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Abstract: This paper intends to help the reader to understand a new inventory
control model for steel products. This model introduces a steel marketing
supply chain between a manufacturer and a merchant with multiple steel
products. The purpose of this work is to influence a price discount on
backorder for the merchant, ordering cost reduction and setup cost reduction,
proceeding with the cogitation of discount on freight cost. We hold the
freight cost to be a function of the order’s quantity, and it is to be in
the format of all-unit-discount costs. We thus assimilate freight costs into
the system comprehensively and straightforwardly and have worked out the
optimal solution procedures for working with the posed inventory model. A
numerical example and sensitivity analyses are also carried out to demonstrate
the study’s implementations and performances.
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1 Prologue

Roads, trains, other infrastructure, appliances, and buildings are all constructed with
iron and steel. Steel skeletons support most big modern constructions, such as
stadiums and skyscrapers, bridges, and airports. Steel is used for reinforcement even
in concrete structures. It is also widely used in large appliances and automobiles.
Despite its increasing popularity, aluminium remains the most common material for
vehicle bodywork. Steel is utilised in a wide range of other building materials,
including bolts, nails, and screws, as well as various home items and culinary utensils.
Shipbuilding, pipelines, mining, offshore construction, aerospace, white goods (e.g.,
washing machines), heavy equipment like bulldozers, office furniture, steel wool, tool,
and armour in the shape of personal vests or vehicle armour are some of the other
typical uses.

Nowadays, even steel trading prefers to become an integral part of the supply chain,
rather than an entity, to increase the trade’s aggressive quantity. In agreement with that,
one of the best research topics in the field of supply chain management (SCM) is still
the development of joint economic lot size (JELS) models.

In economy, there is a sliding scale of green transport depending on the sustainability
of the choice. Green motors are more fuel-efficient, but most effective in evaluation
with standard vehicles, and they still contribute to traffic congestion and road crashes.
well-patronised open transport networks based on conventional diesel buses utilise much
less fuel per traveler than private motors, and are generally safer and use less road space
than private vehicles. Green public transport vehicles including electric trains, trams
and electric buses combine the advantages of green vehicles with those of sustainable
transport choices. Other transport choices in the olden days are cycling and other
human-powered vehicles, and animal powered transport which are scream to natural
environment. In those days, the foremost common green transport choice, with the least
environmental impact is walking. But this could be impossible in the modern world
today. Therefor we move on to the electric vehicle technology which exceptionally
promote sustainable transportation.

Electric vehicle technology (especially non-battery-based vehicles, fuel cell vehicles,
...) has the potential to diminish transport CO2 emissions, depending on the encapsulated
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vitality of the vehicle and the source of the electricity. The essential sources of
electricity now utilised in most countries (coal, gas and oil) imply that until world
electricity production changes substantially, private electric cars will result in the same
or higher production of CO2 than petrol equivalent vehicles. Battery-based electric
vehicles may or may not be better in terms of green house gases (GHGs) emissions then
fossil-fuel-based vehicles depending on several factors, such as battery type, capacity of
the battery, life hope of the battery and so forth.

Sustainable transport, arising from the concept of sustainable development, aims
to provide accessibility for all to help and to meet the basic daily mobility which
needs consistent with human and ecosystem health, but to constrain GHG emissions
(for example, decoupling mobility from oil dependence and LDV use). An electric truck
is an electric vehicle fueled by batteries intended to convey payload. Electric trucks
have been around in special application for over a hundred years, however more as
of late the approach of lithium particle batteries has empowered the scope of electric
trucks to increment for a few hundred miles, making them more extensive consistency
and to decrease the GHGs emissions. Cui et al. (2021) proposed a cost model of lead
time reduction through the method of piecewise accumulation, and then designed a cost
optimisation strategy by the comparison between the lead time reduction cost and the
shortage cost. Tharani and Uthayakumar (2020) worked with a stock consignment model
by introducing lead time and ordering reduction under two different investments.

In recent years, supply chain strategy has evolved much recognition from researchers
(see Lee et al., 2007) in the context of price discounts on backorder and ordering
cost reduction. In general, though, the literature of this kind is limited to single
echelons. Eydi and Bakhtiari (2017) developed a multi-product model for evaluating
and choosing two layers of suppliers incorporating environmental factors. An integrated
inventory system of ordering cost reduction and permissible delay in payments was
analysed by Huang (2010). Esmaeili et al. (2018) built a two-echelon supply chain
with incomplete supplier service-level data under the (R,Q) policy. Pourmehdi et al.
(2020) had developed a multi-objective linear mathematical model under uncertainty
to optimise a steel sustainable closed-loop supply chain. Hoque (2021) developed
a single-manufacturer multi-retailer integrated model by extending the ideas of two
single-vendor single-buyer integrated models, where Normal distribution of lead times
of delivering equal- and/or unequal-sized batches of a lot.

On an optimised seller-buyer supply chain system, Sarkar and Majumder (2013)
dealt with the setup cost reduction of the vendor. A stochastic demand inventory
model with some preservation methods for deteriorating items was made by Soni and
Chauhan (2018). Sarkar et al. (2015) had explored manufacturing system with setup
cost reduction, quality improvement under free distribution approach, and service level
constraint. Mohanty et al. (2018) had done work on an imperfect production-inventory
system with trade credit and variable setup cost. Uthayakumar and Kumar (2018)
contributed work on a constrained integrated multi-product inventory model on a
mixture of distribution. Uthayakumar and Tharani (2017) collaborated with different
manufacturing setups on rework.

Lin et al. (2012) proposed a new system of inventory management for fresh
agricultural products and investigated the impact of inflation and payment delays on
the inventory model’s Weibull distribution. Xie and Zhang (2011) developed a fresh
agricultural product inventory management model based on the expected reduction in
inventory costs. Acosta et al. (2018) had provided a quantitative model for resource
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management in agricultural supply chains that takes perishability into account. Lesmono
et al. (2020) executed a multi-item perishable inventory model with deterministic
demands, return and all-units discount.

Later, Kang and Kim (2010) developed an inventory model with various
transportation rate functions. Priyan and Uthayakumar (2014) addressed a vendor-buyer
inventory system with ordering cost reduction, transport cost, and price discount on
backorder with trade credit and uncertain quantity. Kaviyani-Charati and Kargar (2021)
had dealt two real case studies along with their optimisation models which are provided
to show how the demand rate changes over time. Moghaddam et al. (2019) had designed
a mathematical model for the reverse supply chain of perishable goods, taking into
account the sustainable production system.

2 Catalyst to the research

Many manufacturers and merchants would be fond of generating a long-term
collaborative agreement and getting a balanced contentedness point of supply-demand
to minimise the cost function and enhance overall quality in this aggressive trading
market of prevailing assets. Thus, nowadays, both manufacturers and merchants have a
combined attempt between the commodities for achievements.

In existing days, merchants wish to stay back for backorders for products.
Accordingly, stimulating the merchant to stay back for backorders is valuable to the
manufacturer’s organisation. Many consumers give a discounted price upon this stockout
product to save backorders from piling up in today’s world. This overture will pique the
merchant’s interest in the desirable products remaining in the store. Today by granting
price discounts, many authorities produce high customer reliability.

In many developing countries, because of the insufficient resources of the prospering
population and automobiles, the freight expense for production process concerns to
move on the goods at the right time is very abundant. Many merchants/retailers have
also received their goods to minimise freight costs from nearby manufacturers/suppliers.
Nowadays, thus, the cost of freight plays a critical role in the overall functional cost.
Today, the rate of freight is disturbed by the transmitting opinions and the desired size
of shipping. As a result, manufacturers/suppliers reverse discounts for the freight cost of
plentiful ordered commodities in prosperous countries to entice the customer. Because
of the uncertain circumstances and inflation, inventory costs grow as a significant part
of the production authority. Therefore, certain commodities pay out additional funds
to equip the employees in order to curtail inventory costs. In that manner, small-scale
authorities in India pay out an extra added fund by way of an expenditure, resulting in
a decrease in the inventory model’s overall total cost.

When the manufacturers fail to supply the items ordered by the merchants, as well as
when the merchants open a price compromise on stockout products to guarantee higher
backorders and expend more time in order to mitigate the ordering expense to promote
consumer competition, the concessions are reversed for the freight cost of abundant
commodities.
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3 Notations and assumptions

3.1 Notations

We require the following notations and assumptions to establish the mathematical
configuration for the present system. When there is some requirement, additional
notations and assumptions will be added.

3.1.1 Decision variables

ABi Ordering cost of the merchant per order acquired by the merchant for the
product i (rupees/product).

AV i Setup cost of the manufacturer per setup acquired by the manufacturer for the
product i (rupees/product).

πxi Merchant’s price discount on backorder to the customer for the ith product.

Qi Merchant’s order quantity of the product i (kg).

n Number of lots for all products which are all shipped in one manufacturing
cycle from the manufacturer to the merchant.

L Lead time for delivering a lot from the manufacturer to the merchant for all
products.

3.1.2 Parameters

Di Merchant’s average rate of demand for the ith product.

Pi Manufacturer’s production rate for the ith product.

m Number of products.

AB0i Original ordering cost for the ith product.

AV 0i Original setup cost for the ith product.

hV i Manufacturer’s stock holding cost for the ith product per unit per unit time.

hBi Merchant’s stock holding cost for the ith product per unit per unit time.

ri Merchant’s reorder point of the ith product.

τi Merchant’s compartmental annual oppurtunity cost of the capital.

αi Manufacturer’s compartmental annual oppurtunity cost of the capital.

π0i Marginal profit for the ith product (i.e., cost of lost demand).

βi Fraction of the shortage that will be backordered at the merchant’s end,
0 ≤ βi < 1.

β0i Upper bound of the backorder ratio, 0 ≤ β0i < 1.
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3.1.3 Random variables

Xi Lead time demand rate of the merchant for the ith product.

3.1.4 Functions and operators

E(·) Mathematical expectation.

x+ Maximum value of x and 0 (i.e., x+ = max{x, 0}).

f(xi) Probability density function of Xi with finite mean DiL and standard
deviation.

σi

√
L Where σi denotes the standard deviation of the demand per unit time.

R(L) Lead time crashing cost per cycle.

3.2 Assumptions

Some of the strategic characteristics become fundamental and the following hypothesis
need to be considered:

1 The framework deals with multiple steel products with the cooperation of a
manufacturer and a merchant. In different corporate entities, the manufacturer
and the merchant are excited about providing a collaborative inventory system.
Therefore, all members intend to minimise the integrated expected total cost
(ETC) in the joint strategy. The merchant prefers a continuous review inventory
strategy, and the order is retained once the inventory volume exceeds the reorder
point ri.

2 The production rate of the manufacturer and the merchant’s demand rate are
constant.

3 The merchant pays sustainable freight cost which depends on the merchant’s
order quantity.

4 The reorder level of the ith product is ri = (expected demand during lead time of
the ith product = DiL)+ (safety stock of the ith product = kiσi

√
L) where ki is

the safety factor for the ith product.

5 The rate of production should be greater than the rate of demand.

6 Shortages and backorders are considered.

7 The time horizon is infinite.

8 L lead time consists of N components that are mutually independent. The jth

component has a normal aj duration and cl crashing cost per unit time. We
rearrange cl for convenience, so that c1 < c2 < ... < cN . Starting from the first
component, the lead time components are crashed one at a time so they have the
lowest unit crashing cost, and then the second component, and so on. Let
L0 =

∑N
j=1 bj , and Lj be the length of lead time with components 1, 2, ..., j

crashed to their minimum duration, then Lj can be expressed as
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Lj = L0 −
∑i

l=1(bl − al), i = 1, 2, ...,m and the lead time crashing cost R(L)

per cycle is given by R(L) = cj(Lj−1 − L) +
∑j−1

l=1 cl(bl − al), L ∈ [Lj , Lj−1].

9 I(ABi) is an investment for the merchant’s ordering cost reduction and it can be
expressed as follows:

I(ABi) =
1

δi
ln
(
AB0i

ABi

)
0 < ABi ≤ AB0i (1)

where δ represents the decrease in the percentage of ABi per dollar increment in
I(ABi).

10 The capital investment I(AV i), in reducing manufacturer’s setup cost is
logarithmic function of the setup cost AV i. That is,

I(AV i) =
1

γi
ln
(
AV 0i

AV i

)
0 < AV i ≤ AV 0i (2)

11 The merchant endeavours price discount to his customers as a deficit, precisely,
the backorder ratio, βi is variable during the stockout time and in proposition to
the price discount endeavoured by the merchant per unit, πxi, that is,

βi =
β0iπxi

π0i
(3)

where 0 ≤ β0i < 1 and 0 ≤ πxi ≤ π0i.

4 Manufacturer-merchant inventory model without freight cost

In an integrated manufacturer-merchant model for multiple steel products, we work
with the single-setup-multiple-delivery (SSMD) policy, i.e., if the merchant orders Qi

quantity for ith product of non-defective products, then the manufacturer produces nQi

quantity where n is any positive integer, and Qi quantity is transferred n times to the
merchant. The manufacturer produces the nQi quantity in one manufacturing period.
The manufacturer’s setup cost per setup for the ith product is AV i. For the ith product,
the manufacturer’s production rate per unit time is Pi. As the demand rate is Di, the
utilisation time of the produced quantity Qi is Qi/Di. Thus, the time for utilising all
nQi products is nQi/Di. Furthermore, we have the integrated inventory model with
ordering and setup cost reductions and shortages under partial backlog. As the inventory
model follows (s, S) policy, the fraction βi of shortages is back-ordered in the next
replenishment.

The lead time demand Xi for ith product follows normal distribution with mean
DiL and standard deviation σi

√
L. The expected shortages at the end of the cycle for

ith product is E(Xi − ri)
+ where ri is the reorder point. As βi is backorder ratio,

the expected amount of the backorder per cycle is βiE(Xi − ri)
+ and the lost sale is

(1− βi)E(Xi − ri)
+. The expected inventory level before receipt of an order is ri −

DiL+ (1− βi)E(Xi − ri)
+. The expected inventory level after the delivery of quantity

Qi is Qi + (ri −DiL) + (1− βi)E(Xi − ri)
+. Thus the average inventory level at any

time in the cycle is Qi

2 + ri −DiL+ (1− βi)E(Xi − ri)
+.
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From the manufacturer to the merchant, the freight cost per unit is irrespective of
the quantity ordered. Therefore, the freight cost is ignored in this section of the ETC for
simplification. The joint expected total cost (JETC) is proportional to the manufacturer’s
total expected cost, and the merchant’s total expected cost.

4.1 Manufacturer’s ETC

The expected total setup cost per unit time of the manufacturer for ith product is
formulated as

αiI(AV i) +
AV iDi

nQi
(4)

Subject to the constraint

0 < AV i ≤ AV 0i

The total holding cost per unit time of the manufacturer for ith product can be jotted as

hV iQi

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
(5)

We also considered the same ETC per unit time for the manufacturer, as in Sarkar
and Majumder (2013). Thus, for all m products, the ETC of the manufacturer is the
sum of the setup cost and holding cost. Now we have the total expected cost for the
manufacturer to be represented as

ETCV =
m∑
i=1

(
αiI(AV i) +

AV iDi

nQi
+

hV iQi

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

])
(6)

Subject to the constraint

0 < AV i ≤ AV 0i

4.2 Merchant’s ETC

Merchant’s expected total ordering cost per unit time for ith product can be carved as

τiI(ABi) +
ABiDi

Qi
(7)

Subject to the constraint

0 < ABi ≤ AB0i

The expected holding cost of the merchant per unit time for ith product is given as

hBi

[
Qi

2
+ ri −DiL

]
+ hBi

[
1− β0iπxi

π0i

]
(8)
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For all m products, the ETC of the merchant per unit time is equal to the sum of
ordering cost, holding cost, shortage cost, and crashing cost of lead time. Therefore, for
the merchant, the ETC is expressed as

ETCB =
m∑
i=1

(
τiI(ABi) +

ABiDi

Qi
+ hBi

[
Qi

2
+ ri −DiL

]
+ hBi

[
1− β0iπxi

π0i

]
E(Xi − ri)

+ +
Di

Qi

[
β0iπ

2
xi

π0i

+ π0i − β0iπxi]E(Xi − ri)
+ +

Di

Qi
R(L)

)
(9)

Subject to the constraints

0 < ABi ≤ AB0i

0 < πxi ≤ π0i

where E(Xi − ri)
+ =

∫∞
ri

(xi − ri)dF (xi)

4.3 JETC

Thus the JETC per unit time for all m products is exhibited as

JETC =

m∑
i=1

(
αiI(AV i) +

AV iDi

nQi
+

hV iQi

2

[
n

(
1− Di

Pi

)
− 1

+
2Di

Pi

]
τiI(ABi) +

ABiDi

Qi
+ hBi

[
Qi

2
+ ri −DiL

]
+ hBi

[
1− β0iπxi

π0i

]
E(Xi − ri)

+ +
Di

Qi

[
β0iπ

2
xi

π0i

+ π0i − β0iπxi]E(Xi − ri)
+ +

Di

Qi
R(L)

)
(10)

Subject to the constraints

0 < AV i ≤ AV 0i

0 < ABi ≤ AB0i

0 < πxi ≤ π0i

Therefore, the following nonlinear programming model can be used to reduce setup
costs, price discount on backorder, purchasing cost reduction without incurring freight
costs:

min JETC =
m∑
i=1

(
αiI(AV i) +

AV iDi

nQi
+

hV iQi

2

[
n

(
1− Di

Pi

)
− 1

+
2Di

Pi

]
τiI(ABi) +

ABiDi

Qi
+ hBi

[
Qi

2
+ ri −DiL

]
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+ hBi

[
1− β0iπxi

π0i

]
E(Xi − ri)

+ +
Di

Qi

[
β0iπ

2
xi

π0i

+ π0i − β0iπxi]E(Xi − ri)
+ +

Di

Qi
R(L)

)
(11)

Subject to the constraint

0 < AV i ≤ AV 0i

0 < ABi ≤ AB0i

0 < πxi ≤ π0i

4.4 Solution procedure

A constrained nonlinear programming problem is the problem framed in the previous
section. We briefly relax the constraints and ignore the integer n to solve the restricted
problem. For fixed Qi, ABi, AV i, πxi, L and n the JETC can be verified to be a
convex function of n with an optimal value n∗ through the following conditions:{

JETC(Qi, AV i, ABi, πxi, L, n
∗) ≤ JETC(Qi, AV i, ABi, πxi, L, n

∗ − 1)
JETC(Qi, AV i, ABi, πxi, L, n

∗) ≤ JETC(Qi, AV i, ABi, πxi, L, n
∗ + 1)

For a fixed positive integer n, we take the partial derivatives of JETC for ith product
with respect to Qi, ABi, AV i, πxi and L to acquire optimal solution.

∂JETC

∂Qi
= −ABiDi

Q2
i

− AV iDi

nQ2
i

+
hBi

2
− Di

Q2
i

[
β0iπ

2
xi

π0i
+ π0i

− β0iπxi]σi

√
LΨi(ki)−

Di

Q2
i

R(L) +
hV i

2

[
n

(
1− Di

Pi

)
− 1 +

2Di

Pi

]
(12)

∂JETC

∂ABi
= − τi

δiABi
+

Di

Qi
(13)

∂JETC

∂AV i
= − αi

γiABi
+

Di

nQi
(14)

∂JETC

∂πxi
= −hBiβ0i

π0i
σi

√
LΨi(ki) +

[
2Diβ0iπxi

Qiπ0i
− Diβ0i

Qi

]
σi

√
LΨi(ki) (15)

∂JETC

∂L
=

hBikiσi

2
√
L

+
hBi

2
√
L

(
1− β0iπxi

π0i

)
σiΨi(ki)

+
Di

2
√
LQi

[
β0iπ

2
xi

π0i
+ π0i − β0iπxi

]
σiΨi(ki)−

Di

Qi
cj (16)

By analysing the second order sufficient conditions (SOSC) for a minimum value, it can
be easily confirmed that JETC is not a convex function of (Qi, ABi, AV i, πxi, L, n).
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However, for fixed Qi, ABi, AV i, πxi and n, JETC is noted to be a concave function
in L ∈ [Lj , Lj−1], because

∂2JETC

∂L2
= −3hBikiσi

4L
√
L

− 3hBi

4L
√
L

(
1− β0iπxi

π0i

)
σiΨi(ki)

− 3Di

4L
√
LQi

[
β0iπ

2
xi

π0i
+ π0i − β0iπxi

]
σiΨi(ki) < 0 (17)

Therefore, for fixed (Qi, ABi, AV i, πxi), at the interval’s end points, the minimum
JETC per unit time exists L ∈ [Lj , Lj−1]. Conversely, for fixed n and L ∈ [Lj , Lj−1],
JETC can be proved to be a convex function of (Qi, ABi, AV i, πxi). Thus, for fixed
n and L ∈ [Lj , Lj−1], the minimum value of JETC occurs at the point (Qi, ABi, AV i,
πxi) which satisfies ∂JETC

∂Qi
= 0, ∂JETC

∂ABi
, ∂JETC

∂AV i
and ∂JETC

∂πxi
simultaneously. Solving

these three equations, yields

Qi =

√√√√2Di[ABi +
1
nAV i + (β0iπ2

xi + π0i − β0iπxi)σi

√
LΨi(ki) +R(L)]

hBi + hV i

[
n
(
1− Di

Pi

)
− 1 + 2Di

Pi

] (18)

ABi =
τiQi

δiDi
(19)

AV i =
nαiQi

γiDi
(20)

πxi =
Qiπ0i

2Di

[
Di

Qi
+

hbi

π0i

]
(21)

Theorem 4.1: If we denote the optimum values as Q∗
i , A∗

Bi, A∗
V i, and π∗

xi, then for fixed
n and L ∈ [Lj , Lj−1], the JETC function JETC has a global minimum at (Q∗

i , A∗
Bi,

A∗
V i, π∗

xi) acquired from equations (19), (20), (21) and (21) with the relaxed constraints
such as 0 < AV i ≤ AV 0i, 0 < ABi ≤ AB0i and 0 < πxi ≤ π0i and also provided the
following condition which is to be satisfied

D2
i αi

Q4
i γiA

2
V i

>
2Di

Q3
i

[
ABi +

1

n
AV i + (β0iπ

2
xi + π0i − β0iπxi)σi

√
LΨi(ki)

+ R(L)]
τiαi

δiγiA2
BiA

2
V i

+
D2

i τi
n2Q4

i δiA
2
Bi

(22)

Proof: See Appendix. �

Now we consider the constraints 0 < AV i ≤ AV 0i, 0 < ABi ≤ AB0i and 0 < πxi ≤
π0i. From equations (19), (20), (21) and (21) we note that ABi, AV i, πxi are positive
as the parameters Qi, Di, Pi, β0i, π0i, σi, Ψi(ki), R(L), hBi, hV i, τi, γi, αi, δi are
positive. Moreover, if A∗

V i < AV 0i, A∗
Bi < AB0i, and π∗

xi < π0i then (Q∗
i , A∗

Bi, A∗
V i,

π∗
xi) is an interior optimal for given L ∈ [Lj , Lj−1]. However, if A∗

V i < AV 0i, A∗
Bi <

AB0i, and π∗
xi ≥ π0i consequently the merchant shall decide against introducing the

price discount on backorder, as he generates opinions to acquire benefits. Therefore,
if the price discount on backorder, πxi is greater than the marginal benefit π0i then
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the merchant may decide against introducing the price discount on backorder. That is,
π∗
xi = π0i.
On the other hand,if A∗

V i ≥ AV 0i, A∗
Bi < AB0i, and π∗

xi < π0i then investing in
reducing setup costs is impractical; in this case, the optimal A∗

V i = AV 0i. And also if
A∗

V i < AV 0i, A∗
Bi ≥ AB0i, and π∗

xi < π0i it is then difficult to produce any investment
to modify the existing ordering cost level; in this situation, the optimal A∗

Bi = AB0i.
On the other hand, if A∗

V i ≥ AV 0i, A∗
Bi < AB0i, and π∗

xi ≥ π0i then investing in
reducing setup costs is also impractical; in this case, the optimal A∗

V i = AV 0i and since
the merchant creates opinions in order to receive benefits which means π∗

xi = π0i, the
merchant can decide not to overturn the price discount on backorder. And also if A∗

V i <
AV 0i, A∗

Bi ≥ AB0i, and π∗
xi ≥ π0i it is then impossible to produce some investment to

modify the present level of ordering costs; in this case, the optimal A∗
Bi = AB0i and

since the merchant creates opinions in order to receive benefits which means π∗
xi = π0i,

the merchant can decide not to overturn the price discount on backorder. If A∗
V i ≥

AV 0i, A∗
Bi ≥ AB0i, and π∗

xi < π0i it is then impossible to produce some investment
in reducing setup cost then; in this situation, the optimal A∗

V i = AV 0i and difficult to
generate any investment to modify the present level of ordering costs A∗

Bi = AB0i.
On the other hand, if A∗

V i ≥ AV 0i, A∗
Bi ≥ AB0i, and π∗

xi ≥ π0i then we should not
make any investments to adjust the new buying and configuration costs, and we should
also avoid overturning the backorder price discount. The ideal ordering cost and setup
cost for this special case are, respectively, the original ordering cost and setup cost,
namely, A∗

Bi = AB0i and A∗
V i = AV 0i and the optimal price discount on backorder is

π∗
xi = π0i.

4.5 Algorithm

The following algorithm is created to detect the optimum values depending on the
objective function’s convexity behaviour concerning the decision variables.

Step 1 For each L ∈ [Lj , Lj−1], determine the JETC(Q∗
i , A∗

Bi, A∗
V i, π∗

xi) by
proceeding the following steps.

Step 2 Set n = 1.

Step 3 Determine the values Q̂i, ÂBi, ÂV i, π̂xi and the corresponding total cost
JETC(Q̂i, ÂBi, ÂV i, π̂xi) by using the sub-algorithm (Subsection 4.5.1).

Step 4 Compute minj=1,2,...,N JETC(Q̂i, ÂBi, ÂV i, π̂xi). If JETC(Q∗
i , A∗

Bi,
A∗

V i, π∗
xi) = minj=1,2,...,N JETC(Q̂i, ÂBi, ÂV i, π̂xi) then set JETC(Q∗

i ,
A∗

Bi, A∗
V i, π∗

xi) as the optimal solution for fixed n.

Step 5 Raise the value of n by n+ 1, and do the steps 2 and 3 again to gain the
optimal solution JETC(Q∗

i , A∗
Bi, A∗

V i, π∗
xi).

Step 6 If the previous JETC for n− 1 is greater than the current JETC for n
then proceed to step 4 otherwise move on to step 6.

Step 7 Now the JETC for n− 1 is optimal solution for the presented model.
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4.5.1 Sub-algorithm

Step 1 Reiterate the steps from steps 1.1 to 1.3 in the sub-algorithm until no change
emerges in the values of Qi ABi, AV i and πxi. Represent the solution by Q̃i

ÃBi, ÃV i and π̃xi.

Step 1.1 Initiate with AV i = AV 0i, ABi = AB0i and πxi = π0i.

Step 1.2 Now with these values compute Qi in the equation (19).

Step 1.3 Find the values of AV i, ABi and πxi by substituting the value of
Qi in the equations (20), (21) and (21).

Step 2 Compare AV i, ABi and πxi with AV 0i, AB0i and π0i respectively.

1 If ÃV i < AV 0i, ÃBi < AB0i, and π̃xi < π0i then the solution got
through step 1 is optimal for the given L. Then compute JETC by
following step 4.

2 If ÃV i ≥ AV 0i, ÃBi < AB0i, and π̃xi < π0i then keep ÃV i = AV 0i for
finding the optimal values for the given L. Then compute JETC by
following step 4. Otherwise follow step 3.

3 If ÃV i < AV 0i, ÃBi ≥ AB0i, and π̃xi < π0i then keep ÃBi = AB0i for
finding the optimal values for the given L. Then compute JETC by
following step 4. Otherwise follow step 3.

4 If ÃV i < AV 0i, ÃBi < AB0i, and π̃xi ≥ π0i then keep π̃xi = π0i for
finding the optimal values for the given L. Then compute JETC by
following step 4. Otherwise follow step 3.

5 If ÃV i ≥ AV 0i, ÃBi ≥ AB0i, and π̃xi < π0i then keep ÃV i = AV 0i and
ÃBi = AB0i for finding the optimal values for the given L. Then
compute JETC by following step 4. Otherwise follow step 3.

6 If ÃV i ≥ AV 0i, ÃBi < AB0i, and π̃xi ≥ π0i then keep ÃV i = AV 0i and
π̃xi = π0i for finding the optimal values for the given L. Then compute
JETC by following step 4. Otherwise follow step 3.

7 If ÃV i < AV 0i, ÃBi ≥ AB0i, and π̃xi ≥ π0i then keep ÃBi = AB0i and
π̃xi = π0i for finding the optimal values for the given L. Then compute
JETC by following step 4. Otherwise follow step 3.

8 If ÃV i ≥ AV 0i, ÃBi ≥ AB0i, and π̃xi ≥ π0i then keep ÃV i = AV 0i,
ÃBi = AB0i and π̃xi = π0i for finding the optimal values for the given
L. Then compute JETC by following step 4. Otherwise follow step 3.

4.6 Numerical analysis

In order to help our model verification, we implemented the more realistic numerical
example here. Using the MATLAB programming program, the solution for the given
example is acquired. Consider a system of inventory with parameters equivalent to
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Uthayakumar and Kumar (2018), and also we have considered the safety factor k =
0.845 for all the three products.

Table 1 Merchant’s parameters

ith product Di kg/ ABi rupees/ hBi rupees/ π0i rupees/
σi

τi rupees/
δi β0iproduct product product product product

1 600 200 25 150 7 0.1 0.003 0.2
2 1,000 300 35 250 8 0.2 0.005 0.7
3 800 250 30 200 7.5 0.15 0.004 0.5

Table 2 Manufacturer’s parameters

ith product Pi kg/product AV i rupees/product hV i rupees/product αi rupees/product γi

1 2,000 1,500 20 0.1 1/18,000
2 2,500 2,500 30 0.2 1/16,000
3 2,300 2,000 25 0.15 1/17,000

Table 3 Lead time data

Component – j
Duration (days) Unit crashing cost (rupees/day)

Normal – bj Minimum – aj

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Table 4 Summarised lead time data

Lead time (week) R(L)

8 0
6 5.6
4 22.4
3 57.4

Table 5 Optimal values without ordering and setup cost reduction and price discounts
(see online version for colours)

L n Q JETCi (i = 1, 2, 3) JETC

8 1 [257 341 303] [9,189 18,772 13,625] 41,586
2 [154 214 186] [8,922 17,842 13,107] 39,870
3 [115 164 141] [9,231 18,262 13,499] 40,993

6 1 [254 337 300] [9,043 18,469 13,409] 40,921
2 [152 210 183] [8,731 17,435 12,818] 38,984
3 [113 160 138] [9,003 17,771 13,151] 39,925

4 1 [252 333 297] [8,892 18,135 13,176] 40,203
2 [149 206 179] [8,537 16,986 12,508] 38,031
3 [111 156 135] [8,772 17,230 12,779] 38,780

3 1 [252 332 296] [8,856 18,002 13,097] 39,955
2 [150 205 179] [8,505 16,819 12,417] 37,741
3 [111 155 134] [8,744 17,033 12,676] 38,453
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Figure 1 Convex graph on optimal values with investments and price discount
(see online version for colours)
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Figure 2 Sensitivity on the parameters such as Di, ABi, AV i, πxi (see online version
for colours)
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Figure 3 Sensitivity on the parameters such as Di, ABi, AV i, πxi (see online version
for colours)

−20 −10 0 10 20
3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6
x 10

4

Parameter changes in percentage

JE
T

C

 

 
hB
P
hV
delta

Figure 4 Sensitivity on the parameters such as Di, ABi, AV i, πxi (see online version
for colours)
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Table 6 Optimal values with ordering and setup cost reduction and price discounts
(see online version for colours)

L n m Q AB AV πx JETCi (i = 1, 2, 3) JETC

8 1 1 162 9.0000 486.0000 78.3750 8,172 36,559
2 199 7.9600 636.8000 128.4825 16,340
3 185 8.6719 589.6875 103.4688 12,047

2 1 110 6.1111 660.0000 77.2917 8,180 36,606
2 145 5.8000 928.0000 127.5375 16,369
3 130 6.0938 828.7500 102.4375 12,057

3 1 87 4.8333 783.0000 76.8125 8,451 37,836
2 118 4.7200 1,132.800 127.0650 16,922
3 104 4.8750 994.5000 101.95 12,463

6 1 1 157 8.7222 471.0000 78.2708 7,980 35,626
2 192 7.6800 614.4000 128.36 15,899
3 179 8.3906 570.5625 103.3563 11,747

2 1 105 5.8333 630.0000 77.1875 7,955 35,510
2 138 5.5200 883.2000 127.4150 15,852
3 124 5.8125 790.5000 102.3250 11,703

3 1 83 4.6111 747.0000 76.7292 8,186 36,559
2 112 4.4800 1,075.200 126.9600 16,323
3 99 4.6406 946.7000 101.8563 12,050

4 1 1 152 8.4444 456.0000 78.1667 7,783 34,620
2 183 7.3200 585.6000 128.2025 15,412
3 172 8.0625 548.2500 103.2250 11,425

2 1 101 5.6111 606.0000 77.1040 7,814 34,279
2 131 5.2400 838.4000 127.2925 15,352
3 118 5.5312 752.2500 102.2125 11,312

3 1 80 4.4444 720.0000 76.6667 7,901 35,123
2 106 4.2400 1,017.600 126.855 15,630
3 94 4.4063 898.9000 101.7625 11,592

3 1 1 153 8.5000 459.0000 78.1875 7,750 34,801
2 181 7.2400 579.2000 128.1675 15,223
3 171 8.0156 545.0625 103.2063 11,828

2 1 102 5.6667 612.0000 77.1250 7,380 34,582
2 130 5.2000 832.0000 127.275 15,013
3 118 5.5312 752.2500 102.2125 12,189

3 1 80 4.4444 720.0000 76.6667 7,883 34,690
2 105 4.2000 1,008.000 126.8375 15,355
3 94 4.4063 898.9000 101.7625 11,452

4.7 Sensitivity analysis

The sensitivity analysis is accomplished by adjusting each parameters by –40%, –20%,
+20%, +40%. One parameter can be modified in a moment of time and all the others
are left intact. Tables list the outcomes.



Optimisation on a constrained integrated supply chain 95

Table 7 Sensitivity of JETC

Parameter –20% –10% +10% +20%

Pi 34,280 34,280 34,280 34,280
Di 31,239 32,759 35,298 37,320
ABi 34,255 34,268 34,290 34,300
AV i 32,595 33,484 34,999 35,656
hBi 32,963 33,621 34,938 35,596
hV i 33,390 33,835 34,725 35,170
πxi 32,852 33,566 34,992 35,704
σi 32,611 33,445 35,114 35,948
τi 34,195 34,237 34,322 34,364
δi 34,385 34,327 34,241 34,209
αi 32,755 33,517 35,042 35,804
β0i 34,287 34,283 34,276 34,272

The following managerial phenomena was achieved on the basis of our numerical
results:

1 As there is an increase in demand, the merchant’s order cost, the merchant’s
holding cost, and standard deviation, we have a dramatic increase in the total
expected joint cost, as seen in Table 7.

2 If there is an increase in parameters such as merchant’s ordering cost,
manufacturer’s holding cost, merchant’s price discount on backorder, and
opportunity cost to both manufacturer and merchant, there is a moderate increase
in the joint total expected cost.

3 If there is a rise in the manufacturer’s production rate, there are no variations in
the total expected joint cost.

4 If the percentage decrease in the merchant’s ordering cost changes, there is a
slight change in the joint total expected cost.

5 While comparing Tables 5 and 6 we acquire the lowest joint total expected cost in
table 6 with the consideration of price discounts and investments.

5 Manufacturer-merchant inventory model with freight cost

Sustainable transport came into utilise as a consistent follow-on from sustainable
advancement, and is utilised to depict modes of transport, and systems of transport
planning, which are steady with more extensive concerns of sustainability. Instead of
using fuels for transportation, we have used electricity for running the truck, etc. Though
we have used up electricity for transportation there will some transportation emission.

In today’s greatly assertive situation, the freight cost plays a vital role in overall
dealing cost. Accordingly, freight cost is accommodated with the ETC function; first,
that should be capable of identifying freight cost functions that imitate the reality. In
most integrated models, freight costs are handled only indirectly by a fixed setup or
ordering cost function and are thus expected to depend on the shipment scale. We also
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found the freight expense in this section as an explicit function of order quantity. We
implement the following all-unit-discount freight cost structure, equivalent to Priyan and
Uthayakumar (2014).

Range Unit tranportation cost
0 ≤ Qi < M1 C0

M1 ≤ Qi < M2 C1

M2 ≤ Qi < M3 C2

...
...

Mb−1 ≤ Qi < Mb Cb−1

Mb ≤ Qi Cb

with the condition that C0 < C1 < ... < Cb−1 < Cb.
For the procurement of abundant goods, the manufacturer opens the freight cost

concession to the customer. Here, we have studied that the cost of freight relys upon the
merchant’s Qi. Owing to its way, we presume that once the merchant places the order
Qi units, the manufacturer instantly provides the concession. The amount Qi is then
purchased from the merchant to receive a discount from the manufacturer on freight
costs. The freight cost per unit time for a given shipment of lot size Qi ∈ [Ml,Ml+1) is
equivalent to C1Qi

Qi/D
= C1D, which is determined by splitting the freight cost per order

cycle by the order cycle length. We depict the freight cost as follows:

Trans cost =



C0Di Qi ∈ [0,M1)
C1Di Qi ∈ [M1,M2)
C2Di Qi ∈ [M2,M3)
...

...
Cbi−1Di Qi ∈ [Mbi−1,Mbi)
CbiDi Qi ∈ [Mbi,∞)

Therefore, in addition to the freight costs for this integrated supply chain system,
including price discount on backorder, setup costs, and order cost reduction, the joint
estimated average expense per unit period is denoted by

JETCtrans = JETC +
m∑
i=1

trans costi

=

m∑
i=1

(
αiI(AV i) +

AV iDi

nQi
+

hV iQi

2

[
n

(
1− Di

Pi

)
− 1

+
2Di

Pi

]
τiI(ABi) +

ABiDi

Qi
+ hBi

[
Qi

2
+ ri −DiL

]
+ hBi

[
1− β0iπxi

π0i

]
E(Xi − ri)

+ +
Di

Qi

[
β0iπ

2
xi

π0i
+ π0i

− β0iπxi]E(Xi − ri)
+ +

Di

Qi
R(L)

)
+

m∑
i=1

trans costi (23)

Subject to the constraints
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0 < AV i ≤ AV 0i

0 < ABi ≤ AB0i

0 < πxi ≤ π0i

5.1 Solution procedure

For a given range of [Mg,Mg+1), [Lj , Lj−1] and n value, this expected total joint
cost with freight expense is convex in Qi, ABi, AV i and πxi which is found by the
equations (19), (20), (21) and (21) and is identical for this case also as the freight cost
is a constant which depends on [Mg,Mg+1). Likewise, JETCtrans(Qi, ABi, AV i, πxi,
L, n) is a concave function of L ∈ [Lj , Lj−1] for fixed (Qi, ABi, AV i, πxi, n) and
given range [Mg,Mg+1).

Without picking up the freight cost to an account and setting the bound where
this optimal shipment lot size decreases, we calculate the optimal results of ordering
cost, setup cost, price discount on backorder, shipment lot size, lead time, and the total
number of shipments using the given algorithm (Subsection 4.5). Later, recognising that
both the freight and inventory-related costs such as ordering costs, setup costs, and price
discount on backorder increase on the left of this lot size, we analyse in comparison to
the estimated total cost in addition to freight costs at this lot size and more than this
lot size at all reorder points. Based on the above discussion, we would like to find the
optimal results using the freight expense algorithm.

5.2 Algorithm

Step 1 Proceed the algorithm (Subsection 4.5) and acquire the values of (Q∗
i , A∗

Bi,
A∗

V i, π∗
xi, L∗, n∗).

Step 2 Next check whether Qi ≥ Mbi if yes then take the above acquired values as
optimal one and find the corresponding JETCtrans using equations (23). If
no proceed to the following step.

Step 3 For each L ∈ [Lj , Lj−1], determine the JETC(Q∗
i , A∗

Bi, A∗
V i, π∗

xi) by
proceeding the following steps.

Step 4 Set n = 1.

Step 5 Determine the values Q̂i, ÂBi, ÂV i, π̂xi and the corresponding total cost
JETC(Q̂i, ÂBi, ÂV i, π̂xi) by using the sub-algorithm (Subsection 5.2.1).

Step 6 Compute minj=1,2,...,N JETC(Q̂i, ÂBi, ÂV i, π̂xi). If JETC(Q∗
i , A∗

Bi,
A∗

V i, π∗
xi) = minj=1,2,...,N JETC(Q̂i, ÂBi, ÂV i, π̂xi) then set JETC(Q∗

i ,
A∗

Bi, A∗
V i, π∗

xi) as the optimal solution for fixed n.

Step 7 Increase the value of n by n+ 1, and do the steps 2 and 3 again to gain the
optimal solution JETC(Q∗

i , A∗
Bi, A∗

V i, π∗
xi).

Step 8 If the previous JETC for n− 1 is greater than the current JETC for n
then proceed to step 4 otherwise move on to step 6.

Step 9 Now the JETC for n− 1 is optimal solution for the presented model.
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5.2.1 Sub-algorithm

Step 1 Find the values of Qi, ABi, AV i and πxi using the similar procedure
presented in sub-algorithm (Subsection 4.5.1) and also let hi be the highest
range index such that Mhi ≤ Qi. Denote the solution by Q̃i ÃBi, ÃV i and
π̃xi.

Step 2 Now set Qi = Mhi+1.

Step 3 Using this determine the values of AV i, ABi and πxi.

Step 4 Compare AV i, ABi and πxi with AV 0i, AB0i and π0i respectively.

1 If ÃV i < AV 0i, ÃBi < AB0i, and π̃xi < π0i then the solution got
through step 1 is optimal for the given Qi = Mhi+1. Then compute
JETC by following step 6 in algorithm (Subsection 5.2).

2 If ÃV i ≥ AV 0i, ÃBi < AB0i, and π̃xi < π0i then keep ÃV i = AV 0i for
finding the optimal values for the given Qi = Mhi+1. Then compute
JETC by following step 6 in algorithm (Subsection 5.2). Otherwise
follow step 5 in algorithm (Subsection 5.2).

3 If ÃV i < AV 0i, ÃBi ≥ AB0i, and π̃xi < π0i then keep ÃBi = AB0i for
finding the optimal values for the given Qi = Mhi+1. Then compute
JETC by following step 6 in algorithm (Subsection 5.2). Otherwise
follow step 5 in algorithm (Subsection 5.2).

4 If ÃV i < AV 0i, ÃBi < AB0i, and π̃xi ≥ π0i then keep π̃xi = π0i for
finding the optimal values for the given Qi = Mhi+1. Then compute
JETC by following step 6 in algorithm (Subsection 5.2). Otherwise
follow step 5 in algorithm (Subsection 5.2).

5 If ÃV i ≥ AV 0i, ÃBi ≥ AB0i, and π̃xi < π0i then keep ÃV i = AV 0i and
ÃBi = AB0i for finding the optimal values for the given Qi = Mhi+1.
Then compute JETC by following step 6 in (Subsection 5.2).
Otherwise follow step 5 in (Subsection 5.2).

6 If ÃV i ≥ AV 0i, ÃBi < AB0i, and π̃xi ≥ π0i then keep ÃV i = AV 0i and
π̃xi = π0i for finding the optimal values for the given Qi = Mhi+1.
Then compute JETC by following step 6 in algorithm (Subsection 5.2).
Otherwise follow step 5 in algorithm (Subsection 5.2).

7 If ÃV i < AV 0i, ÃBi ≥ AB0i, and π̃xi ≥ π0i then keep ÃBi = AB0i and
π̃xi = π0i for finding the optimal values for the given Qi = Mhi+1.
Then compute JETC by following step 6 in algorithm (Subsection 5.2).
Otherwise follow step 5 in algorithm (Subsection 5.2).

8 If ÃV i ≥ AV 0i, ÃBi ≥ AB0i, and π̃xi ≥ π0i then keep ÃV i = AV 0i,
ÃBi = AB0i and π̃xi = π0i for finding the optimal values for the given
Qi = Mhi+1. Then compute JETC by following step 6 in algorithm
(Subsection 5.2). Otherwise follow step 5 in algorithm (Subsection 5.2).
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5.3 Numerical illustration

We use the datum which is discussed in the subsection of Section 4 with the freight
cost structure as follows:

Range Unit tranportation cost
0 ≤ Qi < 50 [0.2 0.4 0.3]
50 ≤ Qi < 100 [0.1 0.25 0.125]
100 ≤ Qi < 150 [0.08 0.17, 0.12]
150 ≤ Qi [0.07 0.14 0.1]

Using the algorithm presented in Subsection 5.2, find the optimal solution with the
freight cost.

Table 8 Optimal values with ordering, setup cost reduction, price discounts and freight cost
for L = 8 and L = 6 (see online version for colours)

L n m Q AB AV πx JETCi (i = 1, 2, 3) JETC

L = 8 1 1 162 9.0000 486.0000 78.3750 8,214 36,821
2 199 7.9600 636.8000 128.4825 16,480
3 185 8.6719 589.6875 103.4688 12,127

2 1 110 6.1111 660.0000 77.2917 8,228 3,6920
2 145 5.8000 928.0000 127.5375 16,539
3 130 6.0938 828.7500 102.4375 12,153

2 1 150 6.4111 660.0700 77.2919 8,222 36,868
2 150 5.8200 928.2100 127.5385 16,509
3 150 6.1038 828.7700 102.4475 12,137

3 1 87 4.8333 783.0000 76.8125 8,526 38,177
2 118 4.7200 1,132.800 127.0650 17,092
3 104 4.8750 994.5000 101.95 12,559

3 1 100 4.8037 783.2000 76.8125 8,499 38,104
2 150 4.0700 1,132.802 127.0650 17,062
3 150 4.7050 994.5100 101.95 12,543

3 1 150 4.8037 783.2000 76.8125 8,493 38,098
2 150 4.0700 1,132.802 127.0650 17,062
3 150 4.7050 994.5100 101.95 12,543

L = 6 1 1 157 8.7222 471.0000 78.2708 8,022 35,888
2 192 7.6800 614.4000 128.36 16,039
3 179 8.3906 570.5625 103.3563 11,827

2 1 105 5.8333 630.0000 77.1875 8,003 35,824
2 138 5.5200 883.2000 127.4150 16,022
3 124 5.8125 790.5000 102.3250 11,799

2 1 150 5.8333 630.0000 77.1875 7,997 35,772
2 150 5.5200 883.2000 127.4150 15,992
3 150 5.8125 790.5000 102.3250 11,783

3 1 83 4.6111 747.0000 76.7292 8,261 36,964
2 112 4.4800 1,075.200 126.9600 16,493
3 99 4.6406 946.7000 101.8563 12,210

3 1 100 4.6111 747.0000 76.7292 8,234 36,843
2 150 4.4800 1,075.200 126.9600 16,463
3 100 4.6406 946.7000 101.8563 12,146

3 1 150 4.6111 747.0000 76.7292 8,228 36,821
2 150 4.4800 1,075.200 126.9600 16,463
3 150 4.6406 946.7000 101.8563 12,130
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Table 9 Optimal values with ordering, setup cost reduction, price discounts and freight cost
for L = 4 and L = 3 (see online version for colours)

L n m Q AB AV πx JETCi (i = 1, 2, 3) JETC

L = 4 1 1 152 8.4444 456.0000 78.1667 7,825 34,882
2 183 7.3200 585.6000 128.2025 15,552
3 172 8.0625 548.2500 103.2250 11,505

2 1 101 5.6111 606.0000 77.1040 7,762 34,593
2 131 5.2400 838.4000 127.2925 15,423
3 118 5.5312 752.2500 102.2125 11,408

2 1 150 5.6111 606.0000 77.1040 7,756 34,541
2 150 5.2400 838.4000 127.2925 15,393
3 150 5.5312 752.2500 102.2125 11,392

3 1 80 4.4444 720.0000 76.6667 7,976 35,528
2 106 4.2400 1,017.600 126.855 15,800
3 94 4.4063 898.9000 101.7625 11,752

3 1 100 4.4444 720.0000 76.6667 7,949 35,407
2 150 4.2400 1,017.600 126.855 15,770
3 100 4.4063 898.9000 101.7625 11,688

3 1 150 4.4444 720.0000 76.6667 7,943 35,385
2 150 4.2400 1,017.600 126.855 15,770
3 150 4.4063 898.9000 101.7625 11,672

L = 3 1 1 153 8.5000 459.0000 78.1875 7,792 35,063
2 181 7.2400 579.2000 128.1675 15,363
3 171 8.0156 545.0625 103.2063 11,908

2 1 102 5.6667 612.0000 77.1250 7,428 34,896
2 130 5.2000 832.0000 127.275 15,183
3 118 5.5312 752.2500 102.2125 12,285

2 1 150 5.6667 612.0000 77.1250 7,422 34,844
2 150 5.2000 832.0000 127.275 15,153
3 150 5.5312 752.2500 102.2125 12,269

3 1 80 4.4444 720.0000 76.6667 7,958 35,095
2 105 4.2000 1,008.000 126.8375 15,525
3 94 4.4063 898.9000 101.7625 11,612

3 1 100 4.4444 720.0700 76.7667 7,931 34,974
2 150 4.2000 1,008.2000 126.8153 15,495
3 100 4.4063 898.9100 101.7625 11,548

3 1 150 4.4444 720.0900 76.9671 7,925 34,952
2 150 4.2000 1,008.2000 126.8153 15,495
3 150 4.4063 898.9100 101.7625 11,532

From Tables 8 and 9, we have observed that the joint total expected cost has increased
with freight cost adoption.

6 Conclusions

In this study, for multiple steel products, we have specifically implemented two
integrated supply chain models without and with freight costs. Mathematical modelling
and solution procedure with algorithms are provided to find the optimal results by
considering investments and price discounts on backorders. We then run the numerical
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examples to illustrate the fact and provide some managerial insights with sensitivity
analysis. We have concluded that the model with price discount and investment will be
more better than the model without price discount and investment. Even after including
freight cost, the JETC is much lesser than the JETC in the model without freight cost,
price discount and investment.

In many ways, the model described can be generalised. The retailer can provide the
remaining unpaid balance with a permissible delay in payment. We could often extend
the model of multiple steel products from a single manufacturer to multiple merchants.
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Appendix

Proof of Theorem 1

Proof: For the given values of L and m, the Hessian matrix H is as follows

H =


∂2JETC

∂Q2
i

∂2JETC
∂Qi∂ABi

∂2JETC
∂Qi∂AV i
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∂Qi∂πxi
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∂ABi∂Qi

∂2JETC
∂A2

Bi
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∂ABi∂AV i
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∂ABi∂πxi
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∂AV i∂Qi

∂2JETC
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V i
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∂π2

xi


Now we have the following
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i

=
2Di

Q3
i

[
ABi +

1

n
AV i + (β0iπ

2
xi + π0i − β0iπxi)σi

√
LΨi(ki) +R(L)

]
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∂A2
Bi

=
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δiA2
Bi
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V i
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Since JETC is continuous we have

∂2JETC

∂Qi∂ABi
=

∂2JETC

∂ABi∂Qi
= −Di

Q2
i

∂2JETC

∂Qi∂AV i
=
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∂AV i∂Qi
= − Di

nQ2
i
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Di

Q2
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As the values of ∂2JETC
∂AV i∂πxi

, ∂2JETC
∂πxi∂AV i

, ∂2JETC
∂ABi∂πxi

, ∂2JETC
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, ∂2JETC
∂ABi∂AV i

, ∂2JETC
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are
all zero, the Hessian matrix H can rewritten as

H =


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Then we have to find the principal minors of the Hessian matrix. The principal minors
of |H| are

|H11| =
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√
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Therefore, from the principal minors it is clearly seen that the Hessian matrix H is
positive definite at point (Qi, ABi, AV i, πxi).

The proof is completed. �


