberg 2004) based on the Spectral Bundle method (Helmberg
and Rendl 2000). Note that the semidefinite relaxation proposed in this paper
contains two more sets of constraints:

∑n
i=1

∑n
k=1 Xijkj = 1 for j in {1, . . . , n}
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and
∑n

j=1

∑n
k=1 Xijik = 1 for i in {1, . . . , n}. These constraints are redundant

because they are implied by (P1) and (P2) and the assignment constraints. In
fact, they are added to (QAPP)LS because they speed up the solving process of
the Spectral Bundle algorithm.

(QAPP)LS





min C •X + cT x
s.t.

∑n
i=1 xij = 1 j = 1, . . . , n∑n
j=1 xij = 1 i = 1, . . . , n

(P1)
∑n

i=1 Xijkl = xkl ∀j, k, l = 1, . . . , n
(P2)

∑n
j=1 Xijkl = xkl ∀i, k, l = 1, . . . , n

Xijkl ≥ 0 ∀i, j, k, l = 1, . . . , n
Xijij = xij i, j = 1, . . . , n[

1 xT

x X

]
º 0

The relaxation (QAPP)LS is also considered in (Burer and Vandenbussche
2006) where an efficient solving algorithm (based on an augmented Lagrangian
approach) is used. One obtains an equivalent relaxation (QAPR3) (Karisch 1995,
Zhao et al. 1998, Rendl and Sotirov 2007) by starting from (QAPR1) then by
using the sets G and LS. In particular, it is easy to verify that the ”Gang-
ster” constraints are useless in (QAPP)LS . Indeed, when l = j in constraint
(P1) and i = k in constraint (P2), since Xijij = xij for all i and j, one gets∑n

i=1|i 6=k Xijkj = 0 for all k and j, and
∑n

j=1|j 6=l Xijil = 0 for all i and l. All
the Xijkl being non-negative, the ”Gangster” constraints are satisfied. A direct
proof of the equivalence between (QAPP)LS and (QAPR3) is given in (Povh and
Rendl 2006) without considering the equivalent Lagrangian relaxation (DP )LSQAP .

Now, one may think to add to (QAPP)LS other standard linearization in-
equalities in order to obtain stronger semidefinite relaxations of the QAP (Rendl
and Sotirov 2007). More precisely, one may consider Xijkl ≤ xkl, and xij +xkl−
1 ≤ Xijkl for all i, j, k, l in {1, . . . , n}. First, the constraints (P1), (P2), and the
non-negativity constraints in (QAPP)LS imply Xijkl ≤ xkl. The second set of
constraints is also satisfied by any feasible solution (X, x) of (QAPP)LS , because
one has 1−xij−xkl +Xijkl =

∑
r 6=j xir−xkl +Xijkl =

∑
r 6=j xir−

∑
r 6=j Xirkl−

Xijkl + Xijkl =
∑

r 6=j (xir −Xirkl) ≥ 0 (following a similar proof given in
(Billionnet and Elloumi 1992)). As noticed in (de Klerk and Sotirov 2007), other
triangle inequalities are also satisfied by the feasible solutions of these equivalent
semidefinite programs. Consequently, if one wants to get stronger semidefinite re-
laxations other valid inequalities must be considered. In (Faye and Roupin 2005),
two other sets I ′C and I ′L of cuts are used with (QAPP)LS in a Branch-and-Cut
algorithm for the QAP. Initially, these cuts were proposed in linear programming
approach (Blanchard et al. 2003). The first set is:

I ′C :
∑

c∈C Xijlc ≤
∑

k∈A Xijhk +
∑

c∈C

∑
b∈B,b 6=c Xlchb

where i, h, l are distinct fixed row indices of x, j is a column indice of x,
(A,B, {j}) is a partition of the index set {1, . . . , n}, and C ⊂ B. The second set
is:
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I ′L :
∑

c∈L Xijcl ≤
∑

h∈A Xijhk +
∑

c∈L

∑
b∈B,b 6=c Xclbk

where j, k, l are distinct fixed column indices of x, i is a row indice of x,
(A,B, {i}) is a partition of the index set {1, . . . , n}, and L ⊂ B. Thanks to the
strong tailing off effect of SB (Helmberg 2004), the semidefinite programming
solver used in (Faye and Roupin 2005), an approximate solution is obtained in a
short time. Then, this solution is used to generate efficient cutting planes which
obviously improve the bound, but also speed up the convergence of SB. Hence,
for several instances the total computing time of the Branch-and-Cut algorithm
is less than the computing time needed to solve (QAPP)LS within the same
accuracy (see Figure 4 in Section 5, and (Faye and Roupin 2005) for detailed
computational results).

5 Numerical issues

In Section 4, for each different set K, we have seen that one can obtain several
sets of equivalent semidefinite relaxations for the QAP. Using this approach, we
were able to survey and compare the semidefinite relaxations proposed for the
QAP in a simple way. Nevertheless, as recalled in section 1, these relaxations
have a different numerical behavior depending on the SDP solver. For all the
semidefinite relaxations described in section 4, computational results can be
found in the corresponding references. Therefore here, we only illustrate this
point in Figures 1, 2 and 3 for three classical instances of the QAP (Burkard,
Karisch and Rendl 1997).
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Fig. 1. Nug12 problem: bounds in dependence of CPU time when solving (QAPP)LS

and (QAPC)LS with the Spectral Bundle algorithm SB (left side), and SDPLR (right
side).

The semidefinite relaxations are defined in Section 4, and the numerical ex-
periments have been carried out on a Pentium IV 2.2 MHz computer with 1
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GoBytes of RAM under Linux. We have used three different solvers which are
publically available : SB (Helmberg 2004), SDPLR (Burer and Monteiro 2003),
and CSDP (Borchers 1999) (an interior-point method). For a given figure, all
the semidefinite relaxations have the same optimal value.

As noticed in (Povh and Rendl 2006), if one wants to use an interior point
method, then it is generally difficult to employ a semidefinite relaxation of the
QAP with more than O(n2) constraints in an exact algorithm (for instance in a
branch and bound setting). In this context, an alternative is to develop specific
approaches, for instance by using representation theory to reduce in size the SDP
relaxations of particular instances (de Klerk and Sotirov 2007). Other compu-
tational experiments (Faye and Roupin 2005, Burer and Vandenbussche 2006)
suggest to choose a SDP solving method that can handle a large number of
constraints (like the Spectral Bundle method or an augmented Lagrangian al-
gorithm) and does not request the existence of interior points in both feasible
regions of the primal and dual programs. By this way, it is possible to use in
practice strong semidefinite relaxations for the QAP, especially the ones with
O(n4) constraints. This point is illustrated in Figure 4 with numerical data from
(Faye and Roupin 2005). In this particular problem, although the cutting planes
do not improve the bound (which is in fact the optimal value), they actually
speed up the solving process. This makes possible to use these semidefinite re-
laxations in an exact method (solving them approximately) by obtaining the
bounds provided by weaker relaxations in a shorter time.
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Fig. 2. Nug27 problem: bounds in dependence of CPU time when solving (QAPP)G,
(QAPC)G and (QAPR3) with SDPLR.
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Fig. 3. Nug15 problem: bounds in dependence of CPU time when solving (QAPP)O,
(QAPC)O with SDPLR, and (QAPR2) with SDPLR and CSDP.

 3500

 3550

 3600

 3650

 3700

 3750

 0  500  1000  1500  2000

S
D

P
 b

ou
nd

s

CPU time (s)

"(QAP_P)LS"

 3500

 3550

 3600

 3650

 3700

 3750

 0  500  1000  1500  2000

S
D

P
 b

ou
nd

s

CPU time (s)

"(QAP_P)LS"

 3500

 3550

 3600

 3650

 3700

 3750

 0  500  1000  1500  2000

S
D

P
 b

ou
nd

s

CPU time (s)

"(QAP_P)LS+CUTS"

 3500

 3550

 3600

 3650

 3700

 3750

 0  500  1000  1500  2000

S
D

P
 b

ou
nd

s

CPU time (s)

"(QAP_P)LS+CUTS"

 3500

 3550

 3600

 3650

 3700

 3750

 0  500  1000  1500  2000

S
D

P
 b

ou
nd

s

CPU time (s)

Fig. 4. Had16 problem: bounds in dependence of CPU time when solving (QAPP)LS

and (QAPP)LS with a set of 262 cuts I ′C and I ′L with SB. CPU times of the second
SDP are translated by 360 s (see the vertical dotted line) which corresponds to the
time spent to solve approximately (QAPP)LS and to generate the cuts.
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6 Concluding remarks

In this paper, taking advantage of a Lagrangian framework, we have been able to
survey and compare semidefinite relaxations of the Quadratic Assignment Prob-
lem in a simple way. Moreover, we have illustrated the interest of considering
partial Lagrangian relaxations to design various and strong semidefinite relax-
ations easily. This approach is very general and can be applied to many other
combinatorial problems. With the arising of more and more efficient algorithms
to solve SDP problems with many constraints, (see for instance the augmented
Lagrangian approach proposed in (Malick, Povh, Rendl and Wiegele 2007) and
improved in (Zhao, Sun, and Toh 2008)) it makes no doubt that semidefinite
programming is one of the most promising approaches to solve exactly large in-
stances of the Quadratic Assignment Problem.
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