Exploiting eb XML Registry Semantic Constructs for
Handling Archetype Metadata in Healthcare Informatics -

Asuman Dogac, Gokce B. Laleci, Yildiray Kabak, Seda Unal
Middle East Technical University, Turkey
Thomas Beale, Sam Heard, Ocean Informatics, Australia
Peter Elkin, Mayo Clinic, USA
Farrukh Najmi, Sun Micro Systems, USA
Carl Mattocks, OASIS ebXML Registry SCM SC, USA
David Webber, OASIS CAM TC, USA

ABSTRACT

Using archetypes is a promising approach in providing se-
mantic interoperability among healthcare systems. To real-
ize archetype based interoperability, the healthcare systems
need to discover the existing archetypes based on their se-
mantics; annotate their archetypes with ontologies; compose
templates from archetypes and retrieve corresponding data
from the underlying medical information systems.

In this paper, we describe how ebXML Registry seman-
tic constructs can be used for annotating, storing, discov-
ering and retrieving archetypes. For semantic annotation
of archetypes, we present an example archetype metadata
ontology and describe the techniques to access archetype
semantics through ebXML query facilities. We present a
GUI query facility and describe how the stored procedures
we introduce, move the semantic support beyond what is
currently available in ebXML registries.

We also address how archetype data can be retrieved from
clinical information systems by using ebXML Web services.
A comparison of Web service technology with ebXML mes-
saging system is provided to justify the reasons for using
Web services.

1. INTRODUCTION

Most of the health information systems today are propri-
etary and often only serve one specific department within
a healthcare institute. To make the matters worse, a pa-
tient’s health information may be spread out over a number
of different institutes which do not interoperate. This makes
it very difficult for clinicians to capture a complete clinical

*This work is supported by the FEuropean Commission
through IST-1-002103-STP Artemis project and in part by
the Scientific and Technical Research Council of Turkey

(TUBfTAK), Project No: EEEAG 104E013

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

International Journal of Metadata, Semantics and Ontologies (IIMSO)
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

history of a patient.

A number of standardization efforts are progressing to
provide the interoperability of healthcare systems such as
CEN TC 251 prEN13606 [9], openEHR [36] and HL7 Ver-
sion 3 [27]. However, exchanging machine processable elec-
tronic healthcare records have not yet been achieved. For
example, although HL7 Version 2 Messaging Standard is
the most widely implemented standard for healthcare infor-
mation in the world today, being HL7 Version 2 compliant
does not imply direct interoperability between healthcare
systems. Version 2 messages contain many optional data
fields. This optionality provides great flexibility, but neces-
sitates detailed bilateral agreements among the healthcare
systems to achieve interoperability. To remedy this prob-
lem, HL7 [24] has developed Version 3 which is based on
an object-oriented data model, called Reference Information
Model (RIM) [26].

Yet, given the large number of standards in the healthcare
informatics domain, conforming to a single standard does
not solve the interoperability problem.

In fact, the full shareability of data and information re-
quires two levels of interoperability:

e The Functional (syntactic) interoperability which is the
ability of two or more systems to exchange informa-
tion. This involves agreeing on the common network
protocols such as Internet or Value Added Networks;
the transport binding such as HTTP, FTP or SMTP
and the message format like ASCII text, XML (Ex-
tensible Markup Language) or EDI (Electronic Data
Interchange). One of the successful examples of func-
tional interoperability is electronic mail: an email can
be sent and received by any platform due to the well
established standards for the transport binding which
is SMTP running on TCP/IP and the message format
which is ASCII or HTML. That is, SMTP and the
fixed message format makes it possible for two systems
exchange emails. However, note that the message con-
tent is only for human consumption.

e Semantic interoperability is the ability for information
shared by systems to be understood at the level of
formally defined domain concepts so that the informa-
tion is computer processable by the receiving system
[30]. In other words, semantic interoperability requires
the semantics of data to be defined through formally

ebXML Registry

Classification Hierarchy

Extrinsic Objects

ebXML Repository

URI

archetype
OwWL dEzfi nition

version, Archetype author

(ersion (author) | e
_ . Observation

| Clinical | Coding | |

Domain Scheme !
Organ
System
| Radiology| Complete
Central Nervous A Blood Count
System --! Brain

¥ Complete
|SNOMED| T Blood " | —
v

archetype
o iion| | OWL definiion

Repository [tems

S URI

__________ CT

Figure 1: Handling Archetype Semantics in ebXML Registries

defined domain specific concepts. Semantic interoper-
ability in the healthcare domain can be achieved by
conforming to a single healthcare information stan-
dard, such as HL7 Version 3. However, it is not re-
alistic to expect all the healthcare institutes to con-
form to a single standard. A promising approach in
providing interoperability among different standards
in the healthcare domain is the archetypes [6]. An
“archetype” is a syntactically and semantically struc-
tured aggregation of vocabulary or other data that
is the basic unit of clinical information [19]. When
healthcare systems start exchanging information with
well defined syntax and semantics as proposed by
“archetypes”, semantic interoperability among them
will become a reality.

An important aspect of archetype based interoperability
is providing the ability to the healthcare institutes and sys-
tems to share archetypes and their metadata among them.
In this paper, we describe how ebXML registries can be used
for handling templates and archetypes by using the seman-
tic constructs of the ebXML registry. This work is carried
out within the scope of Artemis project [3] which aims to
provide interoperability in the healthcare domain through
semantically enriched Web services.

Electronic Business XML (ebXML) [13] is a standard from
OASIS[35] and United Nations Centre for Trade Facilitation
and Electronic Business, UN/CEFACT [42]. ebXML spec-
ifies an infrastructure that allows enterprises to find each
other’s services, products, business processes and documents
in a standard way and thus helps to facilitate conducting
electronic business. One of the important characteristics of
ebXML compliant registries is that they provide standard
mechanisms both to define and to associate metadata with
registry entries.

In order to achieve archetype based interoperability
among healthcare institutes through ebXML registries, we
propose the following phases:

e Semantically annotating the archetypes: For health-
care systems to exchange archetypes, they need to
discover the archetypes of the institutes they wish to
communicate with. This discovery must be based on
the semantics of archetypes such as the purpose of
the archetype, the clinical domains it is associated
with, the types of clinical documents it is used in

as constituents, where they fit into the slots of other
archetypes as well as authorship, and the version of
the archetype. Since ebXML registry allows metadata
to be associated with the registry entries and provides
mechanisms for semantic based discovery of registry
entries, it provides a convenient medium for handling
archetypes.

As the first phase of archetype based interoperability,
we show how ebXML registry semantic constructs can
be used to annotate archetypes. For this purpose, we
present an example archetype metadata ontology. It
should be noted that our purpose is not to propose an
archetype ontology but rather to show how it can be
exploited once it is specified by standard bodies.

Retrieving archetypes from the registry through ebXML
query facilities: The archetypes need to be discovered
in the registry according to their semantics. This se-
mantic information serves the purpose of how or where
the archetype can be used. For example, the metadata
can be queried to find out the archetypes associated
with a given clinical domain, or the coding schemes
they are referring to, or the authorship.

We show how the semantic information used in an-
notating the archetypes in an ebXML registry can be
queried through ebXML standard query mechanisms
such as Filter Query or SQL-92 query. In order to
facilitate access to the system by novice users, we
present ready to be used stored queries for discover-
ing archetypes according to their metadata.

We then describe how Web Ontology Language (OWL)
can be used in ebXML registries to enhance the
archetype semantics. Although the ebXML semantic
mechanisms are useful as they stand, currently, seman-
tics is becoming a much broader issue than it used to
be through the use of ontologies and standard ontology
definition languages [10, 20, 34]. An important stan-
dard ontology language is W3C’s Web Ontology Lan-
guage (OWL) [43]. There are several opportunities to
be gained in extending ebXML semantic mechanisms
to standard ontology languages, such as OWL. In this
way, it becomes possible to exploit the richer semantic
constructs of OWL as well as its reasoning capabilities.

In our previous work, we describe how ebXML reg-

fitsSlotsOf

relatedClinical Derfiai

isAPartOf Referral

Clinical

hasPurpose

ClinicalDomain

relatedClinicalDomain

Clinical Document

isDi entedin

Location

| |Hospital | [Clinic

DiagnosticTests
ProcedureTemplate

| Office

| PlanTemplate | | LOINC

Figure 2: An Archetype Metadata Ontology

istries can be enriched with OWL semantics [11] and
how this additional semantics can be processed with
stored queries [12]. In this paper, we show how
archetype and template semantics can benefit from
OWL aware ebXML registries.

e Retrieving archetype data from medical information
systems: After discovering archetypes by exploiting
their metadata, it is also necessary to retrieve the asso-
ciated information from the medical information sys-
tems conforming to the templates and archetypes.

Although the templates and archetypes semantically
and structurally define the data to be retrieved
through formally defined domain concepts and hence
provide for the semantic interoperability, we still need
to provide the functional level interoperability. As
mentioned previously functional interoperability in-
volves agreeing on the common network protocols, the
transport bindings and the message formats. Although
ebXML messaging provides for this, we choose to use
another functional interoperability standard, namely,
Web services which is also supported by ebXML reg-
istries.

The paper is organized as follows: In Section 2, the
objectives of archetypes and templates are summarized
and how semantic interoperability can be achieved through
archetypes is described. In Section 3, we show how
archetype semantics can be handled in ebXML registries.
Here we also describe enhancing ebXML registries with
Web Ontology Language (OWL) semantics and explain how
archetypes semantics can benefit from OWL aware ebXML
registries. In Section 4, we present an example archetype
metadata ontology to annotate archetypes and templates.
Section 5 describes the techniques to access archetype se-
mantics through ebXML query facilities. In this section we
introduce a GUI query facility and show how stored proce-
dures move the semantic support beyond what is currently
available in ebXML registries. Section 6 addresses retriev-
ing data from clinical information systems conforming to
archetypes. In this section, we compare Web service tech-
nology with ebXML messaging system and provide the rea-
sons for choosing Web services in accessing the underlying
medical information systems. In Section 7, we describe how
archetypes can be composed through Web service composi-
tion techniques. Finally, Section 8 concludes the paper.

2. WHY DO WE NEED TEMPLATES AND
ARCHETYPES?

Healthcare is one of the few domains where sharing in-
formation is the norm, rather than the exception [21].
Archetypes and templates aim to solve the semantic inter-
operability problem in the healthcare domain by allowing
modeling of domain concepts based on reference models, in-
dependent from the information systems. Archetypes have
been adopted by a number of standards such as openEHR
[36], CEN TC/251 [9] and is considered to be used by HL7
[24] as a basis for its templates specification.

An archetype is a reusable, formal expression of a distinct,
domain-level concept such as “blood pressure”, “physical ex-
amination”, or “laboratory results”, expressed in the form
of constraints on data whose instances conform to some ref-
erence model [6]. The reference model refers to any model
such as CEN TC 251 prEN13606 [9], openEHR [36], or the
HL7 CDA schema [25]. The key feature of the archetype
approach to computing is a complete separation of informa-
tion models (such as object models of software, models of
database schemas) from domain models [6].

A formal language for expressing archetypes has been
introduced which is called Archetype Definition Language
(ADL) [2]. In Figure 3, a part of “Complete Blood Count”
archetype definition is presented in ADL. The complete
ADL definition can be found in [8]. Here the “OBSER-
VATION” class from the reference information model is
restricted to create “Complete Blood Count” archetype,
by restricting its CODED_TEXT value to “ac0001” term,
(ac0001 term is defined to be “complete blood count” in the
constraint_definitions part of the ADL, and declared to be
equivalent to Loinc::700-0 term in the term bindings part),
and by defining its content to be a list of “Haemoglobin”,
“Haematocrit” and “Platelet Count” test result elements.

A template on the other hand is a directly, locally us-
able data creation/validation artefact which is semantically
a constraint/choice on archetypes, and which often corre-
sponds to a whole form or a screen. Templates in general
have a 1:N relationship with underlying concepts, each of
which is described by an archetype.

Note that in order to address the interoperability problem
through archetypes, a generic approach based on a “har-
monised” information model needs to be adopted [7]. Al-
ternatively, the reference models of these standardization
bodies (openEHR, CEN TC/251, HL7) can be represented

OBSERVATION[at1000.1] 7 {-- complete blood picture
name 7 {
CODED_TEXT ? {
code ? {[ac0001]} -- complete blood count}}
data ? {
LIST_S[at1001] ? {-- battery
items cardinality ? {0..*} ? {
ELEMENT [at1002.1] ? {-- haemaglobin
name 7 {
CODED_TEXT ? {
code ? {[ac0003]} -- haemaglobin}}
value ? {
QUANTITY 7 {
value ? {0..1000}
units 7 {"g/1llg/dll.+"}}}}
ELEMENT [at1002.2] occurrences ? {0..1} ?
{-- haematocrit
name ? {
CODED_TEXT ? {
code ? {[ac0004]}-- haematocritl}}
value 7 {
QUANTITY ? {
value 7 {0..100}
units ? {"%"}}}}
ELEMENT [at1002.3] occurrences ? {0..1} ?
{-- platelet count
name ? {
CODED_TEXT ? {
code ? {[ac0005]} -- platelet count}}
value 7 {
QUANTITY ? {
value 7 {0..100000}
units ? {"/cm~3"}

j32a30,

Figure 3: The ADL definition of “Complete Blood
Count” Archetype

through an ontology language like OWL. Then by defining
the archetypes constraining these reference models also in
OWL, and by providing the mapping between these refer-
ence models through ontology mapping, the interoperability
of the archetype instances can be achieved automatically.

3. WHAT DOES EBXML REGISTRY PRO-
VIDE FOR ARCHETYPES?

For healthcare systems to exchange information in an in-
teroperable manner, they need to discover the archetypes
and templates and their associated semantics. ebXML Reg-
istry, through its semantic constructs, provides an efficient
medium to annotate, store, discover and reuse of archetypes.

In the following sections, we first briefly present ebXML
Registry architecture and then demostrate how basic seman-
tic constructs of ebXML Registry can be used for this pur-
pose. Then, we present how ebXML registries can be en-
hanced with OWL semantics and how this knowledge can
be exploited for handling arhetypes.

3.1 ebXML Specification

ebXML facilitates electronic business as follows:

e In order for enterprises to conduct electronic busi-
ness with each other, they must first discover each
other and the products and services they have to offer.
ebXML provides a registry where such information can
be published and discovered.

e An enterprise needs to determine which business pro-
cesses and documents are necessary to communicate

with a potential partner. A Business Process Speci-
fication Schema (BPSS) in ebXML, provides the def-
inition of an XML document that describes how an
organization conducts its business.

e After this phase, the enterprises need to determine how
to exchange information. The Collaboration Protocol
Agreement (CPA) specifies the details of how two or-
ganizations have agreed to conduct electronic business.

A registry can be established by an industry group or
standards organization. A repository is a location (or a set
of distributed locations) where a document pointed at by the
registry reside and can be retrieved by conventional means
(e.g., http or ftp).

It should be noted that within the scope of this paper, we
address how to handle the archetypes and templates and not
the healthcare business processes. There are other health-
care informatics initiatives complementary to our work such
as IHE IT Infrastructure Integration Profiles [22] which de-
fine some of the business processes in the healthcare do-
main and IHE Cross-Enterprise Clinical Documents Sharing
(XDS) [23] which specify how to use ebXML registries for
healthcare document sharing. Note however that semantic
issues are not yet addressed by these initiatives.

3.2 ebXML Registry Architecture and Infor-
mation Model

ebXML registry provides a persistent store for registry
content. The current registry implementations store reg-
istry data in relational databases. ebXML Registry Ser-
vices Specification defines a set of Registry Service inter-
faces which provide access to registry content. There are a
set of methods that must be supported by each interface. A
registry client program utilizes the services of the registry
by invoking methods on one of these interfaces. The Query
Manager component also uses these methods to construct
the objects by obtaining the required data from the rela-
tional database through SQL queries. In other words, when
a client submits a request to the registry, registry objects
are constructed by retrieving the related information from
the database through SQL queries and are served to the user
through the methods of these objects [18].

An ebXML registry [17] allows to define semantics basi-
cally through two mechanisms: first, it allows properties of
registry objects to be defined through “slots” and, secondly,
metadata can be stored in the registry through a “classifi-
cation” mechanism. This information can then be used to
discover the registry objects by exploiting the ebXML query
mechanisms.

3.3 Exploiting ebXML Registries for Seman-
tically Annotating Archetypes

As previously noted, ebXML Registry semantic constructs
can be used to annotate registry objects. For example, as
shown in Figure 1, the archetype “HaemotologyObserva-
tion” can be stored as an Extrinsic Object (which is also
a Registry Object) whose link points to the repository item
that holds the actual archetype definition. The metadata of
the archetype, on the other hand, can be classified with as
many ClassificationNodes as needed to describe its seman-
tics. For example, in Figure 1, “HaemotologyObservation
Archetype” Extrinsic Object is classified with SNOMED
[38] clinical coding terms. Therefore when a user wishes

Table 1: Predefined Association Types in ebXML Registries

Name Description

RelatedTo

Defines that source RegistryObject is related to target RegistryObject.

HasMember

Defines that the source RegistryPackage object has the target RegistryObject object as a member.

ExternallyLinks | Defines that the source Externallink object externally Tinks the target RegistryObject object.

Contains Defines that source RegistryObject contains the target RegistryObject.

EquivalentTo Defines that source RegistryObject is equivalent to the target RegistryObject.

Extends Defines that source RegistryObject inherits from or specializes the target RegistryODbject.
TImplements Defines that source RegistryObject implements the functionality defined by the target RegistryObject.
TnstanceOf Defines that source RegistryObject is an Instance of target RegistryObject.

Supersedes Defines that the source RegistryObject supersedes the target RegistryObject.

Uses Defines that the source RegistryObject uses the target RegistryObject in some manner.

Replaces Defines that the source RegistryObject replaces the target RegistryObject in some manner.

SubmitterOf Defines that the source Organization is the submitter of the target RegistryObject.

ResponsibleFor | Defines that the source Organization is responsible for the ongoing maintainence of the target Reg-
istryObject.

OffersService Defines that the source Organization object offers the target Service object as a service.

to find all the archetypes in the registry annotated with
SNOMED Clinical Coding terms; issuing an ebXML query
will suffice. In other words, by relating a ClassificationNode
(such as SNOMED) with a RegistryObject in ebXML (such
as “HaemotologyObservation”), we make this object an im-
plicit member of the SNOMED node and hence the object in-
herits the semantics associated with that node. The ebXML
query to find all the archetypes coded with SNOMED, first
finds the SNOMED ClassificationNode and the links from
this node. These links are then used to retrieve the related
ExtrinsicObjects and by issuing a “getContentQuery”, the
content of the archetypes are retrieved from the Repository.
In fact such queries can be automatically generated and is-
sued through Graphical User Interfaces as described in Sec-
tion 5.

Through this example, we describe the simplest and most
basic way of associating semantics with ebXML registry ob-
jects. ebXML classification hierarchies allow more complex
semantics to be defined and queried both through the “slot”
mechanism and through the predefined associations between
registry objects. For example, through “slot” mechanism,
it is possible to define the properties of classes (Classifica-
tionNodes). “Slot” instances provide a dynamic way to add
arbitrary attributes to “RegistryObject” instances. For the
example shown in Figure 1, the archetype properties such
as “version” and “authorship” are defined by using slots.

Furthermore, through predefined associations, it is possi-
ble to associate ClassificationNodes. There are a number of
predefined Association Types that a registry must support
to be ebXML compliant [17] as shown in Table 1.

Although ebXML semantic mechanisms are useful as they
stand, currently, semantics is becoming a much broader issue
than it used to be and the trend is to use ontologies [10, 20,
34]. One of the driving forces for ontologies is the Semantic
Web initiative [5]. As a part of this initiative, W3C’s Web
Ontology Working Group defined Web Ontology Language
(OWL) [43].

There are several opportunities to be gained in extending
ebXML semantics mechanisms to make them OWL aware.
In this way, it will become possible to represent ontologies
defined in OWL in the ebXML registry and to exploit the
richer semantic constructs of OWL as well as its reasoning
capabilities.

In our previous work, we describe how ebXML registries

can be enriched with OWL semantics [11] and how this ad-
ditional semantics can be processed with stored queries [12].
Here, for the sake of completeness, we provide a brief sum-
mary.

Being OWL aware entails the following enhancements to
the ebXMUL registry:

e Representing OWL constructs through ebXML con-
structs: ebXML provides a classification hierarchy
made up of classification nodes and predefined type
of associations between the registry objects. We
represent OWL constructs by using combinations of
these constructs and define additional types of asso-
ciations when necessary. For example, OWL classes
can be represented through “ClassificationNodes” and
RDF properties that are used in OWL can be treated
as “Associations”. An “Association” instance repre-
sents an association between a “source RegistryOb-
ject” and a “target RegistryObject”. Hence the tar-
get object of “rdfs:domain” property can be mapped
to a “source RegistryObject” and the target object of
“rdfs:range” can be mapped to a “target RegistryOb-
ject”. “OWL ObjectProperty”,“DataTypeProperty”
and “TransitiveProperty” are defined by introduc-
ing new association types such as “objectProperty”.
ebXML specification allows additional associations to
be defined.

When it comes to mapping OWL class hierarchies
to ebXML class hierarchies;, OWL relies on RDF
Schema for building class hierarchies through the use
of “rdfs:subClassOf” property and allows multiple in-
heritance. An ebXML Class hierarchy has a tree struc-
ture, and therefore is not readily available to express
multiple inheritance, that is, there is a need for addi-
tional mechanisms to express multiple inheritance. We
define a “subClassOf” property as an association for
this purpose.

As another example, in ebXML, the predefined
“EquivalentTo” association (Table 1) expresses the
fact that the source registry object is equivalent to
target registry object. Therefore, “EquivalentTo”
association is used to express “owl:equivalentClass”,
“owl:equivalentProperty” and “owl:sameAs” proper-
ties since classes, properties and instances are all

ebXML registry objects. The details of how the rest
of the OWL constructs are represented in ebXML reg-
istries is available from [12].

o Automatically generating ebXML constructs from the
OWL descriptions and storing the resulting constructs
into the ebXML registry: We developed a tool to cre-
ate an ebXML Classification Hierarchy from a given
OWL ontology automatically by using the transfor-
mations described. The OWL file is parsed using Jena
[32], the classes together with their property and re-
strictions are identified, and the “SubmitObjectsRe-
quest” is prepared automatically. This request is then
sent to ebXML registry which in turn creates necessary
classes and associations between them. For example
the OWL definition of Archetype Metadadata Ontol-
ogy presented in Figure 2 is parsed and a Classification
Hierarchy, a part of which is presented in Figure 1, is
created automatically in the ebXML registry.

e Querying the registry for enhanced semantics: When
various constructs of OWL are represented by ebXML
classification hierarchies, although some of the OWL
semantics stored in an ebXML registry can be re-
trieved from the registry through ebXML query facili-
ties, further processing needs to be done by the appli-
cation program to make use of the enhanced semantics.

For example, two classification nodes can be declared
as equivalent classes through the “EquivalentTo” pre-
defined “association” in the ebXML registry. To make
any use of this semantics, given a query requesting in-
stances of a class, the application program must have
the necessary code to find out and retrieve also the in-
stances of classes which are declared to be equivalent
to this class.

To relieve the users from this burden, the code to pro-
cess the OWL semantics can be stored in ebXML reg-
istry architecture through predefined procedures. As
an example, the stored procedure given in Figure 4
retrieves all the archetype instances of a Classifica-
tionNode (class) as well as the archetype instances of
all classes equivalent to this class.

As an example to how such a stored query might help the
users, assume that SNOMED “CompleteBloodCount” term
is defined to be equivalent to the ‘Full Blood Count” term
in another coded term list, say, MedDRA (Medical Dic-
tionary for Regulatory Activities) [33]. Then through the
stored procedure given in Figure 4, when a user wishes to re-
trieve the archetype instances related with “CompleteBlood-
Count” term, it becomes possible to automatically obtain
the archetype instances that are classified with SNOMED
as well as those instances classified with MEdDRA “Full
Blood Count” term.

4. DEFINING ARCHETYPE AND TEM-
PLATE METADATA

An archetype is a reusable, formal expression of a distinct,
domain-level concept such as “blood pressure”, “physical ex-
amination”, “laborotory results”, expressed in the form of
constraints on data whose instances conform to some class
model, known as a reference model [6]. An OpenEHR tem-
plate on the other hand is a directly, locally usable data

CREATE PROCEDURE findEquivalentInstances($className)
BEGIN
SELECT N.value FROM ExtrinsicObject EO, Name_ N
WHERE EO.id IN (
SELECT classifiedObject
FROM Classification
WHERE classificationNode IN (
SELECT id
FROM ClassificationNode
WHERE id IN (
SELECT parent

FROM name_
WHERE value LIKE $className
)

UNION

SELECT A.targetObject
FROM Association A, Name_ N, ClassificationNode C
WHERE A.associationType LIKE ’EquivalentTo’ AND
C.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C.id

)
) AND EOQ.id=N.parent
END;

Figure 4: A Stored Procedure to Find Equivalent
Instances

[ConsultantNote || ClinicalReferralLetter || PatientQuestionnaire |
[1magingReport | [LabReport | [AnnualPhysicalExamination |
[Medications

|[Previsitinstructions || PatientRecordRelease |

[AdmitHistoryAndPhysica || EKGReport][EmergencyDepartment |

[ReminderL etterForAppointment |

Figure 5: The Clinical Document Ontology

creation/validation artefact which is semantically a con-
straint/choice on archetypes, and which will often corre-
spond to a whole form or screen [6]. In this section, we
describe an example Archetype Metadata Ontology to an-
notate archetypes and templates. It should be noted that
our purpose is not to propose an archetype ontology but
rather to show how it can be exploited once it is specified
by standard bodies.

4.1 An Archetype Ontology for Semantically
Annotating Archetypes

We propose to classify archetypes on the basis of the fol-
lowing semantic information:

e The coding schemes it is referring to
e The purpose of the archetype
e The clinical domains it is associated with

e The types of clinical documents it is used in as con-
stituents

e Other archetypes into whose slots it fits

The first level of the ontology covers this semantics as
properties of the “Archetype” class as presented in Figure

DocumentTemplate
relatedClinical Domain

hasLinkTo
version

ClinicalDomain

BrainCT
relatedClinicalDomain
N relatedClinicalDomain version

CentralNervousSystem

Figure 6: The BrainCT Template

2. For example, “Archetype” class has a property named
“hasLinkTo” whose range is the class “CodingScheme”. The
“CodingScheme”, “Purpose”, “ClinicalDocument”, “Clini-
cal Domain” and “DocumentTemplate” classes are further
detailed by defining their subclasses and properties.

The Clinical Document class in Figure 2 is organized on
the basis of following axes as shown in Figure 5: author,
location where the document is reported, purpose of the
document, constituent templates, and clinical domains the
document is related with. These metadata are represented
as the properties of the “ClinicalDocument” class. A num-
ber of Clinical Document types are created as subclasses of
this class.

Similarly “DocumentTemplate” class in Figure 2 is as-
sociated with “CodingScheme” class to indicate the coding
schemes it is referring to, and it is associated with the “Clini-
calDomain” class to indicate with which clinical domains the
template is related.

As an example, “BrainCT” template can be created as a
subclass of “DocumentTemplate” class, and the range of the
“relatedClinicalDomain” property can be restricted to the
“CentralNervousSystem” and “Radiology” classes (which
are created as subclasses of “ClinicalDomain” class) as pre-
sented in Figure 6. In this way it is possible to query this
template by referring to the “CentralNervousSystem” and
“Radiology” domains.

Additionally generic template types “AssessmentTem-
plate”, “ClinicallnformationTemplate”, “PlanTemplate”,
“ProcedureTemplate” and “DiagnosticTestsTemplate” are
added to the metadata ontology as subclasses of “Docu-
mentTemplate” class as shown in Figure 2. Finally the Clin-
ical Domain hierarchy is detailed in this metadata Ontology
as depicted in Figure 7. “ClinicalDomain” class is defined
to have subclasses such as “OrganSystems”, “SystemicPro-
cesses”, “Temporal”’, “Medicine”,“Surgery” and “Radiol-
ogy”. Leaf level clinical domains are defined as subclasses of
one or more of these classes. As an example, “Neurosurgery”
domain is defined as a subclass of both “CentralNervousSys-
tem” (which is a subclass of “OrganSystems” class), and
“Medicine” classes.

5. HOW TO ACCESS ARCHETYPE META-
DATA THROUGH EBXML QUERY FA-
CILITIES?

In this section we describe how archetypes can be repre-
sented and accessed in ebXML registries. Archetypes and
their semantics are represented in an ebXML registry as fol-

CentralNervousSystem

Dermal System
Otolaryngolog

MusculoSceletal

ChronicMedical Process

Figure 7: The Clinical Domain Ontology

lows:

e The “archetype metadata ontology” is stored in the
ebXML registry to be used for querying the archetype
definitions. For this purpose, a “SubmitObjects-
Query” is created by parsing the ontology and sent
to the registry, which in turn creates a classification
hierarchy as presented in Figure 8 (a). As described
in Section 3.3, OWL classes are represented as “Reg-
istry Information Model (RIM) Classification Nodes”
and OWL properties are represented as “RIM Associ-
ations”.

e An “archetype” is represented in the Registry as a
“RIM Extrinsic Object” as shown in Figure 8 (b).
Note that “Extrinsic Objects” point to the Reposi-
tory items where their contents are stored. An OWL
definition of an archetype is created from its ADL
(Archetype Definition Language) [2] definition and is
stored in the Repository. This OWL document gives
the content of the archetype describing the constraints
over reference information model classes.

e In order to establish the relationship with archetype
“Extrinsic Objects” and the “archetype metadata on-
tology”, an OWL instance of the “Archetype Meta-
data Ontology” is created which specifies the prop-
erty values of an archetype according to this ontology.
As an example, Figure 9 shows an “Archetype Meta-
data Ontology” instance that defines the “Complete
Blood Count (CBC)” archetype metadata by provid-
ing the property values in “Archetype Metadata On-
tology”. Through the tool developed, while storing
the “ExtrinsicObject” representing, for example the
CBC archetype to the registry, the “Archetype Meta-
data Ontology” instance in Figure 9 is parsed and
the relations between the “Extrinsic Object” and the
“Classification Nodes” are created automatically in the
Registry through “Classification Objects”. In RIM,
any RegistryObject may be classified using Classifica-
tionSchemes and ClassificationNodes through “Classi-
fication Objects”. In Figure 9, the CBC archetype
is related with SNOMED “Complete blood count”
term with “hasLinkTo” property. This relation is rep-
resented with the “Classification Object” of ebXML

ebXML Registry

Classification Hierarchy

Extrinsic Objects

ebXML Repository

URI

Archet .author
yPe ———|- Haemotology
— ~ Observation
| Clinical | Coding | |

archetype
OWL definition

archetype

Domain Scheme | archetype OWL definition
y OWL definition A
Complete i
o L (ogBee)
System Count
| Radiology| O
Central Nervous i
System --! Brain () URI
L _____ cr ©)
GetContentQuery

rchtype
Coding
Scheme

SNOMED T
LOINC
Clinica
Domain
[

[

FilterQuery

Query Interface

Propety [M

Range
' QueryResults

L W

(©

Figure 8: Querying Archetype Semantics in ebXML Registry

<LabReport rdf:ID="LabReport_Instance"/> <Staff
rdf : ID="GokceBanuLaleci"/> <CompleteBloodCount
rdf:ID="Snomed_Instance"/>
<Hemotology rdf:ID="Hematology_Instance"/>
<ClinicalInformationTemplate rdf:ID=
"ClinicalInformationTemplate_Instance"/> <Archtype
rdf :ID="CBC_Archetype"> <relatedTemplate rdf:resource=
"#ClinicalInformationTemplate_Instance"/> <relatedClinicalDomain>
<Medicine rdf:ID="Medicine_Instance"/>
</relatedClinicalDomain> <isAPartOf
rdf :resource="#LabReport_Instance"/> <relatedTemplate>
<AssesmentTemplate rdf:ID="AssesmentTemplate_Instance"/>
</relatedTemplate> <hasLinkTo rdf:resource="#Snomed_Instance"/>
<relatedClinicalDomain rdf:resource="#Hematology_Instance"/>
<relatedTemplate>
<DiagnosticTestsTemplate rdf:ID=
"DiagnosticTestsTemplate_Instance"/>
</relatedTemplate> <author rdf:resource="#GokceBanuLaleci"/>
<version rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>0.1</version>
<hasPurpose>
<Clinical rdf:ID="Clinical_Instance"/>
</hasPurpose> <relatedClinicalDomain>
<HemovascularSystem rdf:ID="HaemovascularSystem_Instance"/>
</relatedClinicalDomain> </Archtype>

Figure 9: “Complete Blood Count” Archetype In-
stance Definition

RIM as presented in Figure 10. Note that “Complete-
BloodCount” class is a subclass of SNOMED.

After storing the archetype along with its semantic anno-
tation to the ebXML Registry as presented in Figure 8(a), it
becomes possible to query the archetypes according to their
metadata. To facilitate the querying of the ebXML reg-
istry for novice users, we have developed a query tool with
a GUI which on the left pane shows the classification hier-

<ExtrinsicObjectid=" CBCarchetypelnstance” mimeType="text/xml” >
<Name>
<LocalizedString lang="en_US” value =
”Complete Blood Count” />
< /Name>
</ExtrinsicObject>
< Classification
classificationNode="CompleteBloodCount”
classifiedObject="CBCarchetypelnstance” >
<Slot name = ’type’>
<ValueList>
<Value>hasLinkTo< /Value>
</ValueList>
</Slot>
< /Classification>

Figure 10: RIM Classification example

archy and allows users to formulate their queries by simply
selecting the values automatically shown on the right pane
according to the selections made on the left pane as shown
in Figure 8(c). When a user selects values, Filter Queries
are constructed for retrieving the ID’s of the Extrinsic Ob-
jects, representing the Archetype Instances, according to the
selected criteria. Then through these IDs ebXML “Get-
Content” queries are submitted for retrieving the repository
items containing the archetype definition.

The ebXML semantic constructs can be used to query the
archetypes through the GUI tool as follows:

e A user can search for all templates and archetypes that
constrain to a particular code or coding scheme. For
instance, a user can find all templates and archetypes
that make reference to the SNOMED Complete Blood
Count term, through the GUI tool as shown in Figure

= EoWEGlient = [Blx]
File: Help
=EB
:;,‘1 Ontology |Propertiss: |
D Archtype | =
(5 ClinicalDomain [apasEes |
= [CodingScheme Filter Query “ S0L Query l I Get Content Query
[Lommc | '—' T
= () SHOMED e
[} ccrrpleteplondCount I chieL o T e
E | e AML Query _shihL Result .
|rj, 1E010 <7l version = "1.0" encoding = "UTF-8"7> A
|_j CBC H=AdhocQueryRequest xmins = "urn:oasis:names:tciebxml-regrepiquery x|
u CPT =<ResponseOption returnType = "LeafClass” returnComposet
[| inicalDocument <FiterGuery >
L <ExtrinsicObjectQuery =
= Ackar
_,l o «ClassifizdByBranchz
it :] RS «Classificationiode
I Template <Mamel
D DIRECTED-EINARY-RELATION
[1) PAL-Constraint
sl
L€ ¥

Figure 11: The GUI for retrieving the archetype In-
stances related with CompleteBloodCount Concept

<GetContentRequest>
<rim:0bjectRefList>
<rim:0bjectRef id="urn:uuid:368661c9-b733-4c14-96a3
-eabbdf36£f5b"/>
</rim:0bjectRefList>
</GetContentRequest>

Figure 12: ebXML GetContentRequest

<FilterQuery>
<ExtrinsicObjectQuery >
< ClassifiedByBranch>
< ClassificationNodeQuery>
<NameBranch>
<LocalizedStringFilter>
<Clause>
<SimpleClause leftArgument = “value” >
<StringClause stringPredicate =
“Equal” > CompleteBloodCount< /StringClause>
< /SimpleClause>
< /Clause>
</LocalizedStringFilter>
< /NameBranch>
< /ClassificationNodeQuery >
< /ClassifiedByBranch>
< /ExtrinsicObjectQuery >
< /FilterQuery >

Figure 13: ebXML Filter Query for Extrinsic Ob-
jects classified with CompleteBloodCount node

11.

When the SNOMED term is selected on the left pane,
the FilterQuery in Figure 13 is generated to retrieve
the ExtrinsicObjects IDs classified with the “Com-
pleteBloodCount” ClassificationNode. In order to
get the content of these extrinsic objects, the user
can press the “Get Content Query” button presented
in Figure 11. This will automatically generate the
“ebXML GetContentRequest” query given in Figure
12 to retrieve the OWL archetype definition from the
Repository. The user can visualize the results of the
query from the “ebXML Result” tab of the GUI given

in Figure 11.

Note that there may be archetypes in the registry rep-
resenting the same clinical concept but annotated with
different clinical coding systems. Continuing with our
example, assume that the “Complete Blood Count”
archetype is annotated with term codes of other termi-
nologies such as “Full Blood Count” of MedDRA [33]
rather than with SNOMED “CompleteBloodCount”
term. On the other hand, the user may be interested in
a certain type of archetype independent of the coding
system used to annotate it. In other words, we should
be able to find the equivalency among the terms of dif-
ferent coding systems at run time. The US National
Library of Medicine’s Unified Medical Language Sys-
tem (UMLS) [41] provides a good resource for this pur-
pose. UMLS is the official repository of many health-
care informatics’ terminology standards. It contains
information over one million biomedical concepts from
more than one hundred controlled vocabularies and
classifications (some in multiple languages) in the med-
ical domain. It also provides the mapping between
different terminologies. We have implemented a Web
service, which takes a given coding term and its asso-
ciated coding system and finds equivalent terms coded
through other terminologies by using the UMLS.

Continuing with our example, we use this Web service
for querying UMLS Metathesaurus for obtaining the
synonyms of SNOMED “CompleteBloodCount” term
automatically. This Web service returns:

— MedDRA - Full Blood Count
— Read Codes Full Blood Count

After obtaining the synonyms of SNOMED “Com-
pleteBloodCount” term, the registry is queried for
other ExtrinsicObjects, i.e. other archetypes, which
are classified with the ClassificationNodes of these syn-

onyms. These queries are expressed as shown in Figure
13.

After obtaining the ID’s of the Extrinsic Objects, the
archetype definitions can be retrieved from the Repos-
itory through “ebXML GetContentRequest” queries
similar to the one depicted in Figure 12.

Note that, a healthcare institute may be using some
local coding schemes that has not been defined in
UMLS. In such a case, these schemas can be stored
in the ebXML registry by defining the equivalences
of their terms with other Clinical Coding Schema
terms through the ebXML “EquivalentTo” associa-
tion. Then by using the “findEquivalentInstances”
stored procedure given in Section 3.3, it is possible to
retrieve all the archetype instances of a Clinical coding
scheme term as well as the archetype instances of all
terms equivalent to this term.

A user can search against any or all of the template and
archetype metadata fields when looking for a template
or an archetype.

For example, it is possible to query the ebXML reg-
istry for “archetypes” that has been linked to “Clin-
ical” class with “hasPurpose” property. As shown in
Figure 14, when “Archetype” is selected on the left

H=hdhocueryRequest xmins = "urn: oasis:names: tc:ebxml-regrep: query:x
=Responsedption returnType = "LeafClass" returnComposec
<Filkerguery =
=ClassificationModequery =
<MameBranch:
<LacalizedStringFilker
=Claust

[DIRECTED-BINARY-RELATION
[PaL-Constraint

<iClaus
<JLocalizedStringFilke
=/MameBranch:>
= I lassificatinnMore e s

& EbXMIEClient, A=
File: Help
= & W
= |Properties: | hasPurpose N
® 1) clinicalDomain Range Classes: | .Chn\ca\ L
3 Location
CodingScheme Filker Query][SOL Query] l izet Content Query
CliricalDocument | i | B -
) Actor e
o Pumnlﬁ | ebiMLQuery | ehikmL Result
1 Template F=xrml version = "1.0" encoding = "UTF-8"7> |

*|

Figure 14: The GUI for discovering the archetypes
classified with metadata ontology

pane, all its properties are shown to the user in the
related combo box so that the user can make a choice.
The range class of the selected property can again be
chosen from the ontology presented in the left pane.

This GUI generates the necessary queries to the reg-
istry as follows: First the “ebXML IDs of Extrinsic
Objects” of the archetypes annotated with the speci-
fied property are retrieved. In order to achieve this,
two consecutive Filter queries (Figure 15) or one SQL-
Query (Figure 16) are used by the system. In the first
FilterQuery, the ID of the “Clinical” ClassificationN-
ode is obtained and in the second one the Classifi-
cations that have a “type” Slot with value “hasPur-
pose” and that are bound to the “Clinical” Classifica-
tionNode are retrieved. The result of the second query
contains the ID’s of the ExtrinsicObjects. These ID’s
can be used to retrieve the contents of the archetypes
through “ebXML GetContentRequest” queries.

6. HOW TO RETRIEVE ARCHETYPE
DATA FROM MEDICAL INFORMA-
TION SYSTEMS?

When we want to retrieve the associated data out of in-
dividual patient records conforming to the templates and
archetypes, the functional interoperability issue also needs
to be addressed.

ebXML provides functional interoperability through its
messaging system which gives the specification of a stan-
dard way to exchange messages between organizations [15].
It does not dictate any particular file transport mechanism,
such as SMTP, HTTP, or FTP. It extends the base Simple
Object Access Protocol (SOAP) [39] with MIME Attach-
ments [40] for binding. All the interactions with the ebXML
Registry as well as the interactions in a business process are
specified to be handled through ebXML messages. There are
implementations of ebXML messaging available both pub-
licly and commercially.

<FilterQuery>
<ClassificationNodeQuery>
<NameBranch>
<LocalizedStringFilter>
<Clause>
<SimpleClause leftArgument = "value">
<StringClause stringPredicate =
"Equal">Clinical</StringClause>
</SimpleClause>
</Clause>
</LocalizedStringFilter>
</NameBranch>
</ClassificationNodeQuery>
</FilterQuery>

<FilterQuery>
<ClassificationQuery>
<SlotBranch>
<SlotFilter>
<Clause>
<SimpleClause leftArgument = "name">
<StringClause stringPredicate =
"Equal">type</StringClause>
</SimpleClause>
</Clause>
</SlotFilter>
<SlotValueFilter>
<Clause>
<SimpleClause leftArgument = "value">
<StringClause stringPredicate =
"Contains">hasPurpose</StringClause>
</SimpleClause>
</Clause>
</SlotValueFilter>
</SlotBranch>
<ClassificationFilter>
<Clause>
<SimpleClause leftArgument = "classificationnode">
<StringClause stringPredicate =
"Equal">urn:uuid:ef039£8f-0170-42a6-a329
-bfb40c8fe3a9</StringClause>
</SimpleClause>
</Clause>
</ClassificationFilter>
</ClassificationQuery>
</FilterQuery>

Figure 15: Two consecutive ebXML Filter Query

<SQLQuery>
SELECT * FROM extrinsicobject E, classification CL1, slot S
WHERE S.name LIKE ’type’ AND S.value LIKE ’hasPurpose’ AND
S.parent = CL1.id AND CL1.classifiedobject = E.id
AND CL1.classificationnode IN (
SELECT C.id FROM Name N, ClassificationNode C
WHERE C.id = N.parent AND N.value LIKE ’Clinical’)
</SQLQuery>

Figure 16: ebXML SQL Query

Later, however ebXML also started providing registry
support for Web services [16] which is another standard to
provide functional interoperability. Web services are a set of
related application functions that can be programmatically
invoked over the Internet. The information that an applica-
tion must have in order to programmatically invoke a Web
service is given by a Web Services Description Language
(WSDL) [48] document. WSDL of a Web service, which de-
fines its interface, is its established public contract with the
outside world. The network protocol used is usually HTTP
and binding is SOAP [39]. It should be noted that Web
services not only provide synchronous invocation but also
enable message exchange through asynchronous invocation.

We use Web services for the functional interoperability

layer for the following reasons:

e Web services describe their interfaces through WSDL
which gives a machine processable interface definition.
Furthermore, WSDL has become a stable definition
and there are several tools to automate the construc-
tion of an interface defined in WSDL such as IBM Web
Services Toolkit [29], or Java Web Services Developer
Pack [31].

e Functional interoperability standards, like Web ser-
vices, need to improve various aspects of the usage
scenarios. Several standardization initiatives are un-
der way for providing security [46], privacy [45], trans-
action support [47], and reliability of Web services
[44]. Although ebXML Messaging Services Specifica-
tion Version 3 [14], also considers some of these issues,
it has not been finalized yet.

e Finally, all the application servers support Web ser-
vices such as BEA WebLogic [4], IBM WebSphere [28]
and Oracle Application Server [37].

Web services retrieving data out of individual patient
records conforming to the templates and archetypes, can be
stored to ebXML registry as “Service” objects. It is possible
to annotate such web services with the “Archetype Metadata
Ontology” stored in ebXML registy. In this way, the discov-
ery of these Web services through archetype semantics are
facilitated.

When retrieving the associated information out of in-
dividual patient records conforming to the templates and
archetypes through Web services, deciding on the granular-
ity of Web service is important since this effects the service
reusability and interoperability with other healthcare stan-
dards.

Among the archetype definitions, the ones that contain
“elementary” information should be retrieved by “elemen-
tary” Web services, whereas composite archetypes should
be retrieved by composing elementary Web services through
workflow technology. Note that there could be composition
relationship between archetypes when at some node in an
archetype, a new archetype would occur, rather than a con-
tinuation of the constraints in the current archetype. This
composition on the other hand can be handled with Web
service composition tools as explained in Section 7.

7. COMPOSITE WEB SERVICES

Templates composed of elementary archetypes can be con-
structed through Web service composition tools. Template
designers can refer to the “Archetype Metadata Ontology”
in order to indicate what kind of elementary archetypes con-
stitutes such a template. The related elementary archetypes
instances can be dynamically discovered and bound to the
templates at runtime by using the ebXML registry as de-
scribed in this paper. Additionally if the user wishes to
retrieve the data specified in a template from a specific
Medical Information System, the Web services accessing the
archetypes can also be discovered from the ebXML registry
and can be bound to the template definition.

Consider the “Clinical Information Template” presented
in Figure 17. The template designer may annotate the com-
ponents of this template with Archetype Metadata Ontology
rather than explicitly indicating the sub-units of those com-
ponents. For example the “Allergies” component can be

ClinicalInformation
Demographics

Clinicallndication

ChiefComplaint
HistoryofPresentlIness

PastMedicalHistory
Medications

Allergies

DiagnosticTests

Impressions

_(Plan

) QuaitativeFinding)

QuantitativeFinding

Figure 17: The Clinical Information Template

_ >

2. Find suitable archetypes

| Archetype
1. Abstract Template
3. Check Template Cosntraint
. -

Generic Generic
IArchetype Archetype

Proxy Proxy

Generic
IArchetype

. . Proxy

4. Bind Compatible Archetypes

Figure 18: Dynamic Archetype Binding

annotated with “Clinical Information Template” node pre-
sented in Figure 2 and “Allergies and Immunology” Clinical
Domain presented in Figure 7, and “Medications” compo-
nents can be annotated with “Medication” Document Type
presented in Figure 5.

In order to compose this template, these archetype in-
stances should be discovered from the ebXML Registry. We
have provided a “Generic Archetype Proxy” for this pur-
pose. The steps necessary to retrieve archetype instance are
as follows (Figure 18):

e The “Generic Archetype Proxy” parses the semantic
annotations presented in the Template definition.

e Exploiting these annotations, the “Generic Archetype
Proxy” constructs the relevant ebXML Filter queries
to retrieve the Extrinsic objects in ebXML registry
representing the archetypes.

e Then through “GetContent” queries the content of
these archetypes can be retrieved from Repository.

e If further constraints have been defined in the Tem-
plate definition (such as it should use “SNOMED”
Coding Scheme), the “Constraint Checker” component

can assure the suitability of the archetype instance
with this template definition.

8. CONCLUSIONS AND FUTURE WORK

Interoperability is a challenging problem in the health-
care domain, and archetypes are a promising approach for
tackling this problem. However for archetypes to be used as
a shared model of domain concepts, there is a strong need
for mechanisms for sharing archetypes through an archetype
server, discovering archetypes through their semantics, facil-
itating template composition from archetypes and retrieval
of corresponding data from the underlying medical informa-
tion systems.

In this paper, we provide guidelines on how ebXML Reg-
istries, through their semantic constructs, can be exploited
as an efficient medium for annotating, storing, discovering
and retrieving archetypes. We also present how archetype
data can be retrieved from proprietary clinical information
systems by using ebXML Web services. This work is carried
out within the scope of Artemis project [3] which aims to
provide interoperability in the healthcare domain through
semantically enriched Web services.

As already mentioned archetype based interoperability ne-
cessitates “harmonised” information model to be adopted.
However, as an alternate solution, the reference models of
the standardization bodies like openEHR, CEN TC/251,
and HL7 can be represented through an ontology language
like OWL. As a future work, we plan to define the archetypes
constraining these reference models in OWL, and provide
the mapping between these reference models through ontol-
ogy mapping.

9. REFERENCES

[1] Aden, T, Eichelberg, M., Artemis Deliverable D3.1.1.4:
Review of the State-of-the-Art- Healthcare standards:
HL7, GEHR and CEN TC251 ENV 13606, CEN TC251
prEN 13606-1, http://www.srdc.metu.edu.tr/webpage-
/projects/artemis/calendar.php.

[2] Archetype Definition Language (ADL) 1.2 draft,
http://www.openehr.org/drafts/ADL-1_2_draftF.pdf

[3] Artemis Project,
http://www.srdc.metu.edu.tr/webpage/projects/artemis

[4] BEA WebLogic Platform,
http://e-docs.bea.com/platform/docs81/index.html

[5] Berners-Lee, T., Hendler, J., Lassila, O., “The
Semantic Web”, Scientific American, May 2001.

[6] Beale, T., Heard, S.,“Archetype Definitions and
Principles”, http://www.openehr.org/repositories/spec-
dev/latest/publishing/architecture/archetypes/-
principles/REV_HIST.html

[7] Beale, T., Heard, S.,“The OpenEHR archetype
system”, http://www.openehr.org/repositories/spec-
dev /latest /publishing/architecture/archetypes/system/-
REV_HIST.html

[8] Complete Blood Count Archetype ADL Definition,
http://www.openehr.org/repositories/archetype-dev/-
adl_1.1/adl/archetypes/openehr/ehr/entry /openehr-ehr-
observation.haematology-cbc.draft.adl.html

[9] CEN TC/251 (European Standardization of Health
Informatics) prEN13606, Electronic Health Record
Communication, http://www.centc251.org/

[10] Dogac, A., Laleci, G. B., Kabak, Y., Cingil, I.,
“Exploiting Web Service Semantics: Taxonomies vs.
Ontologies”, IEEE Data Engineering Bulletin, Vol. 25,
No. 4, December 2002.

[11] Dogac, A., Kabak, Y., Laleci, G., “Enriching ebXML
Registries with OWL Ontologies for Efficient Service
Discovery”, in Proc. of RIDE’04, Boston, March 2004.

[12] A. Dogac, Y. Kabak, G. Laleci, C. Mattocks, F.
Najmi, J. Pollock, “Enhancing ebXML Registries to
Make them OWL Aware”, Submitted to the Distributed
and Parallel Databases Journal, Kluwer Academic
Publishers. http://www.srdc.metu.edu.tr/webpage/-
publications/2004/_DAPD_ebXML-OWL.pdf.

[13] ebXML, http://www.ebxml.org/

[14] ebXML version 3, http://www.oasis-open.org/-
committees/download.php/4383/ebMSv3FeaturePreview

[15] ebXML Message Service Specification v1.0, May 2001,
http://www.ebxml.org/specs/ebMS.pdf.

[16] ebXML Registry Information Model v2.0,
http://www.ebxml.org/specs/ebrim2.pdf

[17] ebXML Registry Information Model v2.5,
http://www.oasis-open.org/committees/regrep/-
documents/2.5/specs/ebRIM.pdf

[18] ebXML Registry Services Specification v2.5,
http://www.oasis-open.org/committees/regrep/-
documents/2.5/specs/ebRIM.pdf

[19] Elkin, P., Kernberg, M., “HL7 Template and
Archetype Architecture”, HL7 Template Special Interest
Group, Jan. 2004.

[20] Fensel, D., Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce, Springer, 2001.

[21] Heard, S., Beale, T.,Mori, A.R., Pishec,
O.,“Templates and Archetypes: how do we know what
we are talking about” http://www.openehr.org/-
downloads/archetypes/templates_and_archetypes.pdf

[22] THE IT Infrastructure Integration Profiles,
http://www.rsna.org/IHE /tf/ihe_tf_index.shtml

[23] THE IT Infrastructure Technical Framework,
Cross-Enterprise Clinical Documents Sharing (XDS), by
the THE ITI Technical Committee, Version 3.0, April 26,
2004.

[24] Health Level 7 (HL7), http://www.hl7.org

[25] HL7 Clinical Document Architecture, Release 2.0.
PDF format. Version: August 30, 2004,
http: /xml.coverpages.org/CDA-20040830v3.pdf

[26] HLT7 Reference Information Model,
http://www.hl7.org/library /data-
model/RIM/modelpage_non.htm

[27] HLT7 Version 3 Message Development Framework,
http://www.hl7.org/library /mdf99/mdf99.pdf

[28] IBM WebSphere Application Server Technology for
Developers V6,
http://www-106.ibm.com/developerworks/websphere /-
downloads/ WASTD6Support.html

[29] IBM Web Services Toolkit, http://www.alphaworks.-
ibm.com/tech/webservicestoolkit

[30] ISO TC/215, International Organization for
Standardization, Health Informatics, ISO TS
18308:2003, secure.cihi.ca/cihiweb/en/downloads/-
infostand_ihisd_isowgl_mtg_denoct_contextdraft.pdf

[31] Java Web Services Developer Pack (Java WSDP),

http://java.sun.com/webservices/jwsdp/index.jsp

[32] Jena2 Semantic Web Toolkit,
http://www.hpl.hp.com/semweb/jena2.htm

[33] MedDRA: Medical Dictionary for Regulatory
Activities,
http://www.fda.gov/medwatch /report /meddra.htm

[34] Staab, S., Studer, R., Handbook on Ontologies,
Springer, 2004.

[35] OASIS: Organization for the Advancement of
Structured Information Standards, 1998,
http://www.oasis-open.org/cover /siteIndex.html.

[36] openEHR Community, http://www.openehr.org/

[37] Oracle Application Server Web Services Tutorials,
http://www.oracle.com/technology /tech/webservices/-
htdocs/series/index.html

[38] SNOMED Clinical Terms,
http://www.snomed.org/snomedct_txt.html

[39] SOAP: Simple Object Access Protocol,
http://www.w3.org/TR/SOAP/.

[40] SOAP Messages with Attachments,
http://www.w3.org/TR/SOAP-attachments.

[41] Unified Medical Language System (UMLS),
http://www.nlm.nih.gov /research/umls/

[42] UN/CEFACT: United Nations Centre for Trade
Facilitation and Electronic Business,
http://www.unece.org/cefact/index.htm.

[43] Web Ontology Language OWL,
http://www.w3.org/TR/owl-features/

[44] Web Services Reliability (WS-Reliability),
http://developers.sun.com/sw/platform/technologies/-
ws-reliability.html

[45] Handling Privacy In WSDL 2.0, http://www.w3.org/-
TeamSubmission/2004/SUBM-p3p-wsdl-20040213/

[46] Web Services Security (WS-Security),
http://www-106.ibm.com/developerworks/webservices/-
library /ws-secure/

[47] Web Services Transaction (WS-Transaction),
http://www-106.ibm.com/developerworks/webservices/-
library /ws-transpec/

[48] WSDL: Web Service Description Language,
http://www.w3.org/TR/wsdl.

