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Abstract: In order to improve the accuracy and efficiency of drainage pipeline location 
distribution detection, a new urban drainage pipeline location distribution detection method based 
on depth learning feature is proposed in this paper. Firstly, the main contents of drainage pipeline 
location data are analysed, and the drainage pipeline data are collected by acoustic detection 
method. Secondly, the dual tree complex wavelet method is used to extract the location 
distribution characteristics of urban drainage pipelines. Finally, the deep convolution neural 
network is used to train the location distribution characteristics to complete the detection results 
of urban drainage pipeline location distribution. The experimental results show that compared 
with the traditional detection methods, the detection accuracy of this method is higher and the 
time is shorter. 
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1 Introduction 
Drainage pipeline is an indispensable part of urban pipe 
network system. As a basic urban facility, drainage pipeline 
undertakes the real-time discharge of sewage, urban rainfall 
and other drainage needs (Wang et al., 2019). With the 
development of urbanisation in China, the construction of 
drainage pipeline system has also developed rapidly, and the 
overall structure is more perfect (Junaidi et al., 2018). 
However, with the complexity of urban construction, the 
layout of drainage pipelines is more complex, and urban  
 
 

construction is often divided into old urban areas and new 
urban areas, which are built in time (Dobrescu, 2021; Bai, 
2018; Kndler et al., 2019). Whenever it is necessary to 
optimise the drainage pipeline structure and detect 
congestion, the location of urban drainage pipeline should 
be determined first. However, with the age of old urban 
areas and the complicated distribution of drainage pipelines, 
the location distribution of drainage pipelines is more 
complex and difficult to detect. Therefore, it is of great 
practical significance to study the location distribution 
detection method of drainage pipeline. 
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Liu and Yuan (2019) proposes a method for detecting 
the location distribution of drainage pipelines based on 
CCTV method. This method first uses CCTV pipeline 
endoscope technology to collect the layout of drainage 
pipelines, and obtains the location distribution results of 
urban pipelines through three-dimensional simulation 
software. Although this method can obtain more accurate 
detection results of drainage pipeline position distribution, it 
takes a long time due to the need for overall pipeline layout, 
so it is easy to be limited in practical application. Peng et al. 
(2021) proposes a method for detecting the location 
distribution of urban drainage pipelines based on improved 
convolution neural network. This method detects the 
location distribution based on pipeline image recognition, 
constructs the objective function of pipeline recognition, 
and solves the objective function according to the 
distribution characteristics to complete the detection of 
location distribution. However, the location distribution 
feature extraction accuracy of the drainage pipeline based 
on this method is insufficient, resulting in the low detection 
accuracy of the final location distribution. Guo et al. (2021) 
proposed the location distribution detection results of urban 
drainage pipelines based on scenario simulation. In this 
method, the network distribution model of urban drainage 
pipelines is constructed through scenario simulation 
method, different key detection points are set, and the 
location distribution results of the whole drainage pipeline 
are obtained through the location distribution of different 
detection points. However, because the method obtains the 
overall pipeline position distribution results through 
discontinuous detection points, the detection accuracy is 
insufficient. 

In order to solve the problems of low detection accuracy 
and long detection time of the above traditional methods, a 
location distribution detection method of urban drainage 
pipeline based on depth learning feature is proposed. The 
overall research technical route of this method is as follows: 

1 The type of drainage pipeline position data is analysed, 
and the acoustic detection method is used to collect the 
drainage pipeline position data. 

2 Based on the collected data, the double tree complex 
wavelet method is used to extract the location 
distribution characteristics of urban drainage pipeline. 
According to the extracted location distribution 
characteristics, the deep convolution neural network is 
used for training and processing, and the output result is 
the detection result of urban drainage pipeline location 
distribution. 

3 Experimental verification, taking the extraction 
accuracy of drainage pipeline distribution 
characteristics and the detection accuracy of drainage 
pipeline position distribution as the experimental 
comparison index, the comparative verification 
experiment is carried out. 

2 Location and distribution detection of urban 
drainage pipeline 

2.1 Acoustic data acquisition based on urban 
drainage pipeline 

The collection of urban drainage pipeline data is the basis of 
location distribution detection. The urban drainage pipeline 
data to be collected in this study mainly includes the 
following contents: 

1 Topographic data, topographic data on both sides of the 
centre line of the drainage pipeline, road name, sideline 
and ownership data, and nearby topographic map, etc. 

2 Diameter, length, construction time, construction unit 
of drainage pipeline, as well as pit conditions upstream 
and downstream of the pipeline, etc. 

3 Coordinate data, well cover height and specification 
data of pipeline cellar well, including well cover size, 
well depth and bottom falling form (Magana et al., 
2020; Ying et al., 2018; Yang et al., 2018). 

From the above contents, some data can be obtained by 
consulting relevant materials, and the actual location of the 
drainage pipeline is the focus of this data acquisition. 
Therefore, the acoustic detection method is used to 
accurately collect the data of the location of the drainage 
pipeline. The specific process is as follows. 

The sound wave pi is injected into the pipe S1, when the 
incident sound wave encounters the acoustic load, it will 
generate a reflected wave and a transmitted wave in the 
pipe, which are respectively represented by pr and pt 
(Kumar et al., 2018). Obviously, there is a certain 
correlation between the above three kinds of sound waves, 
and the correlation occurs at the interface where the pipeline 
interface changes. Therefore, the correlation can be 
expressed as the continuous relationship of sound pressure 
and the relationship of volume velocity. The specific 
expression of the two correlation relationships is as follows: 

i r tp p p+ =  (1) 

( )1 2i r tS v v S v+ =  (2) 

In formula (2), vi, vr and vt represent the volume velocities 
of incident wave, reflected wave and transmitted wave 
respectively. 

In urban drainage pipelines, there are differences in the 
acoustic principles between tee fittings and ordinary pipes, 
so the tee fittings in the drainage network will affect the 
data collection accuracy of acoustic detection technology. In 
the tee, the expression for the acoustic impedance is: 

b b bZ R jX= +  (3) 

In the formula, Zb represents the cross-sectional area of the 
tee, Rb represents the acoustic resistance, and Xb represents 
the acoustic reactance (Kimia et al., 2018). 
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In urban drainage pipeline, the correlation expression 
between sound pressure and volume velocity at the 
connection between main pipeline and tee pipe is as 
follows: 

i r t bp p p p+ + =  (4) 

0 0 0 0 0 0

i r tp p p b

b

s s s p
ρ c ρ c ρ c z

− = +  (5) 

In the formula, pt represents the transmitted wave of sound 
wave in the tee. 

Combined with dual tree complex wavelet, the acoustic 
test results of drainage pipeline are filtered to improve the 
accuracy of data acquisition. The expression of dual tree 
complex wavelet is: 

( ) ( ) ( )c h gψ t ψ t iψ t= +  (6) 

In the formula, ψh(t) represents the real part of the wavelet, 
ψg(t) represents the imaginary part of the wavelet, i 
represents the complex unit, h represents the real part filter 
and g represents the imaginary part filter. 

As the name suggests, dual tree complex wavelet is a 
wavelet transform composed of two wavelet transform 
structures. Therefore, the principle of wavelet transform is 
also applicable to dual tree complex wavelet. Calculate the 
wavelet coefficients and scale coefficients of the real part of 
dual tree complex wavelet: 

( )Re /2( ) 2 ( ) 2 , 1, 2, ,j j
hjdI n x t ψ t n dt j J

+∞

−∞
= − = …  (7) 

( )Re /2( ) 2 ( ) 2J J
hJcI n x t ψ t n dt

+∞

−∞
= −  (8) 

Similarly, the wavelet coefficients and scale coefficients of 
the imaginary part of the dual tree complex wavelet can be 
calculated: 

( )Im /2( ) 2 ( ) 2 , 1, 2, ,j j
gjdI n x t ψ t n dt j J

+∞

−∞
= − = …  (9) 

( )Im /2( ) 2 ( ) 2J J
hJcI n x t ψ t n dt

+∞

−∞
= −  (10) 

Add the above formula to construct the overall wavelet 
coefficient and scale coefficient of dual tree complex 
wavelet transform: 

Re Im( ) ( ) ( ), 1, 2, ,φ
j jJd n dI n jdI n j J= + = …  (11) 

Re Im( ) ( ) ( )φ
J J JC n cI n icI n= +  (12) 

In the sound field of urban drainage pipeline, it is set that 
there is a volume element V0, the initial volume of the 
volume element is ρ0, the medium density at the volume 
element of the sound field is P0, and the pressure at the 
volume element is. Since the sound wave propagates from a 
section of the drainage pipe, the volume element will 
vibrate to a certain extent with the propagation of the sound 
wave. Therefore, set the kinetic energy as ∆Ek, the variation 
range of pressure in the vibration process as P0 → P0 + p, 

and the potential energy in the vibration process as ∆Ep. 
Combined with the above parameters, the acoustic energy of 
volume element is calculated: 

( )0 0
0

0 2
0 2 2

0 0

1 2
2
12

2

p
k pE E E ρ V v pdV

V ρ v p
ρ c

 Δ = Δ + Δ = + − 
 

 = + 
 


 (13) 

Then the calculation formula of energy density per unit 
volume in the drainage pipeline can be constructed: 

2
0 2 2

0 0 0

1 12
2

Eε ρ v p
V ρ c
Δ  = = + 

 
 (14) 

In the drainage pipeline, the propagation mode of sound 
wave is plane wave, so the instantaneous value of sound 
energy density is calculated by the following formula: 

2 2
0 2

0 2 2 2 2
0 0 0 0

cos ( ) cos 2( )
2

aV p p aE ρ wt kx wt kx
ρ c ρ c

 Δ = − + − 
 

 (15) 

Taking the average value of the calculation results of 
formula (15), the average time value of acoustic energy 
density in the drainage pipeline can be obtained: 

2

0 2 20 0 0

1 1
2

T apE Edt V
T ρ c

Δ = Δ =  (16) 

Calculate the average sound energy density in the drainage 
pipeline as the location distribution characteristics of urban 
drainage pipeline: 

2

2 2 2
0 00 0 0

2 a eE p Pε
V ρ c ρ c
Δ= =  (17) 

2.2 Location distribution detection of urban 
drainage pipeline based on deep learning feature 

After extracting the location distribution features of urban 
drainage pipelines, the depth neural network is used to 
supervise the learning and training of the location 
distribution features. The deep convolutional neural 
networks (CNNs) with more hidden layers have a more 
complex network structure. Compared with the traditional 
machine learning methods, they have stronger ability of 
feature learning and expression, and can improve the 
effectiveness of urban drainage pipeline location 
distribution detection. The location distribution detection 
process is shown in Figure 1. 

Based on the collected data, the location distribution 
features of urban drainage pipelines are extracted, and 
trained in the feature space to get the final location 
distribution detection results. 

The location distribution characteristics of urban 
drainage pipes extracted in Subsection 2.1 can be directly 
used as input layer data without pre-processing the data. 
Level by level training can improve the accuracy of location 
distribution detection (Luo and Hu, 2020; Zheng et al., 
2020). The principle of training the position distribution 
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characteristics of drainage pipeline by deep convolution 
neural network is shown in Figure 2. 

Figure 1 Location distribution detection process 

  

Figure 2 Principle of deep learning feature extraction 

 

From the training principle shown in Figure 2, it can be seen 
that the deep convolution neural network consists of input 
layer, convolution layer, down sampling layer and feature 
vector layer. The parameters of each hierarchy are shown in 
Table 1. 

Table 1 Hierarchy and parameters of deep convolution neural 
network 

Layer 
number Type 

Number and size of 
characteristic 

drawings 

Convolution 
kernel 

0 Input layer X0 1 and 48 × 48 - 
1 Convolution 

layer C1 
100 and 46 × 46 3 × 3 

2 Down sampling 
layer S1 

150 and 23 × 23 2 × 2 

3 Convolution 
layer C2 

150 and 20 × 20 4 × 4 

4 Down sampling 
layer S2 

150 and 10 × 10 2 × 2 

5 Convolution 
layer C3 

250 and 8 × 8 3 × 3 

6 Down sampling 
layer S3 

250 and 4 × 4 2 × 2 

7 Full connection 
layer N7 

200 and 1 × 1 4 × 4 

8 Feature output 
layer N8 

32 and 1 × 1 - 

The specific steps of using depth neural network to detect 
the location distribution of urban drainage pipeline are as 
follows: 

1 Network learning: The f(y) of CNN is extracted from 
external learning data, and the feature training sample  

X = {X1, X2, …, XI, …, XC} is mapped. The mapping 
expression is: 

( )1 iX f X′ =  (18) 

After the mapping process is completed, the training 
dictionary 1 2{ , , , , , }i CX X X X′ ′ ′ ′… …  of the feature 
space of the deep neural network is obtained. 

2 Input layer: The 48 × 48 mapping template is directly 
used as the training input of the deep neural network. 

3 Convolution layer: After receiving the characteristic 
image Xl–1,j and convolution kernel kl,x × kl,y input from 
the input layer, the convolution layer obtains the 
characteristic Xl,j in the convolution l layer through the 
convolution combination operation. The expression is: 

( ), 1, , , ,
j

i j l j l i j l ji M
X f X w b−∈

= ∗ +  (19) 

In the formula, Mj represents the set composed of the 
input layer characteristic diagram Xl–1,j, wl,i,j represents 
the weight of convolution calculation, and bl,j 
represents the bias parameter. 

4 Downsampling layer: In the downsampling layer, the 
convolution result is downsampled through the 
downsampling function: 

( )( ), , 1, ,l i l i l j l jX f down X b−= β  (19) 

In the formula, down(.) represents the downsampling 
function and βl,i represents the multiplicative bias 
parameter. 

5 Position distribution detection output: Calculate the 
expression coefficient of urban drainage pipeline 
location distribution: 

2
12ˆ arg min y X λ ′

′
′ ′ ′ ′= − +

α
α α α  (20) 

The distribution expression of the pipeline is 
constructed according to the location of the pipeline, 
and the calculation result is expressed as follows: 

2
2ˆarg min i i

i
identity y X ′ ′

′
′= − α  (21) 

3 Experimental verification 
In order to verify the detection performance of the proposed 
location distribution detection method of urban drainage 
pipeline based on deep learning feature, simulation and 
comparative verification experiments are carried out. 

Taking the drainage pipeline in the city as the research 
object, the location distribution of drainage pipeline is 
detected. The three-dimensional simulation diagram of 
urban drainage pipeline is shown in Figure 3. 

According to the urban drainage pipeline shown in 
Figure 3, the acoustic detection method is used to collect the 
location distribution data of the drainage pipeline, and the 
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collected data is stored in MySQL database as the 
experimental sample data. The total amount of data is 3 GB. 

Figure 3 Three dimensional simulation diagram of urban 
drainage pipeline (see online version for colours) 

 

After the selection of experimental objects and the 
collection of data, the simulation comparison and 
verification experiment is started. Before the experiment, in 
order to reduce the experimental error and improve the 
reliability of simulation and verification, the method in this 
paper is compared with the methods in Peng et al. (2021) 
and Guo et al. (2021), taking the extraction accuracy of 
drainage pipeline distribution features and the detection 
accuracy of drainage pipeline position distribution as the 
actual comparison indexes. 

3.1 Accuracy of feature extraction of urban drainage 
pipeline distribution 

A key step in the drainage pipeline position distribution 
detection method is to extract the distribution characteristics 
of urban drainage pipelines. Therefore, the extraction 
accuracy of drainage pipeline distribution characteristics of 
this method is verified. The comparison results of this 
method with those of Peng et al. (2021) and Guo et al. 
(2021) are shown in Figure 4. 

Figure 4 Extraction accuracy of distribution characteristics of 
drainage pipeline 

 

From the comparison results of the extraction accuracy of 
drainage pipeline distribution features shown in Figure 4, it 
can be seen that among the three comparison methods, the 
extraction accuracy of drainage pipeline distribution 
features of this method is the highest, and the fluctuation 
range is small, which is always stable at about 96%. 
However, the accuracy of drainage pipeline distribution 
feature extraction by Peng et al. (2021) and Guo et al. 
(2021) fluctuates greatly, and the level is low, with a 
maximum of more than 80%. 

3.2 Detection accuracy of location distribution of 
urban drainage pipeline 

Through the above experiments, the accuracy of drainage 
pipeline position distribution feature extraction is verified. 
In this part, the detection accuracy of drainage pipeline 
position distribution by different methods is compared and 
verified. The detection accuracy results of drainage pipeline 
position distribution by the three methods are shown in 
Table 2. 

Table 2 Location distribution and detection accuracy of urban 
drainage pipeline 

Number of 
experiments/ 
time 

Detection accuracy of drainage pipeline 
position distribution/% 

Paper 
method 

Peng et al. 
(2021) method 

Guo et al. (2021) 
method 

1 95.2 72.5 62.6 
2 95.2 70.6 62.8 
3 95.2 69.5 62.9 
4 99.5 71.1 62.4 
5 99.5 71.3 62.8 
6 99.5 72.2 62.9 
7 92.7 70.1 64.1 
8 92.7 71.7 61.4 
9 97.1 71.9 61.8 
10 97.2 73.1 62.7 

By observing the comparison results of the detection 
accuracy of drainage pipeline position distribution shown in 
Table 2, it can be seen that there is a large gap in the 
detection accuracy results of the three methods under 
multiple experiments. The detection accuracy of drainage 
pipeline position distribution of this method is more than 
92%, the detection accuracy of Peng et al. (2021) method is 
about 70%, and the detection accuracy of Guo et al. (2021) 
method is about 60%. 

4 Conclusions 
In order to improve the detection accuracy of urban 
drainage pipeline position distribution and provide technical 
support for pipeline laying and maintenance, an urban 
drainage pipeline position distribution detection method 
based on deep learning feature is proposed. The 
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performance of the method is verified from both theory and 
experiment. When detecting the location distribution of 
urban drainage pipeline, this method can accurately extract 
the location distribution characteristics of pipeline and 
improve the detection accuracy of pipeline location 
distribution. Specifically, compared with the method based 
on improved convolution neural network, the feature 
extraction accuracy of this method is significantly improved 
and is always stable at about 96%; compared with the 
method based on situation simulation, the position detection 
accuracy of this method is significantly improved, reaching 
more than 92%. 
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