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We present an algorithm for boundary approximation in locally-linked sensor networks that com-
municate with a remote monitoring station. Delaunay triangulations and Voronoi diagrams are used
to generate a sensor communication network and define boundary segments between sensors, respec-
tively. The proposed algorithm reduces remote station communication by approximating boundaries
via a decentralized computation executed within the sensor network. Moreover, the algorithm iden-
tifies boundaries based on differences between neighboring sensor readings, and not absolute sensor
values. An analysis of the bandwidth consumption of the algorithm is presented and compared
to two naive approaches. The proposed algorithm reduces the amount of remote communication
(compared to the naive approaches) and becomes increasingly useful in networks with more nodes.

I. INTRODUCTION

Sensor networks consist of a set of sensor devices that
communicate with each other through a wired or wire-
less communication network. Such systems often com-
municate with a remote station and are a promising
technology for remotely detecting physical phenomena
such as forest fires, chemical leaks, or radioactive clouds.
For many applications, it is necessary that the network
not only identify a phenomenon, but also determine the
boundary of the detected phenomenon. For example, by
establishing the boundary of a forest fire, a sensor net-
work can help fire fighters determine where to concen-
trate their efforts.

Adding more sensors to a network increases the ac-
curacy of any boundary approximation algorithm, but
consequently, increases the amount of data generated.
Therefore, if all data is processed at the remote station,
the required bandwidth is proportional to the size of the
network. On the other hand, if only the nodes that sense
the phenomenon report back, the required bandwidth is
proportional to the size of the phenomenon. As an alter-
native to both of these naive approaches, we present a
decentralized algorithm for boundary identification that
limits remote station communication by determining the
boundary segments of a phenomenon via a distributed
computation that is carried out within the sensor net-
work. Moreover, only sensors that identify a boundary
ultimately communicate with the remote station. There-
fore, the amount of remote communication is propor-
tional to the size of the phenomenon’s boundary.

II. TWO NAIVE BOUNDARY
APPROXIMATION ALGORITHMS

A naive solution to boundary approximation would be
for each sensor to report its internal state to the remote
station. Once the state of each sensor reaches the re-
mote station, the station calculates the boundary using
either a centralized version of the proposed method (to
follow) or any other known centralized algorithm. As-

suming n nodes in the sensor network and each sensor
has a cost of β for a long-range transmission, the cost
of this approach is nβ. However, a complication with
this approach is that the remote station must have the
capacity to receive information from each node simulta-
neously in order to ensure an accurate snapshot of the
phenomenon’s location. Regardless, as the size of net-
work increases, this approach becomes prohibitive since
the cost scales with the number of sensors.

A second naive solution would be for only those sen-
sors that detect the phenomenon to report back to the re-
mote station. If m is the number of nodes sensing a phe-
nomenon, where m ≤ n, then mβ would be cost of this
algorithm. Using this method, remote communication
scales with the size of the phenomenon, not the size of
the network. A simple real-world example demonstrates
a potential fault with this approach for certain phenom-
ena. Imagine a sensor network whose function is to sense
a gray-scale environment. Given a constant light source,
a sensation threshold can be determined. In such cases,
only those sensors that sense a high enough gray-scale
value would report to the remote station. However, once
the light source is reduced beyond the preset sensation
threshold, the phenomenon is no longer detected even
though there exists a relative difference in the readings
of the sensors at the boundary. Using the algorithm pre-
sented next, a relative analysis determines the boundary
regardless of the strength of the light source (assuming
there exists more light than absolute dark). Sensors use
local communication to detect a boundary by comparing
neighboring measurements and only sensors that iden-
tify a boundary communicate with the remote station.
Finally, the number of sensors reporting scales with the
size of the phenomenon’s boundary. In many cases, the
area of a phenomenon is likely to be significantly larger
than the boundary.

III. THE PROPOSED BOUNDARY
APPROXIMATION ALGORITHM

Given a sensor network with n nodes, a Delaunay tri-
angulation is used to determine the neighbors of each
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node in the network [4]. Next, a Voronoi diagram is gen-
erated to determine boundary segments between neigh-
boring sensors. Such diagrams create cells with bound-
aries (segments), where all points on the cell boundary
are equidistant between the two neighboring sensor nodes
[1]. Figure 1 presents a visualization of a Delaunay trian-
gulation (Figure 1a) and Voronoi diagram (Figure 1b) for
100 randomly distributed nodes within a 2D space. Be-
cause there exists no distributed algorithm for calculat-
ing a Delaunay triangularization and a Voronoi diagram
[5], the sensor network’s remote station can be used to
calculate these. This one time calculation occurs only
after sensors have been distributed and assumes that the
remote station knows the exact location of each sensor.

Assume that a given sensor i takes a measurement
ψi ∈ [0, 1]. In order to accomplish a local, distributed
calculation of a phenomenon’s boundary, i must commu-
nicate with each of its neighbors and compare its mea-
surement with the measurements taken by those neigh-
bors. If a particular neighbor j of i has a ψj that is
significantly different than ψi, then i can assume that
the phenomenon’s boundary exists somewhere between
itself and j. This threshold of difference is defined by
θ ∈ [0, 1] and a boundary exists when ψi−ψj > θ. Since
sensors have spatial gaps between them, the location of
the boundary cannot be known exactly. The best approx-
imation of the phenomenon’s boundary is determined to
be the line directly equidistant from i and j. Conve-
niently, this line is the segment (i, j) as defined by the
Voronoi diagram. Therefore, once (i, j) is determined to
be a boundary segment, only this information needs to be
transmitted to the remote station. Thus, only those sen-
sors at the boundary of the phenomenon are communi-
cating with the remote station. Moreover, the aggregate
of all their reports is the approximated boundary.

Figure 2 presents two simulated phenomenon: one with
a linear boundary and the other with a circular bound-
ary. Each phenomena exist within a 100 node sensor
network. Table I presents the cost of each boundary de-
tection approach for both phenomena, where ε denotes
the relatively low cost of all inter-node communication
[9]. It should be noted that for certain types of networks,
especially radio wireless networks, the cost of local com-
munication can be orders of magnitude less than long-
range, remote communication. It is in these situations
where the proposed algorithms is most efficient.

boundary 1st naive 2nd naive proposed

linear 100β 80β 11β + ε

circular 100β 38β 24β + ε

TABLE I: The cost of each approach for simulated phenomena
with linear and circular boundaries (see Figure 2). β denotes
the cost for remote communication and ε is the total cost for
inter-network communication.

IV. MONTE CARLO SIMULATION

Monte Carlo simulations provide a means to test a sys-
tem with many degrees of freedom, where an exhaustive
parameter sweep is considered intractable [7]. We utilize
a Monte Carlo simulation of sensor networks containing
3, 4, 5, 10, 25, 100, 200, 500, and 1000 nodes. For each
population of nodes, one hundred different 2D space con-
figurations are created within a fixed area. In each of the
one hundred configurations, we activate a random set of
nodes. The number of activated nodes is sequentially
increased from 1 to n. This random selection of nodes
is done 100 times. For each resulting pattern, we cal-
culate the number of sensors that would report back to
the central station using the various boundary detection
algorithms previously described. Figure 3 presents the
results for networks of 10, 100, and 1000 nodes using
the first naive approach (top horizontal line), the sec-
ond naive approach (black diagonal line), and our pro-
posed approach (gray cloud). Finally, Table II demon-
strates for all networks tested, the maximum number of
nodes reporting to the remote station. The results of Ta-
ble II demonstrate that the proposed algorithm becomes
more efficient as more nodes are added to the network.
It should be noted, that for both naive approaches, the
maximum number of reporting nodes is 100%.

number of nodes max reporting (%)

3 100

4 100

10 90

25 84

100 72

200 68

500 63.6

1000 61.5

TABLE II: A Monte Carlo simulation identifies the maximum
number of reporting nodes for the proposed algorithm.

V. CONCLUSIONS

Related work on boundary approximation in sensor
networks relies mainly on local communication and dis-
tributed computation [2, 3, 6, 8]. However, most
boundary approximation algorithms do not determine
the boundary of the phenomenon, only the sensors that
lie at the boundary. By knowing which sensor’s lie at
the boundary, the remote station can then estimate the
actual line defining the boundary of the phenomenon.
In contrast, the proposed algorithm computes the phe-
nomenon’s boundary internal to the network without re-
liance on the remote station. Local communication is
used to identify pairs of nodes with readings whose dif-
ference is greater than θ. One of the two nodes transmits
the pair’s Voronoi segment to the remote station. The
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FIG. 1: a. A Delaunay triangulation and b. a Voronoi diagram for 100 randomly distributed sensors. Sensors i and j are
identified as well as the (i, j) Voronoi cell boundary that is equidistant between i and j.
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FIG. 2: A representation of the boundary approximated by the proposed algorithm for phenomena with a. linear and b.
circular boundaries. Gray-scale shading denotes the phenomena. The boundary of the phenomena is the black line and the
approximated boundary is the dashed line. The approximated boundary is always a collection of Voronoi cell segments.

aggregation of all these segments is the approximated
boundary of the phenomenon.

It should be noted that a boundary can never be de-
termined exactly since spatial gaps exist between sensors.
Therefore, any calculation of the phenomenon’s bound-
ary is only an approximation. To reduce boundary loca-
tion uncertainty, more sensors can be added to the net-
work. As sensor networks increase in size, it is important
to keep costs to a minimum. Costs can be reduced by
utilizing low bandwidth communication and energy effi-
cient processors with moderate clock speeds and small
amounts of on-board memory. The proposed algorithm
helps achieve one of these objectives by reducing remote
station communication. The algorithm may prove use-

ful in wireless sensor networks where radio communica-
tion over long distances requires significantly more energy
than local communication [9].
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FIG. 3: A Monte Carlo simulation of the number of nodes (as a percent of the whole population) observing a phenomenon vs.
the number (as a percent of the whole population) reporting back to the remote station in networks with 10, 100, and 1000
nodes. For the proposed algorithm, as the number of nodes increases, the maximum number of nodes reporting to the remote
station decreases.
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