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Abstract—Identification is the first step towards the manipula-
tion of mechanical parts for robotic disassembly and remanufac-
turing. This paper presents a case study on the identification of
objects from 3D scenes (point clouds) of mechanical components
of automotive devices. The identification task is carried out
through PointNet, a recently developed deep neural network
system. PointNet is capable of identifying objects irrespective
of their position and orientation in the point cloud. In this
work, PointNet was used to recognise twelve instances of parts
of different turbocharger models for automotive engines. The
training instances consisted of different types of mechanical
parts, as well as different models of the same type of part.
Point clouds of partial views of the parts were created from
CAD models using a purpose-developed depth-camera simulator.
Different levels of sensor imprecision/noise were simulated. The
results of the tests indicated that PointNet can be trained to
recognise with good accuracy the various mechanical objects,
and that its learning procedure is consistent and effective. In
presence of sensor imprecision, the recognition accuracy in the
recall phase can be increased adding some stochastic error to the
training examples. The possibility of training twelve independent
classifiers to be employed separately or in one ensemble classifier
was also investigated. The accuracy results were comparable to
those obtained using one classifier for all the parts.

Keywords: Remanufacturing; Disassembly; Automotive;
Machine Vision; Point Clouds; Deep Neural Networks.
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I. INTRODUCTION

Remanufacturing is an environmentally sustainable product
end-of-life (EOF) strategy (Kin et al., 2014) different from
recycling, repair and refurbishing. It restores products at their
end of service life to at least original performance via a com-
bination of re-processing and substitution of used components
(Johnson & McCarthy, 2014). In doing so, remanufacturing
makes EOF products available for another complete life cycle
(Ijomah, 2002).

The first step in remanufacturing is to disassemble the
returned products into the individual parts for processing.
Disassembly is not only relevant to remanufacturing, but also
service operations (maintenance and repair). Disassembly is

*corresponding author

to date the bottleneck in remanufacturing processes, due to
its labour intensive and time-consuming nature, the possibility
of safety hazards to the operators, and the lack of effective
automatic methods (Liu et al., 2018). Differently from as-
sembly, where the features, location, and pose of the parts
are known, the task of disassembling returned products is
fraught with uncertainties on the integrity and state of the
parts. The nature of such uncertainties may vary from minor
scratches to corrosion, physical damage, or complete removal
of a component.

This paper focuses on the creation of a vision system for au-
tomated disassembly of mechanical parts for remanufacturing.
Safe and reliable robotic manipulation of an object is possible
only if it has been correctly recognised and located. This calls
for reliable machine vision and object recognition systems.

Due to the variability in appearance and state of used
parts, traditional 2D feature-based methods often give poor
performances on object recognition tasks for disassembly
applications. For example, 50% accuracy was reported by We-
gener et al. (2015) on an application involving robot assisted
disassembly of electric vehicle batteries, whilst Vongbunyong
et al. (2013a) reported 64% accuracy in a similar robotic
disassembly application. The main cause of inaccuracy in
standard 2D machine vision methods is the loss of structural
information about the objects. For this reason, 3D models
(scenes) are currently investigated.

A 3D model of an object can be formed merging two
2D camera images from different perspectives. However, this
method is limited by problems such as the field of view of the
individual cameras, and the difficulty of matching multiple
perspective images (Hussmann et al., 2008). An alternative is
to use structured light to obtain 3D information directly by a
projector and a receiver (Salvi et al., 2004). This method is
highly precise but requires an expensive apparatus. A low-cost
time-of-flight depth camera can be used to provide auxiliary
high-resolution information to recover depth information in
2D camera images. Regardless of the acquisition method,
3D images are usually displayed using data structures called
point clouds. Point clouds have been widely used in 3D
reconstruction, recognition, and semantic segmentation (Rusu
& Cousins, 2011).

Point clouds are typically composed of millions of data
points, each point being represented through its X-Y-Z coordi-
nates. Due to their large size, and the topological relationships
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between the points in the model, point clouds are difficult and
lengthy to process and understand.

Amongst many machine learning methods developed for
pattern recognition in point clouds, the deep neural network
(DNN) PointNet (Qi, Su, et al., 2017) showed great promise
for 3D scene classification and segmentation. PointNet takes
point clouds directly as input, and is able to recognise objects
and their components irrespective of position and orientation.
This feature makes PointNet an ideal candidate for object
recognition in a highly unstructured domain such as the
disassembly and manipulation of returned parts for remanu-
facturing.

Like all neural networks, PointNet needs to be shown a large
set of examples during the training phase. In disassembly ap-
plications this would entail scanning several instances of each
mechanical part. Each point cloud would need to be formed
out of several partial captures from different perspectives. This
would require a considerable effort which would need to be
repeated every time a new part is introduced.

To address this problem, PointNet was trained on point
clouds generated from CAD models of the mechanical parts.
For many manufactured products, CAD models are usually
available or obtainable. A time-of-flight depth camera simula-
tor was developed to create realistic point clouds of a number
mechanical parts from CAD representations. The simulator
allows perturbing the original CAD models with noise, and
the ability of PointNet to recognise the mechanical parts was
tested under different noise levels. The tests aimed to provide
a proof of concept of the possibility of training PointNet to
recognise complex mechanical parts, using point cloud scenes
generated from CAD representations, and employing PointNet
in noisy real-life conditions.

The key contributions of this study are:
• The recently developed PointNet deep neural network

was for the first time applied to the recognition of
complex mechanical parts from point cloud models;

• PointNet was trained on point cloud scenes generated
from CAD models using a purpose-developed depth-
camera simulator, and tested on scenes containing dif-
ferent levels of sensor imprecision from those used in
the training examples;

• The robustness of the training procedure was evaluated
for different levels of simulated sensor noise. To the best
of the author’s knowledge, this is the first time the noise
rejection capabilities of PointNet are evaluated;

• The study showed that perturbing the training patterns
with a moderate amount of noise significantly improves
the noise rejection capabilities of PointNet

The paper is structured as follows: Section II reviews the
literature on machine vision and remanufacturing. Section III
introduces the proposed method for automatic identification of
mechanical parts. Section IV presents the experimental results,
which are discussed in Section V. Section VI concludes the
paper.

II. BACKGROUND

The interest in remanufacturing and automated disassembly
is shown by a rapidly growing literature, where effective

machine vision algorithms are fundamental elements in flexi-
ble automated disassembly processes. The standard solutions
employ object recognition methods based on 2D images.
Vongbunyong et al. (2013a,b, 2015) used cognitive robotics
to emulate human intelligence for automated disassembly
of electronic components. In this application, a rule-based
vision system is used for recognition and localisation of the
components, and for obstacle detection in trajectory planning.
Wegener et al. (2014, 2015) proposed a robotic assisted system
to disassemble electric vehicle batteries, using machine vision
for detection of screws. Similarly, Bdiwi et al. (2016) used ma-
chine vision for screw detection in an automatic disassembly
workstation.

Due to the limitations in accuracy of 2D vision systems,
some authors employed 3D systems for object identification.
Umeda & Arai (1996) proposed a vision system prototype for
mechanical assembly and disassembly processes. The system
employed high-speed range image sensing for 3D perception,
and primitive surface features such as planes and cylinders for
model matching. A multi-source heterogeneous vision percep-
tion framework for human-robot collaboration was proposed
by Yang et al. (2018). The system utilised RGB-D cameras to
capture the 3D structure of the working area, and binocular
cameras to track the worker’s hands. A semi-automatic non-
destructive disassembly disassembly cell was proposed also by
Torres et al. (2004).

The standard implementation of machine vision in indus-
trial applications is based on template matching of manually
generated feature descriptors from 2D images. One of the
major limitations of template matching is often the compu-
tational complexity of the feature extraction methods, which
is problematic for real-time implementation. Lowe (1999)
proposed the popular 2D scale and rotation invariant feature
descriptor SIFT (Scale-invariant Feature Transform), providing
a robust feature detection technique for 2D images. Image
classification was based on nearest-neighbour indexing for the
identification of candidate object matches, and a low-residual
least-squares the verification of the candidate matches. Bay et
al. (2006) proposed SURF (Speeded-up Robust Features), an
improvement of SIFT descriptors which are faster to compute
than their predecessors. Despite the improvements in speed,
the computational complexity of SURF is still a challenge for
real-time implementation in industrial applications. Rublee et
al. (2011) proposed a real-time feature extraction technique
called ORB, and performed object recognition performing
brute-force matching with stored templates.

Feature descriptors were also extended to 3D models for ob-
ject identification and matching in point clouds. For example,
Rusu et al. (2008) proposed the persistent feature histogram
method to extract a set of robust features for point cloud
registration. Other types of descriptors include information on
the structural neighbourhood of the individual points (Chua &
Jarvis, 1997).

In recent times, machine learning approaches have been
at the core of many machine vision solutions for manu-
facturing and re-manufacturing applications. Machine learn-
ing is particularly useful because it obviates the need of
the time-consuming manual feature extraction and selection
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steps performed in standard template-based pattern recognition
techniques (Carlevaris-Bianco & Eustice, 2014; Zagoruyko &
Komodakis, 2015; Xing et al., 2018; Dai, 2019; Schonberger
et al., 2017). Machine learning can be used for proper feature
selection, namely to select a fully descriptive minimal subset
of elements from a set of pre-defined candidates (Castellani
& Rowlands, 2008). Alternatively, machine learning can be
used to train an image pre-processing block to automatically
extract features. A learning classifier is then cascaded to the
pre-processing block. This latter arrangement constitutes the
basis of the widely successful Convolutional Neural Networks
(CNNs).

A CNN is a form of DNN (LeCun et al., 2015), namely an
artificial neural network characterised by more than two layers
of processing units. The initial block of pre-processing units
is usually composed of convolution layers alternated by max-
pool layers. The convolution layers are filters trained to detect
features in the input image or point cloud, and propagate this
information to the next layers. The max-pool layers are used
to perform a downsampling of the features. In some cases,
the initial block is instead composed of layers of standard
perceptron (Pham et al., 2007) units that are used to extract
features from the input images or point clouds. In the last
decade, DNNs and CNNs in particular found wide application
in machine vision (Szegedy et al., 2016), specially for image
classification tasks (Krizhevsky et al., 2012).

An example of DNN application to the manufacturing field
is the DNN system developed by Krüger et al. (2019). The
DNN is used for identification of mechanical parts, where
multiple pictures of a single mechanical component are taken
from different angles. The pictures are then analysed and clas-
sified with a CNN. This approach showed promising results,
even though using a series of 2D pictures to approximate a 3D
representation may lead to missing useful object features. The
process of image capture took half a year work. A CNN was
also used by Weimer et al. (2016) for optical defects detection
in the field of industrial inspection.

An instance of DNN that was specifically designed to
process point cloud models is PointNet (Qi, Su, et al., 2017).
PointNet can be used for object recognition as well as for
object segmentation. In the latter case, the segmentation task is
approached as pointwise classification. PointNet is composed
of several stacked layers of processing units, including three
full MLPs: two used for point cloud pre-processing, and one
for the final classification step.

An important feature of PointNet is that the identification
result is invariant to rigid transformations of the input point
cloud. That is, PointNet can recognise objects irrespective
of their position and orientation in the 3D image, removing
the need time-consuming model segmentation and object re-
orientation. The PointNet architecture will be described in
more detail in section III-B.

PointNet has been successfully used in different fields such
as semantic segmentation (Garcia-Garcia et al., 2017), includ-
ing indoor and outdoor large-scale spatial contexts (Engelmann
et al., 2017). Guerrero et al. (2018) employed PointNet to
extrapolate local geometric properties like normals and cur-
vatures from noisy point clouds. One of the primary uses of

PointNet is 3D object detection. For this purpose, Zhou &
Tuzel (2018) trained PointNet to identify cars, pedestrians,
and cyclists in urban scenes in LiDAR point clouds. The point
clouds were partitioned in a 3D grid of voxels that was fed to
the DNN. Qi et al. (2018) used instead RGB-D data to train
PointNet to recognise objects in indoor and outdoor scenes.

The latest development of PointNet is PointNet++ (Qi, Yi,
et al., 2017), a system that recursively applies PointNet on
a nested partitioning of the 3D scene. This technique is able
to exploit the non-uniform density distribution of points to
extract features in an hierarchical fashion, achieving state-of-
the-art performances on different benchmarks.

III. METHODOLOGY

A. The Recognition System

The aim of this study is to build a robust recognition system
that is able to learn from CAD models to identify mechanical
objects for disassembly purposes. This system needs to be
tolerant to sensor noise, and reasonable alterations of the
objects due to wear, tear, and removal or substitution of their
components.

The recognition system will constitute the first block of
the overall disassembly system. Once an object has been
recognised, its pose can be recovered (Besl & McKay, 1992;
Quan et al., 2018) and robotic manipulation can be planned.
Furthermore, the mechanical object can be segmented into its
components for disassembly sequence planning.

The proposed model recognition system is based on the use
of the PointNet DNN architecture. The main advantages of
PointNet are the following: it was built to be directly used
on point clouds without the need of time consuming model
pre-processing; it is able to recognise patterns irrespective of
their location and orientation; and like all ANN systems is
expected to possess intrinsic generalisation capabilities that
make it robust to sensor noise and fair variations of the object.
In addition, PointNet is also suitable for object segmentation,
which will be implemented at a later stage.

The first step in any machine learning application is the
creation of a reasonably large data set of examples for the
training and validation of the learning system. Although there
are online available collections of 3D point cloud models
(Deng et al., 2009; Lin et al., 2014; Krasin et al., 2017), none
of them contains mechanical objects.

In this study, CAD models of mechanical parts were used
to generate the sets of point cloud scenes used for training
and testing the PointNet. CAD models of mechanical parts
are often easily obtainable from the manufacturer, or can
be created via reverse engineering. The point clouds were
generated from the CAD models via a purpose-developed
software that simulates the 3D image capture process in a real
scene, and creates a 3D model (point cloud) of the object.

The goal is to prove that PointNet can be trained to
recognise with good accuracy complex mechanical parts from
point clouds, and is able to generalise the learned knowledge to
scenes presenting the objects in previously unseen orientations
and in presence of realistic levels of noise.
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Fig. 1: PointNet Architecture by Qi, Su, et al. (2017)

B. The PointNet Deep Neural Network

PointNet is a DNN architecture specifically designed to
perform classification and segmentation of point cloud models
(Qi, Su, et al., 2017). It is structured as a pipeline of several
neural layers as shown in Figure 1 , and is composed of three
modules: the max pooling layer, a local and global information
combination structure, and two joint alignment networks.

The first module (max pooling layer) is composed of a set
of multi-layer perceptrons (MLPs) (Pham et al., 2007) and
a max pooling function. It implements a symmetric function
that aggregates the information from the individual points in
the cloud, and is invariant to the order of the points and
rigid transformations of the object. That is, the first module
implements a series of rotation and translation invariant feature
detectors.

The second module (local and global information combi-
nation structure) aggregates local and global information on
the point cloud. This is useful for some tasks (e.g. scene
segmentation) that require both the local and global features of
the points. It concatenates the global information to the point
features, and processes this information in order to generate
the output.

The third module (joint alignment networks) ensures that the
semantic labelling of the point cloud is invariant to rigid trans-
formations. Instead of converting all the points to a canonical
space (Jaderberg & Simonyan, 2015), PointNet uses a mini-
network (called T-Net) to predict the affine matrix describing
the rigid transformation. This network is trained along all the
other components, and the resulting transformation matrix is
applied directly to the coordinates of each point. The same
module is also duplicated to align features from different input
point clouds.

C. The 3D Model Set

The point cloud used in the experiments were created from
CAD models of the two types of turbochargers (henceforth
called model A and model B) shown in Figure 2. The tur-
bochargers had a very similar structure, containing a compres-

(a) Turbo charger model A

(b) Turbo charger model B

Fig. 2: The two turbochargers used to generate the point clouds

sor housing, turbine, and turbine housing. Model A included
an additional wastegate. In total, the two turbochargers could
be disassembled into the twelve different types of components
shown in Figure 3.

The goal of the learning procedure was to train PointNet to
recognise these twelve components from point cloud models.
It should be noted that the set of components contained sub-
groups of similar and hence potentially confusing mechanical
objects such as C-housing A, C-housing B and T-housing B;
Bearing A and Bearing B; Blade A and Blade B; M3 socket
and M6 hex. Other objects like T-housing A, Wastegate A, and
the M6 nut were clearly different from the other turbocharger
components.

The training and test data sets were generated utilising a
purpose-built 3D camera simulator, which mimics the depth
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(a) C-housing A (b) Bearing A (c) T-housing A

(d) C-housing B (e) Bearing B (f) T-housing B

(g) Blade A (h) Blade B (i) Wastegate A

(j) M3 Socket (k) M6 Hex (l) M6 Nut

Fig. 3: The twelve mechanical parts used in experiments

capturing function of a Kinect RGB-D camera. The simula-
tor was based on Blensor (Gschwandtner et al., 2011), and
expanded to allow multiple camera capture of scenes.

The simulator places the CAD model of a mechanical part
in an initial fixed position at the origin of world coordinate,
and then applies a rigid transformation to rotate it into the
desired pose. For most of the mechanical parts, the simulator
places the virtual camera at a distance of 500mm from the
origin of the world coordinate frame. For the smallest items
(M3 socket, M6 hex, and M6 nut), the distance between the
camera and the object was set closer (200mm) in order to
obtain enough points. These scanning distances are deemed
a reasonable approximation for real cameras like Kinect One
and Intel Realsense.

To simulate depth sensing, the simulator emits ’light’ from
the matrix of pixels on the virtual camera, and records the
coordinate (x,y,z) of the point where this light hits the surface
of the object. In a real application, the light would be reflected
back from this point to the camera sensor, and the (x,y,z) co-
ordinates would be inferred from the light time-of-flight. The
generated raw models of the mechanical parts are expressed

in millimetres as unit of measurement, and reflect the real size
of the objects.

Before being fed to the PointNet, the point cloud models
were normalised. Normalisation rescales each object model
within a bounding box of size 1 centred at the origin and
parallel to the X − Y − Z coordinate axes of the world
frame. It should be noted that the purpose of the normalisation
procedure is to ’crop’ empty space out of the 3D scene, rather
than to resize the object model to a standard length, width,
and depth. The actual size of the object depends in fact from
its orientation. For example, the size of a normalised cuboid
would be the largest if its longest side was aligned to one of
the coordinate axes, and smallest if the diagonal of its longest
side was aligned to one of the coordinate axes.

The simulator can be used repeatedly to reproduce the effect
of multiple takes on an object, in order to obtain a full view
from all sides. The software allows to define the distribution of
the cameras around the object. In the experiments, the point
cloud models were created merging the simulated scans of
three cameras from different angles. This setting simulated
a realistic industrial scenario but implied a partial view of
the mechanical parts. For each part, the view was determined
by the orientation of the part respect to the three simulated
cameras. To investigate the accuracy loss due to the limited
number of cameras, point cloud models were also created
using twelve virtual cameras. In this latter ideal case, a full
view of the object was obtained. On average, each model
contained about 100,000 points.

Top View

Front View

1 4

1 6 45

7

8

6

3

9

5

2

7 9

10 12

22.5° 

Fig. 4: Layout of the twelve cameras

The layout of the twelve virtual cameras is shown in
Figure 4. Firstly, the six cameras in light blue (1-6) were
placed on the X-Y plane around the object (placed at the
origin). The cameras were 500mm (200mm if the object was
the M3 socket, M6 hex, and M6 nut) from the origin, at angles
of 60 degrees one from the other. Three additional co-planar
cameras (7-9, in light yellow in the figure) were placed above
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the object, 120 degrees from each other on a plane parallel to
the X-Y plane, inclined 22.5 degrees respect to the Z axis and
500mm (200mm) far from the origin. The last three cameras
(10-12, in light yellow in the figure) were placed below the
object, symmetrically to cameras 7-9. Full view models (ideal
case) of the object used all the twelve cameras, whilst partial
view models (realistic scenario) used only cameras 7-9.

PointNet handles clouds of a user-defined number of points.
In a number of studies (Wu et al., 2015; Qi, Su, et al., 2017),
it was configured to take the 1024 points of the elements of
the ModelNet40 benchmark set. Although it can be configured
to process larger point clouds, the increase in computational
effort impacts on PointNet learning and recall speed. For this
reason, a random sampling procedure was used to pick only
a fixed number of points from the clouds generated by the
depth-camera simulator. Preliminary tests suggested that the
generated point clouds could be undersampled by a factor 100
without loss of recognition accuracy from PointNet. Therefore,
the learning trials were carried out using 1000 sampled points.
One additional test was carried out to verify if halving the
downsampling factor (2000 sampled points) the classification
accuracy improved.

From each CAD model of mechanical part, 300 point clouds
were generated by randomly rotating the CAD model, and
extracting the points using the camera simulator. Of these
extracted point clouds, 200 were used for training and 100
for testing purposes. In total, each training set was composed
of 200 models × 12 objects = 2400 examples, and each
test set of 100 models×12 objects = 1200 examples. From
these initial clean training and test sets, 10 further error sets
were generated perturbing the position of each point.

Sensor imprecision was introduced after the normalisation
of the models, and was measured as a percentage of the length
of the bounding box. That is, a 1% error level meant that each
x,y,z coordinate of each point was perturbed of an amount
randomly sampled with uniform probability within the interval
I = [−0.005,+0.005] ∈ R (the size of the bounding box is
1).

D. The Experimental Tests

The following sets of experiments were performed. The
difference in learning accuracy between full and partial view
of the objects was first evaluated using the clean set of
models. For each view, training and validation were performed
sampling 1000 points from the model. Additionally, one test
was performed doubling the number of sampled points for the
partial view case. In total, this set of experiments included
three cases:

• full view and 1000 input points
• partial view and 1000 input points
• partial view and 2000 input points

For each case, 10 independent learning trials were performed
and the results averaged. At the end of this first set of
experiments, the sampling of the point clouds was fixed.

The second set of experiments includes the following cases:
• training set with zero error (clean set) and validation set

with zero error

• training set with zero error and validation set with error
increased from 1 to 10% in unitary steps

• training set with 5% error and validation set with error
increased from 1 to 10% in unitary steps

For each case, 10 independent learning trials were performed
and the results averaged.

It should be noted that the clean training and test sets contain
respectively 200 and 100 different partial views (depending on
the orientation of the object) of the same mechanical part. They
are useful as a baseline for learning and to assess the impact
of the incompleteness of object models, and any confusion
that may arise in the learning of similar objects. The error
data sets allow to evaluate the impact of the imprecision of
the sensors on PointNet recognition accuracy.

Finally, one last set of experiments was carried out to test
the possibility of implementing one classifier for each of the
12 mechanical parts, either to look for specific items, or to
set up an ensemble of classifiers (Rokach, 2010). In this case,
each of twelve independent PointNets was trained to recognise
only one of the twelve parts. The training and test set of
examples were the same used in the previous experiments.
However, each example was now labelled as either a positive
instance of the sought part (e.g. C-housing A), or a negative
instance (any of the other 11 components). In this case, the
main difficulty for the classifier was to learn from a highly
imbalanced training set including 200 positive instances and
2200 negative instances. The test sets were composed of 100
positive instances and 1100 negative instances of the sought
class. The third set of experiments includes the following cases
repeated for each of the twelve classifiers:

• training set with zero error (clean set) and validation set
with zero, 5% and 10% error

For each case, 10 independent learning trials were performed
and the results averaged. The tests were run using the original
(Qi, Su, et al., 2017) PointNet source code made available
by the creators on Github (Qi, 2017), keeping the DNN
architecture unchanged. PointNet was trained using ADAM
optimiser (Kingma & Ba, 2014). ADAM was parameterised
as shown in Table I, broadly following the settings used
by Qi, Su, et al. (2017) except for the number of learning
epochs (200), which was experimentally optimised. Batch
normalisation (BN) was used to reduce the covariate shift
during learning. The batch size (100) was optimised by trial
and error.

IV. RESULTS

This section presents the results of the experimental tests
described in Section III-D.

A. Partial View and Sampling

The accuracy results of the first set of experiments are
shown in Figure 5. The box plots visualise the five-number
summary (sample minimum, lower quartile, median, upper
quartile, and maximum) of 10 independent learning trials. The
learning curve of one sample run of the PointNet training
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Parameters Value

learning epoch 200
batch size 100

learning rate 0.0001
learning rate decay rate 0.7
learning rate decay step 200,000
minimum learning rate 0.00001
BN initial momentum 0.5

BN momentum decay rate 0.5
BN momentum decay step 200,000
BN minimum momentum 0.01

TABLE I: Parameterisation of the learning algorithm
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Fig. 5: Classification results for full view (12cam-1K) and
partial view (3cam-1K) of the parts using 1,000 sampled
points, and 2000 (3cam-2K) sampled points

procedure is shown in Figure 6. The plot shows the clas-
sification accuracy approaching 100% and stabilising after
approximately 100 learning cycles.

Pair-wise two-tailed Mann-Whitney tests were performed to
assess the statistical significance of the differences among the
results obtained. The significance level was set to 5%. The p-
values suggests a there is a significant difference (p = 0.0002)
between the accuracy results obtained using the full view and
those obtained using the partial view. However, it should be
noted that the magnitude of the difference between full and
partial view object identification is very modest (1%), and that
in both cases the accuracy was very close to 100%.

The Mann-Whitney tests also indicated that 1000 sampled
elements (1% circa of the total points) from the point cloud
model was enough to achieve very high recognition accuracy,
and that doubling the number of sampled points had no effect
on the accuracy of the classifier (p = 0.5708). Consequently,
it was decided to use 1000 sampled points for the remainder
of the experiments.

B. Tolerance to Noise

The accuracy results of the second set of experiments are
shown using the box plots in Figure 7 and Figure 8.

When the PointNet was trained on clean (zero error) scenes,
the generalisation ability began to deteriorate as the error level
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Fig. 6: Training accuracy of one of the network trained by
partial view clean data set with 1000 sampled points

Test set Training set
Noise level Clean (P-value) 5%-Noise

0% 98.88 0.0002 91.92
1% 98.67 0.0002 93.46
2% 98.54 0.0002 95.83
3% 98.25 0.0284 97.58
4% 97.25 0.0343 98.42
5% 94.08 0.0009 98.63
6% 87.00 0.0002 98.29
7% 76.58 0.0002 97.25
8% 63.58 0.0002 93.67
9% 52.92 0.0002 88.04

10% 52.92 0.0002 79.63

TABLE II: The p-values (pairwise Mann-Whitney tests) in-
dicate significant differences in accuracy between classifiers
trained on clean scenes and classifiers trained on scenes with
5% error level. If statistically significantly superior, accuracy
values are in bold.

approached 5%. For more severe levels of noise (7% and
above), the performance of the classifier fell below acceptable
standards.

When a 5% error was added to the trained scenes, accuracies
close to or above 90% were obtained on the test set for
nearly all error levels (0-9%). Table II compares the results
visually shown in Figure 7 and Figure 8, and includes the p-
levels of pairwise two-tailed Mann-Whitney tests. The table
clearly shows that, if sensor inaccuracy is expected, training
the PointNet on scenes including a reasonable amount of error
significantly improves the accuracy in the recall phase.

C. Part Specific Classifiers

The accuracy results of the third set of experiments are
shown in Tables III to V. Given the highly imbalanced
distribution of the class instances in the test set (Section III-D),
the overall classification accuracy alone would not be a fair
measure of the performance of the PointNets, as it would over-
represent the accuracy on the largest class. Hence, Tables III
to V report for each mechanical part (i.e. each PointNet
classifier) the average (statistical mean) of true positives (TP),
false positives (FP), true negatives (TN), false negatives (FN),
and overall classification accuracy (A) respectively for a zero,
5%, and 10% error in the test set.

The results show how the overall accuracy could be im-
proved by training different classifiers to recognise single types
of parts. However, the improvements are limited to a better
ability to recognise true negatives, whilst the performances on
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Fig. 7: Results on test sets of different error level, when the PointNet is trained using clean (zero noise) scenes
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Fig. 8: Results on test sets of different error level, when the PointNet is trained using scenes with 5% error level

true positives still deteriorates with error. In particular Table V
(most severe error level) shows that sensor imprecision affects
the performance of PointNet on the 12 mechanical parts very
unevenly, with some parts still recognised with good accuracy
(Bearing B) and other almost never correctly identified (M6
Nut).

V. DISCUSSION

This study aimed to assessing the ability of PointNet to
recognise complex mechanical parts from point cloud models.
In general, PointNet achieved very good accuracy results when
trained on partial views to the parts. This ability of recognising
objects from partial information suggests that PointNet may be
able also to recognise incomplete objects, as it is sometimes
needed in remanufacturing. To carry out successfully the
recognition task, PointNet needed only a small fraction of
randomly sampled points.

Breakdown of recognition accuracy
TP FP TN FN A (%)

Compressor Housing A 99.7 17.3 1082.7 0.3 98.53
Compressor Housing B 94.4 60.4 1039.6 5.6 94.50

Bearing A 100.0 10.0 1090.0 0.0 99.17
Bearing B 99.9 0.5 1099.5 1.0 99.88

Turbine Housing A 97.2 11.6 1088.4 2.8 98.80
Turbine Housing B 94.3 61.7 1038.3 5.7 94.38

Blade A 99.5 7.1 1092.9 0.5 99.37
Blade B 99.3 4.3 1095.7 0.7 99.58

Wastegate 99.9 2.4 1097.6 0.1 99.79
M6 Hex 97.9 13.4 1086.6 2.1 98.71
M6 Nut 100.0 3.2 1096.8 0.0 99.73

M3 Socket 99.9 6.7 1093.3 0.1 99.43

TABLE III: Classifier performance: training set with zero
error, test set with zero error

The presence of error in the test set affected the recognition
accuracy of PointNet. Until a realistic 5% error, the accuracy
of PointNet was satisfactory, namely close to or above 90%. In
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Breakdown of recognition accuracy
TP FP TN FN A (%)

Compressor Housing A 92.6 13.6 1086.4 7.4 98.25
Compressor Housing B 98.2 175.6 924.4 1.8 85.22

Bearing A 97.9 23.0 1077.0 2.1 97.91
Bearing B 100.0 2.3 1097.7 0.0 99.81

Turbine Housing A 96.8 80.9 1019.1 3.2 92.99
Turbine Housing B 66.9 94.8 1005.2 33.1 89.34

Blade A 90.9 1.5 1098.5 9.1 99.12
Blade B 90.2 0.1 1099.9 9.8 99.18

Wastegate 96.9 0.3 1099.7 3.1 99.72
M6 Hex 78.8 67.0 1033.0 21.2 92.65
M6 Nut 87.6 0.6 1099.4 12.4 98.92

M3 Socket 87.7 0.0 1100.0 12.3 98.98

TABLE IV: Classifier performance: training set with zero
error, test set with 5% error

Breakdown of recognition accuracy
TP FP TN FN A (%)

Compressor Housing A 24.9 9.1 1090.9 7.51 98.53
Compressor Housing B 86.7 284.3 815.7 13.3 75.20

Bearing A 74.3 61.2 1038.8 25.7 92.76
Bearing B 99.9 10.1 1089.9 0.1 99.15

Turbine Housing A 90.6 381.1 718.9 9.4 67.46
Turbine Housing B 8.4 250.3 849.7 91.6 71.51

Blade A 21.2 0.1 1099.9 78.8 93.43
Blade B 15.5 0.0 1100.0 84.5 92.96

Wastegate 60.9 0.0 1100.0 39.1 96.74
M6 Hex 8.8 96.3 1003.7 91.2 84.38
M6 Nut 5.3 0.0 1100.0 94.7 92.11

M3 Socket 11.1 0.0 1100.0 88.9 92.59

TABLE V: Classifier performance: training set with zero error,
test set with 10% error

a factory setting, camera quality, lighting, and good denoising
software will determine the error level. For error more severe
than 5%, the tests performed in this study showed that the per-
formance of PointNet can be significantly improved simulating
sensor error in the training set of examples.

The tests also showed that high recognition accuracy can be
achieved by training one PointNet for each mechanical part.
This would be a suitable solution if one particular kind of
component had to be picked up from a mixed set. Overall, the
accuracy results obtained by the part-specific classifiers were
similar to the results obtained by one single classifier for all
parts.

Further work should investigate the possibility of setting
up a recognition system based on an ensemble of classifiers.
Although the tests gave no indication that an ensemble of
classifiers would perform significantly better than one single
classifier, an ensemble of classifiers would be easier to retrain
to include new parts or remove old ones. That is, it may be
enough to train only one new classifier to recognise the new
part, or remove one classifier if a part is not produced anymore,
instead of retraining the whole system. Part-specific classifiers
showed also an overall tolerance to error, although often the
high accuracy regarded the recognition of negative instead of
positive instances of the sought object.

VI. CONCLUSION

The acquisition of data for machine learning applications
is often tedious and time-consuming. This study assessed
the feasibility of generating large data sets of point cloud

models of mechanical parts, and use them to train a PointNet
DNN to recognise previously unseen examples. All training
and test scenes consisted of partial views of one of a set
of twelve mechanical parts. The partial views were created
using a purpose-built Kinect RGB-D camera simulator, where
different levels of sensor imprecision could be simulated.

The PointNet was able to recognise the mechanical parts
with high accuracy, although demonstrated a less-than ex-
pected tolerance to sensor error. However, for objects of size
larger than 100mm, and camera accuracy better than +/-2mm,
the classifier should perform reasonably well. Furthermore,
it was found that adding some error to the training set of
examples significantly improved the tolerance of the classifier
to sensor error.

This study assessed also the possibility of training PointNet
to recognise only one of the twelve mechanical parts. Although
the accuracy results were similar to those achieved using
one overall classifier, part-specific classifiers could be used
to create an ensemble of classifiers with gains in modularity
and reconfigurability. Further work is needed to verify this
hypothesis.
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