
User-aided data

authentication

Pre-draft
International Journal of Security and Networks (IJSN)
Special issue on ”Secure Spontaneous Interaction”

Sven Laur*
Department of Computer Science,
University of Tartu,
Liivi 2, 50409 Tartu, Estonia
E-mail: swen@math.ut.ee
*Corresponding author

Sylvain Pasini
The Security and Cryptography Laboratory (LASEC)
Swiss Federal Institute of Technology (EPFL),
CH-1015 Lausanne, Switzerland
E-mail: sylvain.pasini@epfl.ch

Abstract: All classical authentication protocols are based on pre-shared authentic
information such as long-term secret keys or a public key infrastructure. However, there
are many practical settings, where participants can additionally employ authentic Out-
Of-Band (OOB) communication, e.g., manual message transfer. In this paper, we study
the corresponding user-aided message authentication and key agreement protocols. In
particular, we give a unified treatment of many previous results and outline common
design principles. We also show that certain properties of user-aided protocols simplify
the security analysis in complex environments compared to the standard authentication
protocols.

Keywords: message authentication; key agreement; group; universal composability.

Biographical notes: Sven Laur received his Doctoral Degree in the Helsinki Uni-
versity of Technology. He received his Masters Degree in Computer Science from the
University of Tartu in 2003.

Sylvain Pasini is currently doing a PhD thesis at the Swiss Federal Institute of Tech-
nology (EPFL) in the Security and Cryptography Laboratory (LASEC). He received
his Master’s degree in Communication Systems from the Swiss Federal Institute of
Technology in 2005 after receiving a diploma from the Engineering School of Geneva
(EIG) in 2001.

1 Introduction

One of the most important tasks in cryptography is to
establish a secure communication over an insecure channel
between two or more participants. This can be trivially
done when all users are sharing a secret key. Indeed, they
can use any secure block or stream cipher to protect the
data communications. In reality, the challenging problem
is how to establish a common secret key.

With no assumptions, participants must exchange the
secret key directly. For that, at least once before the com-
munication they need to use a secure extra channel that

ensures confidentiality, authenticity and integrity. Such a
channel is very expensive in practise because participants
must be physically close while the keys are exchanged.

On the same idea, assume that participants share a low-
entropy secret, also known as a password. In this setting,
participants can run a password-based key agreement pro-
tocol. Then, at the end of the execution, they obtain a
high-entropy shared secret key. The problem is the same
as before: they must use a secure extra channel. The only
gain compared to the first solution is that the secure chan-
nel is used to exchange a smaller amount of data.

The use of public-key primitives can relax the confiden-

1

tiality assumption on the extra channel. For instance, the
Diffie-Hellman key exchange protocol Diffie and Hellman
(1976) is a secure way to establish a secret key under
the standard complexity-theoretic assumptions. However,
the Diffie-Hellman protocol is insecure against man-in-the-
middle attacks. For that reason, we must authenticate the
protocol transcript. Another example is the use of any
secure public-key cryptosystem such as RSA Rivest et al.
(1978) or ElGamal ElGamal (1985). In this case, we must
assure that a public key is transferred to all participants
in an authenticated way. In a nutshell, setting up a secure
communication can be reduced to the problem of authenti-
cating messages. Indeed, as long as we are able to authen-
ticate data, we can establish a shared secret key and thus
we can also protect communication over insecure channels.

We emphasise that transcripts of common key agreement
protocols are usually several thousands bits long and thus
message authentication is a non-trivial task. Of course,
we can use message authentication codes but this requires
a shared secret key that we are only trying to establish.
Alternatively, we can use digital signatures for that pur-
pose but they also require authentic transfer of public keys.
Consequently, the use of digital signatures can only reduce
the amount of essential authentic communication. In par-
ticular, we can envisage the use of a public-key infrastruc-
ture (PKI) that will deliver certificates for public keys used
for signing. Here we clearly note two main disadvantages:
firstly, this solution requires a huge infrastructure which
is expensive, and secondly, it requires us to trust external
parties, e.g. certificate authorities.

In other words, we cannot authenticate messages with-
out relying on authenticated channels. Hence, many prac-
tical communication protocols such as SSH, PGP, Blue-
tooth and WUSB use extra channels which achieve at least
authentication. Indeed, in SSH and PGP, the public keys
are authenticated by the help of the user who will check the
fingerprints. When a user receives a PGP public key, he
or she computes its fingerprint and then calls the claimed
owner of the public key. They check if both fingerprints
are equal. If they are then the public key is authenticated,
otherwise the key must have been altered.

More formally, use-aided protocol is a protocol that di-
rectly uses out-of-band messages. Namely, we assume that
most messages are transmitted over insecure channels, re-
ferred as the in-band communication, while some authen-
tic data is transmitted over an extra channel, referred as
the out-of-band communication. Normally, the out-of-band
channel is established by a human operator. For instance,
a user can establish out-of-band communication channel
by doing relatively simple tasks like copying a string from
one device to another or spelling a string by phone. In-
deed, such tasks create authenticated channels in practise,
since no adversary controlling the network can forge these
out-of-band messages. On the other hand, these protocols
require the help of the user and thus they should request
only small tasks in order to stay user-friendly.

In consequence, protocol designers should use the mini-
mum amount of out-of-band data as they can for the de-

sired security level. This line of research was initiated by
Balfanz et al. Balfanz et al. (2002) who were the first to
formalise the fingerprint protocol discussed above. How-
ever, first non-trivial results were obtained by Gerhmann,
Mitchell, and Nyberg Gehrmann et al. (2004) who showed
how to construct user-aided authentication protocols that
preserve reasonable security levels even for short out-of-
band messages consisting of 4–6 decimal digits. The latter
made user-aided data authentication practical for secur-
ing short-range wireless communication such as Bluetooth
and WiFi networks. The SAS protocol proposed by Vaude-
nay Vaudenay (2005) was the second important discovery.
The protocol was the first to achieve optimal security level
and thus halved the length of required out-of-band mes-
sages. Vaudenay also introduced the concept of user-aided
protocols to wider cryptographic audience under the name
of SAS-based cryptography where SAS stands for Short
Authenticated Strings.

Our contribution

Our main contribution in this article is a systema-
tised overview of various user-aided message authentica-
tion protocols and their applications. In particular, we
show how our earlier results Pasini and Vaudenay (2006b);
Laur and Nyberg (2006); Laur and Pasini (2008) fit into
the general framework of user-aided data authentication.

In Section 2, we describe cryptographic primitives that
play essential role in user-aided message authentication
protocols. Namely, keyed hash functions with information
theoretical properties are needed to handle short out-band-
messages and commitment schemes are needed to achieve
optimal deception level. In Section 3, we formalise the no-
tion of user-aided data authentication and show how to
express various functional requirements in the stand-alone
security model. The latter is an important methodical ad-
vance, since one can pose many complex design require-
ments on message authentication protocols.

Section 4 provides a systematised overview of two-party
message authentication protocols including our earlier
results Pasini and Vaudenay (2006b); Laur and Nyberg
(2006). As an important theoretical result, we show
that all state of the art user-aided authentication pro-
tocols share the same internal structure. Namely, they
use in-band communication and out-of-band messages to
mimic the behaviour of classical authentication protocols
with pre-shared secret keys. The shared internal struc-
ture also explains why all protocols with optimal decep-
tion bound rely on the same security premises and why
non-malleability of used commitments is so important. In
Section 5, we show how to extend these ideas further to
group settings. In particular, we describe the underly-
ing structure of our SAS-GKA protocol Laur and Pasini
(2008).

As a second important theoretical result, we prove that
stand-alone security guarantees are preserved in complex
settings as long as a simple set of usage restriction are satis-
fied. The latter significantly simplifies the security analysis

2

of user-aided message authentication protocols. These is-
sues are thoroughly discussed in Section 6, where we clarify
the relations between various security models.

More precisely, we show that all message authentica-
tion protocols are universally composable as soon as they
are secure in the stand-alone model. However, the latter
is not sufficient for security when several protocols share
the same trusted setup phase. As a result, one must use
the Bellare-Rogaway model in order to analyse security of
practical applications that reuse the same secret key many
times. Notably, user-aided message authentication proto-
cols are different in that respect, since they do not rely on
common secrets. Hence, they preserve stand-alone security
guarantees even in the Bellare-Rogaway model.

In Section 7, we discuss how to employ user-aided mes-
sage authentication protocols in order to protect key agree-
ment protocols against active attacks. We also describe
some additional measures that decrease the amount of re-
quired user-interaction in dynamical settings.

Finally, this paper ends with some concluding remarks
and some open questions in Section 8. In particular, we
comment the tension between theoretical results and prac-
tical implementations of various user-aided authentication
and key agreement protocols. Namely, all security proofs
in this article are given by using the weakest abstract prop-
erties, however, one often substitutes these primitives with
heuristic constructions in practise. Hence, understanding
the corresponding risks and limitations is important.

2 Cryptographic Preliminaries

All results in this article are stated in terms of exact secu-
rity. That is, security properties are always specified by a
game or a game pair between an adversary A and a chal-
lenger C. For a single game G, the advantage is defined as
Adv(A) = Pr [GA = 1]. For a game pair G0,G1, the advan-
tage is defined as Adv(A) = |Pr [GA0 = 1]− Pr [GA1 = 1]|.
Typically, one requires that for all t-time adversaries A,
the corresponding advantage is bounded: Adv(A) ≤ ε.

Although exact quantification of security properties is
our main goal, we use asymptotic estimates to hide irrele-
vant technical details. Note that these bounds are given in
the setting, where the cryptographic construction is fixed
and only the adversarial computational power t varies. Of
course, these results can be translated back to the non-
uniform polynomial security model by considering asymp-
totics with respect to the security parameter.

2.1 Keyed Hash Functions

A keyed hash function h : M×R → T takes two argu-
ments: a message m ∈M and a key r ∈ R, and outputs a
digest t ∈ T . Keyed hash functions are commonly used as
building blocks in message authentication protocols. For
example, two participants who share a secret key r ∈u R
can add a digest t to the message to protect it from tam-
pering. Now a potential adversary can carry out two types

of attacks. First, the adversary might try to impersonate
a key holder by creating a valid message tag pair (m̂, t̂)
without no additional information. Secondly, the adver-
sary might try to substitute a message m by altering the
corresponding pair (m, t). The security against imperson-
ation and substitution attacks depends on the regularity
and the universality of the hash function. A hash function
h is εr-almost regular if for any m ∈M and t ∈ T :

Pr [r ∈u R : h(m, r) = t] ≤ εr .

A hash function h is εu-almost universal, if for any two
distinct inputs m0 6= m1:

Pr [r ∈u R : h(m0, r) = h(m1, r)] ≤ εu
and εu-almost XOR-universal, if for any two distinct inputs
m0 6= m1 and a difference ∆t ∈ T :

Pr [r ∈u R : h(m0, r)⊕ h(m1, r) = ∆t] ≤ εu .

These notions can be extended to hash functions with
many sub-keys, i.e. for h : M×R1 × · · · × Rn → T . A
function h is εu-almost universal w.r.t. the sub-key ri if
for any input pair m0 6= m1 and sub-keys rj , r̂j ∈ Rj :

Pr [ri ∈u Ri : h(m0, r) = h(m1, r̂)] ≤ εu ,

where r denotes a vector (r1, . . . , ri−1, ri, ri+1, . . . , rn) and
r̂ denotes a vector (r̂1, . . . , r̂i−1, ri, r̂i+1, . . . , r̂n). A hash
function h is εu-almost universal w.r.t. the sub-key pairs,
if for any input pair m0 6= m1, indices i, j and rj , r̂j ∈ Rj :

Pr [r∗ ∈u R : h(x0, r) = h(x1, r̂)] ≤ εu ,

where r denotes a vector (r1, . . . , ri−1, r∗, ri+1, . . . , rn) and
r̂ denotes a vector (r̂1, . . . , r̂j−1, r∗, r̂j+1, . . . , r̂n) and the
equality i = j is allowed. Finally, a hash function is εr-
almost regular w.r.t. to the sub-key ri, if for any input m,
sub-keys r̂j ∈ Rj and a target digest t ∈ T :

Pr [ri ∈u Ri : h(m, r̂1, . . . , ri, . . . , r̂n) = t] ≤ εr .

All protocols presented in this article use hash func-
tions that are both εr-almost regular and εu-almost uni-
versal. It is straightforward to prove that εr, εr ≤ 2−`

if the digest t can be at most ` bits long. However, it
is also possible to find hash functions that achieve op-
timality εr = εr = 2−` or are almost optimal. See
the articles Laur and Nyberg (2006); Pasini and Vaudenay
(2006b); Laur and Pasini (2008) for further discussion.

2.2 Commitment Schemes

A commitment scheme is another important building block
in many user-aided message authentication protocols. A
commitment scheme Com is specified by a triple of algo-
rithms (setup, com, open). The setup algorithm setup gen-
erates public parameters pk for the commitment scheme.
The commitment algorithm compk : M → C × D maps
messages m ∈ M into a commitment string c ∈ C of

3

fixed length and a decommitment value d ∈ D. Usu-
ally the decommitment value is a pair d = (m, r) where
r is the randomness used to compute c. A commitment
scheme is functional if for all (c, d)← compk(m) the equal-
ity openpk(c, d) = m holds. Incorrect decommitment values
should yield a special abort value ⊥.

Three most commonly used cryptographic properties
of commitment schemes are hiding, binding and non-
malleability. Non-malleability is the strongest property,
since binding and hiding properties directly follow from
non-malleability and not vice versa. Many notions of
non-malleable commitments have been proposed in cryp-
tographic literature Dolev et al. (1991); Crescenzo et al.
(1998); Fischlin and Fischlin (2000); Damg̊ard and Groth
(2003); Laur and Nyberg (2006). All these definitions
try to capture requirements that are necessary to de-
feat man-in-the-middle attacks. In this work, we adopt
the modernised version of non-malleability w.r.t. open-
ing. The corresponding definition Laur and Nyberg
(2006) mimics the framework of non-malleable encryp-
tion Bellare and Sahai (1999) and leads to more natural
security proofs compared to the simulation based defini-
tions Crescenzo et al. (1998); Damg̊ard and Groth (2003).

Non-malleability and security against chosen cipher-
text attacks (CCA) are known to be tightly coupled. In
fact, these notions coincide if the adversary is allowed
to make decryption queries throughout the entire attack
Bellare et al. (1998) and thus usage of decryption oracles
can simplify many proofs without significantly increasing
the security requirements. Unfortunately, a similar tech-
nique is not applicable to commitment schemes as there
can be several different valid decommitment values di for
a single commitment c. Thus, one must use explicit defi-
nitions of hiding, binding and non-malleability properties
in proofs.

A commitment scheme Com is (t, εh)-hiding if any t-time
adversary A succeeds in the hiding game with probability
at most εh, i.e. Advhid

Com(A) ≤ εh where

Advhid

Com(A) = 2 ·

∣∣∣∣∣∣∣∣∣
Pr




pk← setup, s ∈u {0, 1} ,
(x0, x1, σ)← A(pk),
(cs, ds)← compk(xs) :
A(σ, cs) = s


−

1
2

∣∣∣∣∣∣∣∣∣
.

A commitment scheme Com is (t, εb)-binding if any t-
time adversary A succeeds in the binding game with prob-
ability at most εb, i.e. Advbind

Com(A) ≤ εb where

Advbind

Com(A) = Pr




pk← setup, (c, d0, d1)← A(pk) :
openpk(c, d0) 6= openpk(c, d1),

openpk(c, di) 6= ⊥ for i ∈ {0, 1}


 .

The non-malleability property is defined by complicated
games, and thus we use an illustrative pictorial style to
specify these games, see Figure 1. Intuitively, the goal
is: given a valid commitment c, it is infeasible to gener-
ate related commitments ĉ1, . . . , ĉn that can be success-
fully opened after seeing a decommitment value d. More

formally, the adversary A consists of two parts: A1 cor-
responds to the active part of the adversary that tries to
create and afterwards open commitments related to c while
A2 captures a desired target relation. Note that A1 is a
stateful algorithm and can pass information from one stage
to the other but no information can be passed from A1 to
A2 except σ. By convention, a game is ended with the
output ⊥ if any operation leads to ⊥.

Figure 1 should be read as follows. In the game Gnm
0 ,

a challenger C first generates the public parameters pk.
Given pk, the adversary outputs a message generator
MGen. Next, the challenger selects x0 ← MGen and com-
putes (c, d). Given c, the adversary outputs some commit-
ment values ĉi and an advice σ for A2 and then, given d he
generates some decommitment values d̂i. Finally, the chal-
lenger opens all commitments ŷi ← openpk(ĉi, d̂i) and tests
whether A1 won or not by computing A2(σ, x0, ŷ1, . . . , ŷn).
The condition ĉj 6= c eliminates trivial attacks. The game
Gnm

1 is almost the same, except the challenger tests a re-
lation A2(σ, x1, ŷ1, . . . , ŷn) instead, where x1 ← MGen is
chosen independently from the rest of the game. A com-
mitment scheme is (t, εnm)-non-malleable w.r.t. to opening
if for any t-time adversary A the advantage

Advnm

Com(A) = |Pr [Gnm

0 = 1]− Pr [Gnm

1 = 1]| ≤ εnm .

Note that A2 can be any computable relation that is
completely fixed after seeing c. For instance, we can de-
fine A2(σ, x, y) = [x ?

=y]. Hence, it must be infeasible to
construct a commitment ĉ that can be opened later to the
same value as the challenge commitment c.

Non-malleable commitments schemes can be easily con-
structed based on simulation-sound trapdoor commit-
ments from Mac-Kenzie and Yang MacKenzie and Yang
(2004) as detailed by Vaudenay Vaudenay (2005). They
can also be built using a CCA2 secure encryption scheme,
or by using a hash function as detailed by Laur and Ny-
berg Laur and Nyberg (2006).

2.3 Common Reference String Model

We emphasise that all security definitions for commitment
schemes explicitly assume that system wide initial param-
eters pk are generated by a trusted third party. Such
a setting is known as common reference string (CRS)
model. Although this assumption is not essential, most
of the communication and computation efficient commit-
ment schemes are specified for the CRS model.

The CRS model is not so restrictive as it seems at first
glance. All communication standards provide system wide
public parameters such as specifications of hash functions
or a bit length of public keys. Therefore, one should make
a trade-off between computational efficiency and reusabil-
ity and size of system-wide parameters pk. Moreover, there
are theoretic constructions that allow generation of a com-
mon reference string in the standard model.

4

A
Gnm

0 C
A1(pk)

pk←−−−−−−−−−
MGen−−−−−−−−−→

pk← setup
x0 ← MGen

A1(c)
c←−−−−−−−−−

σ,ĉ1,...,ĉn−−−−−−−−−→
(c, d)←compk(x0)
Abort if ĉj = c

A1(d)
d←−−−−−−−−−

d̂1,...,d̂n−−−−−−−−−→ ŷj←openpk(ĉj , d̂j)

A2(·)
σ, x0 ,ŷ1,...,ŷn←−−−−−−−−−

out−−−−−−−−−→ Return out

A
Gnm

1 C
A1(pk)

pk←−−−−−−−−−
MGen−−−−−−−−−→

pk← setup
x0, x1 ← MGen

A1(c)
c←−−−−−−−−−

σ,ĉ1,...,ĉn−−−−−−−−−→
(c, d)←compk(x0)
Abort if ĉj = c

A1(d)
d←−−−−−−−−−

d̂1,...,d̂n−−−−−−−−−→ ŷj←openpk(ĉj , d̂j)

A2(·)
σ, x1 ,ŷ1,...,ŷn←−−−−−−−−−

out−−−−−−−−−→ Return out

Figure 1: Non-malleability games Gnm
0 and Gnm

1 .

3 Message Authentication Protocols

Authentication protocols are used for two main purposes.
We can either protect authenticity of communication be-
tween two or more participants or alternatively verify that
a person or a device is who he, she or it claims to be. These
security goals are somewhat orthogonal, since message au-
thentication protocols only assure that messages are not
tampered during the transmission. Although the latter
also identifies the corresponding physical sender devices,
it does not automatically guarantee validity of claimed le-
gal identities. Hence, entity authentication is often done
separately after all communication links are secured. In
this article, we investigate only message authentication.

As usual, we assume that the actions of all participants
including potential adversaries depend only on the received
messages and their relative ordering. This assumption is
often justified even if a practical instantiation of a protocol
depends on explicit timings. In fact, it is straightforward
to prove that security guarantees obtained in this simpli-
fied model are valid for all practical settings, where exact
timings do not depend on the states of private variables.

3.1 Communication Model

It is often prohibitively expensive to establish necessary
physical infrastructure that guarantees integrity of re-
ceived messages. Authenticity concerns are particularly
justified in case of wireless communication, since anybody
with right equipment can eavesdrop, inject messages and
cause communication failures. Thus, we have to assume
that participants exchange messages over a communica-
tion network that is controlled by a malicious adversary.
However, the latter does not exclude possibility of truly au-
thentic message transmission, since participants may use
alternative ways to communicate. For instance, in many
small-range wireless networks a human operator can au-
thentically transfer short messages from one device to an-
other. If entities are further apart, we can transfer such
messages over the phone provided that participants can
recognise each other by voice and behaviour.

As usual, we consider a model where communication is
asynchronous. Parties can use in-band and out-band com-
munication channels. In-band communication is insecure
and routed via an active adversary A who can drop, de-
lay, modify and insert messages. Additionally, parties can

send short authenticated strings (SAS) aka OOB messages.
OOB communication is authentic: the adversary can only
read and delay these OOB messages.

We emphasise that there are no true broadcast channels
in our model. Although several wireless networks such as
WLAN in ad hoc mode offer physical broadcast channels,
there are no guarantees that the signal actually reaches all
nodes. If we can guarantee this by physical means, then
the authentication task becomes almost trivial. As dif-
ferent recipients can receive different broadcast messages,
there is no difference between broadcasting and standard
messaging except for efficiency. Similarly, broadcasting au-
thenticated messages does not change the security analysis,
although in practise, broadcasting can significantly reduce
the necessary human interaction and make the protocol
more user-friendly. For instance, a user entering the same
PIN on each mobile device in a Bluetooth piconet is cer-
tainly a less demanding than using different PIN values.
The same is true if we consider securing of VoIP-based
conference calls: a participant giving the same value to
all others has much less work than a participant giving a
different value to each group member.

3.2 Idealised Implementation

Many message authentication protocols are designed to
meet complex security objectives. Therefore, it is often
advantageous to fix the desired idealised implementation
π◦ first and then define security of a protocol π through
a specific game that directly quantifies how much the real
execution diverges from the idealised implementation π◦.

As there are many possible ideal implementations, var-
ious specifications and security requirements for message
authentication protocols form a complex taxonomy. For
example, there are two-party and group authentication
protocols. Also, a message authentication protocol can
assure integrity of a single message or protect a combined
input that is assembled by many participants.

In the simplest case, the set of participants is known
ahead and the protocol must assure only the authenticity
of transferred messages. The latter is true for many practi-
cal applications such as securing conference calls over VoIP,
forming Bluetooth piconets and including devices to other
wireless networks. Alternatively, the group can be formed
dynamically based on the participation such as configura-
tion of complex sensor networks. Then the protocol must

5

additionally assure that honest participants also agree on
the group description, i.e., received identities coincide.

All these security goals can be formalised by choosing
an appropriate ideal world model, where a trusted third
party T does all computations. More formally, assume that
the trusted third party T can securely exchange messages
with parties P1, . . . ,PN and the ideal world adversary A◦.
Additionally, assume that a node label id ∈ {1, . . . , N}
uniquely determines the corresponding node Pid, i.e., a
node label id can be treated as an network address. Then
the ideal implementation π◦ can be formalised by specify-
ing the behaviour of P1, . . . ,PN and T.

For example, consider an ordinary message authentica-
tion protocol, where a party Pid1 wants to send a mes-
sage m to a party Pid2 in an authenticated way. The cor-
responding idealised implementation π◦ (depicted in Fig-
ure 2) models all attacks that cannot be avoided. Obvi-
ously, we cannot guarantee that the message m reaches
the destination in the real world, since the adversary can
always drop all in-band messages. Secondly, the adversary
can decide whether to corrupt the sender depending on
the first in-band message which often reveals the input m.
In other words, the adversarial corruption pattern can al-
ways depend on the message m. The ideal implementation
of a two-party cross-authentication protocol, where par-
ties want to exchange their inputs m1 and m2, is defined
analogously.

1. The party Pid1 sends the message m first to A◦ and then to T.

2. The adversary A◦ can then either halt the execution or not:

• If A◦ sends 0 to T then Pid2 receives ⊥ from T.

• If A◦ sends 1 to T then Pid2 receives m from T.

Figure 2: The ideal unilateral authentication protocol.

As a second example, we present an idealised implemen-
tation for a group authentication protocol, where the set
of participants is determined dynamically and the final
outcome is combined from all inputs. More precisely, a
group message authentication (GMA) protocol for a group1

G = {id1, . . . , idn} works as follows. Each participant
Pid, id ∈ G starts with inputs mid and ends with outputs
G and m, where m = (mid1 , . . . ,midn). As a result, given
G and m it is trivial to restore who participated in the
protocol and what was the corresponding input.

Again, the corresponding idealised implementation (de-
picted in Figure 3) models all unavoidable attacks. In par-
ticular, note that a real world adversary can always control
who joins the group by selectively blocking in-band mes-
sages. Also, note that we can obtain descriptions of dif-
ferent GMA protocols by modifying the ideal implementa-
tion. For example, if we drop the first step then we obtain
a group authentication protocol without an initiator.

1We always assume that the group G is ordered w.r.t. the sender
identities id1 < id2 < · · · < idn.

3.3 Stand-Alone Security

For clarity, we first consider security of message authenti-
cation protocols in the stand-alone model, where the ad-
versary can attack only a single protocol instance. More
precisely, we consider security against chosen inputs at-
tacks in the common reference string model.

In the corresponding security game, the challenger first
generates system wide public parameters pk ← setup and
sends them to the adversary A. Then the adversary A can
adaptively specify inputs for all parties P1, . . . ,PN who
can join the authentication protocol π. More precisely, a
party Pi remains inactive until the adversary A specifies
its input mi. If mi = ⊥ then the party Pi refuses to join
the protocol π. Otherwise, the party Pi joins the protocol
π with the input mi. The adversary A can also adaptively
corrupt protocol participants. At the end of the execution,
the challenger collects all outputs ψ = (ψ1, . . . , ψN , ψa)
and determines whether A succeeded in deception or not.

For simple protocols, it is easy to define deception by
listing all invalid end configurations. However, such an ap-
proach quickly becomes tedious and technical for complex
protocols. Hence, we use a generic approach and state that
the adversary A succeeds in deception if one cannot achieve
the same end configuration for honest participants in the
ideal world. Formally, let H ⊆ {1, . . . , N} be the set of
non-corrupted participants and let (mi)i∈H be the corre-
sponding inputs. Then the adversary A fails in deception
if one can choose inputs (m̂i)i/∈H for the corrupted partic-
ipants such that the ideal world adversary A◦ can achieve
the same end configuration (ψi)i∈H for the honest parties.

Definition 1. A message authentication protocol π is
(t, ε)-secure in the stand-alone model if for any t-time real
world adversary A the deception probability

Advforge

π (A) = Pr [pk← setup : A succeeds in deception]

is bounded by Advforge

π (A) ≤ ε.
Let us now consider compatible real and ideal world ad-

versaries that both specify the same inputs mi and cor-
rupt the same set of participants in the same order. To
be punctual, we assume that the setup procedure is exe-
cuted also in the ideal world2 and the corresponding dis-
tributions of inputs and corrupted parties coincide for any
value of public parameters pk. Let ψ = (ψi, . . . , ψn, ψa)
and ψ◦ = (ψ◦i , . . . , ψ

◦
n, ψ

◦
a) denote the corresponding out-

put distributions. Then for any pair of compatible adver-
saries (A,A◦) the statistical difference between the distri-
butions ψ and ψ◦ is at least Advforge

π (A). However, it is also
straightforward to prove that this bound is optimal when
all inputs are extractable from the outputs of honest partic-
ipants. Namely, there exists a canonical ideal world adver-
sary A◦ with comparable running time such that the cor-
responding output distributions are Advforge

π (A)-close. Al-
though we state the corresponding theorem only for group

2Strictly speaking, such an assumption is unnecessary but it guar-
antees reusability of a common reference string.

6

1. An initiator node Pid∗ sends (id∗,mid∗) first to A◦ and then to T.

2. The adversary adaptively determines the set of participants G:

(a) A◦ sends an identity id to T who sends an invitation message to Pid.

(b) Pid can join the protocol by sending (id,mid) first to A◦ and then to T.

(c) Alternatively Pid can send ⊥. Then Pid is not included to the group.

(d) Steps (a)–(c) are repeated until A◦ stops the group formation phase.

3. The adversary A◦ can now either halt the execution or not:

• If A◦ sends 0 to T then all group members receive ⊥ from T.

• If A◦ sends 1 to T then all group members receive (G,m) from T.

Figure 3: Idealised implementation of a dynamic GMA protocol.

Ideal world Interface I Real world
pk−−−−−−−−−−−−−→

protocol inputs−−−−−−−−−−−−−→
messages to T←−−−−−−−−−−−−−

corruption calls←−−−−−−−−−−−−−
released states−−−−−−−−−−−−−→

Simulate the protocol π for A:
¦ get inputs mi of honest parties
¦ follow the protocol specification
¦ if needed corrupt honest parties

Interact with T and Pi, i /∈ H:
¦ determine group members
¦ extract missing inputs (mi)i/∈H

pk−−−−−−−−−−−−−→
protocol messages−−−−−−−−−−−−−→
protocol messages←−−−−−−−−−−−−−

corruption calls←−−−−−−−−−−−−−
released states−−−−−−−−−−−−−→

Figure 4: The canonical interface for the real world adversary.

authentication protocols, it holds for all message authen-
tication protocols considered in this article.

Theorem 2. If a group message authentication proto-
col π is (t, ε)-secure in the stand-alone model, then for
any t-time real world adversary A there exist a compat-
ible t + O(1)-time ideal world adversary A◦ such that the
corresponding output distributions ψ and ψ◦ are ε-close.

Proof. For the proof, we construct an universal interface
I between the ideal world and the real world adversary A,
depicted in Figure 4. The interface I acts as a translation
unit. It simulates real world execution to the adversary A
and carries out the corresponding ideal world attack.

Note that the simulation of honest participants is
straightforward, since honest participants forward their in-
puts mi to the ideal world adversary A◦ and public param-
eters pk are fixed by the challenger. Hence, the interface
I can do all missing computations in behalf of honest par-
ties. In particular, we can simulate the group formation,
as the actions of the real world adversary uniquely deter-
mine when and which parties are included into the group.
To service a corruption call, the interface just forwards the
call to the ideal world and then adds all variables that are
used in simulation to the released state.

At the end of simulation, the interface I internally ob-
tains all outputs of honest parties and the adversary A
submits also the remaining outputs. As the simulation is
perfect, the corresponding output vector ψ coincides with
the outputs obtained in the real execution. Now the in-
terface can extract missing inputs (m̂i)i/∈H from the out-
puts of honest parties and submit them to T as the in-
puts of corrupted participants. To be precise there are
three possibilities. First, all honest parties can halt with

⊥, then the interface I must send 0 to T. Secondly, all
outputs of honest participants provide the same missing
inputs (m̂i)i/∈H. Then the interface I must send 1 to T.
Thirdly, the outputs of honest participants lead to different
inputs (m̂i)i/∈H. Then the interface has failed. To conclude
the ideal world attack, the interface forwards the outputs
(ψi)i/∈H and ψa to the challenger.

Evidently, the failure probability must be less than ε or
otherwise the protocol cannot be (t, ε)-secure. Therefore,
the compound adversary I〈A〉 consisting of I and A has
indeed the desired properties.

Note that stand-alone security model covers only the
case where no other protocols are executed together with
the protocol π. In particular, it is not clear whether a
concurrent execution of several different protocol instances
remains secure. We will return to this issue in Section 6
and show that such concurrent compositions remain secure
if some natural assumptions are satisfied.

4 Two-Party Authentication Protocols

Message authentication protocols either use pre-shared in-
formation such as long-term secret keys or alternatively
rely on limited authentic out-of-band communication. In
the following, we give a systematised treatment of com-
mon user-aided data authentication protocols, where a user
is allowed to transfer `-bits of information over authentic
out-of-band channel. Such protocols are normally used to
bootstrap other more complex authentication methods.

For instance, many practical communication protocols
like SSH, PGP and GPG send public key over the inse-

7

cure channel and then validate their integrity with out-
of-band communication. In the most naive setting, the
fingerprint of a transferred message is just its hash value.
The corresponding protocol was first formalised by Bal-
fanz et al Balfanz et al. (2002). The protocol has two main
drawbacks. First, an adversary can always conduct offline
attacks by seeking messages with coinciding fingerprints.
Secondly, due to the birthday paradox one can find col-
lisions in time Θ(2`/2) and thus the fingerprint must be
several hundred bits long. Hence, the solution is not user-
friendly despite the trials to transform the tedious hexadec-
imal representation into a nice word-based representation.

The possibility of offline attacks can be defeated with
message salting. As a result, fingerprints vary even for
a fixed message and the corresponding generic collision
attacks are guaranteed to run in time Θ(2`). Pasini
and Vaudenay were the first to design such a proto-
col Pasini and Vaudenay (2006a). They proposed to send
commitment decommitment pair (c, d) ← compk(m) in-
stead of the message m and use the hash value h(c) as
a fingerprint. Of course, using a commitment scheme as
a mechanism for message salting is not the most optimal
design choice. Therefore, several authors have proposed al-
ternative methods that rely only on specific properties of
cryptographic hash functions, see Mashatan and Stinson
(2006); Reyhanitabar et al. (2007). Note that a commit-
ment scheme can be built just using a hash function and
so the protocol from Pasini and Vaudenay becomes also
simple.

However, such non-interactive authentication protocols
are still vulnerable against online computation attacks
when the fingerprint is short enough. In many practical
settings, users are not willing to transfer out-of-band mes-
sages that are more than 4-6 decimal digits long. Conse-
quently, generic collision finding strategies with complex-
ity Θ(2`) become feasible. To overcome this shortcoming,
Gehrmann, Mitchell, and Nyberg proposed three protocols
known as the MANA family Gehrmann et al. (2004). Al-
though the MANA I and MANA II protocols are known to
be secure against unbounded adversaries, the correspond-
ing deception probability is sub-optimal. Namely, if a user
is willing to transfer `-bit out-of-band messages, then there
are still attacks with success probability at least 2−`/2.

Vaudenay noticed this drawback and proposed a pro-
tocol Vaudenay (2005) that achieves the optimal decep-
tion bound 2−`. This article was soon followed by slew
of works Pasini and Vaudenay (2006b); Laur and Nyberg
(2006); Laur and Pasini (2008) that described asymptoti-
cally optimal protocols for many other settings. In a cer-
tain sense, all these solutions are just enhancements of the
MANA I and the MANA II protocols. The correspond-
ing generic technique that substitutes a private pre-shared
secret with a public out-of-band message is depicted in
Figure 5.

The protocol uses a (universal) hash function to protect
the integrity of the message m. Due to the protocol struc-
ture, the adversary must deliver a possibly altered mes-
sage m̂ and a digest t̂ before the key r is released. Hence,

P1(m) P2

Pick r ∈u {0, 1}`
t← h(m, r)

m,t−−−−−−−−−−−−−−−→
Notify data arrival←−−−−−−−−−−−−−−−

auth-send(r)−−−−−−−−−−−−−−−→ Check if t̂ = h(m̂, r)
Output m̂

Figure 5: The simplified MANA II Protocol.

the setting is equivalent to the classical attack scenario,
where parties P1 and P2 pre-share the secret key r. Con-
sequently, standard lower bounds on deception probabili-
ties derived by Simmons are still adequate, see Simmons
(1984); Maurer (2000). Namely, the hash function must
satisfy contradictory security requirements in order to pre-
serve security against substitution or impersonation at-
tacks. As a result, the deception probability is guaran-
teed to be at least 2−`/2. Secondly, the protocol contains
an extra out-of-band message that prevents too early key
release.

The SAS protocol proposed by Vaudenay is free of these
limitations although its structure is very similar to the
simplified MANA II protocol, see Figure 6. Indeed, note
that the committed pair (m, r1) corresponds to the sim-
plest message authentication code that achieves optimal
security against impersonation attacks but is completely
insecure against substitution attacks. However, the com-
mitment creates an extra bond between m and r1 that
makes simple substitution attacks infeasible. The second
in-band message has the same function as the notification
message in the simplified MANA II protocol.

Indeed, note that the corresponding key r1 is transferred
over the out-of-band channel in an encrypted form r1⊕ r̂2.
Hence, the adversary cannot predict the decrypted value
oob ⊕ r2 before getting the secret key r2. Consequently,
the adversary can either learn (m, r1) and carry out an
impersonation attack or alternatively try to alter the com-
mitment. The latter is destined to fail when the commit-
ment is assumed to be non-malleable. For the complete-
ness, we give also the formal proof, since the original arti-
cle Vaudenay (2005) required more exotic properties from
the commitment scheme, see Appendix A.

P1(m) P2

Pick r1 ∈u {0, 1}`
(c, d)← compk(m, r1)

m,c−−−−−−−−−−−−−−−→ Pick r2 ∈u {0, 1}`
r2←−−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−−→ (m̂, r̂1)← openpk(ĉ, d̂)

oob← r1 ⊕ r̂2 auth-send(oob)−−−−−−−−−−−−−−−→ Check oob⊕ r2 = r̂1
Output: m̂

Figure 6: The Vaudenay SAS Protocol.

Theorem 3. For any t there exists τ = t+O(1) such that
if the commitment scheme is (2τ, εb)-binding and (τ, εnm)-
non-malleable, then the SAS protocol with `-bit oob is
(t, 2−` + εb +

√
εb + εnm)-secure in the stand-alone model.

8

As a final detail, note that the commitment scheme is
only used to bind the message together with the digest.
Therefore, one can use more efficient tag-based commit-
ments that do not hide the value of m but still bind the
pair m and r1 together. In particular, signature schemes
can be used as tag-based commitments Vaudenay (2005).

The SAS protocol provides only unilateral message au-
thentication and thus can be used to secure the transfer
of public keys. However, common key agreement protocols
such as the Diffie-Hellman protocol consist of many moves.
Now if one uses the SAS protocol for each message, the cu-
mulative security drop is significant as the deception prob-
ability is non-negligible. Also, the amount of user interac-
tion increases significantly. Alternatively, we could use the
SAS protocol to authenticate the entire transcript of the
key agreement protocol. However, the latter leads to the
generic cross-authentication technique described below.

Indeed, any unilateral message authentication protocol
can be turned into a cross-authentication protocol with
a cost of an extra move. Namely, the recipient P2 must
send its input m2 to P1. Now if P1 authentically transfers
(m1, m̂2) to P2, then P2 can additionally verify that m2

has been correctly transferred, i.e., m̂2 = m2. Thus, a suc-
cessful completion of the authentication protocol assures
that both parties have coinciding outputs (m1,m2).

Hence, it makes sense to design cross-authentication pro-
tocols that make at most three moves over the insecure
channel. Two such protocols were almost simultaneously
proposed by Pasini and Vaudenay Pasini and Vaudenay
(2006b) and by Laur and Nyberg Laur and Nyberg (2006).
These protocols send a message digest h(m, r) over the
out-of-band channel instead of the hash key r. Since the
hash key can be arbitrarily long, one can bypass Sim-
mons’s bounds and achieve the optimal deception prob-
ability. Nevertheless, we still have to guarantee that the
adversary has no access to the key r before both parties
have acquired the common output. Such structural re-
strictions are enforced by clever use of commitments. The
corresponding methodology is particularly apparent in the
optimised SAS protocol proposed by Pasini and Vaude-
nay Pasini and Vaudenay (2006b) as depicted in Figure 7.

P1(m1) P2(m2)

Pick r1 ∈u {0, 1}s
(c, d)← compk(m1, r1)

m1,c−−−−−−−−−−−−−−−→ Pick r2 ∈u {0, 1}`
m2,r2←−−−−−−−−−−−−−−−

d−−−−−−−−−−−−−−−→ (m̂1, r̂1)← openpk(ĉ, d̂)

oob1 ← h(m̂2, r1)⊕ r̂2
auth-compare(oob1

?
=oob2)←−−−−−−−−−−−−−→ oob2 ← h(m2, r̂1)⊕ r2

Output (m1, m̂2) Output (m̂1,m2)

Figure 7: The Optimised SAS-MCA Protocol.

For a moment, assume that m1 is fixed, i.e., we have an
unilateral message authentication protocol for m2. Then
the usage of one-time pad h(m̂2, r1) ⊕ r̂2 assures that the
adversary cannot succeed unless he transfers the commit-
ment ĉ before the decommitment d is released. But if the
adversary just forwards c, then we arrive at the standard

XOR-universality game, where the adversary must find
m2 6= m̂2 such that h(m1, r1)⊕ h(m̂2, r1) = r2 ⊕ r̂2 for an
unknown key r1 ∈u {0, 1}s. Alternatively, the adversary
can try to alter the non-malleable commitment but this
is guaranteed to fail. For the same reason, the message
m1 is also guaranteed to reach P2 without modifications.
As a result, we can easily establish the following security
guarantee, see Appendix B for the proof.

Theorem 4. Assume that the hash function h is εr-almost
regular and εu-almost XOR-universal. Then for any t there
exists τ = t+O(1) such that if the commitment scheme is
(τ, εh)-hiding, (2τ, εb)-binding and (τ, εnm)-non-malleable,
then the optimised SAS-MCA protocol with `-bit oob is
(t,max {εr, εu}+ εh + εb +

√
εb + εnm)-secure in the stand-

alone model.

P1(m1) P2(m2)

r1 ← {0, 1}s1 r2 ← {0, 1}s2

(c, d)← compk(r1)
m1,c−−−−−−−−−−−−−−−→
m2,r2←−−−−−−−−−−−−−−−

d−−−−−−−−−−−−−−−→ r̂1 ← openpk(ĉ, d̂)

oob1 ← h(m1‖m̂2, r1, r̂2)
auth-compare(oob1

?
=oob2)←−−−−−−−−−−−−−→ oob2 ← h(m̂1‖m2, r̂1, r2)

Output (m1, m̂2) Output (m̂1,m2)

Figure 8: The MANA IV protocol.

The MANA IV protocol proposed by Laur and Ny-
berg Laur and Nyberg (2006) also uses commitments to
temporarily hide hash keys. But differently from the SAS
protocol family, the message pair (m1,m2) is directly au-
thenticated with the hash function. Again, the protocol
structure guarantees that the adversary cannot succeed if
messages are transferred abnormally, i.e., m̂2, r̂2 arrive be-
fore m̂1, ĉ or d̂ is received before m̂2, r̂2. Now for the normal
runs, the adversary has to fix messages m̂1, m̂2 before both
sub-keys r1 and r2 become public. As a result, information
theoretical properties of the hash function are sufficient to
guarantee authenticity. See the article Laur and Nyberg
(2006) for the formal proof.

Theorem 5. Assume that the hash function h is εr-almost
regular w.r.t. sub-keys and εu-almost universal w.r.t. the
sub-key r1. Then for any t there exists τ = t+O(1) such
that if the commitment scheme is (τ, εh)-hiding, (2τ, εb)-
binding and (τ, εnm)-non-malleable, then the MANA IV
protocol with `-bit oob is (t,max {εr, εu}+2εh +εb +

√
εb +

εnm)-secure in the stand-alone model.

Finally, observe that protocols with an optimal decep-
tion bound utilise similar techniques. First, all of them
use one-time pad encryption to assure that the adversary
preserves the temporal order between protocol messages.
Secondly, the commitment scheme is used as an additional
measure against substitution attacks. Thirdly, it seems
that there are no other designs patterns that could over-
come the shortcomings of the MANA II protocol.

9

5 Group Authentication Protocols

The methodology presented in the previous section can be
naturally extended to group settings. However, there are
some important differences. First, it is much more diffi-
cult to assure proper temporal order for send and receive
events, since there are more events to be synchronised. Sec-
ondly, the set of participants might be determined dynami-
cally during the protocol execution based on participation.
Hence, we must also authenticate the group description.

Note that an authenticated broadcast primitive is suffi-
cient for group message authentication. Namely, partici-
pants Pi can first send all messages mi to a leader Pid∗ who
then uses the authentic broadcast primitive to transfer the
gathered input m∗ = (mi)i∈G and the group description G

to all participants. Next, all participants Pi, i ∈ G verify
that received message m̂∗ is consistent with their input
mi. The protocol is halted if a complaint is raised over the
out-of-band channels. The authenticated broadcast prim-
itive itself can be achieved running several unilateral au-
thentication protocols in parallel. However, the latter au-
tomatically increases the number of different out-of-band
messages. Alternatively, we can design specific protocols,
where the same out-of-band message is transferred to all
group members. Although this does not formally decrease
the amount of out-of-band communication, it makes the
protocol more user friendly. The first such broadcast pro-
tocol was sketched in Valkonen et al. (2006). The corre-
sponding Group-MANA protocol is a simple extension of
the MANA IV protocol. However, we do not discuss it
here for two reasons. First, the SAS-GMA protocol (de-
picted in Figure 9) is more round efficient. Second, the
corresponding security proof is rather technical and gives
no additional insight.

The SAS-GMA protocol was designed by Laur and
Pasini to achieve group message authentication directly,
see Laur and Pasini (2008). As the SAS-GMA protocol is
symmetric, Figure 9 only specifies the behaviour of a single
party Pi who wants to participate in the protocol. Here
Ĝi denotes the group of participants who joined Pi during
the first round before the timeout. Of course, if the group
Ĝi is known beforehand then Pi can wait until all other
group members have sent their first messages. For clar-
ity, variables m̂ji, ĉji, d̂ji denote the values from Pj that
are received by Pi. The output vector m̂i = (m̂ji) and
the sub-key vector r̂i = (r̂ji) are ordered w.r.t. sender
identities. To be exact, m̂ii = mi, r̂ii = ri and j ranges
over Ĝi. Also note that (i, ri) and (Ĝi, m̂i) are shorthands
for binary strings that uniquely encode the corresponding
elements.

Finally, we assume that a participant Pi halts if there
is any hint of an attack: (a) some group member halts;
(b) there are duplicates (j, m̂ji, ĉji) 6= (j, m̂′

ji, ĉ
′
ji); (c) a

sub-key is in invalid form (j, ?) 6= openpk(ĉji, d̂ji); (d) some
out-of-band messages do not match: oobi 6= oobj .

The SAS-GMA protocol does not directly force proper
order of send and receive events, since the latter is ex-
tremely difficult to achieve in the group setting. Instead,

the protocol uses a commitment scheme to temporarily
hide many sub-keys ri of the hash function. As a result,
the adversary must deliver the data m̂i to the node Pi

before the sub-key ri is released. Now if the hash func-
tion is both almost universal and almost regular w.r.t. all
sub-keys, then all impersonation and substitution attacks
are guaranteed to fail unless the adversary alters commit-
ments. On the other hand, non-malleability of a commit-
ment scheme together with almost regularity defeats all
attacks that use altered commitments. The corresponding
formal proof is given in the article Laur and Pasini (2008).

Theorem 6. Let n be the maximal size of the group G.
Assume that the hash function h is εu-almost universal
w.r.t. all sub-key pairs and εr-almost regular w.r.t. all sub-
keys. Then for any t there exists τ = t + O(1) such that
if the commitment scheme is (τ, εb)-binding and (τ, εnm)-
non-malleable, then the SAS-GMA protocol with `-bit oob
is (t,max {εu, εr}+ εb + n · εnm)-secure in the stand-alone
model.

6 Security in Complex Settings

The stand-alone security model is adequate only if a pro-
tocol is executed in isolation. This assumption is rarely
fulfilled in practise, as protocols are often executed con-
currently to complete more elaborate tasks. In such set-
tings, stand-alone security guarantees are commonly in-
sufficient, as the adversary can utilise external informa-
tion that leaks from the other protocols. For example, the
adversary may repeat or swap messages when several in-
stances of the same protocol are executed at the same time.
Bellare and Rogaway were the first to define a formal at-
tack model Bellare and Rogaway (1993, 1995) that consid-
ers attacks against several instances of the same authen-
tication protocol. However, the Bellare-Rogaway model
does not cover the cases when the authentication protocol
is executed together with other kind of protocols. In the
following, we prove that all stand-alone secure authentica-
tion protocols are universally composable. In other words,
an authentication protocol π always preserves security in
a computational context %〈·〉 that uses the protocol π in a
black-box way, i.e., the context %〈·〉 provides only the in-
puts and uses only the outputs of the authentication pro-
tocol π.

We emphasise that universal composability does not
automatically guarantee security in the Bellare-Rogaway
model. The main cause follows from the fact that all
classical authentication protocols rely on a trusted setup
procedure πst that generates long-term secrets. As a re-
sult, the universal composability guarantees security only
if all protocol instances use independently generated long-
term secrets. The Bellare-Rogaway model considers a set-
ting where all protocol instances share the same long-term
secrets and thus universal composability might be insuf-
ficient. Obviously, these security notions coincide if we
can guarantee security in the stand-alone model a with-

10

Pi with input mi j ∈ Ĝi \ {i}
R1: Pick ri ∈u R

(ci, di)←commitpk(i, ri)
Wait for (j, m̂ji, ĉji) until timeout

broadcast(i,mi,ci)−−−−−−−−−−−−−−−−−→
j,m̂ji,ĉji←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

R2: Save a description of Ĝi.
∀j : (j, r̂ji)← openpk(ĉji, d̂ji)
Abort if abnormal behaviour

broadcast(di)−−−−−−−−−−−−−−−−−→
d̂ji←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

SAS: Form m̂i, r̂i from received m̂ji, r̂ji.
oobi ← h((Ĝi, m̂i), r̂i)
Abort if some oobj 6= oobi

Output Ĝi, m̂i

auth-broadcast(oobi)−−−−−−−−−−−−−−−−−→oobj←−−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−−

Figure 9: The SAS-GMA Protocol

out trusted setup. The latter makes user-aided message
authentication protocols special, since they are universally
composable and secure in the Bellare-Rogaway model at
the same time.

6.1 Universal composability

As emphasised above, protocols are seldomly executed in
isolation. Indeed, a protocol π is often only a small part of
the entire computational procedure also known as compu-
tational context. Now if a context %〈·〉 has only black-box
access to the protocol, we can freely use different protocols
as long as they implement the same functionality. In par-
ticular, we can compare the behaviour of the real and ideal
implementations π and π◦. To be precise, we must compare
the corresponding compound protocols %〈π〉 and %〈π◦〉.
Definition 7. Let φ = (φ1, . . . , φm, φa) denote the in-
puts of the participants P1, . . . ,Pm and the adversary A
at the beginning of the context %〈·〉. Similarly, let the vec-
tors ψ = (ψ1, . . . , ψm, ψa) and ψ◦ = (ψ◦1 , . . . , ψ

◦
m, ψ

◦
a) de-

note the outputs of the compound protocols %〈π〉 and %〈π◦〉.
Then a protocol π is (tre, tid, t%, ε)-universally composable
if for any input distribution φ← D, for any t%-time com-
putational context %〈·〉 and for any tre-time adversary A
against the protocol %〈π〉, there exists a tid-time adversary
A◦ against %〈π◦〉 such that the statistical difference between
the output distributions of ψ and ψ◦ is at most ε.

Definition 7 remains ambiguous unless we completely
specify the execution and communication model. In the
following, we consider the classical setting, where the ad-
versary has full control over the protocols scheduling and
message delivery. Namely, the execution of a protocol is
divided into fine-grained micro-rounds. All parties are ini-
tially inactive except the adversary. The adversary can
activate other participants so that only one of them is ac-
tive in each micro-round. During a micro-round, the active
participant can either read one incoming message or com-
pose a single outgoing message. After that the party is sus-
pended and the control goes back to the adversary who can
choose next party for activation. All in-band messages are
routed through the adversary who can delay, read, delete
and insert messages. The out-of-band communication is
authentic but the adversary can still read, delay and re-

order messages. The execution ends when all participants
have halted. See the manuscript Canetti (2000) for de-
tailed discussion and for further references.

Finally, we remark that the approach outlined above cor-
responds to the most intuitive formalisation Lindell (2003)
of universal composability but there are several more pop-
ular alternatives such as the treatments Canetti (2001);
Pfitzmann and Waidner (2001).

6.2 Protocols with shared setup

Many protocols rely on pre-shared information like long-
term secret keys or certificate chains. Such protocols can
be divided into two phases. In the first phase, a trusted
dealer creates and securely distributes the necessary pre-
shared data. The second phase corresponds to the actual
execution of the protocol. Hence, the protocol π itself is
a pair of sub-protocols (πst, πne) where πst corresponds to
the trusted setup and πne corresponds to the actual execu-
tion. Normally, we want to reuse pre-shared data and thus
different protocols must share the same setup phase πst.
As a result, messages from different protocols become cor-
related and this creates new attack opportunities. The se-
curity model proposed by Bellare and Rogaway formalises
the corresponding threats for authentication protocols, see
the articles Bellare and Rogaway (1993, 1995).

Differently from the stand-alone model, the adversary
A can simultaneously attack many protocol instances
π(1)

ne , . . . , π
(q)
ne that share the same setup phase πst. More

formally, the adversary A can adaptively launch new pro-
tocol instances π(i)

ne by specifying the set of participants
G(i) and the corresponding inputs m(i). The adversary A
succeeds in deception if at least one protocol instance ends
with successful deception.

Definition 8. A message authentication protocol π is
(t, q, ε)-strongly self-composable if any t-time adversary
A that can launch up to q protocol instances π(i) with
i ∈ {1, . . . , q} succeeds in deception with probability less
than ε.

Note that a shared setup phase may weaken protocol
instances even if we reuse only public parameters. Hence,
we must prove that security in the common reference string
model guarantees security in the Bellare-Rogaway model.

11

6.3 Composability guarantees

Regardless of the desired idealised implementation it is
straightforward to prove that all message authentication
protocols are universally composable if they are secure in
the stand-alone model. For brevity, we prove the corre-
sponding result only for group authentication protocols
and discuss the limitations of this proof technique below.

Theorem 9. Let π be a (t, ε)-secure group message au-
thentication protocol. Then there are constants c1, c2 such
that the protocol is (tre, tid, t%, ε)-universally composable
whenever tid ≥ c1 · tre and tre + t% ≤ t− c2.

Proof. Let %〈·〉 be a t%-time computational context and
let A be a tre-time adversary against the compound pro-
tocol %〈π〉. Then for the proof we construct an efficient
interface I∗ between the real world adversary A and the
ideal world protocol %〈π◦〉. Now note that the interface I
depicted in Figure 4 and described in the proof of The-
orem 2 is sufficient for this purpose if we can separate
protocol and non-protocol messages. The corresponding
construction is depicted in Figure 10. That is, we direct
non-protocol messages past the interface I. To be precise,
we must guarantee that the simulation is perfect, i.e., the
adversary sees the messages in the same order as in the
real execution. Hence, we must additionally assume that
there is a general (possibly dynamic) scheduling policy that
uniquely determines in which order an honest participant
Pi outputs protocol and non-protocol messages. Secondly,
the corruption calls are handled by the interface I that cor-
rupts the honest participant and adds the variables used
in simulation to the state of released participant.

Now it is straightforward to verify that the simulation
of the protocol is perfect and that there can be a discrep-
ancy between the real and ideal world outputs ψ and ψ◦

only if the adversary A succeeds in deception. The cor-
responding deception probability must be less than ε or
otherwise the real world adversary A together with the
context %〈·〉 forms a new stand-alone adversary A∗ that
achieves Advforge

π (A∗) > ε. The latter leads to a contra-
diction, since the running time of A∗ is tre + t% + O(1).
Now the claim follows, as the overhead in the simulation
is constant.

As a first limitation, note that the interface I may com-
pletely fail if protocols share the same trusted setup πst.
For obvious reasons, such failures are caused by proto-
cols π(1)

ne , . . . , π
(q)
ne that share the long-term secrets. If the

trusted setup πst is run independently from the interface I,
then it does not know the corresponding long-term secrets
and cannot simulate the execution of honest parties. Al-
ternatively, if the setup πst is a part of the interface I, then
we can replace only a single protocol instance π(i)

ne with the
ideal implementation. After that the corresponding adver-
sary I〈A〉 knows all long-term secrets and all other pro-
tocol instances π(1)

ne , . . . , π
(q)
ne become insecure. Hence, one

needs more elaborate security proofs for all authentication
protocols that are based on long-term secrets. The latter

is expected result, as some of these protocols are known
to be secure in the stand-alone model but insecure in the
Bellare-Rogaway model.

However, if the trusted setup phase generates only public
values, then these problems disappear, as the knowledge of
public parameters is sufficient to simulate the behaviour
of honest parties. In particular, the adversary A∗ is still
a valid stand-alone standalone adversary and the proof of
Theorem 9 still holds.

Corollary 10. Let π be a group authentication protocol
that is (t, ε)-secure in the common reference string model.
Then there are constants c1, c2 such that the protocol is
(tre, tid, t%, ε)-universally composable whenever tid ≥ c1 · tre
and tre + t% ≤ t − c2 even if the protocol shares the setup
phase with other protocols.

This result represents the main technical difference be-
tween classical and user-aided data authentication. User-
aided data authentication protocols are not based on long-
term secrets and thus they remain secure in any computa-
tional context. Classical authentication protocols are also
universally composable as long as secret keys are used only
once. If we want to reuse secret keys, then we must prove
security in the Bellare-Rogaway model. The corresponding
proof implicitly shows that we can treat πst, π

(1)
ne , . . . , π

(q)
ne as

single complex multi-round authentication protocol and re-
place it with the corresponding ideal implementation. The
formal proof is analogous to the proof of Theorem 9 and
thus we can use classical authentication protocols in any
computational context as soon as they are secure in the
Bellare-Rogaway model.

6.4 Message identification

As a second subtle detail, note that the proof outlined
above is valid only if the interface I∗ can correctly separate
protocol messages from non-protocol messages. Otherwise,
messages may become switched between different protocols
and the corresponding synchronisation errors can cause
arbitrary failures. To avoid such subtle issues, theoreti-
cal treatments often assume that each message contains
a specific tag that uniquely determines the corresponding
protocol instance Canetti (2000). In other words, we can
always avoid synchronisation errors for in-band commu-
nication without excessive performance penalties. How-
ever, the latter is not true for out-of-band messages, since
we do not want to increase the amount of authenticated
communication. Of course, these tags can be dropped as
long as they can be restored from the available informa-
tion, i.e., the source and destination information uniquely
determines the corresponding protocol instance. Thus, a
user-aided data authentication protocol remains univer-
sally composable if the following restrictions hold:

R1: Randomness used in the protocol instance is freshly
generated.

R2: The outputs are never used before all parties reach
accepting state.

12

Ideal world Interface I Real world
pk−−−−−−−−−−−−−→

protocol inputs−−−−−−−−−−−−−→
messages to T←−−−−−−−−−−−−−

corruption calls←−−−−−−−−−−−−−
released states−−−−−−−−−−−−−→

Simulate the protocol π for A:
¦ get inputs mi of honest parties
¦ follow the protocol specification
¦ if needed corrupt honest parties

Interact with T and Pi, i /∈ H:
¦ determine group members
¦ extract missing inputs (mi)i/∈H

pk−−−−−−−−−−−−−→
protocol messages−−−−−−−−−−−−−→
protocol messages←−−−−−−−−−−−−−

corruption calls←−−−−−−−−−−−−−
released states−−−−−−−−−−−−−→

non-protocol messages←−−
non-protocol messages−−→

Figure 10: The canonical interface for complex settings.

R3: All group members have different identities, i.e., G is
indeed a set.

R4: The out-of-band messages determine a unique proto-
col instance.

Restrictions R1–R3 are natural requirements and we can
force the restriction R4 if we guarantee that no more than
one protocol instance for the same group is run at the same
time. The latter is a relatively mild limitation, since two
or more parallel instances of an authentication protocol
can be replaced with a single protocol instance. Hence,
several articles Laur and Nyberg (2006); Laur and Pasini
(2008) have just postulated the usage restrictions R1–R4

and have not studied the maximal damage caused by syn-
chronisation errors. For the two party protocols, the cor-
responding extra advantage has been estimated in the ar-
ticles Vaudenay (2005); Pasini and Vaudenay (2006b).

Theorem 11. Let π be a (t, ε)-secure cross authentication
protocol between P1 and P2. If P1 launches up to q1 and
P2 up to q2 concurrent instances of the protocol π, then the
deception probability can increase up to q1q2 · ε.

Proof sketch. Note that a successful deception pairs an in-
stance launched by P1 and an instance launched by P2.
Let εij denote the probability that the first deception event
happens for the ith instance launched by P1 and for the
jth instance launched by P2. Then the overall deception
probability Advforge

π,...,π(A) is just a sum of all εij . Hence,
one can create a stand-alone adversary with the success
probability Advforge

π (A) ≥ 1
q1q2
·Advforge

π,...,π(A) by simulating
all protocol instances except for a random instance pair
that is substituted with the challenge instance. The claim
follows.

As a protocol with an optimal deception bound has uni-
formly distributed out-of-band message Laur and Nyberg
(2006), the bound is also quite tight. A similar result holds
also for the group setting. However, there the decrease in
security level is much steeper, since the number of poten-
tial matches is significantly bigger. Therefore, it is much
wiser to follow the restriction R4.

7 Key Agreement Protocols

The main application of user-aided message authentication
protocols is to protect key agreement protocols against ac-
tive attacks. In the following, we outline how to achieve
this goal with minimal amount of user interaction.

Note that there is an inevitable trade-off between the se-
curity and usability. In many practical applications, users
are willing to transfer only out-of-band messages that are
up to 6 digits long. Hence, such authentication mecha-
nisms can be bypassed with probability 2−20. On the other
hand, 2−20 is also the probability of not noticing an active
attack. The latter is small enough to demotivate most at-
tackers and thus the subjective security level can be much
higher. For instance, if the probability of an active attack
is below 10−6 then the achievable security level is 2−40.

Of course, true cryptographic security can be achieved
only with sufficiently long out-of-band messages. Hence,
it is important to minimise the total amount of manu-
ally authenticated communication. In particular, it should
be easy to exclude corrupted nodes from a group without
transferring any additional out-of-band messages.

7.1 Formal Definitions

A group key agreement protocol π between n participants
G = {id1, . . . , idn} starts with no input, is independent
from the current state, and outputs G and a shared com-
mon secret key sk ∈u K.

Definition 12. A group key agreement protocol π is (t, ε)-
immune against active attacks if for any t-time adversary
A that can choose a group G = {id1, . . . , idn} then the prob-
ability that uncorrupted parties do not detect active attack
is less than ε.

Obviously, any key agreement protocol that is (t, ε1)-
immune against active attacks and (t, ε2)-secure against
passive attacks is also (t, ε1 + ε2)-secure, as long as both
definitions are given in the same attack model. In partic-
ular, we can construct also universally composable user-
aided key agreement protocols as long as the underlying
key agreement protocol is universally composable against
passive attacks.3 However, stand-alone security is suffi-

3In fact, the Diffie-Hellman key agreement is known to satisfy this
requirement modulo minor details Canetti and Krawczyk (2002),

13

cient for many practical settings, since the key agreement
protocols are often executed in isolation to set up the com-
munication network.

7.2 General Construction

The most straightforward way to achieve (t, ε)-immunity
against active attacks is to authenticate the entire pro-
tocol transcript. Namely, participants must first execute
the group key agreement protocol and then use the group
message authentication protocol to verify that all trans-
ferred message were unaltered. A naive implementation,
where protocols are executed sequentially, adds three extra
rounds to the key agreement protocol. However, since mes-
sage authentication protocols are universally composable,
we can execute them in parallel and save two messages for
two-party and one complete round for group protocols. It
is also possible to fuse both protocols more tightly and thus
obtain a more efficient protocols, see Laur and Nyberg
(2006).

For two-party protocols, it is reasonable to combine the
Diffie-Hellman key agreement protocol with one of the
message cross-authentication protocols discussed in Sec-
tion 4. The Burmester-Desmedt (BD) key agreement pro-
tocol Desmedt and Burmester (1994) is a suitable start-
ing point for group settings, since it is provably secure
against passive attacks Burmester and Desmedt (2005).
Though the Burmester-Desmedt key agreement protocol is
a generalisation of the Diffie-Hellman key agreement pro-
tocol, it can also be generalised for other two-party key
agreement protocols, see the compiler of Just and Vau-
denay Just and Vaudenay (1996). For simplicity, consider
a group of n participants P0, . . . ,Pn−1 arranged in a ring.
The Burmester-Desmedt protocol is depicted on Figure 11.
It consists of two rounds over an authenticated channel,
while most of the schemes requires O(n) rounds. Here, let
g be a generator of a q-element secure Diffie-Hellman De-
cision Group. At the end of the protocol, each participant
Pi obtains the same secret key sk = gk1k2+k2k3+...+knk1 .

In many practical settings, we must be able to expel
group members that behave maliciously. Ideally, this op-
eration should not use additional out-of-band messages.
Consequently, a simple key agreement protocol is not suit-
able for our needs, since a shared key gets compromised
as soon as a group member gets corrupted. To avoid this
problem, we need a key agreement protocol that also fixes
long-term pairwise authentication keys so that we can re-
run key agreement protocols without out-of-band commu-
nication. In particular, we can use public keys correspond-
ing to Diffie-Hellman key agreement protocol. The corre-
sponding key agreement protocol was proposed by Laur
and Pasini in Laur and Pasini (2008) and it is depicted in
Figure 12.

As the transcript of the Burmester-Desmedt protocol
is authenticated with the SAS-GMA, the protocol is im-
mune against active attacks with the same guarantees
as Theorem 6 and Theorem 9 specify. Moreover, any
two parties α, β ∈ H can establish a pairwise secret key

skα,β = f(gxαxβ), as they both know the corresponding
long-term public keys yi = gxi for all group members i ∈ G.
Hence, they can use any classical authentication protocol
to protect new instances of group key agreement protocols
against active attacks. In particular, we can merge small
groups G1,G2, if there is an honest party Pi ∈ G1 ∩ G2, by
sending all intergroup communication through Pi.

Of course, if the formed group is known to have a static
nature, then one can skip the setup of long-term Diffie-
Hellman keys skα,β .

8 Conclusions and Open problems

As explained in the introduction, setting up a secure com-
munication between two or more parties requires authenti-
cated communication channels. As a solution to this prob-
lem, we presented several user-aided two-party message
authentication protocols in Section 4. Note that three of
these protocols are optimal which means that no protocol
can achieve a better security using the same amount of au-
thentic data. We conclude that we cannot do much better
in two-party settings. However in group settings, the use
of two-party protocols is not an optimal solution.

Indeed, suppose we want to setup a shared secret key
for more than two parties. Using two-party protocols, we
should run several peer-to-peer (two-party) protocols and
this solution increases the amount of user interaction. In
Section 5 we addressed this concern and presented a group
message authentication protocol that is significantly better
in that respect and achieves the optimal security level.

Another remarkable aspect in this article is a well-
adapted adversarial model (see Section 3) and a systematic
treatment of various execution models (covered by Sec-
tions 4, 5 and 6). More precisely, we first proved that all
presented protocols are secure in the stand-alone model
and then showed that any user-aided message authenti-
cation protocol that is secure in the stand-alone model
remains secure in more complex settings.

As a last step in securing communication links, we pre-
sented a general methodology how to protect ordinary key
agreement protocols against active attacks. Since the cor-
responding technique is well established for two-party case,
we gave the detailed description only for the group setting.
We emphasise here that the final protocol depicted in Fig-
ure 12 has an optimal security with respect to the amount
of authentic data as well as an optimal number of rounds.
Additionally, the clever use of long-term public keys pro-
vides an efficient way to manage dynamic groups.

To emphasise differences between various protocols, we
have gathered the most important aspects into Table 1.
For brevity, we use the acronym MA for unilateral mes-
sage authentication, MCA for cross-authentication, GKA
for group message authentication. To distinguish between
unkeyed and keyed hash functions, we use shorthands h(·)
and hK(·). A tick indicates that the protocol has the prop-
erty that is specified by the column.

14

Pi j ∈ G \ {i}
R1:

Pick ki ∈u Zq and set zi ← gki

broadcast(zi)−−−−−−−−−−−−−−→
zj←−−−−−−−−−−−−−−←−−−−−−−−−−−−−−

R2: Xi ←
(

zi+1
zi−1

)ki

ski ← (zi−1)nki ·Xn−1
i ·Xn−2

i+1 · . . . ·Xi−2

Output ski

broadcast(Xi)−−−−−−−−−−−−−−→
Xj←−−−−−−−−−−−−−−←−−−−−−−−−−−−−−

Figure 11: The Burmester-Desmedt Group Key Agreement Protocol.

Pi j ∈ Ĝi \ {i}
R1: Generate a Diffie-Hellman pair (xi, yi):

¦ xi ∈u Zq, yi ← gxi

Start the BD protocol:
¦ ki ∈u Zq, zi ← gki

broadcast(yi,zi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
R2-3:

SAS:

Continue with the BD protocol:
¦ Compute Xi.

Use the SAS-GMA protocol
¦ to authenticate mi ← (yi, zi, Xi).

broadcast(i,mi,ci)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
broadcast(di)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−

auth-broadcast(oobi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
P0: If the SAS-GMA was accepting:

¦ Output sk and G according BD.
¦ Store xi and yj , j ∈ G for later use.

Figure 12: The final SAS-based AKA Protocol with simplified notations

Type Protocol Interactive Optimal Primitives
MA Fingerprint h(·)

MANA I and II hK(·)
MANA III X hK(·)
SAS (original) X X com(m)
Pasini-Vaudenay X com(m), h(·)

MCA SAS MCA X com(m)
MANA IV X X com(m), hK(·)
Optimal SAS-MCA X X com(m), hK(·)

GMA G-MANA IV X X com(m), hK(·)
SAS-GMA X X com(m), hK(·)

Table 1: Main features of user-aided message authentica-
tion protocols.

As an intricate theoretical detail, note that it is quite
straightforward to prove that all user-aided authentica-
tion protocols with optimal security level must have at
least three moves over insecure channel, see for exam-
ple Laur and Nyberg (2006). However, the result does not
specify the maximal security level for two-move protocols.
Hence, it is theoretically interesting to know what is the
corresponding lower bound on deception probability and
whether all two-move protocols are as sub-optimal as the
MANA II protocol.

There is also a tension between theoretical construc-
tions and practical instantiations. Most practical user-
aided key agreement protocols such as Zfone proto-
col Zimmermann et al. (2000) and wireless USB key
agreement protocol WUS (2006) use collision resistant
hash functions to mimic the functionality of commitment
scheme. Although this approach cannot be used in gen-
eral, it should be appropriate for securing key agreement
protocols, since the corresponding authenticated messages
have uniform distribution.

More formally, a collision resistant hash function as

a deterministic commitment cannot be hiding and non-
malleable for arbitrary message distribution. However,
hiding and non-malleability w.r.t. uniform distribution
makes sense also for hash functions. Consequently, it
should be possible to give a formal security proof for these
practical protocols. On the other hand, the corresponding
security requirements are very different from the standard
ones such as one-wayness and collision resistance. Hence,
interpretation of corresponding security requirements is an
interesting theoretical and practical problem.

Acknowledgments

Partially supported by the Academy of Finland and by the
Estonian Doctoral School in Information and Communica-
tion Technology. Supported by the Swiss National Science
Foundation, 200021-113329.

REFERENCES

Balfanz, D., Smetters, D. K., Stewart, P., and Wong, H. C.
(2002). Talking To Strangers: Authentication in Ad-
Hoc Wireless Networks. In Proceedings of NDSS ’02:
The Network and Distributed System Security Sympo-
sium, San Diego, California, U.S.A.

Bellare, M., Desai, A., Pointcheval, D., and Rogaway,
P. (1998). Relations among notions of security for
public-key encryption schemes. In Krawczyk, H., editor,
CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 26–45. Springer-Verlag.

15

Bellare, M. and Rogaway, P. (1993). Entity authentica-
tion and key distribution. In Stinson, D. R., editor,
CRYPTO, volume 773 of Lecture Notes in Computer
Science, pages 232–249. Springer-Verlag.

Bellare, M. and Rogaway, P. (1995). Provably secure ses-
sion key distribution: the three party case. In STOC,
pages 57–66. ACM.

Bellare, M. and Sahai, A. (1999). Non-malleable en-
cryption: Equivalence between two notions, and an
indistinguishability-based characterization. In Wiener,
M. J., editor, CRYPTO, volume 1666 of Lecture Notes
in Computer Science, pages 519–536. Springer-Verlag.

Burmester, M. and Desmedt, Y. (2005). A secure and
scalable Group Key Exchange system. Information Pro-
cessiong Letter, 94(3):137–143.

Canetti, R. (2000). Universally composable secu-
rity: A new paradigm for cryptographic proto-
cols. Cryptology ePrint Archive, Report 2000/067.
http://eprint.iacr.org/.

Canetti, R. (2001). Universally composable security: A
new paradigm for cryptographic protocols. In FOCS,
pages 136–145.

Canetti, R. and Krawczyk, H. (2002). Universally Com-
posable Notions of Key Exchange and Secure Channels.
In Knudsen, L. R., editor, EUROCRYPT, volume 2332
of Lecture Notes in Computer Science, pages 337–351.
Springer-Verlag.

Crescenzo, G. D., Ishai, Y., and Ostrovsky, R. (1998). Non-
interactive and non-malleable commitment. In STOC,
pages 141–150.

Damg̊ard, I. and Groth, J. (2003). Non-interactive and
reusable non-malleable commitment schemes. In STOC,
pages 426–437. ACM.

Desmedt, Y. and Burmester, M. (1994). A secure and ef-
ficient conference key distribution system (extended ab-
stract). In De Santis, A., editor, EUROCRYPT ’94,
volume 950 of Lecture Notes in Computer Science, pages
275–286, Perugia, Italy. Springer-Verlag.

Diffie, W. and Hellman, M. E. (1976). New Directions
in Cryptography. IEEE Transactions on Information
Theory, IT–22(6):644–654.

Dolev, D., Dwork, C., and Naor, M. (1991). Non-malleable
cryptography. In STOC 91, pages 542–552, New York,
NY, USA. ACM Press.

ElGamal, T. (1985). A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472.

Fischlin, M. and Fischlin, R. (2000). Efficient non-
malleable commitment schemes. In Bellare, M., editor,
CRYPTO, volume 1880 of Lecture Notes in Computer
Science, pages 413–431. Springer-Verlag.

Gehrmann, C., Mitchell, C. J., and Nyberg, K. (2004).
Manual authentication for wireless devices. RSA Cryp-
tobytes, 7(1):29–37.

Just, M. and Vaudenay, S. (1996). Authenticated Multi-
Party Key Agreement. In Kim, K. and Matsumoto,
T., editors, ASIACRYPT ’96, volume 1163 of Lecture
Notes in Computer Science, pages 36–49, Kyongju, Ko-
rea. Springer-Verlag.

Laur, S. and Nyberg, K. (2006). Efficient mutual data
authentication using manually authenticated strings. In
Pointceval, D., Mu, Y., and Chen, K., editors, Cryptol-
ogy and Network Security, volume 4301 of Lecture Notes
in Computer Science, pages 90–107. Springer-Verlag.

Laur, S. and Pasini, S. (2008). Sas-based group authenti-
cation and key agreement protocols. In PKC 2008, Lec-
ture Notes in Computer Science, pages ??–?? Springer-
Verlag. To appear.

Lindell, Y. (2003). General composition and universal com-
posability in secure multi-party computation. In FOCS,
pages 394–403. IEEE Computer Society.

MacKenzie, P. D. and Yang, K. (2004). On simulation-
sound trapdoor commitments. In Cachin, C. and Ca-
menisch, J., editors, EUROCRYPT, volume 3027 of
Lecture Notes in Computer Science, pages 382–400.
Springer-Verlag.

Mashatan, A. and Stinson, D. R. (2006). Noninteractive
two-channel message authentication based on hybrid-
collision resistant hash functions. Cryptology ePrint
Archive, Report 2006/302. http://eprint.iacr.org/.

Maurer, U. M. (2000). Authentication theory and hypoth-
esis testing. IEEE Transactions on Information Theory,
46(4):1350–1356.

Pasini, S. and Vaudenay, S. (2006a). An optimal
non-interactive message authentication protocol. In
Pointcheval, D., editor, CT-RSA, volume 3860 of Lecture
Notes in Computer Science, pages 280–294. Springer-
Verlag.

Pasini, S. and Vaudenay, S. (2006b). Sas-based authen-
ticated key agreement. In Yung, M., Dodis, Y., Ki-
ayias, A., and Malkin, T., editors, Public Key Cryptogra-
phy, volume 3958 of Lecture Notes in Computer Science,
pages 395–409. Springer-Verlag.

Pfitzmann, B. and Waidner, M. (2001). A model for asyn-
chronous reactive systems and its application to secure
message transmission. In IEEE Symposium on Security
and Privacy, pages 184–.

Reyhanitabar, M. R., Wang, S., and Safavi-Naini, R.
(2007). Non-interactive manual channel message authen-
tication based on etcr hash functions. In Pieprzyk, J.,
Ghodosi, H., and Dawson, E., editors, ACISP, volume
4586 of Lecture Notes in Computer Science, pages 385–
399. Springer-Verlag.

16

Rivest, R. L., Shamir, A., and Adleman, L. M. (1978).
A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM,
21(2):120–126.

Simmons, G. J. (1984). Authentication theory/coding the-
ory. In CRYPTO, pages 411–431.

Valkonen, J., Asokan, N., and Nyberg, K. (2006). Ad hoc
security associations for groups. In Buttyán, L., Gligor,
V. D., and Westhoff, D., editors, ESAS, volume 4357
of Lecture Notes in Computer Science, pages 150–164.
Springer-Verlag.

Vaudenay, S. (2005). Secure communications over insecure
channels based on short authenticated strings. In Shoup,
V., editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 309–326. Springer-Verlag.

WUS (2006). Association Models Supplement to the
Certified Wireless Universal Serial Bus Specification.
http://www.usb.org/developers/wusb/wusb_2007_0214.zip.

Zimmermann, P., Johnston, A., and Callas, J.
(2000). ZRTP: Media Path Key Agreement
for Secure RTP draft-zimmermann-avt-zrtp-04.
http://www3.tools.ietf.org/html/draft-zimmermann-avt-zrtp-04.

A Security of the SAS Protocol

For the proof of Theorem 3, we have to show that the
inequalities (1)–(3) defined below hold for any t-time ad-
versary A whenever the assumptions of Theorem 3 are sat-
isfied. Let forge denotes the event that B succeeds in de-
ception. Then we can express

Advforge(B) ≤ Pr [forge ∧ c 6= ĉ] + εb , (1)

since a successful forgery such that c = ĉ reveals a double
opening and thus Pr [forge ∧ c = ĉ] ≤ εb. For further anal-
ysis, let ĉ ≺ d denote the event that P2 receives ĉ before
than P1 releases d. Then

Pr [forge ∧ c 6= ĉ ∧ ĉ ≺ d] ≤ 2−` · Pr [ĉ ≺ d] + εnm (2)

or otherwise we can construct t + O(1)-time adversary A
that simulates the stand-alone model for B in order to win
the corresponding non-malleability games.

Namely, the adversary A1 feeds pk to B and gets back
corresponding input message m. Next, A1 defines MGen as
a uniform distribution over pairs (m, r1) where r1 ∈ {0, 1}`
and uses the challenger’s reply as c in the SAS proto-
col. To be precise, A1 faithfully simulates the SAS pro-
tocol to B and halts if d ≺ ĉ. As an intermediate output
(σ, ĉ1, . . . , ĉn), the adversary A1 outputs σ = (m, m̂, r̂2, r2)
and ĉ. As a final output (d̂1, . . . , d̂n), A1 outputs the corre-
sponding decommitment value d̂. NowA2(σ, xi, ŷ) resumes
the SAS protocol: sets (m, r1) ← xi and (m̂, r̂1) ← ŷ

and output 1 only if m 6= m̂ and r1 = r̂1. Now by
construction Pr [Gnm

0 = 1] = Pr [forge ∧ c 6= ĉ ∧ ĉ ≺ d] and
Pr [Gnm

1 = 1] ≤ 2−` · Pr [ĉ ≺ d], since x1 is independent of
the protocol run and thus Pr [r1 = r̂1|A1 6= ⊥] = 2−`.

As a final detail, we have to prove the inequality

Pr [forge ∧ c 6= ĉ ∧ d ≺ ĉ] ≤ 2−` · Pr [d ≺ ĉ] +√εb . (3)

The corresponding proof is technically tedious, as the ad-
versary does not directly violate the binding property.
Consequently, we have to construct a collision-extractor A
that runs in time 2t +O(1) and finds the double opening
with high enough probability. We give here only the proof
sketch, since analogous proof that covers all details can be
found in Laur and Nyberg (2006). Consider an adversary
A that simulates the protocol to B with two independent
r2 values r02 and r12 to get two protocol transcripts with
the same commitment value ĉ but different decommitment
values d̂0 and d̂1.

That is, A first simulates the protocol with r02 and then
rewinds B and submits r12 and outputs the corresponding
triple (ĉ, d̂0, d̂1). Let succ denote the event that A gets
a double opening. Then we can lower bound the success
probability Pr [succ|d ≺ ĉ] by the conditional averages

Eĉ(Pr [forge|ĉ]2 |d ≺ ĉ)−Eĉ(Pr [forge|ĉ] · 2−`|d ≺ ĉ) .
Hence, the Jensen inequality E(X2) ≥ E(X)2 assures that

Pr [succ|d ≺ ĉ] ≥ Pr [forge|d ≺ ĉ]2 − 2−` · Pr [forge|d ≺ ĉ] .

Now if the inequality (3) is violated, then we can also con-
clude that Pr [forge|d ≺ ĉ] ≥ 2−`. Consequently,

Pr [succ|d ≺ ĉ] ≥ (Pr [forge|d ≺ ĉ]− 2−`)2

and we have derived a contradiction

Pr [succ] ≥ Pr [d ≺ ĉ]2 · (Pr [forge|d ≺ ĉ]− 2−`)2 ≥ εb .

B Security of the Optimised SAS-MCA Protocol

For the proof of Theorem 4, we show that the inequali-
ties (4)–(6) defined below hold for any t-time adversary
whenever the assumptions of Theorem 4 are satisfied.
Again, we assume that B is a t-time adversary. First, note
that the proof of the inequality

Pr [forge ∧ d ≺ ĉ] ≤ 2−` · Pr [d ≺ ĉ] +√εb , (4)

is analogous to Appendix A. Secondly, note that the case
c = ĉ requires more detailed analysis, as adversary can also
alter the second message m2. In fact, the corresponding
upper bound is also more complex

Pr [forge ∧ c 6= ĉ ∧ ĉ ≺ d]
≤ εu · Pr [m1 = m̂1 ∧ c = ĉ ∧ ĉ ≺ d] + εb + εh .

(5)

For the proof, note that c can be opened to (m̂1, r̂1) that
is different from (m1, r1) with probability at most εb. Now

17

consider a t + O(1)-time adversary A that simulates the
protocol to B in order to win the hiding game. Namely,
given message m, A submits two messages x0 = (m, r1)
and x1 = (m, r∗1) where r1, r∗1 ∈u {0, 1}s to the challenger,
then uses the challenge commitment cs in the simulation
and then stops when we need the decommitment d. Next,
A halts if d ≺ ĉ or c 6= ĉ. Otherwise, A computes oob1 ←
h(m̂2, r1) ⊕ r̂1 and oob2 ← h(m2, r1) ⊕ r2. A outputs 0 if
B succeeds in deception, i.e., oob1 = oob2 and m2 6= m̂2

and 1 otherwise. Now it is straightforward to verify that
if the inequality (5) is violated then Advhid(A) > εh.

Finally, note that non-malleability property assures

Pr [forge ∧ c 6= ĉ ∧ ĉ ≺ d]
≤ εr · Pr [c 6= ĉ ∧ ĉ ≺ d] + εnm ,

(6)

or otherwise we can construct a t + O(1)-time adversary
A for the non-malleability games. The adversary A1 sim-
ulates the protocol execution analogously to the one de-
scribed in Appendix A. The target relation A2(σ, xi, ŷ)
still outputs 1 only in the case of successful deception, i.e.,
(m1, m̂2) 6= (m̂1,m2) and h(m̂2, r1)⊕ r̂2 = h(m2, r̂1)⊕ r2.
The only difference in the argumentation comes from the
fact that A can win the Gnm

1 with probability at most
Pr [Gnm

1 = 1|A1 6= ⊥] ≤ εr, since r1 is chosen independently
of all other values needed to compute out-of-band mes-
sages. Secondly, Pr [A1 6= ⊥] = Pr [c 6= ĉ ∧ ĉ ≺ d] and thus
Advnm(A) > εnm as soon as the inequality (6) violated.

18

