
Verifying security protocols
by knowledge analysis

Xiaoqi Ma*
School of Systems Engineering,
The University of Reading, UK
E-mail: xiaoqi.ma@reading.ac.uk
*Corresponding author

Xiaochun Cheng
School of Systems Engineering,
The University of Reading, UK
E-mail: x.cheng@reading.ac.uk

Abstract: This paper describes a new interactive method to analyse knowledge of
participants involved in security protocols and further to verify the correctness of the
protocols. The method can detect attacks and flaws involving interleaving sessions
besides normal attacks. The implementation of the method in a generic theorem prov-
ing environment, namely Isabelle, makes the verification of protocols mechanical and
efficient; it can verify a medium-sized security protocol in less than ten seconds. As an
example, the paper finds the flaw in the Needham-Schroeder public key authentication
protocol and proves the secure properties and guarantees of the protocol with Lowe’s
fix to show the effectiveness of this method.

Keywords: security protocol; knowledge-based system; formal verification.

Reference to this paper should be made as follows: Ma, X. and Cheng, X. (2007)
‘Verifying security protocols by knowledge analysis’, Int. J. Security and Networks,
Vol. x, No. x, pp.xx–xx.

Biographical notes: Xiaoqi Ma is a PhD student at The University of Reading. His
research interests include computer security, formal methods, operating systems and
real time systems.

1 INTRODUCTION

Information security is playing an increasingly important
role in modern society, driven especially by the uptake of
the Internet for information transfer. In certain areas, this
issue is even vital. For example, military or security de-
partments of governments often transmit a great amount
of top-secret data, which, if divulged, could become a huge
threat to the public and to national security. Even in our
daily life, it is also necessary to protect important infor-
mation. Consider e-commerce system as an example. No
one is willing to purchase anything over the Internet before
being assured that all their personal and financial informa-
tion will always be kept secure and will never be leaked to
any unauthorised person or organisation.

To achieve secrecy of sensitive information, cryptogra-
phy is extensively used. However, cryptography can only
offer protection if it is used in an appropriate way. Guide-
lines about how to use cryptographic technology are in-

corporated in the large number of security protocols that
have been developed. These protocols in general contribute
greatly to information security.

However, many such protocols are inherently incorrect,
or at least cannot achieve completely all that is intended
of them. Indeed, some protocols considered perfect at first
were found to have flaws in them many years later. To
evaluate and verify security protocols in a systematic way,
Burrows et al. proposed their ban logic (Burrows, 1990)
in 1989. Subsequently, significant research work has been
conducted in the area of designing formal methods for anal-
ysis of cryptographic protocols, and many good models
have been proposed. Generally speaking, all these meth-
ods can be broadly divided into two categories, namely
state based methods and rule based methods.

State based methods model security protocols as finite
state machines. They search the state space exhaustively
to see whether all the reachable states are safe (Paulson,

Copyright c© 200x Inderscience Enterprises Ltd.

1



1997a). If some reachable state in a security protocol is
proved to be unsafe, a flaw may be reported; otherwise,
the protocol will be said to be correct and safe. Recognised
state based methods include Lowe’s csp method with fdr
as the model checker (Lowe, 1996) and Meadows’ nrl Pro-
tocol Analyzer (Meadows, 1996a,b). State based methods
are effective and many attacks have been found by this
kind of methods. However, it is difficult to effectively con-
trol the size of the state space; when the protocol is large,
the state space will become surprisingly huge and it will be
extremely time consuming, or even practically impossible,
to search the whole space.

Rule based methods formally express what principals
can infer from messages received (Paulson, 1997a). With
these approaches, the protocols, the necessary assumptions
and the goals of the protocols are formulated in formal
logic. Some specific properties of the protocols can be
proved by using the axioms and rules of the logic (Liebl,
1993). Since rule based methods do not have to search
large state space, they can normally converge very quickly,
typically in less than one hundred steps for a medium sized
protocol. In recent years, a number of rule based meth-
ods have been developed. Among them, the ban logic in-
troduced by Burrows et al. (Burrows, 1990), Bolignano’s
model (Bolignano, 1996) and Chen et al.’s endl frame-
work (Chen, 2004, 2005) are good representatives. Paul-
son’s inductive method (Paulson, 1997a,b, 1998) serves as
a good example of using mathematical reasoning. Rule
based methods are generally much more efficient than state
exploration methods, and they do have found many subtle
flaws. However, some of them only consider single runs of
the protocols and usually ignore the interleaving of two or
more sessions. So there are a lot of flaws which cannot be
found with these logics.

To gain effectiveness from state based methods and effi-
ciency from rule based methods, and overcome their draw-
backs, we propose in this paper a new security protocol
verification method, which is based on a knowledge-based
framework. The method analyses the knowledge of partic-
ipating principals and infers what they can know and can
never know (Cheng, 2005; Ma, 2005a). It takes into consid-
eration protocols concerning multiple interleaving sessions.
By avoiding searching large state space and by implement-
ing the method in a mechanical reasoning platform, Is-
abelle (Nipkow, 2003), it can be used to mechanically ver-
ify cryptographic protocols and can converge very quickly,
providing high efficiency. The Needham-Schroeder public
key authentication protocol (Needham, 1978) and Lowe’s
fix (Lowe, 1995) is considered in this paper as an example
to show the effectiveness and efficiency of our method.

Section 2 gives a brief overview of the knowledge-based
framework and its Isabelle implementation. The Needham-
Schroeder public key authentication protocol and Lowe’s
fix are then introduced in section 3. We verify the original
protocol mechanically and find the flaw in it in section
4, and then prove the correctness of the fixed protocol in
section 5. Section 6 discusses relevant issues.

2 THE KNOWLEDGE BASED METHOD

This method focuses on the knowledge of all participants in
the protocol. We describe their initial knowledge and infer
what they can know and can never know with the progress
of the protocol, processing this knowledge in formal logic.
In other words, it concerns the knowledge analysis of all
participants. This method can be implemented in Isabelle
to enable mechanical verification.

2.1 Basic Notations and Data Structures

We call all participants taking part in network communica-
tions principals. They can be divided into three categories:
the server, the friends, which stand for all “honest” prin-
cipals, and the spy, which is also called the adversary or
intruder in some literatures. In Isabelle notation, they can
be described as follows:

datatype principal = Server | Friend nat | Spy

In the above definition, different friends are represented
as different natural numbers.

Random numbers chosen by principals serve as nonces
to identify protocol runs uniquely and avoid replay attack
(Paulson, 1998). Every principal has some keys, such as
public encryption key and private signature key. All the
nonces and keys are simply represented as natural num-
bers.

One of the most important concepts is the message. A
message is a piece of information sent from one principal
to another. A message can consist of names of principals,
nonces, keys, encrypted messages, signed messages, hashed
messages, or a combination of these. It is recursively de-
fined in Isabelle as follows:

datatype message = Principal principal

| Nonce nonce

| Key key

| MPair message message

| Encrypt message key

| Sign message key

| Hash message

Paired messages can be abbreviated using curly braces.
For example, MPair M1 M2 can be written as {M1, M2}.
A compound message consisting of more than two compo-
nents can be understood as a nested compound message.
For example, {M1, M2, M3} is the abbreviation of {M1,
{M2, M3}}.

2.2 Functions and Predicates

We define a number of useful functions and predicates.
Among them are key functions. Function Kpb has the type
principal ⇒ key, mapping a principal to its public en-
cryption key. Functions Kpv, Spb and Spv similarly map
a principal to its private encryption key, public signature
key and private signature key, respectively. Both Kpb and
Spb are injective functions.

2



Function Nonce of maps a principal to its nonce. It is
also an injective function.

To determine whether a message is a part of another one,
we introduce a function msg part. For a non-compound
message, only itself is a part of it. For a compound mes-
sage, message M1 is part of message M2, if and only if the
component set of M1 is the subset of the component set
of M2.

The predicate Know has the type principal ⇒
message ⇒ bool, describing a principal’s knowledge state
about a certain message. Similarly, the predicate Auth

with the type principal ⇒ principal ⇒ message ⇒
bool describes the first principal’s authentication state
about the second one on a certain message, that is, whether
the message is sent by the second principal to the first one
and is unmodified.

To describe cryptographic protocols, two action func-
tions need to be introduced. One is Send with the type
principal ⇒ principal ⇒ message ⇒ bool, repre-
senting that one principal sends a message to another prin-
cipal. Correspondingly, the other function is Rcv with
the type principal ⇒ message ⇒ bool, meaning that
a principal receives a certain message from others.

2.3 Assumptions

Our method is based on a number of assumptions, which
are widely accepted by most researchers in this field.

The most important assumptions are key assumptions.
In public cryptosystems, the public key of any principal is
known to all other principals:

axioms
KeyAssump1 : "∀ X Y. Know X (Key (Kpb Y))"

On the contrary, any principal’s private key is initially
secret from others except itself:

KeyAssump2 : "∀ X. Know X (Key (Kpv X))"

KeyAssump3 :

"∀ X Y. ((X 6=Y) −→ ¬(Know X (Key (Kpv Y))))"

We also assume that any principal’s name is open to the
world:

axioms
KnowName : "∀ X Y. Know X (Principal Y)"

Besides that, any principal knows its own nonce:

axioms
KnowNonce : "∀ X. Know X (Nonce (Nonce_of X))"

According to the definition of spy, it is not an honest
principal, so we have:

axioms
Honest_not_Spy : "∀ n. Spy 6= Friend n"

In addition, we also have some other assumptions, which
are described as follows:

• The spy always observes all messages sent through
the network. It tries to use all the keys it knows to
decrypt the message on the network and to send forged
messages to others. It can also get messages sent from
one principal to another. That is, the spy has the
“full” control over the network.

• There is only one spy in the network. A single spy
described above can be as powerful as multiple spies
(Paulson, 1997a).

• The spy cannot read an encrypted message without
the corresponding decryption key; i.e. secret keys are
not guessable.

• An honest principal only reads information addressed
to it. It never reads messages of which it is not the
intended recipient.

• A principal never sends messages to itself. Sending a
message to itself is meaningless.

• Nonces are always different from each other. They are
random numbers used to prevent replay attacks.

2.4 Rules

We introduce a group of inference rules into the method
to infer new knowledge from the old. All these rules can
be divided into four categories.

The first is the encryption/decryption rule, which in-
cludes two rules.

When a principal knows a message and a key, it can
use this key to encrypt the message and get the encrypted
message:

Rule1_1 : "Know X M ∧ Know X (Key K)

=⇒ Know X (Encrypt M K)"

When a principal knows a message encrypted with a key
and the reverse of the key, it can use the reverse of the key
to get the original message:

Rule1_2 : "Know X (Encrypt M K)

∧ Know X (Key (invKey K)) =⇒ Know X M"

The second category is the message combina-
tion/separation rule, which also includes two rules.

When a principal knows two messages, it can know the
combination of them:

Rule2_1 : "Know X M1 ∧ Know X M2

=⇒ Know X {M1, M2}"

When a principal knows the combination of two mes-
sages, it can know them separately:

Rule2_2 : "Know X {M1, M2}

3



=⇒ Know X M1 ∧ Know X M2"

These two rules can be used inductively to deal with
compound messages consisting of more than two compo-
nents.

The third category is the message sending/receiving rule,
which includes four rules.

If a principal sends a message to another one, the object
principal will eventually receive it:

Rule3_1 : "Send X Y M =⇒ Rcv Y M"

As one of our assumptions describes, the spy can observe
all information flowing over the network:

Rule3_2 : "Send X Y M =⇒ Rcv Spy M"

After a principal receives a message, it will know it:

Rule3_3 : "Rcv X M =⇒ Know X M"

If a principal sends a message to another one, it must
know it first:

Rule3_4 : "Send X Y M =⇒ Know X M"

The fourth category is the authentication rule, which
still includes two rules.

If principal Y knows a message encrypted with principal
X’s public key, X receives this encrypted message, and all
other principals (including the spy) do not know it, then
X can authenticate that the message was sent by Y and is
unmodified:

Rule4_1 : "Know Y (Encrypt M (Kpb X))

∧ Rcv X (Encrypt M (Kpb X))

∧ (∀ Z. ((Z 6=X ∧ Z 6=Y)

−→ ¬(Know Z M))) =⇒ Auth X Y M"

If another principal knows the message, then X will
unauthenticate it:

Rule4_2 : "∀ X Y. (∃ Z. (Z 6=X ∧ Z 6=Y ∧ Know Z M))

=⇒ ¬(Auth X Y M)"

The above notations, data structures, functions, predi-
cates, assumptions and rules form the basic framework of
the knowledge-based security protocol verification method.

2.5 Use of the Framework

With the implementation of the framework in Isabelle, we
can now prove security properties and then prove the cor-
rectness of cryptographic protocols or find flaws in them
mechanically. To achieve these, we need to conduct the
following steps:

1. Adjusting the notations and definitions in Isabelle.
Since cryptographic protocols may use different no-
tations and definitions, we sometimes need to adjust

them slightly according to the protocols we plan to
verify.

2. Modelling or formalising the protocols in Isabelle no-
tation. Before we can start to verify the protocols, we
first need to describe them in the language which can
be understood by the implementation of the frame-
work and the Isabelle reasoning platform.

3. Proving basic properties of the protocols. Some basic
properties of components of the framework and the
protocols need to be proved. Most of the proofs of
these properties can be reused in proving other proto-
cols.

4. Proving security properties of the protocols. Further
security properties should then be proved based on
the basic properties. If all final security guarantees
can be proved at this staged, the correctness of the
protocols can be proved.

These steps can be illustrated as Figure 1.
The above steps are guidelines for proving the correct-

ness of cryptographic protocols. If we encounter any prob-
lems in proving basic properties, security properties or se-
curity guarantees, these problems may imply that there are
some flaws in the protocols, although they cannot prove the
existence of the flaws. But the information given by the
system could help us identify the flaws.

Now let us consider the Needham-Schroeder protocol,
which is widely accepted as a “standard testbed” for secu-
rity protocol formal verification methods, as an example.

3 OVERVIEW OF THE N-S PROTOCOL

In a vulnerable network environment with malicious spies
and intruders, principals engaged in network communi-
cation cannot guarantee that who they are talking to is
exactly the person they want to communicate with. Au-
thentication is therefore used to help a principal verify the
identity of the other one. In 1978, Needham and Schroeder
proposed a protocol with the intent of providing mutual
authentication (Needham, 1978). The protocol was con-
sidered correct for nearly two decades, until it was broken
by Lowe using csp with fdr as the model checker (Lowe,
1995, 1996).

The simplified Needham-Schroeder protocol can be de-
scribed as follows 1:

1. A → B : {Na, A}Kb

2. B → A : {Na, Nb}Ka

3. A → B : {Nb}Kb

1The original Needham-Schroeder protocol contains seven steps,
four of which describe how A and B get the other’s public encryption
key from the server. In most formal verification models, principals’
public key are considered open to the world (we made such assump-
tions in section 2.3). Therefore we ignore the four steps concerning
public key distribution.

4



Notations and

Definitions

Protocol

Formalisation

in Isabelle

Basic

Properties

Proved

Security

Properties

Proved

Adjusting

Modellin
g

Reasoning and

Proving

Reasoning and

Proving

Assumptions

and Rules

Assumptions

and Rules

Figure 1: Steps to prove security protocols.

At the beginning, principal A composes a fresh nonce
Na and sends it to B with its own name, encrypted with
B’s public key. After B receives this message, B decrypts
it and then reads the nonce Na and knows who is seeking
to communicate with it. B then sends back a message
consisting of its own fresh nonce Nb as well as A’s nonce
Na, encrypted with A’s public key Ka, to A. To respond
to B’s message, A then returns B’s nonce Nb to B.

Lowe fixed this protocol after he found a flaw in it by
adding B’s name into the second step (Lowe, 1995). The
fixed protocol can be described as follows:

1. A → B : {Na, A}Kb

2. B → A : {Na, Nb, B}Ka

3. A → B : {Nb}Kb

The aim of this protocol is to establish mutual authen-
tication between an initiator A and a responder B. After
step 2, A believes that B is responding to it because A sent
Na encrypted with B’s public key to B and only B can de-
crypt it and read the content. Similarly, B is assured A’s
identity after step 3.

4 VERIFYING THE ORIGINAL PROTOCOL

To verify the original Needham-Schroeder protocol, we first
need to model it in our framework, then prove a number
of important lemmas and properties, and ultimately prove
the final guarantees.

4.1 Modelling the Protocol

Normally, the protocol can be formalised as three steps for
all honest principals:

1. First, principal A sends a compound message consist-
ing of its nonce and name to principal B:

NS1 : "Send A B (Encrypt {Nonce (Nonce_of A),

Principal A} (Kpb B))"

2. Second, if the first step has been successfully car-
ried out, principal B will correspondingly send a com-
pound message consisting of A’s nonce, its own nonce
and name to principal A:

NS2 : "Send A B (Encrypt {Nonce (Nonce_of A),

Principal A} (Kpb B))

=⇒ Send B A (Encrypt {Nonce (Nonce_of A),

Nonce (Nonce_of B)} (Kpb A))"

3. Lastly, if the second step has been successfully carried
out, principal A will correspondingly send B’s nonce
back to principal B:

NS3 : "Send B A (Encrypt {Nonce (Nonce_of A),

Nonce (Nonce_of B} (Kpb A))

=⇒ Send A B (Encrypt (Nonce (Nonce_of B))

(Kpb B))"

These three steps are enough for honest principals. How-
ever, the spy does not necessarily obey these rules. As
we stated in the assumptions previously, it may send out
forged messages to other honest principals, i.e. it may send
any messages it knows to any other principals as if they
are according to the protocol:

axioms
Fake : "Know Spy X =⇒ Send Spy P X"

Since the spy can send out forged messages which seem
to be valid protocol messages and fool honest principals,
these honest principals may respond to the forged messages
innocently. So we have another two extra rules:

axioms

5



NS2_response_to_Spy : "Send Spy B (Encrypt

{Nonce (Nonce_of D), Principal F} (Kpb B))

=⇒ Send B Spy (Encrypt {Nonce (Nonce_of D),

Nonce (Nonce_of B)} (Kpb Spy))"

NS3_response_to_Spy : "Send Spy A (Encrypt

{Nonce (Nonce_of D), Nonce (Nonce_of E)}

(Kpb A))

=⇒ Send A Spy (Encrypt (Nonce (Nonce_of E))

(Kpb Spy))"

Additionally, since it is a two-part authentication pro-
tocol, only two honest principals are involved. Without
losing generality, we name them as Friend 1 and Friend

2 corresponding to A and B, respectively. If a principal
does not equal to either of them, it must be the spy, since
an honest principal will not involve itself in a protocol ses-
sion which he should not take part in.

axioms
other_principal : " [[ X 6= Friend 1; X 6= Friend 2 ]]

=⇒ X = Spy"

We can use all above assumptions, rules and the formal-
isation to verify the Needham-Schroeder public key proto-
col. All the following lemmas and goal are inferred from
them. We denote them as a whole as Σ. Therefore, any
lemma or goal F should be understood as Σ |= F . In the
Isabelle implementation, the Σ is not written explicitly.
However, it always exists in the whole proof.

4.2 Some Important Lemmas

To prove the final guarantees for the two participating prin-
cipals, we need to first prove some lemmas. Most of them
are straightforward. For example, if principal A sends to
B a message encrypted by B’s public encryption key, B
will be able to read the content of this message.

Besides these straightforward properties, there are a
number of important ones worth noting. One of these lem-
mas is that if a principal knows a message M , and M1 is
a part of M , then it should know the message M1 as well:

lemma know_part_imply [simp] :

"Know A M ∧ msg_part M1 M −→ Know A M1"

Due to the inductive definition of the data type message,
we need to prove this lemma by induction. Seven subgoals
have been produced when we induct on the structure of
message M by using the induction rule induct tac. The
subgoals concerning principal, nonce, key and encrypted
massages, signatures and hashed messages can be sim-
ply proved by using the implication introduction (impI),
conjunction elimination (conjE), conjunction introduction
(conjI), disjunction elimination (disjE) and substitution
(ssubst) rules provided by higher order logic (Nipkow,
2003). However, the subgoal concerning compound mes-
sages is a little more complex. In this case, we need to
decompose all compound parts into pieces, and then prove

them one by one.
In the proof, different rules are used. Besides nor-

mal higher-order rules, we also use the elimination rule
(erule) which eliminates premise of no interest and the
destruction rule (drule) which takes apart and destroys a
premise. Besides that, the assumption rule, which means
that the result we need to prove exists in assumptions, is
also used. The “+” sign appearing after the assumption

rule (and other rules) indicates that the current rule can
be executed more than once whenever possible.

In addition, we also use several “atom lemmas”, which
state that a certain object is not dividable. These
lemmas include know atom principal, know atom nonce,
know atom key, know atom encrypt, know atom sign and
know atom hash. Since the objects are defined as the sim-
plest block of type message, the proof of these lemmas are
trivial.

The proving steps of the lemma know part imply are
as follows:

apply (induct_tac M)

apply (rule impI know_atom_principal)+

apply (erule conjE)

apply (rule conjI)

apply assumption+

apply (rule impI know_atom_nonce)+

apply (erule conjE)

apply (rule conjI)

apply assumption+

apply (rule impI know_atom_key)+

apply (erule conjE)

apply (rule conjI)

apply assumption+

apply (rule impI)

apply (erule conjE)

apply (drule mpair_either)

apply (erule disjE)

apply (erule ssubst)

apply assumption

apply (drule Rule2_2)

apply assumption+

apply (rule impI know_atom_encrypt)+

apply (erule conjE)

apply (rule conjI)

apply assumption+

apply (rule impI know_atom_sign)+

apply (erule conjE)

apply (rule conjI)

apply assumption+

apply (rule impI know_atom_hash)+

apply (erule conjE)

apply (rule conjI)

by assumption+

With the lemma know part imply, it is easy for us to

6



prove the lemma know encrypted part which is a sim-
plification rule. In the proof of this lemma, we use the
simp only rule, which means that the system only uses
the certain rule instead of searching all applicable simpli-
fication rules automatically. In addition, the know part

rule is the implication form of know part imply. And the
inv publicKey rule means that in public cryptosystem, a
pair of public key and private key are reverse keys of each
other.

lemma know_encrypted_part [simp] :

" [[ Know B (Encrypt M (Kpb B));

msg_part M1 M ]] =⇒ Know B M1"

apply (rule know_part)

apply (rule conjI)

prefer 2

apply assumption

apply (rule Rule1_2)

apply (rule conjI)

apply assumption

by (simp only: inv_publicKey KeyAssump2)+

Another important lemma states that if a principal sends
to another principal a compound message encrypted with
the second principal’s public encryption key, the latter will
eventually know the parts of it:

lemma know_send_encrypted_part [simp] :

" [[ Send A B (Encrypt M (Kpb B));

msg_part M1 M ]] =⇒ Know B M1"

This lemma can by easily proved using the lemma
know encrypted part together with rules 3 3 and 3 1 of
our framework. To make proofs clear, we usually prove
simplest subgoals first. So when we find the second subgoal
generated by the system is simpler than the first subgoal,
we may use the command prefer 2 to move the second
subgoal to the front.

apply (rule know_encrypted_part)

prefer 2

apply assumption

apply (rule Rule3_3)

apply (rule Rule3_1)

by assumption

In doing so, it simplifies the final proof greatly.

4.3 Secrecy of Nonces

The correctness of the Needham-Schroeder protocol relies
greatly on the secrecy of the nonces used by A and B (Paul-
son, 1997b). So the key point for proving the Needham-
Schroeder protocol is to prove the secrecy of nonces of A
and B.

Our proofs base these nonce secrecy lemmas on such an
assumption: if the spy knows the contents of the nonce
of an honest principal, then the nonce should have been
transmitted over the network in plain text or encrypted

using an encryption key whose corresponding decryption
key is known by the spy.

axioms spy_know_encrypted_nonce :

"Know Spy (Encrypt (Nonce (Nonce_of

(Friend n))) (Kpb (Friend n)))

=⇒ Send C Spy (Encrypt (Nonce (Nonce_of

(Friend n))) (Kpb Spy))"

The first secret property we need to prove is that the
spy can never know B’s nonce, which can be described as
follows:

lemma spy_not_know_nonce_2 :

"¬ Know Spy (Nonce (Nonce_of (Friend 2)))"

We prove this lemma by the “negative approach”, i.e.,
if the spy knows B’s nonce, it may send to B this nonce
encrypted by B’s public key, which does not accord to the
protocol.

In the proof of the property, we have to prove the fol-
lowing subgoal:

Send ?C6 Spy (Encrypt (Nonce (Nonce_of

(Friend 2))) (Kpb Spy))

=⇒ Spy = Friend 2

where the ?C6 is a temporary variable generated by the
system automatically. The name of the temporary vari-
able is unimportant. This subgoal means that if some-
one sends B’s nonce to the spy using the spy’s public key,
then the spy and B is actually the same principal. We
encounter difficulties when we want to prove this subgoal,
even with the help of Isabelle’s automatic tactics search
function. This naturally makes us think that the spy may
impersonate another principal and illegally get B’s nonce.
Since only step 3 of the protocol has such form, we may
assume that A sends B’s nonce to the spy. Then we can
easily backtrack along the protocol and find the following
attack which was first found by Lowe (Lowe, 1995):

Session 1, Step 1 A → I : {Na, A}Ki

Session 2, Step 1 I(A) → B : {Na, A}Kb

Session 2, Step 2 B → I(A) : {Na, Nb}Ka

Session 1, Step 2 I → A : {Na, Nb}Ka

Session 1, Step 3 A → I : {Nb}Ki

Session 2, Step 3 I(A) → B : {Nb}Kb

Actually, we can formally prove the following lemma
which indicates that the spy can know B’s nonce before
we know the attack:

lemma spy_know_nonce_2 :

"Know Spy (Nonce (Nonce_of (Friend 2)))"

apply (rule Rule1_2)

apply (rule conjI)

apply (rule Rule3_3)

apply (rule Rule3_1)

apply (rule NS3_response_to_Spy)

apply (rule Fake)

apply (rule Rule3_3)

7



apply (rule Rule3_1)

apply (rule NS2_response_to_Spy)

apply (rule Fake)

apply (rule Rule1_1)

apply (rule conjI)

apply (rule Rule2_1)

apply (rule conjI)

apply (rule conjunct1)

apply (rule Rule2_2)

apply (rule Rule1_2)

apply (rule conjI)

apply (rule Rule3_3)

apply (rule Rule3_1)

apply (rule NS1)

by (simp only: inv_publicKey KeyAssump1 KeyAssump2

KnowName)+

With the lemma spy know nonce 2, we can easily prove
the following goal indicating that B cannot authenticate
the originality of the third message with the help of rule
4 2. In the proof, we use the auto rule which means that
the current subgoal is straightforward and can be auto-
matically solved by Isabelle. We also use the existence
introduction rule exI.

goal B_not_trust_NS3 :

"¬ Auth (Friend 2) (Friend 1)

(Nonce (Nonce_of (Friend 2)))"

apply (rule Rule4_2)

apply (rule exI)

apply (rule conjI)

prefer 2

apply (rule conjI)

prefer 2

apply (rule spy_know_nonce_2)

by auto

5 PROVING THE FIXED PROTOCOL

Lowe added B’s name into the second step of the Needham-
Schroeder protocol to fix it, therefore we need to re-
formalise the second and third steps accordingly:

NS2_Fix : "Send A B (Encrypt {Nonce (Nonce_of A),

Principal A} (Kpb B))

=⇒ Send B A (Encrypt {Nonce (Nonce_of A),

Nonce (Nonce_of B),

Principal B} (Kpb A))"

NS3_Fix : "Send B A (Encrypt {Nonce (Nonce_of A),

Nonce (Nonce_of B),

Principal B} (Kpb A))

=⇒ Send A B (Encrypt (Nonce (Nonce_of B))

(Kpb B))"

Meanwhile, we can use the added information to decide
whether the second message in protocol session is a faked
one or not. If an honest principal sends out a message
with the form of the message in the NS2 Fix, then the

third component of the message should be the name of the
sender, otherwise the receiver should decline the message
and terminate the current protocol session:

axioms
NS2_decline : "Send B A (Encrypt {Nonce

(Nonce_of D), Nonce (Nonce_of E),

Principal C} (Kpb A))

=⇒ B = C"

5.1 Secrecy of Nonces

With the above preparation we can prove the
spy not know nonce 2, which was failed in the origi-
nal protocol. In the proof we use contrapositive rule with
the following form:

apply (rule_tac Q = "Formula" in contrapos_nn)

where Formula is the result we infer when we sup-
pose the conclusion is false. The proof of the lemma
spy not know nonce 2 is as follows:

lemma
spy_not_know_nonce_2 :

"¬ Know Spy (Nonce (Nonce_of (Friend 2)))"

apply (rule_tac Q =

"Send Spy (Friend 2)

(Encrypt (Nonce (Nonce_of (Friend 2)))

(Kpb (Friend 2)))" in contrapos_nn)

prefer 2

apply (rule Fake)

apply (rule Rule1_1)

apply (rule conjI)

apply assumption

apply (simp only: KeyAssump1)

apply (rule_tac Q = "Spy = Friend 2" in contrapos_nn)

prefer 2

apply (drule Rule3_4)

apply (drule spy_know_encrypted_nonce)

apply (rule NS2_decline)

apply (rule NS3_response_to_Spy)

apply assumption

apply (simp only: Honest_not_Spy)

by auto

Another lemma spy not know N1N2 indicates that the
spy can never see the contents of the message containing
A and B’s nonces and B’s name in step 2.

lemma Spy_not_know_N1N2 :

"¬ Know Spy {Nonce (Nonce_of (Friend 1)),

Nonce (Nonce_of (Friend 2)),

Principal (Friend 2)}"

This lemma can be easily inferred from the above lem-
mas, since if the spy knows the compound message in step
2, it will know B’s nonce.

8



5.2 Proving Guarantee for B

The guarantee for B after step 3 is that B authenticates
that A really has sent B’s nonce (encrypted by B’s pub-
lic encryption key) to B and this message has not been
modified by the spy:

theorem B_trust_NS3 : "Auth (Friend 2)

(Friend 1) (Nonce (Nonce_of (Friend 2)))"

With all above lemmas and properties, the proof is not
difficult. Rule 4 1 is applied first. It produces three sub-
goals:

• A knows B’s nonce encrypted by B’s public key;

• B has received such a message;

• No other principal knows B’s nonce.

For the first subgoal, since principal B has sent its nonce
to A (together with B’s own name and A’s nonce, and en-
crypted by A’s public encryption key), A must have got
and read the content of it. A can encrypt it using B’s
public encryption key. Step 3 of the protocol guarantees
the second subgoal. The third subgoal is shown by the
lemma spy not know nonce 2. With all the subgoals re-
solved, the guarantee for B is proved.

5.3 Proving Guarantee for A

Correspondingly, the guarantee for A after step 2 is that A
authenticates that B really has sent A’s nonce, B’s nonce
and B’s name (encrypted by A’s public encryption key) to
A and this message has not been modified by the spy:

theorem A_trust_NS2 : "Auth (Friend 1)

(Friend 2) {(Nonce (Nonce_of (Friend 1))),

(Nonce (Nonce_of (Friend 2))),

(Principal (Friend 2))}"

Again, rule 4 1 is applied. Another three subgoals are
produced:

• B knows the compound message consisting of A’s
nonce, B’s nonce and B’s name encrypted by A’s pub-
lic encryption key;

• A has received such a compound message;

• No other principal knows such a compound message.

When step 1 finishes, B has received A’s nonce. B also
knows B’s nonce and name. B can then encrypt it using
A’s public encryption key. Step 2 of the protocol guaran-
tees that A receives the message. The third subgoal has
been shown by the lemma spy not know N1N2. Therefore
the guarantee for A is proved.

6 CONCLUSIONS

In this paper, we have presented a new framework to prove
the correctness of security protocols. We model the proto-
cols into logic formulae and infer them by analysing prin-
cipals’ knowledge states — what they can know and what
they can never know. We have introduced the notations,
data structures, functions, predicates, assumptions and in-
ference rules to describe the knowledge of principals and
the relationships among them. The rules give the condi-
tions under which the knowledge can be changed, and how
they can be changed.

We implement our framework using Isabelle. We have
implemented all the data structures, functions, predicates,
assumptions and inference rules in Isabelle. With this im-
plementation, we are able to prove the correctness of pro-
tocols or find flaws mechanically using our framework —
modelling the protocol and decomposing the goal, prov-
ing the necessary lemmas and properties, and proving the
final guarantees. All the proving details are generated
by Isabelle, thereby saving users a significant amount of
time. Since we do not need to do state space searching,
our framework is more efficient than state based methods.
In addition, our framework also takes the cases concerning
multiple interleaving sessions into consideration, making
the method feasible in more areas than rule-based meth-
ods.

To show the effectiveness of our framework, we have used
the Needham-Schroeder public key authentication protocol
and Lowe’s fix as an example. The example shows how to
use the framework and its implementation to find flaws in
the original protocol and prove the correctness of the fixed
protocol.

Rule based methods generally overlook the attacks in-
volving interleaving sessions. In verifying the Needham-
Schroeder public key authentication protocols, The ban
logic (Burrows, 1990), Bolignano’s model (Bolignano,
1996) and Chen et al.’s endl framework (Chen, 2004) fail
to find Lowe’s attack since they do not consider the situ-
ation that two or more sessions are running at the same
time, although they successfully prove some other security
properties. For example, in the verification of ban logic,
the protocol steps should first be changed to idealised form,
and assumptions about the initial state should be written.
After that, the protocol should be annotated in the way
that logical formulae are attached to statements of the pro-
tocol, as assertions about the state of the system after each
statement. Then the logical postulates are applied to the
assumptions and the assertions to derive the beliefs held
by the participants of the protocols. This procedure may
be repeated as new assumptions are found to be neces-
sary and as the idealised protocol is refined. Although this
method is concise and elegant, the modeling of freshness
is problematic. As in most modal logics it is in particular
not possible to distinguish between freshness of creation
and freshness of receipt. Therefore it is possible for the
spy to get the nonce in one session and then reuse it in an-
other without being detected. Most state based methods

9



can find the attack quickly. Our method finds the attack
in eight seconds with the help of Isabelle on a computer
with a Pentium iv cpu, 256M memory and a 40G hard
disk, the similar speed as state based methods.

Although state based methods work well in the simple
Needham-Schroeder public key protocols, larger protocols
are quite difficult to them. The state spaces become ex-
treme huge when protocols become more complicated. For
example, in the nrl Protocol Analyzer, actions of legiti-
mate participants are specified by the user as state tran-
sitions. Input to the transitions are values of local state
variables and messages received by the participant, the lat-
ter assumed to have been generated or passed on by the
intruder, and outputs are the new values of local state
variables, and messages sent by the participant, which are
subject to interception and modification by the intruder.
Since for each input it is possible to have a number of
different outputs, when the number of steps grows, the
number of states will increase dramatically. Our method
spends about one minute to verify the secure electronic
transactions (set) protocol (Ma, 2005b), while state based
methods keep running in reasonable waiting time. More
theoretical analysis of efficiency is beyond this paper and
will be left to future work.

In addition, we also tried other three protocols, namely
the ieee 802.11 wireless authentication protocol, the pass-
word authentication protocol (pap), and the Secure Elec-
tronic Transactions (set) protocol. Only the csp method
found the attack in the pap protocol (Kim, 2004), but the
patch it provided was also insecure. With our method, we
successfully found flaws in the original protocol as well as
in the protocol with the patch. We also proposed a new
patch and proved the correctness of the new patch (Ma,
2006a). Besides that, we found a subtle flaw in the ieee
802.11 wireless authentication protocol, provided a fix to
it, and proved the correctness of the fix (Ma, 2006b). No
other method has been reported to find any flaw in the
same protocol. For the set protocol, state based methods
tend to keep running for very long time. For rule based
method, only the inductive method reported to have ver-
ified it. However, the inductive method spent more then
300 seconds (Bella, 2005) in a single step “purchase”, while
we spend less than 60 seconds to verify all five steps.

Besides all above advantages, when using our method,
most of the code for one protocol can be reused for
other protocols, making proving other protocols easily and
quickly.

ACKNOWLEDGMENT

Our research has been supported by EC, EPSRC, the
National Natural Science Foundation of China, and Hong
Kong K C Wong Education Foundation.

REFERENCES

Bella, G., Massacci, F., and Paulson, L. (2005). ‘An
overview of the verification of SET’. International Jour-
nal of Information Security, Vol. 4, No. 1-2, pp.17–28.

Bolignano, D. (1996). ‘An approach to the formal veri-
fication of cryptographic protocols’. Proceedings of the
3rd ACM Conference on Computer and Communica-
tions Security, New Delhi, India, pp.106–118.

Burrows, M., Abadi, M., and Needham, R. (1990). ‘A logic
of authentication’. ACM Transactions on Computer Sys-
tems, Vol. 8, No. 1, pp.18–36.

Chen, Q. (2004). ‘The verification logic for secure trans-
action protocols’. PhD thesis, University of Technology,
Sydney, Australia.

Chen, Q., Zhang, C., and Zhang, S. (2005). ‘A logical
framework ENDL for verifying secure transaction proto-
cols’. Knowledge and Information Systems, Vol. 7, No. 1,
pp.84–109.

Cheng, X., Ma, X., Cheng, M., and Huang, S. C.-H. (2005).
‘Proving secure properties of cryptographic protocols’.
Proceedings of the 24th IEEE International Performance
Computing and Communications Conference (IPCCC
2005), Phoenix, Arizona, USA, pp.3–9.

Kim, I., and Choi, J. (2004). ‘Formal verification of PAP
and EAP-MD5 protocols in wireless networks: FDR
model checking’. Proceedings of the 18th International
Conference on Advanced Information Networking and
Applications, Fukuoka, Japan, pp.264–269.

Liebl, A. (1993). ‘Authentication in distributed systems:
A bibliography’. ACM SIGOPS Operating Systems Re-
view, Vol. 27, No. 4, pp.122–136.

Lowe, G. (1995). ‘An attack on the Needham-Schroeder
public-key authentication protocol’. Information Pro-
cessing Letters, Vol. 56, No. 3, pp.131–133.

Lowe, G. (1996). ‘Breaking and fixing the Needham-
Schroeder public-key protocol using FDR’. In Mar-
garia and Steffen, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1055 of
Lecture Notes in Computer Science, Springer Verlag,
pp.147–166.

Ma, X., Cheng, X., and McCrindle, R. (2005a). ‘Knowl-
edge based approach for mechanically verifying security
protocols’. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005), Ed-
inburgh, Scotland, UK, pp.1572–1573.

Ma, X., and Cheng, X. (2005b). ‘Formal verification of
Merchant Registration phase of SET protocol’. Proceed-
ings of the 11th Annual Conference of Chinese Automa-
tion and Computing Society in UK, Sheffield, UK.

10



Ma, X., McCrindle, R., and Cheng, X. (2006a). ‘Verify-
ing an enhanced version of PAP protocol in wireless
communications’. Proceedings of the 2nd ACIS Interna-
tional Workshop on Self-Assembling Wireless Networks,
Las Vegas, Nevada, USA.

Ma, X., Cheng, X., and McCrindle, R. (2006b). ‘Break-
ing and fixing IEEE 802.11 wireless authentication pro-
tocol’, IEE Proceedings — Information Security, under
review.

Meadows, C. A. (1996a). ‘Analyzing the Needham-
Schroeder public-key protocol: A comparison of two ap-
proaches’. In Bertino, E., Kurth, H., Martella, G., and
Montolivo, E., editors, Computer Security ESORICS
96, volume 1146 of Lecture Notes in Computer Science,
Springer Verlag, pp.351–364.

Meadows, C. A. (1996b). ‘The NRL protocol analyzer: An
overview’. Journal of Logic Programming, Vol. 26, No. 2,
pp.113–131.

Needham, R. and Schroeder, M. (1978). ‘Using encryption
for authentication in large networks of computers’. Com-
munications of the ACM, Vol. 21, No. 12, pp.993–999.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2003). Is-
abelle/HOL: A proof assistant for higher-order logic.
Springer Verlag, Heidelberg.

Paulson, L. C. (1997a). ‘Proving properties of security
protocols by induction’. Proceedings of the 10th Com-
puter Security Foundations Workshop, Rockport, Mas-
sachusetts, pp.70–83.

Paulson, L. C. (1997b). ‘Mechanized proofs of security pro-
tocols: Needham-Schroeder with public keys’. Technical
Report 413, Computer Laboratory, University of Cam-
bridge.

Paulson, L. C. (1998). ‘The inductive approach to verifying
cryptographic protocols’. Journal of Computer Security,
Vol. 6, No. 1-2, pp.85–128.

11


