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ABSTRACT 

Lifetime Analysis for Wireless Sensor Networks 

Helen Legakis 

The communications industry anticipates that Wireless Sensor Networks (WSNs) 

are the emerging technology to greatly affect society. A WSN is composed of numerous 

sensor nodes which have the ability to sense, compute and communicate in order to 

gather information about their surroundings. The efficiency of a given WSN is 

determined by its lifetime. Network lifetime is the duration of time for which it can 

maintain sensing coverage and network connectivity, which respectively involves the 

ability to detect an event in a region and to report the sensed data to its destination. In 

much related work, the network is considered unserviceable the moment when the entire 

area cannot be fully covered or when the network is not completely connected. However, 

in many application scenarios, as long as the percentage of disconnected sensor nodes 

and uncovered areas are above a threshold value, the utility of the network will not be 

harmed. This latter view will be applied in this thesis. We first derive the probability 

distribution of the lifetime of a single sensor node by modeling a sensor node as an 

Ml MIX queue which alternates between idle and busy periods. Then, the network 

connectivity probability is determined by discovering the percentage of sensor nodes that 

can communicate with the destination given that the monitored region is partially 

covered. The sensor nodes are randomly deployed in a grid-based network according to 

the Poisson distribution. Given the average of the number of sensor nodes in a cell, the 
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connectivity probability of two adjacent cells is determined. From this result, we can then 

derive the probability that a sensor node can communicate with a sink. Finally, the results 

found for the probability distribution of the lifetime of a single sensor node and the 

network connectivity probability are integrated to determine the network lifetime. 
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CHAPTER 1: 

INTRODUCTION 

1.1 Introduction 

In recent decades, wireless communications technology has grown very rapidly 

and it has greatly affected modern life. Wireless networks are typically based on an 

infrastructure, where base stations are used to connect wireless entities to a wired 

backbone network and relay data between them. Although infrastructure-based wireless 

networks are the most commonly deployed, problems arise in some scenarios. In disaster 

areas, infrastructure may be unavailable. In other cases, sites may be too inaccessible or 

very large where it may be excessively expensive or difficult to set up an infrastructure. 

In military operations, there may be no time to setup an infrastructure [1]. These 

situations can be treated by creating a wireless network where no infrastructure is needed. 

One of the most interesting infrastructureless wireless networks to have emerged to date 

is the wireless sensor networks (WSNs). 

A WSN is composed of numerous independent sensor nodes, which are usually 

battery operated, that organize themselves into a network without being directed or 

controlled by an external entity. Sensor nodes are devices equipped with sensors which 

check, track and observe the state of the physical environment under observation, e.g. 

temperature, pollution, pressure, etc., throughout a region [2]. Although WSNs were 
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initially considered for military uses, it is anticipated that they will have many civilian 

applications. WSNs may provide many benefits over traditional communication networks 

in many areas including health, industry, environment, home, and commerce [1, 3,4]. 

For a standard application, the sensor nodes are deployed in a specific area where 

we would like to obtain information. The deployment of sensor nodes can either be 

regular or random [1]. Regular deployment is when the positioning of the sensor nodes is 

planned (e.g. fixing sensors in machinery for surveillance and preventive maintenance). 

Random deployment is when a large number of sensor nodes are scattered in an area 

without having a specific pattern (e.g. dropping sensor nodes from an aircraft over a 

wildfire). 

The sensor nodes in a WSN can play the role of a source and/or relay. The source 

is the sensor node which has detected an event or sensed data. This information is then 

reported back to the appropriate sink, as shown in Figure 1.1 [4] .The sink is an entity 

found outside the network, like a gateway or Personal Digital Assistant (PDA), which 

communicates with a task manager via Internet or satellite. The sensed data from the 

source is usually relayed through multiple sensor nodes, called relays, to the sink. Relays 

receive and transmit data but not simultaneously. 
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Figure 1.1: Sensor Nodes Scattered in a Sensor Field 

The sources and the sink(s) can interact in different ways. The source can report 

to the sink(s) whenever it detects a particular event. The source can be assigned to 

periodically report its sensed data. When something anomalous occurs, the observer can 

poll certain sensors nodes to obtain more information about an area. The interaction 

between the sources and sink(s) can also be a combination of the interaction patterns 

mentioned above. 

1.2 Main Characteristics of WSN 

Although many diverse applications of WSN are under consideration, they all pose 

similar challenges on WSN, discussed below [1, 4-7]. 

• Quality of Service (QoS) 

Unlike traditional QoS measures, where delay and jitter are main concerns, 

reliability is the most important QoS measure in WSN. A network is considered reliable 

if an event can be detected, the sensed data can be delivered to the appropriate sink, and 

the information received by the sink is accurate. Therefore, reliability can be categorized 

into three parts: detection reliability, information accuracy, and reliable data transfer. 
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Detection reliability and reliable data transfer respectively depend on the coverage and 

connectivity, which will be discussed in section 1.5. 

• Fault Tolerance 

A WSN is expected to tolerate and recover from failures. Faults occur when the 

battery has used up all its energy, the node gets damaged, or the communication between 

a pair of nodes gets interrupted for a long period of time. By deploying more nodes than 

necessary, the network will be robust against malfunctions. 

• Lifetime 

The efficiency of a given wireless sensor network is determined by its lifetime. 

The desirable goal is to have the whole network operating properly and performing its 

tasks for as long as possible. Inasmuch as the individual nodes have a limited power 

supply, energy needs to be preserved. This target can be attained if energy-efficient 

operations are performed. When more energy is consumed, the lifetime of a network 

shortens. 

• Scalability 

In many applications, the number of nodes used in the network is expected to be 

large. Hence, the network should have the ability to handle and support such a great 

number. 

• Wide Range of Densities 

Density is the number of nodes per unit area. The density value depends on the 

application. If an application requires the network to be densely inhabited, a higher value 
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will be assigned and vice versa. In addition, the density will change over time and space 

on account of node failure. These fluctuations should not affect the network. 

• Programmability 

When a new task is assigned, the sensor nodes in the network should be able to 

reprogram themselves so as to sense and monitor this event. 

• Maintainability 

A WSN has to adjust to changes and must sustain itself. The network should 

monitor its condition and adapt appropriately, if possible, when the energy is running low 

to maximize its lifetime. 

In order for the above requirements to be met, a WSN needs the following mechanisms 

[1,4-7]: 

• Small-Scale Sensor Nodes 

Recent advances have enabled the miniaturization of hardware components. 

Smaller features consume less power and are cost effective. Hence, small-scale sensor 

nodes facilitate in preserving energy and making a large network affordable. 

• Multihop Wireless Communication 

Communication between two nodes relies on the transmission range. Direct 

communication between entities that are far apart is possible by increasing the 

transmission range. However, this is inefficient since it requires more transmission power 

and the bandwidth is limited. By using multiple nodes along the path to the destination, 

the total required power is reduced as shorter transmission ranges are necessary. 
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• Energy-Efficient Operation 

By performing energy-efficient operations for communication, computation and 

sensing, the lifetime of the individual nodes and, more importantly, the network will last 

longer. Methods on how to consume less energy will be explained later. 

• Auto-Configuration 

A WSN has to be able to organize itself given that no base stations are available 

to manually configure the network. The network should be aware of its surroundings and 

adapt to changes. Not only does the network need to tolerate node failures, it should 

support the integration of new nodes as well. Additionally, an entity is expected to be 

capable of locating itself in the network with the help of its surrounding nodes. 

• Collaboration and in-network processing 

Sometimes a single node cannot provide enough information for an application 

(e.g. average temperature of an area). In this case, the combination of data of various 

nodes is required so as to sense an event. In addition, the processing of the information 

should be done in the network rather than at the edge of the network. In-network 

processing is energy-efficient since it reduces the amount of traffic in the network. The 

collaborating nodes join their data instead of having them all send their data individually 

to the sink. 

• Data centric 

Conventionally in communication networks, each node contains a unique 

identifier in order to route packets between two distinct entities. This type of networking, 

known as address-centric, may be inefficient for WSNs. WSNs may contain a large 
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number of sensors. Therefore, embedding a unique ID to all the nodes would result in 

significant overhead and wastage of energy. Furthermore, the WSN applications focus on 

detecting and gathering information from the network and not which node provided it. A 

data-centric protocol would be better suited for WSNs. Also, collaboration and in-

network processing is easier to implement with data-centric networking. 

1.3 Architecture of a Sensor Node 

Sensor nodes have the ability to sense, compute and communicate with the support of 

five main components, as shown in Figure 1.2 [1]: controller, communication device, 

sensor(s)/actuator(s), memory and power supply. 

Communication 
device 

Memory 

Controller 

- H P ower supp y h-

Sensor(s)/ 
actuator(s) 

Figure 1.2: Components of a Sensor Node 

The controller is the main part of the sensor node. The controller executes programs, 

processes data received by the sensor(s) or by other sensor nodes, determines when and 

where to transmit data, and manages the sensor node's other components. The 

communication device is responsible for sending and receiving information over a 

wireless medium. A receiver converts a radio wave into a sequence of bits and the reverse 

is carried out by a transmitter. Sensor nodes use a transceiver which joins the roles of a 
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transmitter and receiver into one unit. The sensors and actuators interact with the physical 

environment. Sensors monitor and measure the parameters of its surroundings, whereas 

actuators control an object (e.g. motor, light bulb) according to these physical parameters. 

Memory is used to store data and programs. Finally, the power supply is the component 

that provides the sensor node with energy for it to operate. In WSNs, the energy is 

usually supplied by batteries. Batteries can either be nonrechargeable, known as primary 

batteries, or rechargeable, referred to as secondary batteries. The secondary batteries are 

recharged by harnessing energy from the environment, like light, temperature gradients, 

vibrations, pressure vibration, and air/liquid flow. 

Since energy is a limited source and recharging the battery is not always possible, 

the energy consumption of a sensor node is required to be highly restrained and managed. 

The components that mainly consume energy are the controller, the communication 

device, and to some level the memory and the sensors [1]. When sensor nodes have 

nothing to do, ideally it should be turned off in order to conserve the battery and wake up 

again once it is needed. As a sensor node cannot be turned off completely, it should 

operate in a state with reduced energy consumption, called the sleep state. This state can 

be employed by all the components of a sensor node and can save significant amount of 

energy. Therefore, whenever a sensor node is idle, it should go to sleep in order to 

prolong its lifetime. 

Furthermore, studies have shown that the energy cost for communication is 

substantially higher than computation (data processing); the rule of thumb is that ten 

8 



times the power is required to transmit or receive a bit as is required to process a bit of 

information [1]. Hence, if achievable, a sensor node should process data locally instead of 

communicating it. This conclusion has inspired a number of key techniques in WSN, 

such as in-network processing and data aggregation mentioned earlier on, which help in 

reducing the overall power consumption. 

1.4 WSN Protocol Architecture 

The WSN protocol architecture consists of a physical, data link, network, 

transport, and application layer which are based on the OSI layering model. Since energy 

is a scarce resource in WSNs, energy-efficient operations should be incorporated into 

each of these layers. In order for the sensor nodes to perform correctly and efficiently, 

power and task management planes must be used by WSNs [4]. The power management 

plane controls how a sensor node makes use of its power. As explained earlier, the sensor 

node should operate in different states to reduce the power consumption. Hence, this 

plane is responsible for putting sensor nodes to sleep. The task management plane 

schedules the sensing tasks and synchronizes sensor nodes in a region. The protocols 

employed by WSNs must address these planes, which can lower the overall power 

consumption. Therefore, new protocols, in particular MAC and routing protocols, need to 

be developed for WSNs as traditional protocols are not cautious with energy. 

1.4.1 MAC Protocols 

The communication medium is shared by numerous entities. Medium Access 

Control (MAC) protocols are needed in order to determine when an entity can access the 
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medium. Traditional MAC protocols have been implemented to deal with delay, 

throughput, and fairness. However, these criteria are not the main concern for WSNs. 

WSNs need to perform energy-efficient operations to function as long as possible. 

Therefore, new MAC protocols need to be developed focusing on energy conservation 

instead of the conventional performance requirements. 

Energy should be consumed only when needed. The following circumstances should be 

avoided since they futilely use up energy [1]: 

• Collisions: When two packets collide because of near simultaneous transmission, 

energy is wasted at the source and destination and more energy needs to be 

consumed to retransmit the packet. 

• Overhearing: In wireless communications, when a station transmits a packet, all 

the stations in its transmission range that have their receivers turned on hear the 

packet. If the packet is not intended for a station, the station discards the packet 

and wastes energy overhearing it. 

• Idle listening: Idle listening is when a station is waiting to receive a packet but 

none of the stations in its surroundings have anything to send. Idle listening 

pointlessly consumes energy since the station is running at full operation for 

nothing to occur. 

• Protocol overhead: Protocol overhead is extra data added to the body of the 

message which helps in transmitting packets between entities by describing the 
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message's content, for whom the message is intended to, and other protocol 

needs. Since the protocol overhead consumes extra energy, its size should be as 

small as possible. 

MAC protocols for WSNs are expected to deal with at least one of these problems. If 

more of these energy problems are tackled, further energy will be conserved in the 

network. 

MAC protocols for WSNs can be categorized as either contention-based or 

schedule-based protocols [1,4,8,9]. Contention-based protocols are based on a Carrier 

Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme. A sensor node 

listens to the channel before attempting to transmit its packet. A station should suspend 

its transmission if the shared medium is sensed to be busy, seeing that another 

transmission is in progress, to circumvent collisions. If the channel is sensed idle, before 

a station transmits its packet, a signal is broadcasted to its neighbours notifying them that 

a data transfer will begin in order for them to suppress their transmission to avoid 

collisions. Although collision avoidance mechanisms are employed, they do not totally 

prevent collisions. Additionally, for contention-based protocols, idle listening can be 

tackled if a periodic wakeup scheme is added. The periodic wakeup scheme alternates 

between a sleep and listen period, as shown in Figure 1.3 [1]. During the wakeup period, 

the sensor node is asleep and wakes up periodically, during its listen period, to receive 

data. If no data is received, the node goes back to sleep. The sender needs to learn about 

the recipient's listen periods in order to transmit at the appropriate time. 
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Listen period 

U- Wakeup period - J -> | U -

4 - Sleep period -WH 

Figure 1.3: Periodic Wakeup Scheme 

Unlike contention-based protocols where the sensor nodes contend each other to 

seize the channel, in schedule-based protocols coordination among the nodes is needed in 

order to determine which node can access the medium. These type of protocols are based 

on a Time-Division Multiple Access (TDMA) scheme. Time is divided into frames and 

each node is assigned to a specific slot in the frame. During a time slot, only the allotted 

sensor node is allowed to communicate, either transmit or receive data, whereas the other 

sensor nodes should be put to sleep. If a node does not use its slot, it remains idle. A 

schedule is required to store all the information indicating when the entities can access 

the medium and for how long. For entities to wake up right at the beginning of their 

allocated slot, time synchronization is necessary. The design of this protocol implicitly 

handles collisions, idle listening, and overhearing without the aid of additional 

mechanisms. 

Even though schedule-based protocols solve collisions, idle listening, and 

overhearing, creating and maintaining the schedule and the use of time synchronization 

entail signalling traffic and memory. In addition, they are not as flexible and adaptable to 

changes in the network as contention-based protocols. Both schemes have their 

advantages and disadvantages making it hard to evaluate which design outperforms the 
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other; consequently, a standard MAC protocol cannot be elected since it highly depends 

on the application. 

1.4.2 Routing Protocols 

Routing protocols are responsible for selecting which sensor node to forward an 

incoming packet to and forming a route from the source to the sink. Based on the network 

structure, routing protocols can be classified into the following groups [9]: 

• Flat-based routing: In flat-based routing protocols, all the nodes in the network 

are equivalent and perform the same tasks. Moreover, the nodes cooperate with 

each other in order to find routes. 

• Hierarchical-based routing: For hierarchical-based routing, the nodes in the 

network are organized into clusters. Unlike flat-based routing, the nodes in 

hierarchical-based routing take part in different responsibilities: cluster head and 

member node of a cluster. 

Unlike traditional routing protocols, where routes are usually computed based on the 

smallest hop count, the routing protocols for WSNs should determine the paths based on 

a metric that optimizes network lifetime. For example, if routes that consume less energy 

to transmit data packets or that have a higher available battery capacity are chosen, the 

lifetime of a network can be lengthened [4,9]. 
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1.5 Coverage, Connectivity, and Lifetime 

A WSN is considered reliable and effective depending on its ability to detect an 

event and deliver it to the sink. Coverage and connectivity are performance metrics that 

define the efficaciousness of sensing and communication, respectively. An area is totally 

covered if every point in that area is within the sensing range1 of an active sensor node. 

Therefore, a network that provides complete coverage can detect all events. An area is 

considered connected if all the active sensor nodes in that area can communicate with 

each other; in other words, there exists at least one path between any pair of active nodes 

[10]. Hence, if an event is sensed in a fully connected network, this data will be 

guaranteed delivery to its destination. Thus, coverage and connectivity are key QoS 

measures. 

Applications that use a higher degree of sensing coverage, meaning a region is 

monitored by more than one sensor node, make the network more accurate and fault 

tolerant. If a sensor node can report to the destination via various paths, the network 

becomes more robust and higher throughput is achieved. Safety-critical applications, such 

as surveillance, security and targeting, require a high degree of sensing coverage and 

network connectivity [11]. These applications do not abide even a small loss of coverage 

or connectivity. Ideally, a WSN should be accurate, fault tolerant, and robust; however, 

these features require more sensor nodes to remain active, which involves more energy 

1 The sensing range of a sensor node is the area where its sensor can detect an event; 
whereas the carrier sensing range of a sensor node is the area where the neighboring 
sensor nodes must suppress their transmission to avoid collision when the channel is 
busy. 
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consumption by the overall network resulting in shortening the lifetime of a WSN. If a 

network can effectively work without the need of a high degree of sensing coverage and 

network connectivity, the network lifetime can be considerably extended at a small cost 

of the accuracy, fault tolerance and robustness. 

Although most studies related to sensing coverage have concentrated on the 

completely covered network problem, in some cases full coverage is unattainable or 

redundant. For example, a WSN for weather forecasting requires at least 90% of the 

monitored region to be covered in order for the network to be acceptable [12]. Moreover, 

the deployment of sensor nodes has an effect on the sensing coverage. For regular 

deployment, the sensor nodes can be placed in a fashion to ensure complete coverage. On 

the other hand, for random deployment, coverage of an area can never be guaranteed. 

Even with a high sensor node density, there is a chance that a small portion of a region 

may not be covered. In addition, as the WSN ages, sensor nodes die, because of their 

depletion of energy, and therefore the density of sensor nodes will decrease. Fewer sensor 

nodes in a region will eventually find it harder to monitor the whole area which will 

result in sections of the region not being monitored. Thus, depending on the application, 

partially covering a monitored region with a given coverage threshold is sufficient and 

more realistic than full coverage [12]. Furthermore, fewer sensor nodes are needed for 

partial coverage than for full coverage. Hence, with partial coverage, energy is conserved 

throughout the network, since more sensor nodes can be put to sleep, resulting in 

lengthening the lifespan of the network. 
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The lifetime of a network is the period of time during which it functions until it 

becomes unserviceable [13]. In much work, the network is considered unserviceable the 

moment that the whole area cannot be fully covered or when the network is not 

completely connected. Depending on the application, such as environmental monitoring, 

full sensing coverage and network connectivity is not required for the network to operate 

fruitfully. As long as the percentage of disconnected sensor nodes and uncovered areas 

are above a threshold value, the practicality of the network will not be harmed. 

1.6 Related Literature 

Next, we briefly discuss past work related to lifetime, coverage and connectivity 

ofWSNs. 

In [10], n sensor nodes are placed in a unit square grid-based network, which is a 

network divided into mini squares as shown in Figure 1.4. 

Figure 1.4: Square Grid-Based Network 

The authors found that the necessary and sufficient condition for attaining both full area 

coverage and connectivity is 

2 ln(n) 
p(n)r (n) « 

n 

where p(n) is the probability that a sensor node is active and r(n) is the transmission 

radius. 

16 



In [14], the connected ^-coverage problem was presented. The authors find a set 

of sensor nodes needed to cover every point in the monitored area by at least k sensor 

nodes and that are connected. In [11], by assuming that the transmission range of each 

sensor node is at least twice its sensing range, the authors show that ^-coverage implies k-

connectivity. Subsequently, an algorithm which provides different degrees of coverage 

and connectivity is introduced. 

In [12], the partial coverage problem for a given coverage threshold is analyzed. 

The authors propose an algorithm that finds a subset of sensor nodes that will partially 

cover the monitored region with a given coverage guarantee and that will be connected. 

The performance of the algorithm is then evaluated through experimental simulations. 

In [15], the lower bound of connectivity probability is examined for sensor 

networks. The monitored area is separated into a grid of blocks, illustrated in Figure 1.4, 

where n sensor nodes are uniformly distributed in a block. The connectivity probability is 

first found for each small block. Then, the small blocks are combined into a larger block 

until the entire network comes together. The connectivity probability of the whole sensor 

networks is found gradually and is based on the connectivity probability of the small 

blocks. 

In [16], the area coverage (fa) of an arbitrary circular area with radius r, equal to 

the sensing range of the sensor nodes, is found. This scenario is shown in Figure 1.5 [1]. 
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Figure 1.5: Determining Area Coverage 

The authors have assumed that the deployment of sensor nodes in the network is 

according to the Poisson distribution with parameter X. The probability that at least one 

sensor node is found in the area circling point q is given by 

fa=\-e*°* (1.1) 

This probability also gives the percentage of the area coverage given that sensor density 

in the area is A,. Hence, from this equation, we can also find the density of sensor nodes 

required in an area to achieve a specific area coverage: 

m-fj 
x = - w1 

Reference [17] reveals that a network with n sensor nodes randomly placed in the 

area is asymptotically disconnected with probability one as n increases if each node is 

connected to less than 0.074 ln(n) neighbours. On the other hand, the network is 

asymptotically connected with probability approaching one as n increases if each node is 

connected to more than 5.Ill A ln(«) neighbours. In [18], the authors ameliorated the 

bound by proving that a network is asymptotically connected if each node has 2.718 ln(«) 

neighbours. 
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1.7 Research Objectives and Contributions of the Thesis 

The objective of this thesis is to study the network lifetime of a WSN by 

evaluating the connectivity of the network as a function of time. Network lifetime highly 

depends on the sensing coverage and network connectivity. The modeling in this thesis 

inclusively handles coverage. In related work, a network is considered as connected when 

all the active sensor nodes in the network can communicate with each other. However, if 

two nodes are not connected but this path is not involved in relaying the sensed data to 

the sink, the sink will still receive this information, resulting in the network being 

serviceable. In this thesis, the definition of full network connectivity is changed to when 

all the active sensor nodes can communicate with the sink. Moreover, in contrast to the 

related literature, this analysis does not require the number of sensor nodes in the network 

to approach infinity in order to guarantee network connectivity. 

The analysis is appropriate for a non-safety-critical area monitoring application 

where a large number of sensor nodes are randomly deployed over a region for some 

event to be monitored, e.g. environmental monitoring and weather forecasting. Unlike 

[11] and [14], this application does not demand a high degree of coverage and 

connectivity. Additionally, full sensing coverage and network connectivity is not needed 

for this application to function effectively as long as it remains above a given value, as 

presented in [12]. Therefore, the network lifetime, in this case, is considered as the time it 

takes before a percentage of sensor nodes that cannot communicate with the sink reaches 

a threshold value. The following explains the computation of the network lifetime. 
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First, the probability distribution of the lifetime of a single sensor node is derived 

by modeling a sensor node as an Ml MIX queue. In order to save energy, the sensor nodes 

are turned off when they have nothing to do and are reawakened when they are needed 

for communication (transmit or receive data). Hence, a contention-based protocol with a 

periodic wakeup scheme may be used for the MAC protocol. The transceiver of a sensor 

node alternates between idle and busy periods. A sensor node enters the busy period 

when it receives either measured data by its sensor or relayed data by its neighbouring 

sensor nodes in the network. During the idle periods, the sensor nodes are put to sleep, 

since they do not perform any tasks, and we assume that no energy is consumed. 

Next, the connectivity probability between the sensor nodes in the network and 

the sink is determined. The sensor nodes are deployed over a large rectangular area. We 

assume that the deployment of the sensor nodes in the monitored area is according to the 

Poisson distribution. The monitored area is divided into a grid of virtual blocks, as 

described in [10] and [15], where the mini squares, called cells, each have a side equal to 

the transmission range of a sensor node. As a result, if a cell has connectivity to the sink, 

then all the sensor nodes residing in that cell will have connectivity to the sink. Thus, the 

problem under consideration reduces to the derivation of the connectivity probability of a 

cell to the sink. The sensor nodes in the network are equivalent and perform the same 

tasks, as in a flat-based routing protocol. We assume that data will be relayed from top to 

bottom, from right to left, and from left to right. The data will not be allowed to flow 

from bottom towards top, because it will be in the reverse direction of the sink. Given an 

average number of sensor nodes in a cell, the connectivity probability of two adjacent 
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cells is determined. From this result, we then discover if a sensor node can communicate 

with the sink to determine the network connectivity probability. 

Finally, the results found for the probability distribution of the lifetime of a single 

sensor node and the network connectivity probability are integrated to determine the 

network lifetime. 

1.8 Organization of Thesis 

The thesis is organized as follows: 

Chapter 1 Introduction presents the fundamental idea of wireless sensor networks, 

the reason of the study and the organization of the thesis. 

Chapter 2 Lifetime of a Sensor Node explains the derivation of the probability 

distribution of the lifetime of a single sensor node. The results for different scenarios are 

shown at the end of the chapter. 

Chapter 3 Derivation of the Connectivity Probability for Two Adjacent Cells 

obtains the connectivity probability of two adjacent cells for a grid-based network. 

Chapter 4 Network Connectivity determines the percentage of sensor nodes in the 

network that can communicate with the sink. The numerical and simulation results are 

shown at the end of the chapter as a function of adjacent cell connectivity probability. 

Chapter 5 Network Lifetime discovers the network connectivity of a WSN over 

time by integrating the results obtained in the previous chapters. 

Chapter 6 Conclusion describes the main results obtained in this thesis. 

21 



CHAPTER 2: 

LIFETIME OF A SENSOR NODE 

2.1 Introduction 

The objective of this chapter is to derive the probability distribution of the 

lifetime of a sensor node. The results should be useful in the design of WSNs. Since 

many sensor nodes in WSNs are battery-operated, the lifetime of a sensor node is the 

time between its activation and the expiration of its battery. When the battery dies, the 

sensor node dies. Energy-efficient operations must be performed in order to maximize the 

lifetime of the network. One approach to save energy is to turn the sensor nodes off when 

they have nothing to do and wake them up when they are needed for communication 

(transmitting or receiving data) since most energy is consumed by these activities. 

2.2 Past Work on Sensor Node Lifetime 

Next, we briefly discuss past work that has considered modeling of sensor nodes. 

The lifetime of a sensor node had also been studied in [19], which assumed that the 

arrival of messages to a sensor node is according to a Poisson process but messages have 

fixed lengths. The paper, without a proof, states that the probability density function of 

the lifetime of a sensor node follows an Erlang distribution. The degree and parameter of 

the Erlang distribution depend on the message arrival rate, message length, and the 
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amount of energy needed to transmit a message. In this thesis, we show that a sensor 

node lifetime has a more complicated distribution than an Erlang distribution. 

A sensor node has been modeled as an Ml MIX queue in [20], which also assumed 

that a node has two states, active and sleep states. The node alternates between the active 

and sleep states and the residence time in each visit to a state is an independent 

exponentially distributed random variable with different parameters. The main difficulty 

of the model is that a node goes to sleep independent of its existing traffic backlog. The 

paper did not attempt to derive lifetime distribution of a sensor node, since the objective 

of the paper has been to study the network throughput and its energy consumption. 

In [21], a sensor node has been modeled using a discrete time Markov chain. As 

in [20], a sensor node alternates between active and sleep states and the residence time 

during a visit to each state is assumed to be a geometrically distributed independent 

random variable. The model allows the beginning of a node's sleep time to be deferred 

until its queue becomes empty. However, during this deferral, the arrival of new 

messages to the node is not allowed. Then, the paper determines the probability transition 

matrix which is used to determine message throughput and mean message length of a 

node. The paper then studies network capacity and energy consumption assuming node 

independence except for loading. 

In both [20] and [21], the amount of time that a node remains in the active state is 

independent of the state of the system, i.e. queue content. This will be a significant 
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disadvantage in those applications that there may not be any activity in the network for 

long periods of time and followed by a sudden burst of activity. During that burst of 

activity, it will be a far better strategy for a node not to sleep as long as its queue is 

nonempty, in order not to block the routing of the data to the sink. Thus, from this point 

of view, the model in this thesis is closer to the real world scenarios. 

2.3 Structure of the Lifetime of a Sensor Node 

The transceiver of a sensor node is divided into cycles, which are composed of an 

idle and a busy period, as shown in Figure 2.1 

Cl C2 Cl Cn 

I 1 1 h- ••• H r-

0 7 • 7 • 7 i Time — • 
li b, 12 bi /? bi i„ b„ 

I 1 1 1 1 H 1- — H 1 h-
idle busy idle busy idle busy idle busy 

Figure 2.1: n Cycles of a Sensor Node 

where c, is the duration of the /th cycle, i, is the /* idle period (the idle period belonging to 

the z'th cycle), and b-, is the z'th busy period (the busy period belonging to the fh cycle). 

The transceiver of a sensor node is idle when it does not perform any tasks. 

Therefore, during the idle periods, the sensor nodes are put to sleep and we assume that 

no energy is consumed. On the other hand, the transceiver of a sensor node is busy when 

it needs to transmit or receive data. A sensor node enters the busy period when it receives 

either measured data by its sensor or relayed data by its neighboring sensor nodes in the 

network. It then goes back to sleep when it has transmitted all its acquired messages; 
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hence, energy is consumed during the busy periods. The transition between the idle and 

busy states requires extra energy. However, we assume that this energy consumption is 

negligible. As a result, the battery dies when the sum of all the busy periods up to a 

certain time t is greater than the battery life. This scenario is displayed in Figure 2.2. 

NL 
A • 

| 1 1 1 1 1 |_ . . . _ | ^ 1_ Time —> 
idle busy idle busy idle busy idle Tbusy 

t 

Figure 2.2: Lifetime of a Sensor Node 

where NL is the lifetime of a sensor node. At time t =NL, the sensor node ceases to 

function because the end of the battery's lifetime (expressed as BL) is reached. Given that 

the sensor node alternates between idle and busy periods, the lifetime of a sensor node 

will be larger than the lifetime of its battery. 

Under the assumption that no energy is consumed during the idle periods, the 

sensor node will die during a busy period. For example, n cycles are completed before the 

sensor node dies during the («+l)st busy period. We assume that a sensor node will not 

start a busy period if the battery is low. Thus, the sensor node will stop operating at the 

end of the nth cycle. Put differently, NL will be equal to the duration of all the n cycles 

combined. Let ITn and BTn denote the total duration of idle and busy periods for n cycles 

respectively. Then, 

ITn=th . BTm=Yj>, (2.1) 
1 = 1 !"=1 

Defining CTn as, 
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CT„=BT„+ITn (2.2) 

From the explanation given above, 

NL = CT (2.3) 

Let us now examine the queueing system of a sensor node. Assume that when a 

sensor node's queue is empty, a received message will go into service instantly. In other 

words, the message will experience no waiting time when a sensor node is idle. A sensor 

node becomes idle once it has serviced all the messages waiting in its queue. The 

queueing system is illustrated in Figure 2.3, where Mi represents the ith message arrival. 
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Figure 2.3: Queuing System of a Sensor Node 

The arrow arriving at the queue line indicates that a message has entered the 

system and has been queued into a buffer with infinite capacity. The queued messages are 

served by a single server according to a first-come-first-served order of service. When the 

server is available, a message from the queue enters service, as shown by the arrow 

departing from the queue line and approaching the service line. Once the message has 

been served, it exits the system, as depicted by the arrow leaving from the service line. 
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The idle period is represented as the interval between the departure of a message 

which resulted in the server becoming idle and the arrival of a new message. Referring to 

Figure 2.3, the idle period is the interval between the departure of Mi+j and the arrival of 

Mi+2, where Mi+2 is the newly incoming message. 

The busy period begins when a message arrives to the sensor node while it is idle 

(no messages are waiting in the queue). During the service time of the message that 

initiated the busy period, if no other messages arrive to the sensor node, the busy period 

will be equivalent to the service time of this message. This is shown in Figure 2.3 where 

Mi+2 arrives to an idle sensor node and no messages arrive during its service time. 

On the other hand, if at least one message arrives to the sensor node during this 

service time, the busy period will be the sum of the service time of the message that 

initiated the busy period and of all the messages that arrive until the system is empty. The 

busy period terminates when the last message waiting in the queue departs from the 

system and no new messages arrive. This scenario is illustrated in Figure 2.3. The arrival 

of message M, initiates the busy period. During the service time of A/,, message Mj+i 

arrives to the sensor node and waits in the queue until Mi is serviced. Once Mt departs the 

system, Mi+i will enter service. Since no messages enter the system during M,+/s service 

time, the busy period will terminate once Mi+] leaves the system. In this case, the busy 

period will be the sum of Mi's and A/}+;'s service times. 
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2.4 Modeling of a Sensor Node as an MIMIX Queue 

We will assume that the arrival of messages to a sensor node is according to a 

Poisson process and transmission time of a message is exponentially distributed. Thus, a 

sensor node will be modeled as an MIMIX queue. A network of Ml Mil queues can be 

modeled as a Jackson Network [22, 23] in which the arrivals at any sensor node whether 

locally generated (sensed data) or from another sensor node (relay data) are Poisson. 

Therefore, the inter-arrival and service times of a sensor node are exponentially 

distributed, each with a different mean value, with A as the arrival rate, // as the service 

rate, and p = A//j as the load. Consequently, the idle and busy periods of a sensor node 

will correspond to the idle and busy periods for an MIMIX queue. The idle period 

durations (/,) and the busy period durations (£,-) are respectively independent, identically 

distributed (iid) random variables, each with a different distribution [23]. 

The idle period in an MIMIX queue has the same distribution as the inter-arrival 

time exponential with mean XI A. Therefore, the Laplace transform (LT) of an idle period 

is the Laplace transform of the pdf of the inter-arrival time, 

s+A 

Next, for subsequent use we will also give LT of ITn defined in (2.1). The LT of 

the sum of n idle periods is given by, 

/ 7 » = [l(s)f 

Thus from Eq. (2.4) we obtain immediately that, 
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fl»= 
A 

s + A 
(2.5) 

ITn(s) corresponds to the Laplace transform of an nth degree Erlang distribution. The 

corresponding probability density function of this distribution is 

Aex\AtYx. 
f,At) = - (n-l)l 

t>0,n>\ (2.6) 

The average duration of the sum of n idle periods is given by, 

" A 
(2.7) 

The Laplace transform for the busy period (denoted as B(s)) for an M/G/l queue 

can be expressed as [24] 

B{s) = M(s + A-AB(s)) (2.8) 

where M(s) is the Laplace transform of the service time, which is exponentially 

distributed. We then have 

M(s) = - M 
s + ju 

(2.9) 

With the help of (2.9), B(s) is obtained by solving equation (2.8) as 

B(s) M 
s + A- AB(s) + ju 

B(s) 

A[B(S)J - \p + A + s]B(s) + fj. = 0 

= M + A + s-[{M + A + sy-4MAY2. lB(s)l < j > R e ( ^ } > 0 (2.10) 

We note that the LT for the busy period can be solved for any service time distribution. 

However, it is difficult to find a closed form equation when the message transmission 
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time is not exponentially distributed; as an alternative, moments can be used to 

approximate this expression in future studies. 

Next, for subsequent use we will also give LT of BTn defined in (2.1). Since the 

busy periods (&,•) are iid random variables, the Laplace transform of the sum of n busy 

periods is given by, 

BT„(s) = [B(s)]' 

Thus from Eq. (2.10) we obtain immediately that 

BT„(s) = 
ju + X + s - [(// + A + sf - 4//A 

21 
(2.11) 

The probability density function of the sum of n busy periods, fBT (t), can be obtained by 

the inversion of the above equation. The inversion has been carried out with the use of 

the following transform pair [25] 

-(s2-a 2V/2 <=> 
na"In{at) 

Re(n) > 0 

where 

at. 
l + 2n 

o \n + mf.m\ 

In the above, /„ is the modified Bessel function of the first kind of order n. 

The density function is given by, 

-(M + A)t 

fur, (0 = W~nI» M t>0,n>\ 
tp< 

(2.12) 
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The average duration of the sum of n busy periods is given by, 

BTn=-^- (2.13) 
jU-A 

2.5 Derivation of the Lifetime Distribution of a Sensor Node 

Next, we will determine the probability distribution of the lifetime of a sensor 

node defined as, 

FNL (t) = P[NL <t] = l- P[NL > t] 

We calculate the probability distribution of the lifetime of a sensor node by conditioning 

on N, which is defined as the number of completed cycles when the battery dies. The 

cumulative distribution function of the lifetime of a sensor node depends on N and may 

then be written as 

00 

FNL(t) = F[NL <t] = J^P[NL <t\N = n]P[N = n] (2.14) 

The subsequent subsections will comprise the following: first, given that n cycles 

have been completed throughout a sensor node's lifetime, the conditional cumulative 

distribution function of the lifetime of a sensor node (P[NL < t\ N = n]) is determined; 

second, the probability mass function of the number of completed cycles when the battery 

dies (P[N = «]) is obtained; third, the cumulative distribution function of JVX (FNL(t)) by 

unconditioning with respect to N is found; finally, for purposes of comparison, the 

average lifetime of a sensor node is determined using a purely average value approach. 
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2.5.1 Conditional CDF ofNL Given N 

Given that n cycles have been completed during the lifetime of a sensor node, 

N=n, then, from equations (2.2) and (2.3), 

NL = BTn+ITn (2.15) 

Since we have assumed that the battery dies exactly at the end of the «th cycle and energy 

is used up only during the busy periods, the total duration of the busy periods for n 

cycles, BTn, will be equivalent to the battery's lifetime (BL), where BL is a constant of a 

known value. Then Eq. (2.15) becomes 

NL = BL + ITn (2.16) 

The probability density function of the linear function given in Eq. (2.16) is determined 

as [26], 

fNL{t\n) = fITn{t-BL) 

Thus from Eq. (2.6), the conditional pdf of NL given TV = n is 

/K(,w = i £ ^ M ^ f c t>_BL,n>_, (2,7) 
(n-\)\ 

Next, the conditional cumulative distribution function of NL given N = n is found 

by integrating the conditional pdf given in Eq. (2.17) as follows: 

FNL{t\n) = P[NL<t\N = n}= \fNL{y\n)dy 
BL 

= T^})e^-BLUy-BL)rdy 
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Following some substitutions, the above integral can be represented as a lower 

incomplete gamma function: 

X 

Y{g,x)=\e't*-Xdt 
o 

Therefore, the conditional CDF of NL given N = n may be written as 

FNL{t\n) = -±--y{n,A{t-BL)\ t>BL,n>\ (2.18) 
(n -1)! 

2.5.2 The Probability Mass Function ofN 

The probability mass function of n cycles being completed when the battery dies 

may be determined as follows [27]: 

p[N = n]=P[N>n]-P[N>n + \] (2.19) 

If more than n cycles have been completed during a sensor node's lifetime, then the sum 

of n busy periods does not exceed BL since the battery does not die at the end of the «th 

cycle: 

P[N>n]=P[BTn <BL] 

Therefore, the probability mass function of n cycles being completed when the battery 

dies can be written as 

p[N - n] = P[BTn < BL\- P[BTll+l < BL] (2.20) 

The probability of the event {BTn <BL} is found by integrating the pdf of BTn (found in 

Eq. (2.12)) as follows 
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BL 

FBTK(BL) = P[BT„<BL]= \fBTn{t)dt (2.21) 
0 

This integral is difficult to evaluate in closed form. Therefore the alternative approach of 

numerical integration has been used in evaluation of FBT {BL). 

Now Eq. (2.20) can be employed by using the results obtained by Eq. (2.21) in order to 

find the probability mass function of N, 

pN(n) = P[N = n] = FBTn (BL) - FBT^ (BL) (2.22) 

Finally, the cumulative distribution function of TV is given by, 

QO 

where pN(n) is the probability mass function of N given in Eq. (2.22) and u(x) is the 

unit step function. We note that the average number of cycles completed during the 

lifetime of a sensor node, N, may be computed as 

N^npM (2.24) 

2.5.3 Unconditional CDF of Lifetime of a Sensor Node 

Substitution of (2.18) and (2.22) into (2.14) gives the unconditional CDF of 

lifetime of a sensor node, 

^ ( 0 = Z 7 ^ H » . ^ - ^ ) ) K . . ( 5 Z ) - F „ r f ( 5 £ ^ t>BL (2.25) 
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The above CDF is the main result of this chapter. It is a complicated expression involving 

modified Bessel function of first order, but it can be evaluated numerically. 

2.5.4 Average Lifetime of a Sensor Node 

In this subsection, we determine a closed form expression for the average lifetime 

of a sensor node. First, we determine the average number of cycles in the lifetime of a 

sensor node. We note that the number of cycles completed during the lifetime of a sensor 

node forms a stopping time for the sum of the busy periods in battery's lifetime. From 

Wald's identity, [27], the average number of cycles in the lifetime is given by, 

ju-A 

N = BL(ju-A) (2.26) 

The above gives an alternative closed form expression to (2.24) for the average number 

of cycles completed during the lifetime of a sensor node. 

From Eq. (2.7) and (2.13), the average lifetime of a sensor node is given by 

N N Nju 
NL = BT +IT = + — 

" n ju-A A Qi-A)A 

Substituting from (2.26) in the above, 

NL = ^ - (2.27) 

A 

As it may be seen, the average lifetime of a sensor node depends on the battery life, 

message arrival and service rates. 
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2.6 Numerical Results 

In this section, we present some numerical results regarding the analysis 

developed in this chapter. We plot various figures that show the probability distribution 

of the lifetime number of cycles (2.23) and the distribution of lifetime (2.25) for different 

parameter values. We also give some validity checks. As explained before the sensor 

node lifetime depends on battery life, message generation and service rates. We present 

results for three values of battery life, BL =72, 96,120hours, which are the typical battery 

life values with the present day technology [28]. We set the value of message service rate 

to ju =150messages/hour. 

The evaluation of (2.23) and (2.25) involves an infinite summation that depends 

on the number of cycles completed during the lifetime of a sensor node. In the calculation 

of these distributions, the summation needs to be truncated and therefore the accuracy of 

this truncation is a concern. We have determined the validity of this approach by 

calculating the average number of the cycles in the lifetime of a sensor node from (2.24) 

and (2.26). The latter has a closed form expression while the former depends on the same 

infinite summation that the calculations in (2.23) and (2.25) depend. Table 2.1 presents 

this average for different values of battery life and message arrival rates. It may be seen 

that the difference between the results of two calculation methods is almost always less 

than one percent. This gives us the confidence that our numerical results are accurate. 

36 



Table 2.1: Verification of the Average Number of Cycles Completed During a 
Sensor Node's Lifetime 

BL 
72 
72 
72 
96 
120 

X 
15 
75 
135 
135 
135 

Eq.(2.26) 
9720 
5400 
1080 
1440 
1800 

Eq. (2.23) 
9783.4 
5434.2 
1091.7 
1452 

1812.1 

%Diff 
0.65 
0.63 
1.08 
0.83 
0.67 

In Fig. 2.4, we present CDF of the number of cycles completed during the lifetime 

of a sensor node from (2.23) with battery life as a parameter for a constant value of 

message arrival rate A = 135 messages/hour. As may be seen, initially all the curves have 

zero value, then, they approach one in a steep manner. Fig. 2.5 presents the same CDF 

with message arrival rate as a parameter for a battery lifetime of 72 hours. The comments 

made about the previous figure will also apply here. 

~ 1-2 
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<D 0.8 
E 
15 
= 0.6 
o 
CD 

E 0.4 

°- 0.2 

500 1000 1500 2000 2500 
Number of completed cycles (n) 

Figure 2.4: Cumulative Distribution Function of the Number of Cycles in the 
Lifetime for Different Values of BL given that .4=135 messages/hour 
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Figure 2.5: Cumulative Distribution Function of the Number of Cycles in the 
Lifetime for Different Values of X given that BL=11 hours 

In Fig. 2.6, we present the cumulative distribution of a sensor lifetime with battery 

lifetime as a parameter for a constant value of message arrival rate A = 135 

messages/hour. We note that this corresponds to a high traffic load and node utilization 

will be p = 0.9. This means that the node will be almost always busy, thus the battery will 

be drained continuously. It may be seen that initially the curves have zero values and very 

sharply they approach to one. As expected, the sharp rise occurs almost at the battery life. 

This observation gives further confidence that our results are correct. 
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Figure 2.6: Cumulative Distribution Function of the Lifetime of a Sensor Node for 
Different Values of BL given that 2=135 messages/hour 

Fig. 2.7 also shows the CDF of a sensor node's lifetime with message arrival rate 

as a parameter A = 135, 75, 15 for a constant battery life of BL = 72 hours. As before, 

initially, the curves have a zero value and then sharply they approach to one. It may be 

seen that as the message arrival rate drops down, the sensor node life time increases. For 

A = 15, the node will be under a light traffic load with server utilization p= 0.1. For this 

system, the probability that a sensor's lifetime will be less than 700hours is zero, which is 

a tenfold increase in sensor's lifetime compared to battery life. In WSNs that experience 

long periods of inactivity and then a sudden burst of activity, the node utilization will be 

low. Therefore, the model with the assumed traffic loading may characterize a sensor 

node in such a network. 
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Figure 2.7: Cumulative Distribution Function of the Lifetime of a Sensor Node for 
Different Values of X given that BL=12 hours 

Finally, in Tables 2.2 and 2.3, we present the 90, 95 and 99th percentiles of the 

distribution of sensor node lifetime for battery life and message arrival rate as a 

parameter respectively. 

Table 2.2: Percentiles for the CDF of NL with different BL given that ,1=135 and //=150 

Percentile 
90% 
95% 
99% 

BL=72 
81.62 
81.93 
82.8 

BL=96 
108.49 
108.9 

109.83 

BL=120 
135.31 
135.83 
136.82 

Table 2.3: Percentiles for the CDF of NL with different X given that BL=12 and /*=150 

Percentile 
90% 
95% 
99% 

X=15 
736.41 
739.89 
746.37 

X=75 
146.97 
147.76 
148.99 

X=135 
81.62 
81.93 
82.8 
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According to the results obtained above, we can conclude that when we increase 

the battery life of a sensor node, increase the service rate or decrease the arrival rate, the 

lifetime of a sensor node is expected to increase. By equipping a sensor node with a 

battery that supplies more energy, the sensor node can last longer. By augmenting the 

arrival rate, a sensor node will be receiving more messages resulting in performing more 

tasks and sleeping less. Hence, the sensor node will be consuming more energy and the 

sensor node will die faster. If the service rate is high, the sooner a sensor node will 

transmit its messages and go back to sleep. Thus, low service rates consume more energy 

since the sensor node is operating for a longer time. 
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CHAPTER 3: 

DERIVATION OF THE CONNECTIVITY PROBABILITY 

FOR TWO ADJACENT CELLS 

3.1 Introduction 

In this chapter, the sensor nodes will be assumed to be deployed uniformly over a 

large square area. Deployment area will be logically divided into mini squares to be 

referred to as cells. The objective of this chapter is to derive the communications 

connectivity probability of two adjacent cells. This result will be then used, in Chapter 4, 

to determine the connectivity probability between a sensor node and the sink for the 

entire network. 

3.2 Sensor Node Population in a Cell 

In this section, we will consider the distribution of the number of sensor nodes in 

a cell. The sensor nodes are randomly deployed over a square area according to a Poisson 

process with density XA sensor nodes per unit area. The deployment area is then divided 

into cells where each has a side of d units, as illustrated in Figure 3.1. 
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Figure 3.1: Deployment Area Divided into Cells and Representation of a Single Cell 

Let us define s as the cell area and £, as the average number of sensor nodes in a cell, 

s = d2 , % = XAs 

By neglecting the border effects, we assume that each cell is covered by a circular 

area with radius d/2, as shown in Figure 3.1. In other words, a sensor node's sensing 

range is set to d/2. With the help of equation (1.1), we can discover the area coverage, 

fa, of a cell given a specific mean number of sensor nodes in a cell as follows, 

/ a = l - « -fr/4 (3.1) 

fa determines the probability that an event will be detected in a cell, which in fact also 

provides the area coverage of the network since an average of £ sensor nodes reside in 

all the cells. The area coverage for different cell densities is in Table 3.1. We will prove 

that this model inclusively handles coverage in Chapter 5. 

Table 3.1: Area Coverage for Different Cell Densities 

<f 
/ . 

2 

0.79212 

3 

0.90522 

4 

0.956786 

5 

0.980297 

The distribution of the number of sensor nodes within a cell area is given by the 

Poisson distribution 
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PNc = ?x[k nodes in a cell] = e ^' (3.2) 

The probability generating function (PGF) of the Poisson distribution is given by 

N.lz)-±z'PK=±z>HS£ 

Nc{z) = e-w-t) (3.3) 

It is a property of the Poisson process that, given k sensor nodes in a cell, the 

nodes will be independently, uniformly distributed throughout a cell. This property will 

be used extensively in the rest of the chapter. 

3.3 Derivation of the Cell Connectivity Probability 

In this section, we will determine the connectivity probability of two adjacent 

cells. In the following, it will be assumed that the side of each cell (d) will be equal to a 

sensor node's transmission range. As a result, all the sensor nodes within the same cell 

will be connected. If two cells contain sensor nodes within transmission range of each 

other, then, these two cells will have connectivity. If two cells are connected, messages 

can be transmitted from one cell to the other in both directions. 

In the subsequent subsections, the following will be determined: first, the 

probability that a randomly chosen pair of sensor nodes, located in adjacent cells, are 

within range of one another (px); second, the probability that a sensor node in a cell has 

connectivity with at least one sensor node located in the adjacent cell (p2)', finally, the 
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probability that at least one of the sensor nodes in a cell has connectivity with at least one 

of sensor nodes in the adjacent cell (p ) . 

3.3.1 Determining pi 

First, we consider two neighboring cells with one sensor node lying in each as 

shown in Figure 3.2. 

0 d 2d 

Figure 3.2: Two Adjacent Cells Containing One Node 

The coordinates of the sensor nodes satisfy the following constraints, 

0<xA,yA,yB<d , d<xB<2d 

The locations of sensor nodes A and B are distributed uniformly in the left and 

right cell respectively. The probability density functions of these random variables are 

given by: 

fxA (XA) = fxK M = frA iyA) = frK (yB) = 
\\l d 0<xA,yA,yB<d , d<xB<2d 

0 elsewhere 
(3.4) 

Two sensor nodes will be able to communicate directly if L<d where L is the 

distance between them and d is the maximum allowed distance for direct communication 

(the transmission range). The distance between the two sensor nodes is given by 

L = 4ixB-xAf +{yB-yAf (3.5) 
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Let us define px as the probability that the distance between a randomly chosen 

pair of sensor nodes is less than or equal to the transmission range: 

px = Pr[Z < d] 

If yA and yB can be any value between [0, d], the following constraints must be applied 

in order to satisfy L<d. From Eq. (3.5), 

L2<d2 

(xB-xA)2+(yB-yAf<d2 

(xB-xA)2<d2-(yB-yAf 

-yld2-(yB-yA)2 <xB-xA< jd2-(yB-yA)2 

XA ~4dl ~ (yB -yA)2 ^xB<xA+ ^d2 -(yB -yAf 

The lower limit xA -yjd2 -(yB -yA)2 is always less than or equal to d. Hence, 

d<xB<xA+^d2-(yB-yA)2 (3.6) 

since xB > d. 

The upper limit of xB in Eq. (3.6) is always less than or equal to 2d but may also be 

equal to a number less than d. We need to find the limits of xA where the upper limit of 

xB is greater or equal to d. 

xA+^d2-(yB-yA)2 >d 

xA>d- jd2-(yB-yA)2 

Therefore, xA ranges between 

d-^d2-(yB-yAf <xA<d (3.7) 
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With the limits given in equations (3.5) and (3.6), we can now determine />, 

d d d ^A+^d2-(yB-yAf 

Pi = J J J J fx/!,x1!,YA,Ys(xA,xB,yA,yB)dxBdxAdyBdyA (3.8) 
0 ° d-Jd2-(yn-yA)2 d 

where fXA,xBjAJl>(xA,xB,yA,yB) is the joint pdf of XA,XB,YA, and YB. Since these 

random variables are independent of each other, their joint pdf becomes 

JXA,XB,YA,YB \XA>XB->yA->yB) ~ J XA \XA)J XB \XB)JYA W A )JYB 0 ^ ) — , 4 

Then, /?, in equation (3.8) is given by 

d d 

A-TFJ J I 
0 ° d-^d2-(yB-yA) 

d ^A+^d2-(yB-yA)2 

j dxBdxAdyBdyA 

d 

Px 
i d d r "I 

I J J [x^ + 7c/2 - (.yg - >^ f - d\ixAdyBdyA 
0 ° d-^d2-(yB-yA) 

d d 
1 JJ 

I 

A=^r 

*1 
3 

yAd2 y/d 

dyBdyA 

dyA 

3 + 4 6 

2 

= 5/12 (3.9) 

3.3.2 Determining p2 

Now, let us consider two adjacent cells with one sensor node lying in a cell and k 

sensor nodes in the other as shown in Figure 3.3. 

• 
A 

• B2 

• • • 

• & • 

0 d 2d 

Figure 3.3: Two Adjacent Cells Containing One and k Nodes 
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Sensor nodes A and Bj, B2, ..., 5* are distributed uniformly in the left and right cell 

respectively. We would like to determine p2, which is the probability that a randomly 

chosen sensor node in one cell is connected to at least one sensor node in an adjacent cell. 

In this case, the neighboring cells are connected. Since the locations of sensor nodes are 

independent of each other, the connectivity between a pair of sensor nodes is then 

independent of any other pair in the network. 

As explained earlier, the distribution of the number of sensor nodes within the 

right cell is given by the Poisson distribution. The probability generating function (PGF) 

of the number of nodes in the right cell, Nc (z), is given in Eq. (3.3). 

Referring to Figure 3.3, let nr denote the number of sensor nodes in the right cell 

that sensor node A has connectivity with among k sensor nodes. Defining w,- to be a 

Bernoulli variable as follows, 

[\, if two nodes are connected 
u i = \ 

[0, no connectivity 

Ui(z) = p1z + l-p1 

Then, nr is given by the following random summation: 
k 

nr = J^u, 

/=o 

Since we have a random sum of independent random variables, the probability 

generating function can be shown to be 
Nr{z) = Nc{z)\ 
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We note that Nr (0) gives the probability that none of the sensor nodes in the right cell 

have connectivity with sensor node A. Hence, the adjacent cells in this case are connected 

with probability 

p2=l-Nr(0) 

p2 =l-e -{(i-pjz-l+pt) 

z=0 
l-e~SPl =\-e~

XAdlpi (3.10) 

3.3.3 Determining p 

Finally, let us consider two adjacent cells with k and j sensor nodes lying in each 

as shown in Figure 3.4. 

• • • 

it * 
• • • 

0 d 2d 

Figure 3.4: Two Adjacent Cells Containing./ and k Nodes 

Sensor nodes Aj, A2, —, Aj and Bj, B2, ..., Bk are distributed uniformly in the left and right 

cells respectively. We would like to determine p, which is the probability that two 

adjacent cells will have connectivity. If the distance of at least one pair of sensor nodes in 

different cells is less than the transmission range, then, the neighboring cells will be 

connected. 

As before, the distribution of the number of sensor nodes within a cell area is 

given by the Poisson distribution. The PGF for the distribution of k sensor nodes lying is 

a cell is given in Eq. (3.3). 
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Referring to Fig 3.4, let nt denote the number of sensor nodes among j sensor 

nodes in the left cell that has connectivity with at least one of the sensor nodes in the right 

cell. Defining v, to be a Bernoulli variable as follows, 

{1, / / a node in the left cell has connectivity with at least one node in the right cell 

0, no connectivity 

Vi(z) = p2z + l-p2 

Then, ne is given by the following random summation: 

j 

i=0 

We note that the random variables v,. will not be independent of each other because it 

depends on the connectivity of each sensor node in the left cell to the same sensor nodes 

in the right cell. However, in the following, it will be assumed that these random 

variables are independent of each other. Since the number of sensor nodes in the left cell 

also has the Poisson distribution, 

Ne(z) = Nc(z)LVAz) 

The accuracy of the independence assumption will be determined through simulation. 

We note that N( (0) gives the probability that none of the sensor nodes in the left cell 

have connectivity with any of the sensor nodes in the right cell. Hence, the adjacent cells 

are connected with probability 

P = 1-N,(0) 

p = l-e^1-p>z-l+p>)\ =\-e'iPl =\-e-^
d2p2 (3.11) 

lr=0 
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3.4 Numerical and Simulation Results 

In this section, the numerical and Monte Carlo simulation results for the 

connectivity probability for two adjacent cells are compared for different values of £. In 

Table 3.2, we present the numerical and simulation cell connectivity probabilities,/?, as a 

function of sensor node density. Also shown in the table isp2. As may be seen, p2 

provides a lower bound for cell connectivity probability/* except for low density nodes. 

These results are plotted in Figure 3.5. 

Table 3.2: Comparison of Numerical and Simulation Cell Connectivity Probabilities 
as a Function of Cell Node Density 

4 
p Sim 

/?Num 

jP2Num 

1 
0.228 

0.2888 

0.3408 

2 
0.555 

0.6772 

0.5654 

3 

0.748 

0.8824 

0.7135 

4 

0.897 

0.961 

0.8111 

5 
0.958 

0.9874 

0.8755 

6 

0.975 

0.9959 

0.9179 

7 
0.992 

0.9987 

0.9459 

8 

0.992 

0.9996 

0.9643 

9 

0.999 

0.9998 

0.9765 

10 

0.999 

0.9999 

0.9845 

1 
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Figure 3.5: Simulation and Lower and Upper Bound of Numerical Results 
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Since we have assumed that the random variables v, are independent of each other, the 

simulation and numerical results differ when the average number of sensor nodes in a cell 

is small. In Figure 3.5, the numerical results found for p2 and p were plotted in order to 

give a lower and upper bound respectively to the results obtained by simulation. We 

observe that for approximately £<2, the calculated values of p2 and p give useful upper 

bounds. It is not likely that such low node density would be of interest. For 

approximately £ >2, the calculated values of p2 and p give lower and upper bounds, 

respectively. Therefore, the calculated results will provide useful tools during the design 

process of WSN. 

52 



CHAPTER 4: 

NETWORK CONNECTIVITY PROBABILITY 

4.1 Introduction 

In this chapter, we will determine the probability that a sensor node has 

connectivity to the sink. As in chapter 3, the sensor nodes will be assumed to be deployed 

uniformly over a very large rectangular area. Deployment area will be logically divided 

into mini squares to be referred to as cells. The side of each cell will be equal to the 

transmission range of a sensor node. As a result, if a cell has connectivity to the sink, then 

all the sensor nodes residing in that cell will also have connectivity to the sink. Thus, we 

have reduced the problem under consideration to the derivation of the connectivity 

probability of a cell to the sink. 

4.2 Block Structure of the Cells 

It will be assumed that the sensor nodes will be deployed to the entire upper 

Cartesian plane. Figure 4.1 shows the logical division of the deployment area into the 

cells, where a cell is represented by a square with a letter in it. The sink will be located at 

the origin, the mid-point of the bottom of the deployment area. We assume that the flow 

of data will be from top to bottom, from right to left, and from left to right. The data will 
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not be allowed to flow from bottom towards top, because it will be in the reverse 

direction of the sink. 

e 

c 

a 

e 

c 

a 

e 

c 

a 

1 

a 

,i 

r 

j 

b 

f 

c 

b 

e 

c 

b 

e 

c 

b 

f 

c 

A 

f 

(1 

J 

f 

(1 

a 

e 

J 

a 

0 

c 

a 

e 

0 

b 

r 

c 

h 

1 

.1 

b 

f 

cl 

b 

r 

il 

a 

e 

d 

a 

e 

c 

a 

e 

c 

a 

row 3 

row 2 

-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 10 
Sink 

Figure 4.1: Division of the Deployment Area into Cells 

We note that each cell will have four neighbors, above, below, right and left, except for 

the cells in the first row which will have only three neighbors. It will be assumed that the 

connectivity of a cell to each of its neighbors will be independent of the other neighbors. 

Two neighboring cells will have connectivity with probability p, discussed in Chapter 3. 

The connectivity of a cell to its neighbors above, below, right and left will be referred to 

as higher, lower, right and left connectivity respectively. Next, we define a block as a 

group of consecutive cells in a row such that adjacent cells have connectivity with each 

other. In each block, the traffic may flow across the cell boundaries to the left or right. 

The block is an important entity which plays a large role in the sequel. In Figure 4.1, each 

group of consecutive cells in a row that contain the same letter forms a block. In other 

words, the adjacent cells in a block will be connected to each other with probability/) and 

a new block will begin with probability \-p, as shown in Figure 4.2. 

f 

block 

A 
^ 

block block 

( \( ~\ 

\fr Neighboring cells 
are connected 

Figure 4.2: Formation of Blocks 
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The probability that a block contains k cells is given by the geometric distribution [23]: 

Pr(^ = k) = Pr(a block contains k cells) 

Pr(<7 = £) = (!-/>)/""' , k = 1,2,3,... (4.1) 

The PGF of the geometric distribution is expressed as 

Q(z) = E[z<] = Q^& (4.2) 

1 - pz 

From above the average length of a block in number of cells is given by, 

dQ(z)\ 1 q dz r=l (l-/>) 
(4.3) 

The traffic in a block will be trapped if none of the cells of that block has lower 

connectivity. 

4.3 Distribution of the Number of Tagged Cells in a Row 

The blocks, in any row, that have the potential to be connected with the sink will 

be called tagged blocks and the corresponding cells of that block tagged cells. If at least 

one cell of a block is a neighbor to a tagged cell in the row immediately below, then that 

block becomes a tagged block and all its cells tagged cells. Row one always has a single 

tagged block since the cell at the origin is considered to be the sink. The tagged cells in a 

row will be collectively referred to as a segment which will be identified by its row 

number. All the cells in row n which interface the cells in segment n-\ will be tagged 

cells. However, segment n may have additional cells than segment n-\ because the border 

blocks of segment n may extend beyond the boundaries of segment n-\. Clearly, each 

segment will consist of contiguous cells. In Figure 4.1, the shaded blocks are tagged 
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blocks; they have the potential of communicating with the sink. Thus the tagged blocks in 

segment n are those blocks that have complete or partial borders with the tagged blocks 

in segment n-\. Clearly, it is only the tagged cells that may have connectivity to the sink. 

The tagged cells form a wedge on the plane. The following analysis excludes the non-

tagged cells since they can not have connectivity to the sink. As a result of this exclusion, 

the monitored area becomes smaller resulting in it looking like an upside down pyramid 

with a sink located at the bottom, as illustrated in Figure 4.1. However, by adding three 

more sides, it approximately gives a rectangular area with the sink in the middle, as 

shown in Figure 4.3. From symmetry, connectivity in one of the wedges indicates 

connectivity in the entire square. 

> Sink 

Figure 4.3: Combining Wedges in a Square Area 

Next, we will determine the average number of cells in a segment. Let us define 

kn = number of cells in segment n 

in = number of tagged blocks in segment n 

I n = number of additional cells that segment n has compared to segment n-\ on the left side 

rn = number of additional cells that segment n has compared to segment n-\ on the right side 

Figure 4.4 illustrates these symbols. 
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Figure 4.4: Example of Two Consecutive Segments 

In Figure 4.4, three blocks in segment n (i„=3) are bordering the tagged blocks in row n-\ 

(/„_, =2). Row n and n-\ contain kn_x=5 and kn=9 tagged cells respectively. Compared to 

the tagged block in segment «-l, segment n comprises three additional tagged cells to the 

left (£ n) and an additional tagged cell to the right ( rn). 

As pointed above, the border blocks of segment n may extend beyond the 

boundaries of segment n-\. The probability that segment n has j additional cells 

compared to segment n-\ on the left and right side is given by the geometric distribution: 

Pr(^„ =y) = Pr(r„=y) = ( l - J p ) y , 7 = 0,1,2,. (4.4) 

ThePGFsof £„ and r are found below: 
n n 

Ln(z) = R„(z) = E[ze"] = E[zr°]=: 1-P 
1 - pz 

(4.5) 

Since Ln{z) and Rn{z) do not depend on the row number n, the subscript n may be 

dropped as shown below, 

L(z) = R(z) \-p_ 

1- pz 
(4.6) 

Then, the number of cells in segment n is given by, 
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* . = * - i + ' • + ' • , (4-7) 

Since we are assuming infinite number of cells in each row, then, the random variables 

&„_,, £nand rn are independent random variables. Therefore, the PGF of kn is expressed 

as 

Kn(z) = K„_l(z)L(z)R(z) 

The above recursion results in the following explicit formula for Kn (z), 

^„(z) = JK'1(z)[I(2)JR(z)J,-1 (4.8) 

where Kx (z) is the PGF of number of cells in the first segment. Since L(z) = R{z), 

Kn (z) can be expressed as 

/C„(z) = i: i(z)[l(z)f"- , ) (4.9) 

Next we will determineKx{z). From the renewal theory [27], the tagged block in row one 

will be "special" and it will have length bias since longer blocks are more likely to 

include the sink. The probability that this block contains j cells is given by 

mi=j>imzji ( 4 . 1 0 ) 

where Pr(<7 = j) is expressed in (4.1). The PGF of kx is found as 

QO 1 00 

K,{z) = Y?<K =J>J = = I>Pr(<7 = ./V (4.11) 

With the use of the following z-Transform property [29] 

^nfX = z^Fiz) , where F(z) = £ / , z" 
«=o "^ «=o 

Kx (z) is obtained as 

58 



Kx{z) = lz~Q(z) 
q dz 

where Q(z) is given by 4.2. Substituting from (4.2) into the above, we find 

1 d 
Kl(z) = =z 

dz 
0-jQz 
1- pz 

Kx{z) = lz 
(l-pzf 

With the substitution of (4.3), Kx{z) is expressed as 

Ki(z) = z\ 1-P 
I- pz 

(4.12) 

Finally, substitution of (4.6) and (4.12) into (4.8) gives the PGF of the number of cells in 

segment n, 

2(n-l) 

Kn(z) = z 
~\-p~ 

I- pz 

2 
~\-p~ 

I- pz 

K„(z) = z 
\-p_ 

I- pz 

In 

(4.13) 

From (4.12), the average length of the first segment is given by, 

dKx (z) 

dz z=\ 

1+p 
\-p 

(4.14) 

Table 4.1 gives the comparison of the numerical and simulation results for the average 

length of the first segment. The numerical results we obtained through (4.14). As we see, 

the correspondence between numerical and simulation results is excellent and proves that 

the tagged block in row one is in fact "special." Hence, the hypothesis that the first 

segment will have length bias is correct. 
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Table 4.1: Numerical and Simulation Results for the Average Length of the First 
Segment as a Function of Cell Connectivity Probability,/? 

p 
0.1 
0.3 
0.5 
0.7 
0.9 

NUM 
19 

5.666667 
3 

1.857143 
1.222222 

SIM 
19.0602 
5.6718 
2.9912 
1.8525 
1.2144 

4.4 Distribution of the Number of Tagged Blocks in a Row 

Next, we will derive the distribution of the number of tagged blocks in a segment. 

As shown in Figure 4.5 the boundary of adjacent cells is like a gate, if the two cells have 

connectivity then the gate is opened otherwise it is closed. All the gates in a block are 

open and on the other hand the closed gates form the borders between the blocks in a 

row. 

\l 1/ 
gates 

Figure 4.5: Gates of a Block 

Next let us consider the cells in segment n that directly interface the cells in 

segment n-\. The number of these cells will be given by kn_x. Clearly, the number of 

blocks in segment n will be determined only by these kn_x cells. The extra cells in 

segment n compared to segment n-\ do not create new blocks in segment n. Let us define, 

dn = number of gates between adjacent cells in segment n within the borders of segment n-\ 

fn = number of gates from among dn which are closed. 
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Figure 4.6 illustrates these symbols. 
fn =2 

rowH-1 

dn =4 

Figure 4.6: Example of how to Calculate the Number of Blocks in Segment n 

Then, we have, 

d — k , —1 
II H-\ 

(4.15) 

»•„=/ .+! (4-16) 

Since each gate will be open independent of the other gates with probability p and closed 

with probability \-p, the conditional distribution of the number of closed gates is given 

by the binomial distribution, 

Pi</.=f I *.- .=*) = 
Ot-0 

( 1 - / ? ) ' / / - ' , z = 0,l,2,...,£-l (4.17) 
V « J 

The PGF of the binomial distribution may be expressed as 

F„ (z | *_, = *) = gz'' Pr(/„ = i | *_, = *) 
1=0 

F„(z|A:„_1=A:) = b + (l- jp)zr-1 

From (4.16), the conditional PGF of the distribution of in is given by, 

In(z\k„_l=k) = zFll(Z\kn_l=k) 

Substituting (4.18) into the above equation gives the following conditional PGF 

(4.18) 

I,1(z\k„_l=k) = z(p + (l-p)z) k-\ (4.19) 

Finally, the PGF of the distribution of in is found by unconditioning (4.19) with respect 

to the probability distribution of the number of cells in segment n-\, 
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I„(z) = f>(/> + (1 -p)zf-i P r ^ , = k) 

/„(*) = 

*=1 

Z 

p + (l-p)ztt 

W = p + (\-p)z 

p + (l-p)z 

Substituting (4.13) into the above equation, 

Zz'Mk.-i'k) 
z=p+(l-p)z 

p)z 

I„(z). 2 {p + {i-p)4 

\-p 

\-P 

p + {\-p)z l-p(p + (\-p)z) 

2(«-l) 

2(«-D 

(\-p)(l + p-pz) 

-| 2(n-l) 

/ . ( * ) = * 
1 (4.20) 

_(l + /?-jpz)_ 

The above gives the PGF of the distribution of the number of tagged blocks in segment n 

and it is the main result of this section. The average number of tagged blocks in segment 

n is given by, 

E[i„} = 
dl„(z) 

dz 

m, ]=l(-pz+P+or*"-0+z(2(" - »pi(-pz+p+i)r("_l)_i L 
E[i„] = l + 2(n-l)p 

The above may be written as, 

E[iJ = 1 + 2(/i - 2 + \)p 

E[in] = l + 2(n-2)p + 2p 

(4.21) 
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which may be written as, 

E[in] = E[in_l] + 2p (4.22) 

The above equation expresses average number of tagged blocks recursively. As may be 

seen, the average number of tagged blocks in segment n is higher by 2p than in segment 

n-\, which makes sense since the probability of one or more cells in the right or left hand 

block is p. As a result of the special length of the border blocks, the average number of 

tagged blocks in each row increases by the constant amount 2p. 

Figure 4.7 gives the comparison of the numerical and simulation results for the average 

number of tagged blocks in each row. As we see, the correspondence between numerical 

and simulation results is excellent. 

240 
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148 150 

Figure 4.7: Numerical and Simulation Results for the Average Number of Tagged 
Blocks as a Function of Row Number for Different Cell Connectivity Probability,/; 
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4.5 Length Distribution of the Tagged Blocks 

Next, we will determine the distribution of the number of cells in a tagged block. 

From the previous section, the number of closed gates interfacing the cells in segment n-\ 

determines the number of tagged blocks in segment n. Since each gate performs an 

independent Bernoulli trial, then, the length of the blocks will have geometric distribution 

given by (4.1). As pointed out earlier on, the border blocks of segment n may extend 

beyond the boundaries of segment n-\ (see Figure 4.4). The distribution of this extension 

length is given by the geometric distribution given in (4.4). The extension introduces 

length bias of the renewal processes to the border blocks. As a result, the length 

distribution of the border blocks is given by (4.10). Figure 4.8 shows the make up of 

these "special" blocks. 

Lifetime 

Age 
' Residual 
i Life 

-**+• 

m 
| 

m 
row n 

row n-l 

\_ J, 

h-i 

Figure 4.8: Length of Border Blocks According to the Renewal Theory 

The simulation results have confirmed that there are two types of tagged blocks: border 

and non-border blocks. Figures 4.9 a, b present the mean number of cells as a function of 

cell connectivity probability, p, in regular and special blocks from (4.3) and (4.14) 

respectively. In each figure we also plot the corresponding simulation results. As may be 

seen, the numerical and simulation results have excellent agreement. 
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0.3 0.4 0.5 0.6 0.7 
cell connectivity probability (p) 

(a) 

0.9 

0.3 0.4 0.5 0.6 0.7 
cell connectivity probability (p) 

Figure 4.9: Numerical and Simulation Results for the Mean Number of Cells as a 
Function of Cell Connectivity Probability,/;, in Regular (a) and Special Blocks (b) 
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4.6 Classification of the Tagged Blocks 

Next, we will classify the tagged blocks in a segment into two groups as primary 

and secondary blocks. Those tagged blocks that have connectivity to the sink will be 

referred to as primary blocks and the remainder will be referred to as secondary blocks. A 

tagged block will be identified as a primary block, if and only if, it has connectivity to 

one or more primary blocks in the row below itself. If at least a single cell of a tagged 

block has connectivity to a primary block in the lower row, then this tagged block 

becomes a primary block. In contrast, none of the cells in secondary block connect to a 

cell in a primary block in the row immediately below. The single block in row one will 

always be a primary block. If there are no primary blocks in a row, there will not be any 

primary blocks in higher rows. The cells of primary (secondary) blocks will be referred to 

as primary (secondary) cells. Consecutive primary cells form paths that allow the flow of 

traffic towards the sink. There is at least a single path connecting each primary cell to the 

sink. These paths may merge or split like the tributaries of rivers (see Figure 4.10) 

Secondary fragment 

Primary fragment 

Figure 4.10: Merging and Splitting Paths Connecting a Primary Fragment to the 
Sink 

Let us define, 

x„= number of primary blocks in segment n. 

sn = number of secondary blocks in segment n. 

mm 
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We note that, 

ln=Xn+S
n 

(4.23) 

The primary and secondary blocks will interleave with each other. Let us define a 

primary (secondary) fragment as a number of primary (secondary) blocks which are 

contiguous. The primary and secondary fragments will alternate with each other. For 

example, let xn=3 and i„=5, then, the primary blocks may form one to three fragments, 

as illustrated in Figure 4.11. 

r 
Fragment 

^ 

Fragment Fragment Fragment 

^i 

Fragment Fragment 

p p p s s p p s p s p s p s p 

Figure 4.11: Possible Fragments for Three Primary Blocks and Five Tagged Blocks 

Next, we will determine average number of primary fragments in segment n 

which will be used in the following section. Let us assume a constant number of primary 

and secondary blocks in segment n and then determine the number of ways that these 

primary and secondary blocks may be partitioned. Let 

0{a, m) = number of ways that a primary blocks will form m fragments. 

0(/3, f) = number of ways that fi secondary blocks will form/fragments. 

9{a, m) and #(/?, / ) are found by the following well known recursive relation [30]: 

0(£,r) = 0(£-l,r-\) + 0(£-r,r) (4.24) 

0 for £ <r 

0 for either £ < 1 or r < 1 
where 0{£,r) = <j 

1 for £ = r 

1 for r = 1 
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9{l, r) gives the number of ways that an integer I may be partitioned into r fragments 

where 1 < r < t. In our problem, the number of primary and secondary fragments is 

dependent since they alternate with each other. Clearly, there are three possibilities, 

The segment begins and ends with a primary fragment, then, / = m-\ where 

/and m are, respectively, the number of secondary and primary fragments. 

The segment begins with a primary fragment and ends with a secondary 

fragment or the converse of this, then, f = m. 

- The segment begins and ends with a secondary fragment, then, / = m +1. 

Let us define, 

(p(m) = number of ways that a primary blocks may be partitioned into m fragments given 

P secondary blocks. 

^ = total number of ways that a primary and fi secondary blocks may be partitioned to. 

Then, 
m+l 

<p (m) = 0(a,m)* £0(/3 , f), for m > 1 (4.25) 
f=m-\ 
Yf</3 

1, if/? = 0 

0, otherwise 

^ = I > ( m ) (4.26) 

Next, we will assume that all the partitions are equally likely to occur which will be 

justified later on through simulations. Let us define Rm as the probability that a primary 

blocks may be partitioned into m fragments given fi secondary blocks, then, 

where <p (1) 
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<p (m) 
K = ^ r 1 (4.27) 

Finally, the average number of primary fragments is given by 

m =fjj*Rj (4.28) 
7=1 

Next, we assume that the above result also holds when the numbers of primary and 

secondary blocks in a segment are not constant but chosen to be equal to the average 

number of primary and secondary blocks in segment n, a-xn, P = sn. Letting mn 

denote the corresponding average number of primary fragments in segment n, then, 

mn=Y,J*Rj (4-29) 

The above assumption will be justified by the simulation results to be presented later on. 

4.7 Derivation of the Average Number of Blocks Connected to the Sink 

In this section, we will derive a recursive relation for the average number of 

primary blocks in a segment. First, let us consider the structure of a primary fragment. A 

primary fragment has the same structure as a segment, it consists of contiguous number 

of blocks and the lengths of border blocks in number of cells should be larger than that of 

non-border blocks. However, in practice, the border blocks may not always have the 

"special" length. Each primary fragment will interface a number of blocks in the higher 

row which will be called & frame. The border blocks of a frame will have the length bias 

of renewal processes. The blocks of each frame may generate zero, one, two or higher 

number of primary fragments in the row above. When the border block of a frame 
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happens to be also border block of a primary fragment, then, that border block will have a 

special length otherwise it will have a regular length (see Figure 4.12). Thus the special 

border blocks of a primary fragment have the special, length dependent, distribution 

given by (4.10), while all the other blocks have the geometric distribution given by (4.1). 

Frame 

rown 

row w-1 

r^ 
P !• !' 

| 1' I' 

- >» 1" 
)' 

1' 

1 
> 

Secondary block 

P Primary block 

Secondary fragment 

Primary fragment 

Figure 4.12: Example of a Frame Interfacing a Primary Fragment 

Figures 4.13 a, b present the mean number of cells as a function of cell connectivity 

probability,^, in primary non-border and border blocks of a frame respectively. In each 

figure we also plot the corresponding numerical results given by (4.3) and (4.14) 

respectively. 

0.3 0.4 0.5 0.6 0.7 
cell connectivity probability (p) 

a) 

8 0.9 
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0 
0.1 0.2 0.8 0.9 0.3 0.4 0.5 0.6 0.7 

cell connectivity probability (p) 

b) 

Figure 4.13: Numerical and Simulation Results for the Mean Number of Cells as a 
Function of Cell Connectivity Probability,/?, in Primary Non-Border (a) and Border 

Blocks (b) of a Frame 

Figure 4.14 shows the simulation results for the average size of a border block of a 

primary fragment. Also shown are the numerical results for the average of the geometric 

distribution, 1/(1 -/?), average of the geometric distribution with length bias, (\+p)/(\-p), 

and the arithmetic mean of these two averages. It may be seen that the simulation results 

are best tracked by the arithmetic mean of the two averages. This corresponds to the case 

that one of the border blocks of a primary fragment is normal and the other is special 

confirming our expectation discussed above. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
cell connectivity probability (p) 

Figure 4.14: Average Size of Border Blocks of the Primary Fragments as a Function 
of Cell Connectivity Probability, p 

Let us define, 

gn = mean number of blocks in a primary fragment in segment n. 

hn = average number of blocks in a frame in row n. 

xn = mean number of primary blocks in segment n. 

y = Pr (a tagged block is a primary block) 

We would expect that the following relation holds, 

X«=gnm* (4.30) 

The average number of blocks in primary fragments and frames in consecutive rows will 

have the same relationship as the segments in consecutive rows. However, since on 
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average only a single border block of a primary fragment will have a special length, then, 

(4.22) is modified as follows, 

A„+i =S„+P (4.31) 

Let us multiply both sides of the above equation by the number of primary fragments in 

rown, 

K+im„=gn
m

n+
mnP 

Substituting (4.30) on the right hand side of the above equation, 

K+Imn =Xn+mnP 

(4.32) 

(4.33) 

Next, we multiply both sides of the above equation with probability that a tagged block 

will be a primary block, 

K+im„r = (xn+™„p)r (4.34) 

We note that the left side of the above equation corresponds to the average number of the 

primary blocks in segment n+l, 

*„+i = (*„ + m«P)7 ( 4 - 3 5 ) 

Next, we determine the probability that a tagged block is a primary block. According to 

[27], the portion of the border block partially interfacing the primary fragment in the row 

below (the length of the age given in Figure 4.8) is the same size as the non-border 

blocks. Since we are not concerned with the extension length given in (4.4), the average 

length of the blocks we are dealing with are all normal. Hence, 

r=2> 
*=i 

at least one cell from the 

block has lower connectivity 
a tagged block contains k cells ?v{q = k) 
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Substituting for the probability distribution of block length from (4.1), 

00 

y = £[l-(l-Jp)'](l- /V 

r=i-£(i-Jp)'0-/V 

00 

r = i-{\-p)2Y\{\-p)p] 

r = l- {l~P)1 = — ? — (4.36) 
l-(l-p)p l-(l-p)p 

The above result enables the calculation of the average number of primary blocks in a 

segment n recursively with mn given by (4.29). 

4.8 Derivation of the Sensor Node Connectivity Probability to the Sink 

Finally, we are ready to determine the probability that a sensor node has 

connectivity to the sink. First, we determine the connectivity probability of a cell to the 

sink in the first r rows. Let us define, 

Pr = Prob(a cell from the first r segments is connected to the sink) 

mean number of primary blocks in the first r segments 
P. = 

mean number of tagged blocks in the first r segments 

r 

7 1 = 1 

B, 
(4.37) 

where xn and in are given in equations (4.35) and (4.22) respectively. Since the nodes 

are uniformly distributed in deployment area, Pr also gives probability that a sensor node 
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located within the first r segments will have connectivity with the sink. Pr will be 

referred to as either sensor or network connectivity probability. We note that sensor 

connectivity probability is not a constant but a function of the distance of a node to the 

sink. Another, may be more useful interpretation of Pr, is that it corresponds to the 

fraction of the nodes that have connectivity to the sink. 

Figure 4.15 illustrates the numerical and simulation results of the network connectivity 

probability (Pr) as a function of the adjacent cell connectivity probability, p, for a 

network that contains 100 rows. As may be seen, the network connectivity probability is 

very low for/><0.5, it increases linearly in the range 0.5 <p<0.8 reaching to the value of 

Pr = 0.9. The linear increase continues beyond that but more slowly towards one. The 

numerical and simulation results show very good agreement which validates the 

approximations and assumptions made in the analysis. 

Figure 4.16 presents the fraction of the nodes that have connectivity to the sink as a 

function of the row number with adjacent cell connectivity, p, as a parameter. As may be 

seen for low values of p, the connectivity probability drops to zero quickly with 

increasing row number. For moderate values of p, the connectivity probability initially 

drops fast and then at a much slower rate with increasing row number. Finally, for high 

values of p, following an initial dip, the connectivity probability increases with increasing 

row number. This is the reason why at high values of p, the percentage of nodes that have 

connectivity to the sink approaches to one. 
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Figure 4.15: Numerical and Simulation Results of the Network Connectivity 
Probability (Pr) as a Function of Adjacent Cell Connectivity Probability, p, for a 

Network that Contains 100 Rows 
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Figure 4.16: Network Connectivity Probability (Pr) as a Function of Row Number 
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CHAPTER 5: 

NETWORK LIFETIME 

5.1 Introduction 

In this chapter, by integrating the results obtained from the previous chapters, we 

study network connectivity as a function of time. We determine the amount of time that 

the percentage of the nodes having connectivity is above a threshold value. Before 

calculating the network lifetime of a WSN, we determine the average number of sensor 

nodes per cell that are alive over time. In addition, we show that our design inclusively 

handles coverage. 

5.2 Cell Density 

In this section, we will determine the average number of sensor nodes per cell that 

are alive over time, %(t). This value depends on the initial sensor node cell density and 

the probability that a sensor node is alive at a certain time t. The sensor nodes are 

randomly deployed over an area according to a Poisson process with an average of £(0) 

sensor nodes per cell. Since the sensor nodes are dying randomly and independently, the 

population size of the live sensor nodes continues to follow a Poisson distribution. Hence, 

the mean cell density can be determined as, 

t(t)=m*P[NL>t] (5.1) 
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Using eq. (2.25), P[NL > t] can be calculated as follows, 

P[NL>t] = \-FNL(t) 

Figure 5.1 illustrates the average cell density as a function of time for a network with 

X=15 messages/hour, //=150 messages/hour, and BL-12 hours where the initial cell 

density is 5, 10, 15 and 20 sensor nodes per cell. It may be seen that average cell density 

remains flat and then sharply drops down. 

25 

20 
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CO 
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1000 

Figure 5.1: Average Cell Density as a Function of Time for cf(0)=5,10,15, and 20 

Table 5.1 illustrates the time it takes for the cell density of the network, with parameter 

values X =15 messages/hour, // =150 messages/hour, and BL=72 hours, to drop to 3, 4, 5 

sensor nodes per cell given that its initial cell density is 10, 15, and 20 sensor nodes per 

cell. 
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Table 5.1: Time it Takes a Network, with A =15, // =150, and 5X=72, for £(f) to 
reach 3, 4, and 5 Sensor Nodes Given Different £(0) Values 

#(0) 

10 
15 
20 

£(0=3 
729.0864 
732.1055 
734.0234 

#(0=4 

726.4931 
730.0394 
732.1897 

£(0=5 

723.8302 
726.957 
730.5274 

As expected, a network with higher initial cell density will last longer. In addition, the 

network will last longer if it is serviceable at lower cell densities. 

5.3 Network Lifetime 

We define the network lifetime as the time that the percentage of sensor nodes can 

communicate with the sink is above a threshold value. In the following, we assume that 

all the nodes experience the same traffic load. Therefore, at a certain time /, we first 

calculate the average number of sensor nodes alive in a cell by using equation (5.1). 

Then, by using this result and the help of equations (3.9) and (3.10), we determine the 

lower and upper bounds of the adjacent cell connectivity probability. Then, using these 

bounds, we evaluate the corresponding bounds of the network connectivity probability, 

by using equation (4.37). Figure 5.2 illustrates the lower and upper bounds of the network 

lifetime for a network with /I =15 messages/hour, //=150 messages/hour, and BL=12 

hours where the initial cell density is 5 sensor nodes per cell. 
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Figure 5.2: Lower and Upper Bounds of the Network Lifetime for a Network with 
1=15, //=150,£Z=72, and #(0)=5 

Table 5.2 gives the lower and upper bounds of the adjacent cell connectivity 

probability, p, and network connectivity probability, Pr, for different cell densities for a 

network with A =15 messages/hour, /i=150 messages/hour, and BL=12 hours. The area 

coverage is also presented. 

Table 5.2: Area Coverage, Bounds of Adjacent Cell Connectivity Probability,/?, and 
Bounds of Network Connectivity Probability, Pr, as a Function of Cell Density for a 

Network with X =15, ft =150, and BL=12 

Cell 
density 

2 
3 
4 
5 

Lower 
bound of p 
0.565402 
0.713495 
0.811124 
0.875486 

Upper 
bound of p 
0.677226 
0.882402 
0.961012 
0.987442 

Lower bound 
of Pr 

0.1876 
0.6715 
0.923 

0.9665 

Upper bound 
of Pr 

0.5197 
0.9689 
0.9866 
0.9889 

Area 
Coverage fa 

0.79212 
0.90522 
0.956786 
0.980297 
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We have mentioned in chapter 3 that sensor node density less than two would not be of 

interest. When the cell density is two, the network connectivity ranges between 18.76 and 

51.97% and the area coverage is about 80%. Even though the area coverage is mediocre, 

the network connectivity is too low. In this case, the collected data will probably not be 

delivered to the sink. For data transfer to be reliable, each cell must contain at least three 

sensor nodes. Therefore, the results found in this chapter will have area coverage of at 

least 90%. 

We can determine the network lifetime for a specific connectivity threshold. For 

example, if the network is functional when at least 90% of the sensor nodes are 

connected, the network lifetime is determined by calculating when the lower network 

connectivity probability bound drops to 90%. 

Figure 5.3 illustrates the lower bound of the network lifetime for a network with A =15 

messages/hour, // =150 messages/hour, and BL=12 hours where the initial cell density is 

5,10,15, and 20 sensor nodes per cell. 
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Figure 5.3: Lower Bound of the Network Lifetime, where X =15, ju =150, and 
BL=12, for Different £(0) Values 

Table 5.3 presents the time it takes for the plots in Figure 5.4 for the network to have at 

least 70, 80 and 90% connectivity. As we can see, when the cell density is higher, the 

network lasts longer. In addition, if achievable, the lifetime of a WSN can be lengthened 

by selecting a lower threshold network connectivity. 

Table 5.3: Amount of Time that the Percentage of Nodes Have Connectivity is 
Above a Threshold Value, where A =15, ju =150, and BL=12, Given Different £(0) 

<?(0) 
5 
10 
15 
20 

90% 
717.7455 
727.1427 
730.4687 
732.4965 

80% 
720.2911 
728.316 
731.4457 
733.3718 

70% 
721.49 

729.0144 
732.0616 
733.9206 
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CHAPTER 6: 

CONCLUSION 

6.1 Conclusion 

In this thesis, we analyzed the lifespan of a WSN for a non-safety-critical 

monitoring area application. As time goes on, sensor nodes will die due to battery 

depletion. We have addressed the problem of determining the point at which the sensor 

node density falls below a critical density such that coverage and connectivity are lost. 

First, the probability distribution of the lifetime of a single sensor node was 

derived. The sensor node was modeled as an Ml MIX queue alternating between idle and 

busy periods to represent the sleep and active modes, respectively. During the idle period, 

we assumed that no energy was consumed. Hence, the battery was only drained by the 

busy periods. The more time a sensor node spends in the busy period, the faster the 

battery will be depleted. The duration of the busy period depends on the arrival and 

service rate of a sensor node. Therefore, the lifetime of a sensor node is influenced by the 

following parameters: battery lifetime, arrival rate, and service rate. The probability 

distribution of the lifetime of a single sensor node was presented for different parameter 

values. We realized that the lifetime of a sensor node can be lengthened by increasing its 

battery's lifetime, increasing the service rate, or decreasing the arrival rate. 
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Next, the network connectivity probability was determined; in other words, the 

percentage of sensor nodes that can communicate with the sink was found. We 

considered a logical grid-network with a large number of sensor nodes randomly 

deployed over the area, where an average number of sensor nodes were uniformly placed 

in each cell. Since the transmission range of the sensor nodes was set to the side length of 

the cell, all the nodes residing in a cell were able to communicate with each other. As a 

result, if a cell had connectivity to the sink, then all the sensor nodes in that cell had 

connectivity to the sink. Thus, the problem under consideration reduced to the derivation 

of the connectivity probability of a cell to the sink. Given an average number of sensor 

nodes in a cell, the connectivity probability of two adjacent cells was first determined. 

Obviously, as the density of sensor nodes in the cells increases, the probability that two 

adjacent cells are connected approaches to one. Based on the connectivity probability of 

two adjacent cells, we then derived the ability of a cell to communicate with the sink in 

order to determine the network connectivity probability. Logically, as the connectivity 

probability of two adjacent cells approaches one, the network connectivity probability 

approaches one as well and vice versa. The network connectivity probability was 

examined for different values of the connectivity probability of two adjacent cells. 

Finally, the results found for the probability distribution of the lifetime of a single 

sensor node and the network connectivity probability were integrated to determine the 

network lifetime. Initially, the number of sensor nodes that reside in a cell have a 

specified average value. As the WSN ages, sensor nodes start to die, because of battery 

depletion, causing the number of sensor nodes in the cells to decrease. We derived the 
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number of sensor nodes that will reside in a cell over time for a given battery lifetime, 

message arrival rate, and message service rate. From this result, we then determined the 

connectivity probability of two adjacent cells and the network connectivity probability 

over time. Lastly, the network lifetime was discovered by calculating the amount of time 

it takes for the network connectivity probability to reach a specific threshold value. 

Evidently, choosing parameters to lengthen the lifetime of a single sensor node will also 

prolong the lifetime of a network. Furthermore, by deploying a higher number of sensor 

nodes will increase the average number of sensor nodes in a cell which subsequently will 

increase the connectivity probability of two adjacent cells, network connectivity 

probability, and network lifetime. Moreover, the value for the threshold connectivity 

probability affects the network lifetime. A network lasts longer for smaller threshold 

values. Hence, if a WSN can operate effectively, a lower threshold value should be 

elected. 

This thesis shows that several parameters have an impact on the network lifetime. 

The results presented in this work can be served as a guideline for WSN designers to 

optimally choose parameters in order to extend the network lifetime. 
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