
Int. J. Sensor Networks, Vol. 7, No. 3, 2010 141 

Copyright © 2010 Inderscience Enterprises Ltd. 

Ensuring high sensor data quality through  
use of online outlier detection techniques 

Yang Zhang*, Nirvana Meratnia and  
Paul J.M. Havinga 
Pervasive Systems Group, 
University of Twente, 
Drienerlolaan 5, 
7522 NB Enschede, 
The Netherlands 
Fax: +31 53 489 4590 
Email: zhangy@cs.utwente.nl 
Email: meratnia@cs.utwente.nl 
Email: havinga@cs.utwente.nl 
*Corresponding author 

Abstract: Data collected by Wireless Sensor Networks (WSNs) are inherently unreliable. 
Therefore, to ensure high data quality, secure monitoring, and reliable detection of interesting and 
critical events, outlier detection mechanisms are needed to be in place. The constraint nature of 
resources available in WSNs necessities that unlike traditional outlier detection techniques 
performed off-line, outliers to be identified in an online manner. This means that outliers in 
distributed streaming data should be detected in (near) real time with a high accuracy while 
maintaining the resource consumption of the WSN to a minimum. In this paper, we propose 
outlier detection techniques based on one-class quarter-sphere support vector machine meeting 
constraints and requirements of WSNs. To reduce the false alarm rate while increasing the 
detection rate and to enable collaborative outliers detection, we take advantage of spatial and 
temporal correlations that exist between sensor data. Experiments with both synthetic and real 
data show that our distributed and online outlier detection techniques achieve better detection 
accuracy and lower false alarm compared to an earlier distributed, batch outlier detection 
technique designed for WSNs. 
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1 Introduction 

Tremendous advances in electronics and wireless 
communications technologies have enabled the reality of tiny 
and low-cost sensor devices, also known as sensor nodes, 
which are equipped with wireless transceivers, low-power 
microcontroller, energy sources and various types of sensors. 
A Wireless Sensor Network (WSN) consists of a large 
number of these nodes distributed over a large geographical 
area to cooperatively monitor a phenomenon. A wide variety 
of applications of WSNs ranges from personal spaces to 
scientific, industrial, business and military domains. In a 
typical application, a WSN collects continuous streaming 
data, performs in-network data processing and takes local 
decisions in (near) real time. Thus, providing a high-quality 
stream of sensor data is essential for the decision-making 
process in WSN applications. 

Compared to wired networks, WSNs have strong resource 
constraints in terms of energy, memory, computational capacity 
and communication bandwidth. Moreover, the large-scale and 
dense vision of the WSN dictates that the network usually has 
to operate in a harsh and unattended environment. The resource 
constraints and environmental effects make a WSN more 
vulnerable to faults and malicious activities (e.g. denial of 
service attacks or black hole attacks), and cause unreliable and 
inaccurate sensor readings. To ensure a reasonable data quality, 
secure monitoring and reliable detection of interesting and 
critical events and to facilitate effective and correct decision-
making using data collected by WSNs, identifying anomalous 
measurements in point of action is a must. In WSNs, outliers, 
also known as anomalies, are those measurements that do not 
conform to the normal behavioural pattern of the sensed data 
(Chandola et al., 2007). 

Extracting knowledge from multiple distributed sensor 
data streams is not a trivial task (Gaber, 2007). Conventional 
outlier detection techniques (Hawkins, 1980; Barnett and 
Lewis, 1994; Knorr and Ng, 1998; Breunig et al., 2000) may 
not be suitable for the context of streams and distributed 
environments of WSNs. They have paid limited attention to 
reasonable availability of computational resources. They also 
assume the stationary data distribution, store all the data in 
memory at the same time, and perform data analysis in  
a centralised approach. In WSNs, an appropriate outlier 
detection technique should pay attention to limitations in 
terms of computing, communication and storage of the 
network and deal with the distributed data analysis. Thus,  
a key objective for outlier detection in WSNs is to  
identify outliers in the distributed streaming data in an online 
manner with a high accuracy while maintaining the resource 
consumption of the network to a minimum. 

Based on one-class quarter-sphere Support Vector 
Machine (SVM) (Laskov et al., 2004), we propose 
distributed and Online Outlier Detection (OOD) techniques 
appropriate for resource-constrained WSNs. Since sensor 
data of adjacent nodes in a densely deployed WSN tend to 
be spatially and temporally correlated (Vuran et al., 2004), 
we take advantage of spatial and temporal correlations that  
 

exist in sensor data to cooperatively identify outliers and 
also distinguish between events and errors in real time. 
Experiments with both synthetic and real data collected by 
the Intel Berkeley Research Laboratory (IBRL, 2004) and 
the SensorScope System (SensorScope, 2007) show that our 
outlier detection techniques achieve better detection accuracy 
and lower false alarm compared to an earlier distributed 
Batch Outlier Detection (BOD) technique (Rajasegarar  
et al., 2007) designed for WSNs. 

The contributions of this paper can be summarised as: 

• extending existing offline and static techniques to be 
able to detect outliers in an online and adaptive manner 
to meet WSN requirements. 

• proposing a decision function to determine whether 
every new measurement as normal or anomalous. 

• taking advantage of spatiotemporal correlations by 
using information of neighbouring nodes to identify 
outliers. This in turn helps in better detection accuracy. 

• presenting preliminary work on online distinction 
between event and error. 

The remainder of this paper is organised as follows. Related 
work on one-class SVM-based outlier detection techniques is 
presented in Section 2. Fundamentals of the one-class centred 
quarter-sphere SVM are described in Section 3. Our proposed 
distributed and OOD techniques are explained in Section 4. 
Experimental results and performance evaluation are reported 
in Section 5. The paper is concluded in Section 6 with plans 
for future research. 

2 Related work 

The purpose of data mining is to find and extract hidden 
valuable information from a data set (Tan et al., 2006). 
Compared to the other three data mining tasks, i.e. predictive 
modelling, cluster analysis and association analysis, outlier 
detection is the closest task to the initial motivation behind 
data mining (Hodge and Austin, 2003). Outlier detection  
has been widely researched in various disciplines such as 
statistics, data mining, machine learning, information theory 
and spectral decomposition (Chandola et al., 2007). Generally 
speaking, outlier detection techniques can be categorised into 
statistical-based, nearest neighbour-based, clustering-based, 
classification-based and spectral decomposition-based 
approaches (Chandola et al., 2007; Zhang et al., 2008). 
Classification-based approaches are important systematic 
approaches in the data mining and machine learning 
communities. They learn a classification model using a set of 
data instances in the training phase and classify an unseen 
instance into one of the learned (normal/outlier) class in  
the testing phase. SVM-based techniques are from family  
of classification-based approaches and separate the data 
belonging to different classes by fitting a hyperplane that 
produces a maximal margin. They have the following three 
main advantages: 
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• do not require an explicit statistical model 

• provide an optimum solution for classification by 
maximising the margin of the decision boundary; 

• avoid the curse of dimensionality problem. 

One of the challenges faced by SVM-based outlier detection 
techniques for WSNs is obtaining error-free or labelled data 
for training. One-class (unsupervised) SVM-based techniques 
address this challenge by modelling normal behaviour of the 
unlabelled data while automatically ignoring the anomalies 
existing in the training set. The main idea of one-class SVM-
based outlier detection techniques is to use a non-linear 
function to map the data vectors collected from the original 
space to a higher dimensional space called feature space. 
Then a decision boundary of normal data is found, which 
encompasses the majority of the data vectors in the feature 
space. Those new unseen data vectors falling outside the 
boundary are classified as outliers. Scholkopf et al. (2001) 
have proposed a hyperplane-based one-class SVM, which 
identifies outliers by fitting a hyperplane from the origin. Tax 
and Duin (2004) have proposed a hypersphere-based one-
class SVM, which identifies outliers by fitting a hypersphere 
with a minimal radius. 

In addition to obtaining the labelled data, another 
challenge faced by SVM-based outlier detection techniques 
is inapplicability of their quadratic optimisation during the 
learning process for WSN applications. This process is 
extremely costly and not suitable for limited resources 
available in WSNs. Laskov et al. (2004) have extended 
work of Tax and Duin (2004) by proposing a one-class 
quarter-sphere SVM, which is formulated as a linear 
optimisation problem and thus reduces the effort and 
computational complexity. Rajasegarar et al. (2007) further 
exploit potential of the one-class quarter-sphere SVM of 
Laskov et al. (2004) for distributed outlier detection in 
WSNs. Their technique assumes that the history prior to the 
window does not influence current behaviour and it detects 
outliers at each node only after collecting a large number  
of data measurements in a time window. This technique 
ignores the temporal and spatial correlations that exist in 
sensor data and performs outlier detection in an offline and 
batch manner. Moreover, it causes too long detection delay 
and makes, therefore, the technique unsuitable for real-time 
applications of WSNs. We will use it for our comparison 
and performance evaluation in Section 5. 

As mentioned before, one-class SVM-based outlier 
detection techniques build a model representing normal 
behaviour of the sensed data and identify an outlier as a 
sensor measurement that does not conform to this model. Due 
to the fact that sensor data is streaming data, i.e. an ordered 
sequence of unbounded real-time data records with a high 
data rate, a normal model will evolve over time and the 
defined normal model may not be sufficiently representative 
for future identification. Davy et al. (2006) have considered 
the change of the normal model over time and identified 
outliers using previous data vectors in a sliding time window.  
 
 

However, this technique is not applicable to WSNs since it 
has expensive computational effort and also ignores the 
spatial correlations in spatial data measurements of adjacent 
nodes in a densely deployed WSN.  

In this paper, we extend the technique of Laskov et al. 
(2004), and first propose a distributed and OOD technique to 
identify every new measurement collected at each node as 
normal or anomalous in real time. Based on this technique, 
we then propose three Adaptive Outlier Detection (AOD) 
techniques, which take different strategies to sequentially 
update the model representing normal behaviour of the sensed 
data. As it will be shown in the next sections, they can  
be used to satisfy specific user requirements such as fast 
responsiveness, high detection and low computation. 

3 The one-class quarter-sphere SVM 

In our proposed techniques, we exploit the one-class centred 
quarter-sphere SVM of Laskov et al. (2004) to build the 
normal model of sensor measurements. They have converted 
the quadratic optimisation problem of the one-class SVM to a 
linear optimisation problem. The geometry of the one-class 
centred quarter-sphere SVM-based approach is shown in 
Figure 1. 

Figure 1 Geometry of the quarter-sphere formulation of one-
class SVM (Laskov et al., 2004) 
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The constrained optimisation problem of the one-class 
centred quarter-sphere SVM is formalised as follows: 
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where m denotes number of data vectors in the training set, 
and {ξi : i = 1, 2,.. . m} are the slack variables that allow 
some of the data vectors to fall outside the quarter-sphere. 
The parameter v ∈ (0,1) is a regularisation parameter that 
represents the fraction of data vectors that can be outliers. 
The Lagrange function for this optimisation is: 
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where αi ≥ 0, βi ≥ 0 for all i = 1,2,..., m are the Lagrangian 
multipliers. Taking the zero derivatives of L with respect to 
R and ξi result to: 

1
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From equation (4), we can obtain 10 i vm
α≤ ≤  using αi ≥ 0,  

βi ≥ 0. Substituting equations (3) and (4) into equation (2) 
produces: 
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where ( ) 2
ixφ  is given by the dot product of ( ) ( )i ix xφ φ⋅ , 

which indicates a measure of similarity between ( )ixφ  and 

( )ixφ  in the feature space. A kernel function k(xi,xi) is used 
to compute the similarity of any of two vectors in the 
feature space using the original attribute set (Tan et al., 
2006). Hence, the dual formulation of equation (1) will 
become: 
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Converting the dual problem of a quadratic optimisation  
to a linear optimisation problem effectively reduces the 
computational complexity. In order to fix the centre of the 
quarter-sphere at the origin, the mapped data vectors in the 
feature space need to be subtracted from the mean, i.e. 
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μ φ
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= ∑ . The centred kernel matrix Kc can be obtained 

in terms of the kernel matrix ( ) ( ) ( )( ),i j i jK k x x x xφ φ= = ⋅  

using Kc = K − 1mK − K1m + 1mK1m, where 1m is an m × m 

matrix with all values equal to 1
m

.  

From equation (6), the {αi} value can be easily obtained 
using some effective linear optimisation techniques (Nash 
and Sofer, 1996). The data vectors in the training set can be 
classified depending on the results of {αi}, as shown in 

Figure 1. The training data vectors with 10
vm

α≤ ≤ , which 

fall on the quarter-sphere, are called margin support vectors. 
Their distances to the origin indicate the minimal radius R 
of the quarter-sphere and can be used to identify any new 
unseen data vector as normal or anomalous. Those data 
vectors whose distances to the origin are larger than R are 
detected as outliers and these are the measurement we are 
interested in. 

4 Outlier detection techniques for WSNs 

In this section, we will describe our four distributed and 
online techniques. The first technique aims at identifying 
every new measurement collected at each node as normal or 
anomalous in real time. The latter three techniques take 
different strategies to sequentially update the normal model 
representing normal behaviour of the sensed data. The 
policies concerning updating the normal model in these 
techniques include updating (a) at each time interval, (b) at 
a fixed-size time window, and (c) depending on the previous 
decision results. These proposed techniques enable each 
sensor node in the network to exploit temporal correlations 
among its most recent sensor measurements to identify its 
new arriving measurement as normal or anomalous in real-
time. Moreover, using high-degree spatial correlations that 
exist between sensor readings of adjacent nodes, each node 
has more information to cooperatively identify outliers. The 
whole detection process does not only depend on a node’s 
own decision criterion learned from its temporal readings 
but also on the decision criteria learned from its spatially 
neighbouring nodes. 

Before explaining the techniques in details, we draw 
reader’s attention to our set of assumptions. We assume  
that sensor nodes are time synchronised and are densely 
deployed in a homogeneous WSN, where sensor data tends 
to be correlated in both time and space. A sensor sub-
network consists of n sensors nodes S1,S2,... Sn, which are 
within radio transmission range of each other. It means that 
each node has n–1 spatially neighbouring nodes in the sub-
network. At each time interval Δi, each sensor node in the 
sub-network measures a data vector. Let 1 2, ,...,i i i

nx x x  denote 
the data vector measured at S1, S2,… Sn, respectively. Each 
data vector is composed of multiple attributes il

jx , where 

{ }: 1... , 1...i il
j jx x j n l d= = =  and i d

jx ∈ R . At time t, each 

sensor node has collected its own m measurements from 
time t − m to time t − 1: { }1,... : 1...t t m t

j j jx x x j n− −= = . From 

time t, each node identifies every new measurement as 
normal or outlier. 

4.1 Online Outlier Detection (OOD) technique 

As previously mentioned, a straightforward approach for 
outlier detection in WSNs is to build a model representing 
normal behaviour of the sensed data and identify an outlier 
as a sensor measurement that does not conform to this 
model. Our OOD technique is built on this principle and 
goes further. 

Initially, each node learns the local radius of the quarter-
sphere using its m sequential data measurements, which 
may include some anomalous data. The one-class quarter-
sphere SVM can efficiently find a minimal radius R to 
enclose the majority of these mapped sensor measurements 
in the feature space. Each node then locally broadcasts the 
learned radius information to its spatially neighbouring  
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nodes. When receiving the radii from all of its neighbours, 
each node computes a median radius Rm of its neighbouring 
nodes and a median global radius Rg of all nodes in the sub-
network. We use median because in estimating the ‘centre’ 
of a sample set, the median is more robust than the mean. 

When a new sensor measurement t
ix  is collected at time 

t, node Si first compares the distance of t
ix  from the origin 

with the radius R learned with respect to its m previous 
measurements { }1,...,t m t

i ix x− −  in a sliding window. According 

to the mean ( )
1

m

i
i

i x
m

μ φ
=

= ∑  and the kernel matrix 

( ) ( ) ( )( ),i j i jK k x x x xφ φ= = ⋅ , the distance of t
ix  from the 

origin in the feature space is formalised as follows: 
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Based on the fact that sensor data collected in a densely 
deployed WSN tends to be spatially and temporally 
correlated (Vuran et al., 2004), the data t

ix  will be classified 
as normal if d(x) <= R, which means that t

ix  falls on or 
inside the quarter-sphere at Si. Otherwise if d(x) > R, Si 
further compares d(x) with the median radius Rm of its 
spatially neighbouring nodes. Then if d(x) > Rm, t

ix  will 
finally be classified as outlier in the sub-network. The 
decision function to declare a measurement as normal or 
outlier can be formulated as equation (8), where the sensor 
measurements with a negative value are classified as outlier. 

( ) ( ) ( )( )( ), mf x sgn max R d x R d x= − −  (8) 

Identifying what has caused the outlier in sensor data is an 
important task. Potential sources of outliers in data collected by 
WSNs include noise and errors, actual events and malicious 
attacks. Our proposed technique makes distinction between 
events and errors based on the observation that erroneous 
measurements are likely to be spatially unrelated, while 
 event measurements are likely to be spatially correlated 
(Krishnamachari and Iyengar, 2004). The main idea is that only 
when t

ix  is considered as outlier, Si collects the distances of all 
of its neighbouring nodes currently sensing data from their own 
origin and computes a median distance d(x)m. If an event occurs 
in the sub-network, d(x) and d(x)m will be temporally different 
but a spatial consensus will be observed. This means that d(x) 
and d(x)m will exceed their own radius of R and Rm, 
respectively. Moreover, they both will exceed the median  
 
 

global radius Rg of the sub-network. If this is not the case, the 
detected outlier may indicate an erroneous measurement. The 
pseudocode of the OOD is shown in Table 1. 

Table 1 Pseudocode of the OOD 

1 procedure LearningSVM() 
2 each node collects m sensor measurements for learning 

its own radius R and locally broadcasts the radius to its 
spatially neighbouring nodes; 

3 each node then computes Rm and Rg; 
4 initiate OutlierDetectionProcess(R, Rm); 
5 return; 
6 procedure OutlierDetectionProcess(R, Rm) 
7 when xt arrives 
8 compute d(x); 
9 if (d(x) > R AND d(x) > Rm) 
10 xt indicates an outlier; 
11 initiate SourceOfOutlierProcess(R, Rm, Rg, 

d(x)); 
12 else 
13 xt indicates a normal measurement; 
14 endif; 
15 return; 
16 procedure SourceOfOutlierProcess(R, Rm, Rg, d(x)) 

17 
collect the distances of all of its neighbouring nodes’ 
currently sensing data from their own origin and  
compute d(x)m; 

18 if (d(x) > R AND d(x)m > Rm) 
19 if (d(x) > Rg AND d(x)m > Rg) 
20 xt may indicate an event; 
21 else 
22 xt may indicate an erroneous measurement; 
23 endif; 
24 else 
25 xt may indicate an erroneous measurement; 
26 endif; 
27 return; 

4.2 Instant Outlier Detection (IOD) technique  

After each node uses the normal model learned in the OOD 
to identify outliers and makes distinction between events 
and errors, the normal model may not be sufficiently 
representative for future identification of outliers and thus 
need to be updated. The simplest method of updating the 
normal model over time is to compute the minimal radius of 
one-class quarter-sphere for each training set, i.e. at each 
time interval. Each update step needs to add a current 
measurement and to remove the oldest measurement from 
the training set. This procedure is repeated for evolving 
training set of fixed size. Figure 2 illustrates the update 
policy of IOD’s model. The corresponding pseudocode 
modification for the IOD is shown in Table 2. 
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Figure 2 Update policy of IOD’s model. Circles represent sensor 
measurements. The ‘sliding’ training set is composed 
of the last m measurements. The black dot represents 
the measurement identified at current time t 

Time

m {xt-m… xt-1 } Current time (t)

xt-m-1 xt

R

m {xt-m+1… xt }
R’  

Table 2 Pseudocode of the IOD 

1–5 procedure LearningSVM() 
6–14 procedure OutlierDetectionProcess(R, Rm) 
15    initiate UpdatingModelProcess(xt); 
16     set t ← t + 1; 
17   return; 
18 procedure UpdatingModelProcess (xt) 

19   update the training set: the oldest measurement xt−m is 
removed and replaced by xt; 

20   recompute R using the updated training set; 
21   locally broadcast R to its neighbouring nodes; 
22   recompute Rm of its neighbouring nodes; 
23   return; 

Once the radius of a node is updated at each time interval, 
the node locally broadcasts the new radius R to its spatially 
neighbouring nodes. When receiving the radii from all of its 
neighbours, each node recomputes the median radius Rm of 
neighbouring nodes and the median global radius Rg of all 
nodes in the sub-network. The updated R, Rm and Rg are 
used to identify the next sensor measurement as normal or 
anomalous, and further distinguish between event and error. 

4.3 Fixed-size Time Window-based Outlier Detection 
(FTWOD) technique  

It is obvious that the IOD has expensive computational 
effort due to updating the normal model at each time 
interval. Thus, a slightly modified version of the IOD is to 
identify each sensor measurement upon being collected but 
update the normal model at a fixed-size time window. It 
means that the training set will be freezed to identify the 
next ( )n n m  measurements as normal or anomalous. This 
modification effectively reduces the times of recomputing 
the minimal radius of one-class quarter-sphere and prevents 
extremely high computational complexity. Furthermore, 
each of the n measurements upon arrival will be classified 
as normal or anomalous in real-time. This is to ensure that 
there is no delay in outlier detection itself and the training 
set is updated in periods of fixed-size time windows. 

Each update step in this technique requires to add the 
previous n sensor measurements and to remove the oldest n 
measurements from the training set. Figure 3 illustrates the 
update policy of FTWOD. The corresponding pseudocode 
modification for the FTWOD technique is shown in Table 3. 
In general, n should be much smaller than m (m being the 

size of the training data set) because large n will result in 
missing small behavioural changes in the data set. Since 
environmental changes occur gradually, choosing a big n 
will lead to failure of the outlier detection techniques. On 
the contrary, if n = 1, the FTWOD becomes like the IOD, 
which is computationally expensive because of frequently 
updating the normal boundary at each time interval. Thus, 
we set the value of n to 5 in our experiment. 

Figure 3 Update policy of FTWOD’s model. The training set is 
updated at each n measurements 

Time

m {xt-m… xt-1 } Current time (t+n-1)

xt-m-1 xt+n-1

n

R

m {xt-m+n… xt+n-1 }
R’  

Table 3 Pseudocode of the FTWOD 

……  
15 if (t % n = = 0) 

15’     initiate UpdatingModelProcess ( )1...t n tx x− + ; 

……  

4.4 Adaptive Outlier Detection (AOD) technique 

The update policy of the above-mentioned techniques is 
updating the normal model either at each time interval or at n 
time intervals, with little consideration of the impact when a 
normal or anomalous measurement is incorporated into the 
sliding training set. Moreover, they introduce expensive 
complexity effort and communication load due to the fact  
that each node is required to frequently update the normal 
boundary and locally broadcast the updated R to its 
neighbouring nodes. Thus, for the sake of energy efficiency 
and computational simplicity, we introduce a third technique, 
which takes a new strategy to update the normal model 
depending on the previous decision results, i.e. only when a 
new measurement has a significant impact on the previous 
normal model. 

As shown in Figure 1, the margin support vectors and 
outliers have non-zero α values so that the dual formulation 
of equation (1) will not be met if they are added into the 
existed training set. In order to meet the constraints 
specified in equation (6) and to find a minimal radius, when 
a current measurement is detected as margin support vector 
or outlier, we propose our AOD technique. 

AOD updates the normal boundary when a current 
measurement is detected as outlier or support vector, and the 
radius R is updated based on the distance between the outlier 
measurement and support vectors. Then it adds all the 
previous n' measurements including the current measurement 
into the training set and removes the same amount of the 
oldest measurements from the training set. AOD identifies 
each new measurement upon being collected at each node as 
normal or anomalous in real time. Due to the fact that 
compared to normal data, outliers and margin support vectors 
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are very rare (Tax and Duin, 2004); this technique is more 
efficient in terms of energy and computational costs. Figure 4 
illustrates the update policy of AOD. The corresponding 
pseudocode modification for the AOD technique is shown in 
Table 4. 

Figure 4 Principle of the AOD. The black dot represents the 
measurement identified as a margin support vector or 
an outlier 

Time

m {xt-m… xt -1} Current time (t+n’-1)

xt-m-1 xt+n’-1

n’

m {xt-m+n’… xt+n’-1 }
R’

R

 

Table 4 Pseudocode of the AOD 

……  
15 if (xt is an outlier or a margin support vector 

15’     initiate UpdatingModelProcess ( )1...t n tx x′− + ; 

……  

5 Experimental results and evaluation 

This section describes the performance evaluation of our 
four techniques compared to the distributed, BOD technique 
presented earlier by Rajasegarar et al. (2007). In our 
experiments, we have used synthetic data as well as real 
data gathered from a deployment of WSN in the Intel 
Berkeley Research Laboratory (IBRL, 2004) and in the 
SensorScope System (SensorScope, 2007). 

5.1 Synthetic data 
For the simulation, we use MATLAB and consider a sensor 
sub-network consisting of seven sensor nodes, which are within 
radio transmission range of each other. It means that each node 
has six spatially neighbouring nodes in the sub-network. The  
2-D synthetic data used for each node is composed of a mixture 
of three Gaussian distribution with uniform outliers; the mean 
is randomly selected from (0.3, 0.35, 0.45), and the standard 
deviation is selected as 0.03. Subsequently, 10% (of the normal 
data) anomalous data is introduced and uniformly distributed in 
the interval [0.5, 1]. The data values are normalised to fit in the 
[0, 1]. The BOD technique of Rajasegarar et al. (2007) identifies 
outliers at each node using a local radius and evaluates its 
performance using the original training data with added labels 
rather than testing data. To have a fair comparison, thus in the 
experiment we use the same data measurements in both 
techniques for evaluating the performance while the same amount 
of training data is used to learn the quarter-sphere SVM 
classifier of our techniques. The testing data used for each  
node comprise 200 normal and 20 anomalous data. Figure 5 
illustrates data distribution of the synthetic data. 
 
 
 

Figure 5 Plot for synthetic data (see online version for colours) 
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5.2 Real data from Intel Berkeley Research 
Laboratory (IBRL) 

This data set is collected from a cluster of neighbouring sensor 
nodes from a WSN deployed in the Intel Berkeley Research 
Laboratory. Figure 6(a) illustrates the set-up. The sub-network 
consists of seven sensor nodes, namely nodes 1, 2, 33, 34, 35, 
36, 37. The network recorded temperature, humidity, light  
and voltage measurements at 31 seconds intervals. In our 
experiments, we use a 6:00 am–6:00 pm period of data 
recorded on 5th March 2003 with two attributes: temperature 
and humidity for each data measurement. The data values are 
normalised to the range [0, 1]. The labels of data measurements 
are obtained using their degree of dissimilarity. As shown in 
Figure 6(b), the data vectors are labelled as anomalous if they 
are determined to be distant from other data vectors using  
the Mahalanobis distance. The same amount of testing data as 
the training data is used to evaluate the performance of our 
techniques. 

5.3 Real data from SensorScope system 

This data set is collected from a cluster of neighbouring 
sensor nodes from a WSN deployed in Grand-St-Bernard. 
Figure 7(a) illustrates the deployment. The sub-network 
consists of seven sensor nodes, namely nodes 2, 3, 4, 8, 12, 
14, 20. The network recorded ambient temperature, relative 
humidity, soil moisture, solar radiation and watermark 
measurements at 2 minutes intervals. In our experiments, we 
use a 6:00 am–6:00 pm period of data recorded on 20th 

September 2007 with two attributes: ambient temperature 
and relative humidity for each sensor measurement. The 
data values are normalised to the range [0, 1]. The labels  
of data measurements are obtained using their degree of 
dissimilarity. As shown in Figure 7(b), the data vectors are 
labelled as anomalous if they are determined to be distant 
from other data vectors using the Mahalanobis distance. The 
same amount of testing data as the training data is used  
to evaluate the performance of our techniques. 
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Figure 6 (a) Sensor nodes deployed in Intel Berkeley Research Laboratory (IBRL, 2004); (b) Plot for real data from IBRL (see online 
version for colours) 
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Figure 7 (a) Grand-St-Bernard deployment in SensorScope System(SensorScope, 2007); (b) Plot for real data from SensorScope System 
(see online version for colours) 
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5.4 Experimental results and evaluation 

We have tested the following three kernel functions: 

• Linear kernel function: kLinear = (x1.x2), where {x1,x2} 
are the data vectors 

• Radial Basis Function (RBF) kernel function: 

( )2 2
1 2expRBFk x x σ= − − , where σ is the width parameter 

of the kernel function 

• Polynomial kernel function: ( )1 2 1 r
Polynomialk x x= ⋅ + , where 

r is the degree of the polynomial. 

Kernel matrices generated using the above kernel functions 
were centred. We have evaluated two important performance 
metrics, the detection rate, which represents the percentage of 
anomalous data that are correctly considered as outliers, and 
the false alarm rate, also known as False Positive Rate (FPR), 
which represents the percentage of normal data that are 
incorrectly considered as outliers. 

We have examined the effect of the regularisation 
parameter υ for our four online techniques and the BOD 
technique presented by Rajasegarar et al. (2007), using the 
linear, RBF and polynomial kernel functions. υ represents 
the fraction of data vectors that can be outliers. The higher 
value of the parameter υ can achieve the better detection 
accuracy; meanwhile it can also lead to the higher false 
alarm rate. So an appropriate value of the parameter υ 

should match exactly the anomaly ratio. In the case of no a 
priori knowledge about the anomaly ratio, varying υ can be 
used to evaluate the robustness of the techniques. A robust 
technique can achieve high accuracy rate while keeping  
a false alarm rate low with the parameter υ increases or 
decreases. In the experiments we have varied it in the range 
from 0.01 to 0.25 in intervals of 0.02, the kernel width 
parameter σ is set to 0.25, and the kernel degree parameter r 
is set to 3. A Receiver Operating Characteristics (ROC) 
curve is usually used to represent the trade-off between the 
detection rate and the false alarm rate. The larger the area 
under the ROC curve, the better the performance of the 
technique. 

Figure 8 shows the ROC curves obtained for the five 
techniques using the linear, RBF and polynomial kernel 
functions for the synthetic data. The ROC curves shows that 
our four techniques achieve better performance than the BOD 
technique with different kernel functions. Due to the fact that 
the obtained results using the RBF kernel function effectively 
compare the performance of these techniques, Figure 9 shows 
the detection rate and the false alarm rate obtained for the five 
techniques using the RBF kernel function for real data from 
IBRL. Figure 10 shows the detection rate and the false alarm 
rate obtained for the five techniques using the RBF kernel function 
for real data from SensorScope System. These simulation results 
show that our four techniques achieve better accuracy in terms 
of parameter selection using different kernel functions compared 
to the BOD technique used by Rajasegarar et al. (2007). 
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Figure 8 (a) ROC curves with Linear kernel for synthetic data; (b) ROC curves with RBF kernel for synthetic data; (c) ROC curves with 
Polynomial kernel for synthetic data (see online version for colours) 
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Figure 9 (a) Detection rate with RBF kernel for IBRL data; (b) False Alarm rate with RBF kernel for IBRL data (see online  
version for colours) 
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Figure 10 (a) Detection rate with RBF kernel for SensorScope System data; (b) False Alarm rate with RBF kernel for SensorScope System 
data (see online version for colours) 
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Figure 11 (a) Number of updating model with RBF kernel for IBRL data; (b) Number of updating model with RBF kernel for SensorScope 
System data (see online version for colours) 
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Furthermore, we compare the three techniques (IOD, 
FTWOD and AOD) concerning how often they update the 
normal boundary in both real data sets using the RBF kernel 
function. Results are depicted in Figure 11. We set n to 5 for 
the FTWOD. The simulation results show that the AOD 
updates the normal boundary in less time than the other  
two techniques. Thus, the AOD is more efficient in terms of 
communication overhead and computational complexity 
than the IOD and the FTWOD. 

We further compare these techniques in terms of 
computational and memory complexity, as presented in 
Table 5, where m and N devote the number of data in the 
training and testing sets (N >= m), respectively, n devotes 
the size of time window in the FTWOD, n' devotes the 

times of relearning the minimal radius in the AOD Nn
n

⎛ ⎞′ <⎜ ⎟
⎝ ⎠

, 

d represents the dimensionality of the measurements, and 
O(L) represents the computational complexity of solving  
a linear optimisation problem in the training set, which 
consists of m data vectors. 

From this table, we can see that our four techniques have  
a lower computational and memory complexity as well as a 
faster responsiveness for detecting outliers compared to the 
offline and batch technique of BOD. We can conclude that 
among these four techniques, IOD, FTWOD and AOD achieve 
better detection accuracy for distributed streaming data. The 
OOD technique, however, has the lowest computational and 
memory complexity and the fastest responsiveness. Furthermore, 
unlike IOD and FTWOD, that simply update the normal model 
either at each time interval or at a fixed-sized time interval, 
AOD takes the new strategy to update the normal model 
depending on the previous decision results and therefore achieves 
better detection accuracy, faster responsiveness and lower 
computational and memory complexity. 

 
 
 
 
 
 
 

Table 5 Complexity analysis of five outlier detection 
techniques for WSNs 

Techniques Computational complexity Memory complexity 
 Training Testing  

BOD 
NO L
m

⎛ ⎞∗⎜ ⎟
⎝ ⎠

 ( )O N  ( )O d N∗  

OOD ( )O L  ( )O N  ( )O d m∗  

IOD ( )O N L∗  ( )O N  ( )O d m∗  

FTWOD 
NO L
n

⎛ ⎞∗⎜ ⎟
⎝ ⎠

 ( )O N  ( )( )O d m n∗ +  

AOD ( )O n L′ ∗  ( )O N  ( )( )O d m n′∗ +  

6 Conclusions 

Sensory data is inherently unreliable and inaccurate. To 
improve the sensor data quality, in this paper we have 
proposed four distributed and OOD techniques. These 
techniques are based on one-class centred quarter-sphere 
SVM and have low resource consumption, which make them 
suitable for resource constraint nature of WSNs. We compare 
performance of our techniques with a previously proposed 
distributed and batch technique using both synthetic and real 
data sets. Experimental results show that our approaches 
achieve better detection accuracy and lower false alarm in 
terms of parameter selection with different kernel functions, 
while keeping the computational complexity and memory 
costs low. We have also presented preliminary work on 
distinction mechanisms between events and errors. Our future 
research includes evaluating outlier detection performance 
while distinguishing between events and errors and real 
implementation of the protocols on wireless sensor nodes. 
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