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ABSTRACT

Lifetime Analysis for Wireless Sensor Networks

Helen Legakis

The communications industry anticipates that Wireless Sensor Networks (WSN5)
are the emerging technology to greatly affect society. A WSN is composed of numerous
sensor nodes which have the ability to sense, compute and communicate in order to
gather information about their surroundings. The efficiency of a given WSN is
determined by its lifetime. Network lifetime is the duration of time for which it can
maintain sensing coverage and network connectivity, which respectively involves the
ability to detect an event in a region and to report the sensed data to its destination. In
much related work, the network is considered unserviceable the moment when the entire
area cannot be fully covered or when the network is not completely connected. However,
in many application scenarios, as long as the percentage of disconnected sensor nodes
and uncovered areas are above a threshold value, the utility of the network ‘will not be
harmed. This latter view will be applied in this thesis. We first derive the probability
distribution of the lifetime of a single sensor node by modeling a sensor node as an
M/M/1 queue which alternates between idle and busy periods. Then, the network
connectivity probability is determined by discovering the percentage of sensor nodes that
can communicate with the destination given that the monitored region is partially
covered. The sensor nodes are randomly deployed in a grid-based network according to

the Poisson distribution. Given the average of the number of sensor nodes in a cell, the

il



connectivity probability of two adjacent cells is determined. From this result, we can then
derive the probability that a sensor node can communicate with a sink. Finally, the results
found for the probability distribution of the lifetime of a single sensor node and the

network connectivity probability are integrated to determine the network lifetime.

iv



ACKNOWLEDGEMENTS

I would like to express my gratitude to both my supervisors Dr. Mustafa K.
Mehmet Ali and Dr. Jeremiah F. Hayes for their continuous dedication to this research
and for all the experience that they have provided me with. I appreciate the time and
efforts that my supervisors have offered me. I have leamed a great deal from them and
will be forever grateful. I also would like to thank my family and friends for all the
support and love that they have given me. As this experience comes to an end, I look

forward to what the future holds for me.

Helen Legakis



TABLE OF CONTENTS

LIST OF TABLES ..ottt etestesesenesesessesassesasssesseseesesssssesnesessasontes viii
LIST OF FIGURES .......ooiiiitereteteteteteieteeste et e stessseesesesssesaesssssosssssassssssssssassaes ixX
LIST OF SYMBOLS ....ooiiiiiieieecetere et ssteseesaestesateessassessssessessesesssssasessssssssssssssseses Xii
LIST OF ABBREVIATIONS .......cceotiirerintrcteeereeneeeeetseeeessessessessesssassnssasonsossenes Xvi
CHAPTER 1: INTRODUCTION.......c..eoiteerircereeneresereseeenneseesesenssnessessssesssssessssssennes 1
L1 INtrOAUCHION....c..eimtiieiiiiciietetete ettt e eeaesnecaesasessensesaesstsssessesusesssosnassnen 1
1.2 Main Characteristics 0f WSN ........cooivririiiiiiieeectsteesercrene e eseeeeset e nenenas 3
1.3 Architecture of a Sensor NOde.........ccceveirrecirieirieereeeeesree ettt esre st eveaeens 7
1.4 WSN Protocol ATCRItECIUTE ......cveruieriircieicieecrieeteeeteeesni e r et esesntese e se s 9
140 MAGC PFOIOCOIS.......unoneeereeeerieiereienitieeseressesssesetssssessassesssssssessstsessessasessasesnes 9
1.4.2 ROULING PFOTOCOIS ......cuoeeeieceiietetreetetesteetrteescesceseesacensesaesseesaesseessnanns 13

1.5 Coverage, Connectivity, and LIfetime...........ccceeereveeereeriiercrnnseescesnesesessssessnesens 14
1.6 Related LItErature. .....c..covvivuircreerieereiieicreeeteirecereenessenesssssconessessensensesessssseesessens 16
1.7 Research Objectives and Contributions of the Thesis ......ecceeceeeereerensescnsccennnen. 19
1.8 Organization Of THESIS........ccveeveeceeeiirieeeeeete et tesre et e s esseeessresvassnessesseessesssesseens 21
CHAPTER 2: LIFETIME OF A SENSOR NODE ......coceevtvriniriencteseeereeeenesereeereenes 22
2.1 INEEOAUCHION.c..couviiiieiiiititeeentete et ettt eses et ses st e ssaestosassasostessassessanessesanes 22
2.2 Past Work on Sensor Node Lifetime ........cccocvcrceemenneneereensenieeencneesecnieeeeesneenes 22
2.3 Structure of the Lifetime of a Sensor NOde .........ccocvevecierecreereeereecreneeneceesrennes 24
2.4 Modeling of a Sensor Node as an M/M/1 QUEUE ........c.cccevreeeecrercnreererrenneeernennnes 28
2.5 Derivation of the Lifetime Distribution of a Sensor Node .......c.ccceevevevrecirnvereennnne 31
2.5.1 Conditional CDF Of NL GIVEN N(1) .....cooreeeveeeeircercereeneerseeseereneesseseereneesneenes 32
2.5.2 The Probability Mass FURCIION Of N(1) ......cocueueveroeeeereeeeeeieeeencsieeeeceeneens 33
2.5.3 Unconditional CDF of Lifetime of a Sensor Node...............ccueeeveuneuveruecnennne. 34
2.5.4 Average Lifetime of a SenSor NOde...........coccueeureeerecercrenesernsisinsessnessensens 35

2.6 Numerical RESUIS.....c..ccviruieiriiieirtctccre ettt nsneos 36

vi



CHAPTER 3: DERIVATION OF THE CONNECTIVITY PROBABILITY FOR TWO

ADJACENT CELLS ...ttt ettt et st et e st sses e s aesbee s s s e e saessnessnenees 42
3.1 INTOAUCHION . ... ieiieeeciieeieete et rtceieeete e st eetessareesssesseasme s ssesessesessasesansessssnesans 42
3.2 Sensor Node Population in @ Cell.......ccccovvirieoiioinnrenininncrieecieeeereeecneensseseeees 42
3.3 Derivation of the Cell Connectivity Probability ..........ccccovvevrervinreersenrcennirennnennnens 44

3.3.1 DeterMiNiNG P ..cceeereeireeeirereiineeeeecttererstessseesesstesstessssssesssssssssssasssssssbssssasons 45
3.3.2 DetermiNiNg P ..eeeeeeeeeereeeriveererieeneesentiesoeriesteseunsasessesseosstssssssssssesssssessssssssssess 47
3.3.3 DeteFMINING P ...eocuveeeiieeeeitireeeeesteeer et essessssesessassst s bsssatesasesesessssnesnrene 49
3.4 Numerical and Simulation ReSults.........ccccceeriiriiriiniencnnincnienccinernensenees 51

CHAPTER 4: NETWORK CONNECTIVITY PROBABILITY .....cooorvrninirieecrienaene 53
4.1 INrOAUCHION....ccoviiiiiieeiteee ettt ee s eee e s s be e e e s e e anesabesabes 53
4.2 Block Structure of the Cells......cccecverierriinieniniiiereceeeeesecseeseereeeeeeceesesve e 53
4.3 Distribution of the Number of Tagged Cells in @ ROW.....cccoceeverrenvienennnccncnncnne 55
4.4 Distribution of the Number of Tagged Blocks in @ ROW ......cccceieieviiieniencncnenncn. 60
4.5 Length Distribution of the Tagged BlocKs.........ccoieevirecerieneiceenieereeeeneaesereeseens 64
4.6 Classification of the Tagged BIOCKS .....ccccivuieiiiiiniiiciniieieeeccectentceecee e 66
4.7 Derivation of the Average Number of Blocks Connected to the Sink.................... 69
4.8 Derivation of the Sensor Node Connectivity Probability to the Sink..................... 74

CHAPTER 5: NETWORK LIFETIME........c.cccccoiiiiiiiniiintnenteeetreteeeseeseneesaeeeeseeneens 77
5.1 INETOQUCHION. ..c..eueieiiii ittt ettt ses et sae e et ees 77
5.2 Cell DENSILY ...evveerieeeriieeeieeetieeecreesteecee e e treessteseeeesssseessassssessssassssesssstassssesssssrenns 77
5.3 Network LIfetime.......coouieveeieeiiieeee ettt ene 79

CHAPTER 6: CONCLUSION ..ottt eteeeteresaee s ste s sae et esaes e s sessesevasssessessaenne 83
0.1 CONCIUSION ..eueiiiniecieieiiieerirreeeteestete s esa et sse st esaesas s s benssessebessessssassesusns 83

REFERENCES ...ttt ettt et et et eut e s e st e ses e s sae s e s sesane st e ssesens 86

vii



LIST OF TABLES

Table 2.1: Verification of the Average Number of Cycles Completed During a Sensor
NOAE'S LIfELIME......covveeereeerieeietenetereett et ssc et eseeesetes e s reee s e ssse s abesesnessnes 37

Table 2.2: Percentiles for the CDF of NL with different BL given that A=135 and £=150

Table 2.3: Percentiles for the CDF of NL with different A given that BL=72 and £=150 40
Table 3.1: Area Coverage for Different Cell Densiti€s ........coccecevceeruerecrerenvecninciinenenn 43
Table 3.2: Comparison of Numerical and Simulation Cell Connectivity Probabilities as a
Function of Cell Node Density ........ccvvveevuiiereeinienirecireniiessenesnsnesseeeseseresesssnessneasses 51
Table 4.1: Numerical and Simulation Results for the Average Length of the First
Segment as a Function of Cell Connectivity Probability, p........... o 60
Table 5.1: Time it Takes a Network, with A=15, =150, and BL=72, for £(¢) to reach
3,4, and 5 Sensor Nodes Given Different £(0) Values.....ccococveveeeeivrernnicccnnnennen. 79
Table 5.2: Area Coverage, Bounds of Adjacent Cell Connectivity Probability, p, and

Bounds of Network Connectivity Probability, P., as a Function of Cell Density for

r?

a Network with A =15, =150, and BL=T2........coreeeceerreerreerresreeeeesreeeresrassreensens 80

Table 5.3: Amount of Time that the Percentage of Nodes Have Connectivity is Above a

Threshold Value, where A =15, u =150, and BL=72, Given Different £(0) .......... 82

viii



LIST OF FIGURES

Figure 1.1: Sensor Nodes Scattered in a Sensor Field..........cccocooevinivivincninvinincnnninnenennn. 3
Figure 1.2: Components of @ Sensor NOde ......c..ccceeveverervriirereercreecriescseasiesiessesiessensens 7
Figure 1.3: Periodic Wakeup Scheme.........ccccooeeveririnerenccneiiiiiiinencnicsesssnecsnnes 12
Figure 1.4: Square Grid-Based NetWork .........ccccoccevirveeineninnienvenninenennrecencnnniienenens 16
Figure 1.5: Determining Area COVETAZE. ......cevuveruerrueerrierrenceecsssesostesseosasiosssssesssessssssnses 18
Figure 2.1: n Cycles of @ Sensor NOde ........cccoeieeierirnrintereecreeeenceteseceeeesseseee et seenees 24
Figure 2.2: Lifetime of a Sensor Node............cocevereririinieerceeeeeecereseesaesae e senereseennes 25
Figure 2.3: Queuing System of @ Sensor Node..........c.ccooeeeireveninnienennnnrneniiieneniens 26

Figure 2.4: Cumulative Distribution Function of the Number of Cycles in the Lifetime for
Different Values of BL given that A=135 messages/hour......cc.c.cocereeienieuincncneens 37
Figure 2.5: Cumulative Distribution Function of the Number of Cycles in the Lifetime for
Different Values of 4 given that BL=72 hOUIS........cccccovrrvermrecnirineererrececreeeenns 38
Figure 2.6: Cumulative Distribution Function of the Lifetime of a Sensor Node for
Different Values of BL given that A=135 messages/hour.........ccceceeveerereeererrcrcvrruene. 39
Figure 2.7: Cumulative Distribution Function of the Lifetime of a Sensor Node for
Different Values of A given that BL=72 hOUTS........ccccceceretenerrmreeeerecseneeeeerereneenne 40

Figure 3.1: Deployment Area Divided into Cells and Representation of a Single Cell ... 43

Figure 3.2: Two Adjacent Cells Containing One Node..........cccceeeerenerrreeveersccesreenscennunenne 45
Figure 3.3: Two Adjacent Cells Containing One and £ Nodes............ccccoenrinnrirerenenne. 47
Figure 3.4: Two Adjacent Cells Containing j and &£ NOdes .......cc.ceverieviervenrcccersccreenncene 49
Figure 3.5: Simulation and Lower and Upper Bound of Numerical Results.................... 51

X



Figure 4.1: Division of the Deployment Area into Cells..........ccccovviiininninninnninninnnn. 54

Figure 4.2: Formation of BIOCKS........cccocccveininininriicniiiinscicnicciieencennin 54
Figure 4.3: Combining Wedges in @ SQUAre AT ..........ccceverrereeneenernimerenisnsessescsnseneens 56
Figure 4.4: Example of Two Consecutive Segments.........ccccereeercereensernenscsseenseeessuennns 57
Figure 4.5: Gates 0f @ BIOCK .......couevuiiiriiiiiiicicicntcenceecectecnc e 60
Figure 4.6: Example of how to Calculate the Number of Blocks in Segment n............... 61

Figure 4.7: Numerical and Simulation Results for the Average Number of Tagged Blocks

asa Functioh of Row Number for Different Cell Connectivity Probability, p......... 63
Figure 4.8: Length of Border Blocks According to the Renewal Theory.......c..ceceeeeenean 64
Figure 4.9: Numerical and Simulation Results for the Mean Number of Cells as a

Function of Cell Connectivity Probability, p, in Regular (a) and Special Blocks (b)

Figure 4.10: Merging and Splitting Paths Connecting a Primary Fragment to the Sink .. 66
Figure 4.11: Possible Fragments for Three Primary Blocks and Five Tagged Blocks..... 67
Figure 4.12: Example of a Frame Interfacing a Primary Fragment..........ccccooevevrvinnnnnn. 70
Figure 4.13: Numerical and Simulation Results for the Mean Number of Cells as a
Function of Cell Connectivity Probability, p, in Primary Non-Border (a) and Border
Blocks (b) of a Frame ............................................................................................ 71
Figure 4.14: Avérage Size of Border Blocks of the Primary Fragments as a Function of
Cell Connectivity Probability, P .......cccceeeeeenirencicneeeneeeneecteesereneeses s 72
Figure 4.15: Numerical and Simulation Results of the Network Connectivity Probability

(P.) as a Function of Adjacent Cell Connectivity Probability, p, for a Network that

CONtAINS 100 ROWS oot eee e et e eeeeneesseseassesasesssesssssssastssesesarssnsssene 76



Figure 4.16: Network Connectivity Probability ( P.) as a Function of Row Number...... 76
Figure 5.1: Average Cell Density as a Function of Time for £(0) =S5, 10, 15, and 20 ..... 78

Figure 5.2: Lower and Upper Bounds of the Network Lifetime for a Network with 4=15,

H=150, BL=72,a0d E(0) 5ottt e e e seesses s e s s ssessasasssens 80
Figure 5.3: Lower Bound of the Network Lifetime, where 4=15, ¢ =150, and BL=72, for

Different £(0) VAlUES .....cociiriieiiiniieiiereice et ec e eee st sste st ee e e e s eeeaeennes 82

xi



LIST OF SYMBOLS

Symbol Definition

ci duration of the i™ cycle

i; duration of the i™ idle period

b; duration of the i busy period

NL lifetime of a sensor node

BL lifetime of a sensor node’s battery

IT, total duration of idle periods for 7 cycles

BT, total duration of busy periods for n cycles

CT, total duration of n cycles

A the arrival rate

7 the service rate

P the load

1(s) Laplace transform of an idle period

IT (s) Laplace transform of the sum of » idle periods
S () probability density function of the sum of n idle periods
IT, ‘average duration of the sum of » idle periods
B(s) Laplace transform of a busy period

M(s) Laplace transform of the service time

BT, (s) Laplace transform of the sum of » busy periods

Sor (®) probability density function of the sum of »n busy periods

Xii



FNL(tln)

py(n)

Su(t|n)

7(g,%)
Fyy (BL)
Fy(x)
u(x)

N

=}

~ U

A.ZNU

modified Bessel function of the first kind of order »

average duration of the sum of » busy periods
probability distribution of the lifetime of a sensor node

number of completed cycles when the battery dies

conditional cumulative distribution function of NL given N(f) =
n cycles

probability mass function of the number of completed cycles
when the battery dies

conditional pdf of the lifetime of a sensor node given n cycles
have been completed

lower incomplete gamma function

probability of the event { BT, < BL }
cumulative distribution function of N

unit step function

average number of cycles completed during the lifetime of a
sensor node

average lifetime of a sensor node
sensor nodes per unit area

side length of a cell
cell area

average number of sensor nodes in a cell
area coverage

distribution of the number of sensor nodes within a cell area

Xiii



N (z) PGF for the distribution of the number of sensor nodes within a

[

cell area

)2 probability that a randomly chosen pair of sensor nodes,
located in adjacent cells, are within range of one another

P, probability that a randomly chosen sensor node in one cell is
connected to at least one sensor node in an adjacent cell

p probability that two adjacent cells are connected

L distance between two sensor nodes

n, number of sensor nodes in the right cell

N, (z) PGF of n,

n, number of sensor nodes sensor nodes in the left cell that has
connectivity with at least one of the sensor nodes in the right
cell

N,(z) PGF of n,

q number of cells in a block

0(z)= PGF ofgq

5 average length of a block in number of cells

k, number of cells in segment n

i number of tagged blocks in segment »n

2, number of additional cells that segment » has compared to

segment n -1 on the left side

r number of additional cells that segment n has compared to
segment » -1 on the right side

L,(2) PGF of ¢,

R, (2) PGF of r,

X1V



K, (2) PGF of £,

n

E average length of the first segment

d, number of gates between adjacent cells in segment n within the
borders of segment n-1

A number of gates from among d, which are closed

I(z) PGF of the distribution of i,

: average number of tagged blocks in segment n

X, number of primary blocks in segment n

S, number of secondary blocks in segment n

o, r) number of ways that an integer £ may be partitioned into »
fragments

@(m) number of ways that o primary blocks may be partitioned into
m fragments given ff secondary blocks

¢ total number of ways that o primary and  secondary blocks
may be partitioned to

R, probability that o prirhary blocks may be partitioned into m
fragments given f secondary blocks

m, average number of primary fragments in segment n

g, mean number of blocks in a primary fragment in segment n

—n average number of blocks in a frame in row n

X, mean number of primary blocks in segment n

y Probability that a tagged blocked is a primary block

P, probability that a sensor node located within the first »

segments will have connectivity with the sink

XV



Abbreviation
WSN

PDA

QoS

MAC
CSMA/CA
TDMA

iid

LT

LIST OF ABBREVIATIONS

Definition

Wireless Sensor Network

Personal Digital Assistant

Quality of Service

Medium Access Control

Carrier Sense Multiple Access with Collision Avoidance
Time-Division Multiple Access

independent, identically distributed

Laplace transform

Xvi



CHAPTER1:

INTRODUCTION

1.1 Introduction

In recent decades, wireless communications technology has grown very rapidly
and it has greatly affected modern life. Wireless networks are typically based on ‘an
infrastructure, where base stations are used to connect wireless entities to a wired
backbone network and relay data between them. Although infrastructure-based wireless
networks are the most commonly deployed, problems arise in some scenarios. In disaster
areas, infrastructure may be unavailable. In other cases, sites may be too inaccessible or
very large where it may be excessively expensive or difficult to set up an infrastructure.
In military operatiohs, there may be no time to setup an infrastructure [1]. These
situations can be treated by creating a wireless network where no infrastructure is needed.
One of the most interesting infrastructureless wireless networks to have emerged to date

1s the wireless sensor networks (WSNs).

A WSN i1s composed of numerous independent sensor nodes, which are usually
battery operated, that organize themselves into a network without being directed or
controlled by an external entity. Sensor nodes are devices equipped with sensors which
check, track and observe the state of the physical environment under observation, e.g.

temperature, pollution, pressure, etc., throughout a region [2]. Although WSNs were -



initially considered for military uses, it is anticipated that they will have many civilian
applications. WSNs may provide many benefits over traditional communication networks

in many areas including health, industry, environment, home, and commerce [1, 3, 4].

For a standard application, the sensor nodes are deployed in a specific area where
we would like to obtain information. The deployment of sensor nodes can either be
regular or random [1]. Regular deployment is when the positioning of the sensor nodes is
planned (e.g. fixing sensors in machinery for surveillance and preventive maintenance).
Random deployment is when a large number of sensor nodes are scattered in an area
without having a specific pattern (e.g. dropping sensor nodes from an aircraft over a

wildfire).

The sensor nodes in a WSN can play the role of a source and/or relay. The source
is the sensor node which has detected an event or sensed data. This information is then
reported back to the appropriate sink, as shown in Figure 1.1 [4].The sink is an entity
found outside the network, like a gateway or Personal Digital Assistant (PDA), which
communicates with a task manager via Internet or satellite. The sensed data from the
source is usually relayed through multiple sensor nodes, called relays, to the sink. Relays

receive and transmit data but not simultaneously.



Internet and -/
satellite

Figure 1.1: Sensor Nodes Scattered in a Sensor Field

The sources and the sink(s) can interact in different ways. The source can report
to the sink(s) whenever it detects a particular event. The source can be assigned to
periodically report its sensed data. When something anomalous occurs, the observer can
poll certain sensors nodes to obtain more information about an area. The interaction
between the sources and sink(s) can also be a combination of the interaction patterns

mentioned above.

1.2 Main Characteristics of WSN

Although many diverse applications of WSN are under consideration, they all pose

similar challenges on WSN, discussed below [1, 4-7].

e Quality of Service (QoS)

Unlike traditional QoS measures, where delay and jitter are main concerns,
reliability is the most important QoS measure in WSN. A network is considered reliable
if an event can be detected, the sensed data can be delivered to the appropriate sink, and
the information received by the sink is accurate. Therefore, reliability can be categorized

into three parts: detection reliability, information accuracy, and reliable data transfer.



Detection reliability and reliable data transfer respectively depend on the coverage and

connectivity, which will be discussed in section 1.5.

e Fault Tolerance

A WSN is expected to tolerate and recover from failures. Faults occur when the
battery has used up all its energy, the node gets damaged, or the communication between
a pair of nodes gets interrupted for a long period of time. By deploying more nodes than

necessary, the network will be robust against malfunctions.

e Lifetime

The efficiency of a given wireless sensor network is determined by its lifetime.
The desirable goal is to have the whole network operating properly and performing its
tasks for as long as possible. Inasmuch as the individual nodes have a limited power
supply, energy needs fo be preserved. This target can be attained if energy-efficient
operations are performed. When more energy is consumed, the lifetime of a network

shortens.

e Scalability
In many applications, the number of nodes used in the network is expected to be
large. Hence, the network should have the ability to handle and support such a great

number.

e Wide Range of Densities
Density is the number of nodes per unit area. The density value depends on the

application. If an application requires the network to be densely inhabited, a higher value



will be assigned and vice versa. In addition, the density will change over time and space

on account of node failure. These fluctuations should not affect the network.

e Programmability
When a new task is assigned, the sensor nodes in the network should be able to

reprogram themselves so as to sense and monitor this event.

e Maintainability
A WSN has to adjust to changes and must sustain itself. The network should
monitor its condition and adapt appropriately, if possible, when the energy is running low

to maximize its lifetime.

In order for the above requirements to be met, a WSN needs the following mechanisms

[1,4-7]:

e  Small-Scale Sensor Nodes
Recent advances have enabled the miniaturization of hardware components.
Smaller features consume less power and are cost effective. Hence, small-scale sensor

nodes facilitate in preserving energy and making a large network affordable.

e Multihop Wireless Communication

Communication between two nodes relies on the transmission range. Direct
communication between entities that are far apart is possible by increasing the
transmission range. However, this is inefficient since it requires more transmission powér
and the bandwidth is limited. By using multiple nodes along the path to the destination,

the total required power is reduced as shorter transmission ranges are necessary.



o Energy-Efficient Operation
By performing energy-efficient operations for communication, computation and
sensing, the lifetime of the individual nodes and, more importantly, the network will last

longer. Methods on how to consume less energy will be explained later.

e Auto-Configuration

A WSN has to be able to organize itself given that no base stations are available
to manually configure the network. The network should be aware of its surroundings and
adapt to changes. Not only does the network need to tolerate node failures, it should
support the integration of new nodes as well. Additionally, an entity is expected to be

capable of locating itself in the network with the help of its surrounding nodes.

e Collaboration and in-network processing

Sometimes a single node cannot provide enough information for an application
(e.g. average temperature of an area). In this case, the combination of data of various
nodes is required so as to sense an event. In addition, the processing of the information
should be done in the network rather than at the edge of the network. In-network
processing is energy-efficient since it reduces the amount of traffic in the network. The
collaborating nodes join their data instead of having them all send their data individually

to the sink.

e Data centric
Conventionally in communication networks, each node contains a unique
identifier in order to route packets between two distinct entities. This type of networking,

known as address-centric, may be inefficient for WSNs. WSNs may contain a large



number of sensors. Therefore, embedding a unique ID to all the nodes would result in
significant overhead and wastage of energy. Furthermore, the WSN applications focus on
detecting and gathering information from the network and not which node provided it. A
data-centric protocol would be better suited for WSNs. Also, collaboration and in-

network processing is easier to implement with data-centric networking.

1.3 Architecture of a Sensor Node

Sensor nodes have the ability to sense, compute and communicate with the support of
five main components, as shown in Figure 1.2 [1]: controller, communication device,

sensor(s)/actuator(s), memory and power supply.

IM emaory I

Communication Sensor{s}f
device _@@— actu ator(s)
————{ P ower supply |———

Figure 1.2: Components of a Sensor Node

The controller is the main part of the sensor node. The controller executes programs,
processes data received by the sensor(s) or by other sensor nodes, determines when and
where to transmit data, and manages the sensor node’s other components. The
communication device is responsible for sending and receiving information over a
wireless medium. A receiver converts a radio wave into a sequence of bits and the reverse

is carried out by a transmitter. Sensor nodes use a transceiver which joins the roles of a



transmitter and receiver into one unit. The sensors and actuators interact with the physical
environment. Sensors monitor and measure the parameters of its surroundings, whereas
actuators control an object (e.g. motor, light bulb) according to these physical parameters.
Memory is used to store data and programs. Finally, the power supply is the component
that provides the sensor node with energy for it to operate. In WSNs, the energy is
usually supplied by batteries. Batteries can either be nonrechargeable, known as primary
batteries, or rechargeable, referred to as secondary batteries. The secondary batteries are
recharged by harnessing energy from the environment, like light, temperature gradients,

vibrations, pressure vibration, and air/liquid flow.

Since energy is a limited source and recharging the battery is not always possible,
the energy consumption of a sensor node is required to be highly restrained and managed.
The components that mainly consume energy are the controller, the communication
device, and to some level the memory and the sensors [1]. When sensor nodes have
nothing to do, ideally it should be turned off in order to conserve the battery and wake up
again once it is needed. As a sensor node cannot be turned off completely, it should
operate in a state with reduced energy consumption, called th¢ sleep state. This state can
be employed by all the components of a sensor node and can save significant amount of
energy. Therefore, whenever a sensor node is idle, it should go to sleep in order to

prolong its lifetime.

Furthermore, studies have shown that the energy cost for communication is

substantially higher than computation (data processing); the rule of thumb is that ten



times the power is required to transmit or receive a bit as is required to process a bit of
information [1]. Hence, if achievable, a sensor node should process data locally instead of
communicating it. This conclusion has inspired a number of key techniques in WSN,
such as in-network processing and data aggregation mentioned earlier on, which help in

reducing the overall power consumption.

1.4 WSN Protocol Architecture

The WSN protocol architecture consists of a physical, data link, network,
transport, and application layer which are based on the OSI layering model. Since energy
is a scarce resource in WSNs, energy-efficient operations should be incorporated into
each of these layers. In order for the sensor nodes to perform correctly and efficiently,
power and task management planes must be used by WSNs [4]. The power management
plane controls how a sensor node makes use of its power. As explained earlier, the sensor
node should operate in different states to reduce the power consumption. Hence, this
plane is responsible for putting sensor nodes to sleep. The task management plane
schedules the sensing tasks and synchronizes sensor nodes in a region. The protocols
employed by WSNs must address these planes, which can lower the overall power
consumption. Therefore, new protocols, in particular MAC and routing protocols, need to

be developed for WSNs as traditional protocols are not cautious with energy.

1.4.1 MAC Protocols

The communication medium is shared by numerous entities. Medium Access

Control (MAC) protocols are needed in order to determine when an entity can access the



medium. Traditional MAC protocols have been implemented to deal with delay,

throughput, and fairness. However, these criteria are not the main concern for WSNs.

WSNs need to perform energy-efficient operations to function as long as possible.

Therefore, new MAC protocols need to be developed focusing on energy conservation

instead of the conventional performance requirements.

Energy should be consumed only when needed. The following circumstances should be

avoided since they futilely use up energy [1]:

Collisions: When two packets collide because of near simultaneous transmission,
energy is wasted at the source and destination and more energy needs to be

consumed to retransmit the packet.

Overhearing: In wireless communications, when a station transmits a packet, all
the stations in its transmission range that have their receivers turned on hear the
packet. If the packet is not intended for a station, the station discards the packet

and wastes energy overhearing it.

Idle listening: Idle listening is when a station is waiting to receive a packet but
none of the stations in its surroundings have anything to send. Idle listening
pointlessly consumes energy since the station is running at full operation for

nothing to occur.

Protocol overhead: Protocol overhead is extra data added to the body of the

message which helps in transmitting packets between entities by describing the
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message’s content, for whom the message is intended to, and other protocol
needs. Since the protocol overhead consumes extra energy, its size should be as

small as possible.

MAC protocols for WSNs are expected to deal with at least one of these problems. If
more of these energy problems are tackled, further energy will be conserved in the

network.

MAC protocols for WSNs can be categorized as either contention-based or
schedule-based protocols [1,4,8,9]. Contention-based protocols are based on a Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme. A sensor node
listens to the channel before attempting to transmit its packet. A station should suspend
its transmission if the shared medium is sensed to be busy, seeing that another
transmission is in progress, to circumvent collisions. If the channel is sensed idle, before
a station transmits its packet, a signal is broadcasted to its neighbours notifying them that
a data transfer will begin in order for them to suppress their transmission to avoid
collisions. Although collision avoidance mechanisms are employed, they do not totally
prevent collisions. Additionally, for contention-based protocols, idle listening can be
~tackled if a periodic wakeup scheme is added. The periodic wakeup scheme alternates
between a sleep and listen period, as shown in Figure 1.3 [1]. During the wakeup period,
the sensor node is asleep and wakes up periodically, during its listen period, to receive
data. If no data is received, the node goes back to sleep. The sender needs to learn about

the recipient’s listen periods in order to transmit at the appropi’iate time.
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Figure 1.3: Periodic Wakeup Scheme

Unlike contention-based protocols where the sensor nodes contend each other to
seize the channel, in schedule-based protocols coordination among the nodes is needed in
order to determine which node can access the medium. These type of protocols are based
on a Time-Division Multiple Access (TDMA) scheme. Time is divided into frames and
each node is assigned to a specific slot in the frame. During a time slot, only the allotted
sensor node is allowed to communicate, either transmit or receive data, whereas the other
sensor nodes should be put to sleep. If a node does not use its slot, it remains idle. A
schedule is required to store all the information indicating when the entities can access
the medium and for how long. For entities to wake up right at the beginning of their
allocated slot, time synchronization is necessary. The design of this protocol implicitly
handles collisions, idle listening, and overhearing without the aid of additional

mechanisms.

Even though schedule-based protocols solve collisions, idle listening, and
‘overhearing, creating and maintaining the schedule and the use of time synchronization
entail signalling traffic and memory. In addition, they are not as flexible and adaptable to
changes in the network as contention-based protocols. Both schemes have their

advantages and disadvantages making it hard to evaluate which design outperforms the
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other; consequently, a standard MAC protocol cannot be elected since it highly depends

on the application.

1.4.2 Routing Protocols

Routing protocols are responsible for selecting which sensor node to forward an
incoming packet to and forming a route from the source to the sink. Based on the network

structure, routing protocols can be classified into the following groups [9]:

e Flat-based routing: In flat-based routing protocols, all the nodes in the network
are equivalent and perform the same tasks. Moreover, the nodes cooperate with

each other in order to find routes.

e Hierarchical-based routing: For hierarchical-based routing, the nodes in the
network are organized into clusters. Unlike flat-based routing, the nodes in
hierarchical-based routing take part in different responsibilities: cluster head and

member node of a cluster.

Unlike traditional routing protocols, where routes are usually computed based on the
smallest hop count, the routing protocols for WSNs should determine the paths based on
a metric that optimizes network lifetime. For example, if routes that consume less energy
to transmit data packéts or that have a higher available battery capacity are chosen, the

lifetime of a network can be lengthened [4,9].
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1.5 Coverage, Connectivity, and Lifetime

A WSN is considered reliable and effective depending on its ability to detect an
event and deliver it to the sink. Coverage and connectivity are performance metrics that
define the efficaciousness of sensing and communication, respectively. An area is totally
covered if every point in that area is within the sensing range' of an active sensor node.
Therefore, a network that provides complete coverage can detect all events. An area is
considered connected if all the active sensor nodes in that area can communicate with
each other; in other words, there exists at least one path between any pair of active nodes
[10]. Hence, if an event is sensed in a fully connected network, this data will be
guaranteed delivery to its destination. Thus, coverage and connectivity are key QoS

measurcs.

Applications that use a higher degree of sensing coverage, meaning a region is
monitored by more than one sensor node, make the network more accurate and fault
tolerant. If a sensor node can report to the destination via various paths, the network
becomes more robust and higher throughput is achieved. Safety-critical applications, such
as surveillance, security and targeting, require a high degree of sensing coverage and
network connecﬁvity [11]. These applications do not abide even a small loss of coverage
or connectivity. Ideally, a WSN should be accufate, fault tolerant, and robust; however,

these features require more sensor nodes to remain active, which involves more energy

! The sensing range of a sensor node is the area where its sensor can detect an event;
whereas the carrier sensing range of a sensor node is the area where the neighboring
sensor nodes must suppress their transmission to avoid collision when the channel is
busy.
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consumption by the overall network resulting in shortening the lifetime of a WSN. If a
network can effectively work without the need of a high degree of sensing coverage and
network connectivity, the network lifetime can be considerably extended at a small cost

of the accuracy, fault tolerance and robustness.

Although most studies related to sensing coverage have concentrated on the
completely covered network problem, in some cases full coverage is unattainable or
redundant. For example, a WSN for weather forecasting requires at least 90% of the
monitored region to be covered in order for the network to be acceptable [12]. Moreover,
the deployment of sensor nodes has an effect on the sensing coverage. For regular
deployment, the sensor nodes can be placed in a fashion to ensure complete coverage. On
the other hand, for random deployment, coverage of an area can never be guaranteed.
Even with a high sensor node density, there is a chance that a small portion of a region
may not be covered. In addition, as the WSN ages, sensor nodes die, because of their
depletion of energy, and therefore the density of sensor nodes will decrease. Fewer sensor
nodes in a region will eventually find it harder to monitor the whole area which will
result in sections of the region not being monitored. Thus, depending on the application,
partially covering a monitored region with a given coverage threshold is sufficient and
more realistic than full coverage [12]. Furthermore, fewer sensor nodes are needed for
partial coverage than for full coverage. Hence, with partial coverage, energy is conserved
throughout the network, since more sensor nodes can be put to sleep, resulting in

lengthening the lifespan of the network.
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The lifetime of a network is the period of time during which it functions until it
becomes unserviceable [13]. In much work, the network is considered unserviceable the
moment that the whole area cannot be fully covered or when the network is not
completely connected. Depending on the application, such as environmental monitoring,
full sensing coverage and network connectivity is not required for the network to operate
fruitfully. As long as the percentage of disconnected sensor nodes and uncovered areas

are above a threshold value, the practicality of the network will not be harmed.

1.6 Related Literature

Next, we briefly discuss past work related to lifetime, coverage and connectivity

of WSNss.

In [10], n sensor nodes are placed in a unit square grid-based network, which is a

network divided into mini squares as shown in Figure 1.4.

Figure 1.4: Square Grid-Based Network

- The authors found that the necessary and sufficient condition for attaining both full area

coverage and connectivity is

p(n)r () ~ lni")

where p(n) is the probability that a sensor node is active and r(n) is the transmission

radius.
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In [14], the connected k-coverage problem was presented. The authors find a set
of sensor nodes needed to cover every point in the monitored area by at least £ sensor
nodes and that are connected. In [11], by assuming that the transmission range of each
sensor node is at least twice its sensing range, the authors show that k-coverage implies k-
connectivity. Subsequently, an algorithm which provides different degrees of coverage

and connectivity is introduced.

In [12], the partial coverage problem for a given coverage threshold is analyzed.
The authors propose an algorithm that finds a subset of sensor nodes that will partially
cover the monitored region with a given coverage guarantee and that will be connected.

The performance of the algorithm is then evaluated through experimental simulations.

In [15], the lower bound of connectivity probability is examined for sensor
networks. The monitored area is separated into a grid of blocks, illustrated in Figure 1.4,
where n sensor nodes are uniformly distributed in a block. The connectivity probability is
first found for each small block. Then, the small blocks are combined into a larger block
until the entire network comes together. The connectivity probability of the whole sensor

networks is found gradually and is based on the connectivity probability of the small

blocks.

In [16], the area coverage ( f,) of an arbitrary circular area with radius r, equal to

the sensing range of the sensor nodes, is found. This scenario is shown in Figure 1.5 [1].
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Figure 1.5: Determining Area Coverage

The authors have assumed that the deployment of sensor nodes in the network is
according to the Poisson distribution with parameter A. The probability that at least one

sensor node is found in the area circling point g is given by

f=l-*" (1.1)
This probability also gives the percentage of the area coverage given that sensor density
in the area is A . Hence, from this equation, we can also find the density of sensor nodes

required in an area to achieve a specific area coverage:

In(-f,)

717'2

A=

Reference [17] reveals that a network with » sensor nodes randomly placed in the
area is asymptotically disconnected with probability one as » increases if each node is
connected to less than 0.074 In(n) neighbours. On the other hand, the network is
asymptotically connected with probability approaching one as » increases if each node is
connected to more than 5.1774 In(n) neighbours. In [18], the authors ameliorated the
bound by proving that a network is asymptotically connected if each node has 2.718 In(»)

neighbours.
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1.7 Research Objectives and Contributions of the Thesis

The objective of this thesis is to study the network lifetime of a WSN by
evaluating the connectivity of the network as a function of time. Network lifetime highly
depends on the sensing coverage and network connectivity. The modeling in this thesis
inclusively handles coverage. In related work, a network is considered as connected when
all the active sensor nodes in the network can communicate with each other. However, if
two nodes are not connected but this path is not involved in relaying the sensed data to
the sink, the sink will still receive this information, resulting in the network being
serviceable. In this thesis, the definition of full network connectivity is changed to when
all the active sensor nodes can communicate with the sink. Moreover, in contrast to the
related literature, this analysis does not require the number of sensor nodes in the network

to approach infinity in order to guarantee network connectivity.

The analysis is appropriate for a non-safety-critical area monitoring application
where a large number of sensor nodes are randomly deployed over a region for some
event to be monitored, e.g. environmental monitoring and weather forecasting. Unlike
[11] and [14], this application does not demand a high degree of coverage and
connectivity. Additionally, full sensing coverage and network connectivity is not needed
for this application to function effectively as long as it remains above a given value, as
presented in [12]. Therefore, the network lifetime, in this case, is considered as the time it
takes before a percentage of sensor nodes that cannot communicate with the sink reaches

a threshold value. The following explains the computation of the network lifetime.
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First, the probability distribution of the lifetime of a single sensor node is derived
by modeling a sensor node as an M/M/1 queue. In order to save energy, the sensor nodes
are turned off when they have nothing to do and are reawakened when they are needed
for communication (transmit or receive data). Hence, a contention-based protocol with a
periodic wakeup scheme may be used for the MAC protocol. The transceiver of a sensor
node alternates between idle and busy periods. A sensor node enters the busy period
when it receives either measured data by its sensor or relayed data by its neighbouring
sensor nodes in the network. During the idle periods, the sensor nodes are put to sleep,

since they do not perform any tasks, and we assume that no energy is consumed.

Next, the connectivity probability between the sensor nodes in the network and
the sink is determined. The sensor nodes are deployed over a large rectangular area. We
assume that the deployment of the sensor nodes in the monitored area is according to the
Poisson distribution. The monitored area is divided into a grid of virtual blocks, as
described in [10] and [15], where the mini squares, called cells, each have a side equal to
the transmission range of a sensor node. As a result, if a cell has connectivity to the sink,
then all the sensor nodes residing in that cell will have connectivity to the sink. Thus, the
problem under consideration reduces to the derivation of the connectivity probability of a
cell to the sink. The sensor nodes in the network are equivalent and perform the same
tasks, as in a flat-based routing protocol. We assume that data will be relayed from top to
bottom, from right to left, and from left to right. The data will not be allowed to flow
from bottom towards top, because it will be in the reverse direction of the sink. Given an

average number of sensor nodes in a cell, the connectivity probability of two adjacent
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cells is determined. From this result, we then discover if a sensor node can communicate

with the sink to determine the network connectivity probability.

Finally, the results found for the probability distribution of the lifetime of a single
sensor node and the network connectivity probability are integrated to determine the

network lifetime.

1.8 Organization of Thesis

The thesis is organized as follows:

Chapter 1 Introduction presents the fundamental idea of wireless sensor networks,
the reason of the study and the organization of the thesis.

Chapter 2 Lifetime of a Sensor Node explains the derivation of the probability
distribution of the lifetime of a single sensor node. The results for different scenarios are
shown at the end of the chapter.

| Chapter 3 Derivation of the Connectivity Probability for Two Adjacent Cells
obtains the connectivity probability of two adjacent cells for a grid-based network.

Chapter 4 Network Connectivity determines the percentage of sensor nodes in the
network that can communicate with the sink. The numerical and simulation results are
shown at the end of the chapter as a function of adjacent cell connectivity probability.

Chapter 5 Network Lifetime discovers the network connectivity of a WSN over
time by integrating the results obtained in the previous chapters.

Chapter 6 Conclusion describes the main results obtained in this thesis.
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CHAPTER 2:

LIFETIME OF A SENSOR NODE

2.1 Introduction

The objective of this chapter is to derive the probability distribution of the
lifetime of a sensor node. The results should be useful in the design of WSNs. Since
many sensor nodes in WSNs are battery-operated, the lifetime of a sensor node is the
time between its activation and the expiration of its battery. When the battery dies, the
sensor node dies. Energy-efficient operations must be performed in order to maximize the
lifetime of the network. One approach to save energy is to turn the sensor nodes off when
they have nothing to do and wake them up when they are needed for communication

(transmitting or receiving data) since most energy is consumed by these activities.

2.2 Past Work on Sensor Node Lifetime

Next, we briefly discuss past work that has considered modeling of sensor nodes.
The lifetime of a sensor node had also been studied in [19], which assumed that the
arrival of messages to a sensor node is according to a Poisson process but messages have
fixed lengths. The paper, without a proof, states that the probability density function of
the lifetime of a sensor node follows an Erlang distribution. The degree and parameter of

the Erlang distribution depend on the message arrival rate, message length, and the

22



amount of energy needed to transmit a message. In this thesis, we show that a sensor

node lifetime has a more complicated distribution than an Erlang distribution.

A sensor node has been modeled as an M/M/1 queue in [20], which also assumed
that a node has two states, active and sleep states. The node alternates between the active
and sleep states and the residence time in each visit to a state is an independent
exponentially distributed random variable with differént parameters. The main difficulty
of the model is that a node goes to sleep independent of its existing traffic backlog. The
paper did not attempt to derive lifetime distribution of a sensor node, since the objective

of the paper has been to study the network throughput and its energy consumption.

In [21], a sensor node has been modeled using a discrete time Markov chain. As
in [20], a sensor node alternates between active and sleep states and the residence time
during a visit to each state is assumed to be a geometrically distributed independent
random variable. The model allows the beginning of a node’s sleep time to be deferred
until its queue becomes empty. However, during this deferral, the arrival of new
messages to the node is not allowed.’ Then, the paper determines the probability transition
matrix which is used to determine message throughput and mean message length of é
node. The paper then studies network capacity and energy consumption assuming node

independence except for loading.

In both [20] and [21], the amount of time that a node remains in the active state is

independent of the state of the system, i.e. queue content. This will be a significant

23



disadvantage in those applications that there may not be any activity in the network for
long periods of time and followed by a sudden burst of activity. During that burst of
activity, it will be a far better strategy for a node not to sleep as long as its queue is
nonempty, in order not to block the routing of the data to the sink. Thus, from this point

of view, the model in this thesis is closer to the real world scenarios.

2.3 Structure of the Lifetime of a Sensor Node

The transceiver of a sensor node is divided into cycles, which are composed of an

idle and a busy period, as shown in Figure 2.1
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Figure 2.1: n Cycles of a Sensor Node

where ¢; is the duration of the /™ cycle, i; is the i idle period (the idle period belonging to

the i™ cycle), and b, is the i™ busy period (the busy period belonging to the i™ cycle).

The transceiver of a sensor node is idle when it does not perform any tasks.
Therefore, during the idle periods, the sensor nodes are’put to sleep and we assume that
no energy is consumed. On the other hand, the transceiver of a sensor node is busy when
it needs to transmit or receive data. A sensor node enters the busy period when it receives
either measured data by its sensor or relayed data by its neighboring sensor nodes in the

network. It then goes back to sleep when it has transmitted all its acquired messages;
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hence, energy is consumed during the busy periods. The transition between the idle and
busy states requires extra energy. However, we assume that this energy consumption is
negligible. As a result, the battery dies when the sum of all the busy periods up to a

certain time ¢ is greater than the battery life. This scenario is displayed in Figure 2.2.
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Figure 2.2: Lifetime of a Sensor Node
where NL is the lifetime of a sensor node. At time ¢ =NL, the sensor node ceases to
function because the end of the battery’s lifetime (expressed as BL) is reached. Given that
the sensor node alternates between idle and busy periods, the lifetime of a sensor node

will be larger than the lifetime of its battery.

Under the assumption that no energy is consumed during the idle periods, the
sensor node will die during a busy period. For example, n cycles are completed before the
sensor node dies during the (n+1)*" busy period. We assume that a sensor node will not
start a busy period if the battery is low. Thus, the sensor node will stop operating at the
end of the n™ cycle. Put differently, NL will be equal to the duration of all the n cycles

combined. Let /T, and BT, denote the total duration of idle and busy periods for n cycles

respectively. Then,
IT,=%i, , BT,=)b @.1)

Defining CT, as,
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CT, =BT, +1T, (2.2)

From the explanation given above,
NL =(T, (2.3)
Let us now examine the queueing system of a sensor node. Assume that when a
sensor node’s queue is empty, a received message will go into service instantly. In other
words, the message will experience no waiting time when a sensor node is idle. A sensor
node becomes idle once it has serviced all the messages waiting in its queue. The

queueing system is illustrated in Figure 2.3, where M; represents the i™ message arrival.
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Figure 2.3: Queuing System of a Sensor Node

The arrow arriving at the queue line indicates that a message has entered the
system and has been queued into a buffer with infinite capacity. The queued messages are
served by a single server according to a first-come-first-served order of service. When the
server is available, a message from the queue enters service, as shown by the arrow
departing from the queue line and approaching the service line. Once the message has

been served, it exits the system, as depicted by the arrow leaving from the service line.
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The idle period is represented as the interval between the departure of a message
which resulted in the server becoming idle and the arrival of a new message. Referring to
Figure 2.3, the idle period is the interval between the departure of M;,; and the arrival of

M+, where M;4; is the newly incoming message.

The busy period begins when a message arrives to the sensor node while it is idle
(no messages are waiting in the queue). During the service time of the message that
initiated the busy period, if no other messages arrive to the sensor node, the busy period
will be equivalent to the service time of this message. This is shown in Figure 2.3 where

M;; arrives to an idle sensor node and no messages arrive during its service time.

On the other hand, if at least one message arrives to the sensor node during this
service time, the busy period will be the sum of the service time of the message that
initiated the busy period and of all the messages that arrive until the system is empty. The
busy period terminates when the last message waiting in the queue departs from the
system and no new messages arrive. This scenario is illustrated in Figure 2.3. The arrival
of message M; initiates the busy period. During the service time of M;, message M;.;
arrives to the sensor node and waits in the queue until A; is serviced. Once M; departs the
system, M;,; will enter service. Since no messages enter the system during M. ;’s service
time, the busy period will terminate once M,.; leaves the system. In this case, the busy

period will be the sum of M;’s and M;,,’s service times.
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2.4 Modeling of a Sensor Node as an M/M/1 Queue

We will assume that the arrival of messages to a sensor node is according to a
Poisson process and transmission time of a message is exponentially distributed. Thus, a
sensor node will be modeled as an M/M/1 queue. A network of M/M/1 queues can be
modeled as a Jackson Network [22, 23] in which the arrivals at any sensor node whether
locally generated (sensed data) or from another sensor node (relay data) are Poisson.
Therefore, the inter-arrival and service times of a sensor node are exponentially
distributed, each with a different mean value, with A as the arrival rate, u as the service

rate, and p=A/u as the load. Consequently, the idle and busy periods of a sensor node

will correspond to the idle and busy periods for an M/M/1 queue. The idle period
durations (i;) and the busy period durations (b;) are respectively independent, identically

distributed (iid) random variables, each with a different distribution [23].

The idle period in an M/M/1 queue has the same distribution as the inter-arrival
time exponential with mean 1/ A . Therefore, the Laplace transform (LT) of an idle period

is the Laplace transform of the pdf of the inter-arrival time,

I(s)= (2.4)

s+A

Next, for subsequent use we will also give LT of I7, defined in (2.1). The LT of

the sum of # idle periods is given by,

IT(s) =)}

Thus from Eq. (2.4) we obtain immediately that,
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1T, ()= L f_ J 2.5)

IT (s) corresponds to the Laplace transform of an n™ degree Erlang distribution. The

corresponding probability density function of this distribution is

/f{e-,lt(ﬂ’t)n—l '

S ()= PR t20,n21 (2.6)

The average duration of the sum of n idle periods is given by,

IT,="%
A

2.7)
The Laplace transform for the busy period (denoted as B(s)) for an M/G/1 queue

can be expressed as [24]
B(s)=M(s+ A — AB(s)) (2.8)

where M(s) is the Laplace transform of the service time, which is exponentially

distributed. We then have

M(s)=- f# 2.9)

With the help of (2.9), B(s) is obtained by solving equation (2.8) as

B(s) = ~
S+A—-AB(s)+ u

AB&F —[u+ A +s]B(s)+ u=0

psy= 25 ;j”)z -]’ |B(s)<1,Re(s)20  (2.10)

We note that the LT for the busy period can be solved for any service time distribution.

However, it is difficult to find a closed form equation when the message transmission
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time is not exponentially distributed; as an alternative, moments can be used to

approximate this expression in future studies.

Next, for subsequent use we will also give LT of BT, defined in (2.1). Since the
busy periods (b;) are iid random variables, the Laplace transform of the sum of »n busy
periods is given by,

BT,(s) =[B(s)]

Thus from Eq. (2.10) we obtain immediately that

y+/1+s—[(,u+/l+s)2 —4;1,1]%

BT,(s)= 77

@2.11)

The probability density function of the sum of »n busy periods, f,; (¢), can be obtained by

the inversion of the above equation. The inversion has been carried out with the use of

the following transform pair [25]
1 n III t
[s—(sz—az)/z} < na—"(g_); Re(n) >0
t

where

at n+2m
a= 2(/1/1)% s, “‘):;'((r%;?

~ In the above, I, is the modified Bessel function of the first kind of order n.

The density function is given by,
—(u+ Ay

for ()= 67;11,, (aty, t>0,n21 (2.12)
, L

30



The average duration of the sum of n busy periods is given by,

jpueguuny n

I, =
H—A

(2.13)

2.5 Derivation of the Lifetime Distribution of a Sensor Node

Next, we will determine the probability distribution of the lifetime of a sensor

node defined as,

F,, ()= P[NL <1]=1- P[NL > 1]

We calculate the probability distribution of the lifetime of a sensor node by conditioning
on N, which is defined as the number of completed cycles when the battery dies. The
cumulative distribution function of the lifetime of a sensor node depends on N and may

then be written as

F,, ()=PINL St]ziP[NL <{{N=n]P[N =n] (2.14)

n=|

The subsequent subsections will comprise the following: first, given that n cycles
have been comp]eted throughout a sensor node’s lifetime, the conditional éumulative
distribution functionrof the lifetime of a sensor node ( P[NL <t| N = n]) is determined;
second, the probability mass function of the number of completed cycles when the battery
dies ( P[N = n}) is obtained; third, the cumulative distribution function of NL ( F,, (f)) by
unconditioning with respect to N is found; finally, for purposes of comparison, the

average lifetime of a sensor node is determined using a purely average value approach.
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2.5.1 Conditional CDF of NL Given N

Given that n cycles have been completed during the lifetime of a sensor node,

N = n, then, from equations (2.2) and (2.3),

NL =BT, +IT, (2.15)

Since we have assumed that the battery dies exactly at the end of the ™ cycle and energy
is used up only during the busy periods, the total duration of the busy periods for n
cycles, BT,, will be equivalent to the battery’s lifetime (BL), where BL is a constant of a
known value. Then Eq. (2.15) becomes

NL=BL+1IT, (2.16)
The probability density function of the linear function given in Eq. (2.16) is determined
as [26],

fult|m)= £y (¢~ BL)

Thus from Eq. (2.6), the conditional pdf of NL given N =n is

lle—l(l—BL)[/l(t _ BL)]I;_1 .

Fult|n)= oD . t2BLn>1 2.17)

Next, the conditional cumulative distribution function of NL given N = n is found

by integrating the conditional pdf given in Eq. (2.17) as follows:
t
Fy(t|n)=PINL<t|N=n]= [fy,(y|n)dy
BL

_ ( A 1)' J‘e-l(y—BL)[/l(y _BL)]lz—ldy
n—1i)!

BL
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Following some substitutions, the above integral can be represented as a lower

incomplete gamma function:

7(g,x) = Ie"'tg_1 dt

0
Therefore, the conditional CDF of NL given N = n may be written as

1
(n-1)

F,, (t|n)= y(m,A(t-BL);, t=BL,nx1 (2.18)

2.5.2 The Probability Mass Function of N

The probability mass function of n cycles being completed when the battery dies

may be determined as follows [27]:
P[N =n]=P[N 2 n]-P[N 2 n+1] (2.19)

If more than n cycles have been completed during a sensor node’s lifetime, then the sum
of n busy periods does not exceed BL since the battery does not die at the end of the n™
cycle:

P[N > n]= P[BT, < BL]

Therefore, the probability mass function of n cycles being completed when the battery

dies can be written as
P[N =n]=P|BT, < BL}- P|BT,,, < BL] (2.20)

The probability of the event { BT, < BL } is found by integrating the pdf of BT, (found in

Eq. (2.12)) as follows
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Fyr, (BL)= P[BT, <BL]= [f,, (¢ dt .21

This integral is difficult to evaluate in closed form. Therefore the alternative approach of

numerical integration has been used in evaluation of Fy; (BL).

Now Eq. (2.20) can be employed by using the results obtained by Eq. (2.21) in order to

find the probability mass function of N,
Py(n)=P[N =n]=Fy (BL)— Fy (BL) (2.22)

Finally, the cumulative distribution function of N is given by,

Fy(x)=3 py(m) u(x—n) (2.23)

n=l1
where p, (n) is the probability mass function of N given in Eq. (2.22) and u(x) is the
unit step function. We note that the average number of cycles completed during the

lifetime of a sensor node, N, may be computed as

N = i npy(n) (2.24)

n=1

2.5.3 Unconditional CDF of Lifetime of a Sensor Node

Substitution of (2.18) and (2.22) into (2.14) gives the unconditional CDF of -

lifetime of a sensor node,

Fu@® =" y(n,a(t - BL)|F,, (BL)-F,, (BL)}  t>BL (2.25)

n=l (n - l)‘
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The above CDF is the main result of this chapter. It is a complicated expression involving

modified Bessel function of first order, but it can be evaluated numerically.

2.5.4 Average Lifetime of a Sensor Node

In this subsection, we determine a closed form expression for the average lifetime
of a sensor node. First, we determine the average number of cycles in the lifetime of a
sensor node. We note that the number of cycles completed during the lifetime of a sensor
node forms a stopping time for the sum of the busy periods in battery’s lifetime. From
Wald’s identity, [27], the average number of cycles in the lifetime is given by,

N
H—A

BL =

N=BL(u-A) (2.26)
The above gives an alternative closed form expression to (2.24) for the average number

of cycles completed during the lifetime of a sensor node.

From Eq. (2.7) and (2.13), the average lifetime of a sensor node is given by

NL=BT +17 =N _N__ Ny
non ou—4 A (u-A)

Substituting from (2.26) in the above,

~7 _MBL

NL=—— 2.27
7 (2.27)

As it may be seen, the average lifetime of a sensor node depends on the battery life,

message arrival and service rates.
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2.6 Numerical Results

In this section, we present some numerical results regarding the analysis
developed in this chapter. We plot various figures that show the probability distribution
of the lifetime number of cycles (2.23) and the distribution of lifetime (2.25) for different
parameter values. We also give some validity checks. As explained before the sensor
node lifetime depends on battery life, message generation and service rates. We present
results for three values of battery life, BL =72, 96, 120hours, which are the typical battery
life values with the present day technology [28]. We set the value of message service rate

to ¢ =150messages/hour.

The evaluation of (2.23) and (2.25) involves an infinite summation that depends
on the number of cycles completed during the lifetime of a sensor node. In the calculation
of these distributions, the summation needs to be truncated and therefore the accuracy of
this truncation is a concern. We have determined the validity of this approach by
calculating the average number of the cycles in the lifetime of a sensor node from (2.24)
and (2.26). The latter has a closed form expression while the former depends on the same
infinite summation that the calculations in (2.23) and (2.25) depend. Table 2.1 presents
this average for different values of battery life and message arrival rates. It may be seen
that the difference between the results of two calculation methods is almost always less

than one percent. This gives us the confidence that our numerical results are accurate.
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Table 2.1: Verification of the Average Number of Cycles Completed During a
Sensor Node's Lifetime

BL | A |Eq(2.26) | Eq. (2.23) | % Diff
72 | 15 9720 9783.4 0.65
72 | 75 5400 54342 0.63
72 | 135 | 1080 1091.7 1.08
96 | 135 | 1440 1452 0.83
120 | 135 | 1800 1812.1 0.67

In Fig. 2.4, we present CDF of the number of cycles completed during the lifetime
of a sensor node from (2.23) with battery life as a parameter for a constant value of
message arrival rate 4 = 135 messages/hour. As may be seen, initially all the curves have
zero value, then, they approach one in a steep manner. Fig. 2.5 presents the same CDF
with message arrival rate as a parameter for a battery lifetime of 72 hours. The comments

made about the previous figure will also apply here.

1.4 r
— BL=72 hours
12} — —BL=96hours -
e B EEEEEEE BL = 120 hours
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Figure 2.4: Cumulative Distribution Function of the Number of Cycles in the
Lifetime for Different Values of BL given that A=135 messages/hour
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Figure 2.5: Cumulative Distribution Function of the Number of Cycles in the
Lifetime for Different Values of A given that BL=72 hours

In Fig. 2.6, we present the cumulative distribution of a sensor lifetime with battery
 lifetime as a parameter for a constant value of message arrival rate A = 135
messages/hour. We note that this corresponds to a high traffic load and node utilization
will be p=0.9. This means that the node will be almost always busy, thus the battery will
be drained continuously. It may be seen that initially the curves have zero values and very
sharply they approach to one. As expected, the sharp rise occurs almost at the battery life.

This observation gives further confidence that our results are correct.
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Figure 2.6: Cumulative Distribution Function of the Lifetime of a Sensor Node for
Different Values of BL given that 4=135 messages/hour

Fig. 2.7 also shows the CDF of a sensor node’s lifetime with message arrival rate
as a parameter A = 135, 75, 15 for a constant battery life of BL = 72 hours. As before,
initially, the curves have a zero value and then sharply they approach to one. It may be
seen that as the message arrival rate drops down, the sensor node life time increases. For
A =15, the node will be under a light traffic load with server utilization p= 0.1. For this
system, the probability that a sensor’s lifetime will be less than 700hours is zero, which is
a tenfold increase in sensor’s lifetime compared to battery life. In WSNs that experience
long periods of inactivity and then a sudden burst of activity, the node utilization will be

low. Therefore, the model with the assumed traffic loading may characterize a sensor

node in such a network.
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Figure 2.7: Cumulative Distribution Function of the Lifetime of a Sensor Node for
Different Values of A given that BL=72 hours

Finally, in Tables 2.2 and 2.3, we present the 90, 95 and 99™ percentiles of the
distribution of sensor node lifetime for battery life and message arrival rate as a

parameter respectively.

Table 2.2: Percentiles for the CDF of NL with different BL given that 4=135 and =150

Percentile | BL=72 | BL=96 | BL=120
90% 81.62 | 108.49 | 135.31
95% 81.93 108.9 135.83
99% 82.8 109.83 | 136.82

Table 2.3: Percentiles for the CDF of VL with different A given that BL=72 and 4#=150

Percentile | A=15 A=75 A=135
90% 736.41 | 146.97 81.62
95% 739.89 | 147.76 | 81.93
99% 746.37 | 148.99 82.8
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According to the results obtained above, we can conclude that when we increase
the battery life of a sensor node, increase the service rate or decrease the arrival rate, the
lifetime of a sensor node is expected to increase. By equipping a sensor node with a
battery that supplies more energy, the sensor node can last longer. By augmenting the
arrival rate, a sensor node will be receiving more messages resulting in performing more
tasks and sleeping less. Hence, the sensor node will be consuming more energy and the
sensor node will die faster. If the service rate is high, the sooner a sensor node will
transmit its messages and go back to sleep. Thus, low service rates consume more energy

since the sensor node is operating for a longer time.
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CHAPTER 3:

DERIVATION OF THE CONNECTIVITY PROBABILITY

FOR TWO ADJACENT CELLS

3.1 Introduction

In this chapter, the sensor nodes will be assumed to be deployed uniformly over a
large square area. Deployment area will be logically divided into mini squares to be
referred to as cells. The objective of this chapter is to derive the communications
connectivity probability of two adjacent cells. This result will be then used, in Chapter 4,
to determine the connectivity probability between a sensor node and the sink for the

entire network.

3.2 Sensor Node Population in a Cell

In this section, we will consider the distribution of the number of sensor nodes in
a cell. The sensor nodes are randomly deployed over a square area according to a Poisson
process with density A, sensor nodes per unit area. The deployment area is then divided

into cells where each has a side of d units, as illustrated in Figure 3.1.

42



T N

- d

Figure 3.1: Deployment Area Divided into Cells and Representation of a Single Cell

Let us define s as the cell area and £ as the average number of sensor nodes in a cell,
s=d* , £=A,s
By neglecting the border effects, we assume that each cell is covered by a circular
area with radius d/2, as shown in Figure 3.1. In other words, a sensor node’s sensing
range is set to d/2. With the help of equation (1.1), we can discover the area coverage,

f., of a cell given a specific mean number of sensor nodes in a cell as follows,
fo=1-e*"" (3.1
f,, determines the probability that an event will be detected in a cell, which in fact also
provides the area coverage of the network since an average of £ sensor nodes reside in
all the cells. The area coverage for different cell densities is in Table 3.1. We will prove

that this model inclusively handles coverage in Chapter 5.

Table 3.1: Area Coverage for Different Cell Densities

4 2 3 4 5
£, 0.79212 0.90522 | 0.956786 | 0.980297

The distribution of the number of sensor nodes within a cell area is given by the

Poisson distribution
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~-& k
P, = Prlk nodes in a cell] = _e% 3.2)

The probability generating function (PGF) of the Poisson distribution is given by

) © e—.f k
N (z)= szPNc =sz ———g)—
k=0 k=0 :

N, (z) =" (3.3)

It is a property of the Poisson process that, given & sensor nodes in a cell, the
nodes will be independently, uniformly distributed throughout a cell. This property will

be used extensively in the rest of the chapter.

3.3 Derivation of the Cell Connectivity Probability

In this section, we will determine the connectivity probability of two adjacent
cells. In the following, it will be assumed that the side of each cell (d) will be equal to a
sensor node’s transmission range. As a result, all the sensor nodes within the same cell
will be connected. If two }cells contain sensor nodes within transmission range of each
other, then, these two cells will have connectivity. If two cells are connected, messages

can be transmitted from one cell to the other in both directions.

In the subsequent subsections, the following will be determined: ﬁrsf, the
probability that a randomly chosen pair of sensor nodes, located in adjacent cells, are

within range of one another ( p,); second, the probability that a sensor node in a cell has

connectivity with at least one sensor node located in the adjacent cell ( p,); finally, the
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probability that at least one of the sensor nodes in a cell has connectivity with at least one

of sensor nodes in the adjacent cell ( p).

3.3.1 Determining p,

First, we consider two neighboring cells with one sensor node lying in each as

shown in Figure 3.2.

B
(x4.y4) L
o |

(x.¥8)

0 d 2d

Figure 3.2: Two Adjacent Cells Containing One Node

The coordinates of the sensor nodes satisfy the following constraints,

0<x,,y,,y,<d , d<x,<2d

The locations of sensor nodes 4 and B are distributed uniformly in the left and
right cell respectively. The probability density functions of these random variables are
given by:

1/d 0<x,y,yp<d , d<x,<2

d
fXA(xA)zfXB(xB):fYA(yA)szB(yB)z{ (34

0 elsewhere

Two sensor nodes will be able to communicate directly if L<d where L is the
distance between them and d is the maximum allowed distance for direct communication

(the transmission range). The distance between the two sensor nodes is given by

L=\/(x3—xA)2+(y3"yA)2 (3.5
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Let us define p, as the probability that the distance between a randomly chosen

pair of sensor nodes is less than or equal to the transmission range:
p, =Pr[L <d]

If y, and y, can be any value between [0, d], the following constraints must be applied
in order to satisfy L <d . From Eq. (3.5),
r'<d
(xp=x,) +(yy—y,) <d’
(x5 _xA)z <d’ —(¥s '"yA)2
_\/dz ~(Vp—ya) Sxp-x, < \/d2 (s =y
Xy _\/d2 -(¥s _yA)2 Sxpsx, +\/d2 -(¥s _yA)Z

The lower limit x, — \/d ?—(yg—y,)* isalways less than or equal to d. Hence,

d—<-xBSxA'*'\/dz"(yz?_yA)2 (3.6)

since x, >d .

The upper limit of x, in Eq. (3.6) is always less than or equal to 2d but may also be
equal to a number less than d. We need to find the limits of x, where the upper limit of

x, is greater or equal to d.

X4 +\/d2 "(J’B".VA)2 >2d
X4 Zd_\/dz _(.VB'.VA)2

Therefore, x, ranges between

d—\d* —(y,—y,) <x,<d (3.7)
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With the limits given in equations (3.5) and (3.6), we can now determine p,:

d d d xA+Vd2_(.VD_yA)2
D= _[ _[ I _[ fo,x,,,Y,,,YD (x45X55Y 45 Yp) dxpdx dy,dy, (3.8)
0 0 adtypmr,) d

where fy y vy (X4,%5,¥,4,¥5) is the joint pdf of X,,X,,Y,, and ¥,. Since these

random variables are independent of each other, their joint pdf becomes
1
fx,,,x,,,y,,,y,, (x4, X5, 4,V5) = fx,, (xA)fXB (x, )fy,, (J’A)fy,, (yp) = 'd_4“

Then, p, in equation (3.8) is given by

A x A ~(rp=y4)
P =7 _[ _[ _.- _[ dx zdx ,dy pdy
0 0

&

~
&

d d d
Py =‘1‘_‘- _[ J- [xA+\/d2_(yB'_J’A)2 —dlx,dy,dy,
0 0

2 =%:I ZI[% —yTBZ + V¥ —yzi}dygdy,,
L
p,=%{§+§—%}:5/12 (3.9

3.3.2 Determining p;
Now, let us consider two adjacent cells with one sensor node lying in a cell and &

sensor nodes in the other as shown in Figure 3.3.

o5
[ ] B;

° o o ©
o B®

0 d 2d

Figure 3.3: Two Adjacent Cells Containing One and k& Nodes
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Sensor nodes 4 and Bj, By, ..., By are distributed uniformly in the left and right cell
respectively. We would like to determine p,, which is the probability that a randomly
chosen sensor node in one cell is connected to at least one sensor node in an adjacent cell.
In this case, the neighboring cells are connected. Since the locations of sensor nodes are
independent of each other, the connectivity between a pair of sensor nodes is then

independent of any other pair in the network.

As explained earlier, the distribution of the number of sensor nodes within the
right cell is given by the Poisson distribution. The probability generating function (PGF)

of the number of nodes in the right cell, N_(z), is given in Eq. (3.3).

Referring to Figure 3.3, let n, denote the number of sensor nodes in the right cell
that sensor node 4 has connectivity with among & sensor nodes. Defining u; to be a

Beroulli variable as follows,

{1, if two nodes are connected
H. =
i

0, no connectivity

U(z)=pz+1-p,

Then, n, is given by the following random summation:

k
n=%u
=0

Since we have a random sum of independent random variables, the probability

generating function can be shown to be

N.(z2)=N,(2)

==U,(2)
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We note that N (0) gives the probability that none of the sensor nodes in the right cell

have connectivity with sensor node 4. Hence, the adjacent cells in this case are connected
with probability
p, =1=-N,(0)

p2 —_ 1 _ e“f(l—Plz“HPl) — 1 _ e'fP] — 1___ e_l” dzPl (3.10)

z=0

3.3.3 Determining p

Finally, let us consider two adjacent cells with k& and j sensor nodes lying in each

as shown in Figure 3.4.

.Aj .Bl
o Az . BZ
o [ ] . o [ ] .
A4
e 0| o Bo
0 d 2d

Figure 3.4: Two Adjacent Cells Containing j and &k Nodes
Sensor nodes 4;, A, ..., 4;and B, By, ..., By are distributed uniformly in the left and right
cells respectively. We would like to determine p, which is the probability that two

adjacent cells will have connectivity. If the distance of at least one pair of sensor nodes in
different cells is less than the transmission range, then, the neighboring cells will be

connected.

As before, the distribution of the number of sensor nodes within a cell area is
given by the Poisson distribution. The PGF for the distribution of & sensor nodes lying is

a cell is given in Eq. (3.3).
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Referring to Fig 3.4, let n, denote the number of sensor nodes among j sensor

nodes in the left cell that has connectivity with at least one of the sensor nodes in the right

cell. Defining v; to be a Bernoulli variable as follows,

i

{1, if a node in the left cell has connectivity with at least one node in the right cell
V. =

0, no connectivity

Vi(z)=p,z+1-p,

Then, n, is given by the following random summation:

We note that the random variables v, will not be independent of each other because it
depends on the connectivity of each sensor node in the left cell to the same sensor nodes
in the right cell. However, in the following, it will be assumed that these random
variables are independent of each other. Since the number of sensor nodes in the left cell

also has the Poisson distribution,

N,(z)=N_(z),

z=Vi{z)

The accuracy of the independence assumption will be determined through simulation.
We note that N,(0) gives the probability that none of the sensor nodes in the left cell

have connectivity with any of the sensor nodes in the right cell. Hence, the adjacent cells

are connected with probability
pP= 1-N ¢ (O)

p=1 _e‘ﬁ(l‘le‘HPz)I“O =]l—e P =]l—e M d’p, (3.1
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3.4 Numerical and Simulation Results

In this section, the numerical and Monte Carlo simulation results for the
connectivity probability for two adjacent cells are compared for different values of &. In
Table 3.2, we present the numerical and simulation cell connectivity probabilities, p, as a
function of sensor node density. Also shown in the table is p,. As may be seen, p,
provides a lower bound for cell connectivity probability p except for low density nodes.

These results are plotted in Figure 3.5.

Table 3.2: Comparison of Numerical and Simulation Cell Connectivity Probabilities
as a Function of Cell Node Density

£ 1 2 3 4 5 6 7 8 9 10

p Sim | 0.228 | 0.555 | 0.748 | 0.897 | 0.958 | 0.975 | 0.992 | 0.992 | 0.999 | 0.999

pNum | 0.2888 | 0.6772 | 0.8824 | 0.961 | 0.9874 | 0.9959 | 0.9987 | 0.9996 | 0.9998 | 0.9999

p,Num | 0.3408 | 0.5654 | 0.7135 | 0.8111 | 0.8755 [ 0.9179 | 0.9459 | 0.9643 | 0.9765 | 0.9845

o
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cell probability connectivity
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mean cell density (&)

Figure 3.5: Simulation and Lower and Upper Bound of Numerical Results
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Since we have assumed that the random variables v, are independent of each other, the
simulation and numerical results differ when the average number of sensor nodes in a cell
is small. In Figure 3.5, the numerical results found for p, and p were plotted in order to
give a lower and upper bound respectively to the results obtained by simulation. We
observe that for approximately £ <2, the calculated values of p, and p give useful upper
bounds. It is not likely that such low node density would be of interest. For
approximately &>2, the calculated values of p, and p give lower and upper bounds,

respectively. Therefore, the calculated results will provide useful tools during the design

process of WSN.

52



CHAPTER 4:

NETWORK CONNECTIVITY PROBABILITY

4.1 Introduction

In this chapter, we will determine the probability that a sensor node has
connectivity to the sink. As in chapter 3, the sensor nodes will be assumed to be deployed
uniformly over a very large rectangular area. Deployment area will be logically divided
into mini squares to be referred to as cells. The side of each cell will be equal to the
transmission range of a sensor node. As a result, if a cell has connectivity to the sink, then
all the sensor nodes residing in that cell will also have connectivity to the sink. Thus, we
have reduced the problem under consideration to the derivation of the connectivity

probability of a cell to the sink.

4.2 Block Structure of the Cells

It will be assumed that the sensor nodes will be deployed to the entire upper
Cartesian plane. Figure 4.1 shows the logical division of the deployment area into the
cells, where a cell is represented by a square with a letter in it. The sink will be located at
the origin, the mid-point of the bottom of the deployment area. We assume that the flow

of data will be from top to bottom, from right to left, and from left to right. The data will
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not be allowed to flow from bottom towards top, because it will be in the reverse

direction of the sink.

[ € e | row3

djlc]| cjrow2

a a a | rowl

Sink
Figure 4.1: Division of the Deployment Area into Cells

We note that each cell will have four neighbors, above, below, right and left, except for
the cells in the first row which will have only three neighbors. It will be assumed that the
connectivity of a cell to each of its neighbors will be independent of the other neighbors.
Two neighboring cells will have connectivity with probability p, discussed in Chapter 3.
The connectivity of a cell to its neighbors above, below, right and left will be referred to
as higher, lower, right and left connéctivity respectively. Next, we define a block as a
group of consecutive cells in a row such that adjacent cells have connectivity with each
other. In each block, the traffic may flow across the cell boundaries to the left or right.
The block is an important entity which plays a large role in the sequel. In Figure 4.1, each
group of consecutive cells in a row that contain the same letter forms a block. In other
words, the adjacent cells in a block will be connected to each other with probability p and

a new block will begin with probability 1-p, as shown in Figure 4.2.

block block block

A SR

Q> Neighboring cells
are connected

W W WW»

Figure 4.2: Formation of Blocks
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The probability that a block contains £ cells is given by the geometric distribution [23]:

Pr(q = k) = Pr(a block contains k cells)
Pr(q=k)=(1_l))f)k“l s k=172:35-'- (41)

The PGF of the geometric distribution is expressed as

0(2) =E[zq]=‘1—”3)£ 4.2)
o

From above the average length of a block in number of cells is given by,

dQ(z)| _ 1
dz |, (1-p)

q= (4.3)

The traffic in a block will be trapped if none of the cells of that block has lower

connectivity.

4.3 Distribution of the Number of Tagged Cells in a Row

The blocks, in any row, that have the potential to be connected with the sink will
be called tagged blocks and the corresponding cells of that block tagged cells. If at least
one cell of a block is a neighbor to a tagged cell in the row immediately below, then that
block becomes a tagged block and all its cells tagged cells. Row one always has a single
tagged block since the cell at the origin is considered to be the sink. The tagged cells in a
row will be collectively referred to as a segment which will be identified by its row
number. All the cells in row n which interface the cells in segment n-1 will be tagged
cells. However, segment n may have additional cells than segment »n-1 because the border
blocks of segment n may extend beyond the boundaries of segment n-1. Clearly, each

segment will consist of contiguous cells. In Figure 4.1, the shaded blocks are tagged
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blocks; they have the potential of communicating with the sink. Thus the tagged blocks in
segment » are those blocks that have complete or partial borders with the tagged blocks
in segment n-1. Clearly, it is only the tagged cells that may have connectivity to the sink.
The tagged cells form a wedge on the plane. The following analysis excludes the non-
tagged cells since they can not have connectivity to the sink. As a result of this exclusion,
the monitored area becomes smaller resulting in it looking like an upside down pyramid
with a sink located at the bottom, as illustrated in Figure 4.1. However, by adding three
more sides, it approximately gives a rectangular area with the sink in the middle, as
shown in Figure 4.3. From symmetry, connectivity in one of the wedges indicates

connectivity in the entire square.

p, »  Sink

N

A B

Figure 4.3: Combining Wedges in a Square Area

Next, we will determine the average number of cells in a segment. Let us define

k,=number of cells in segment n
i, = number of tagged blocks in segment n
, = number of additional cells that segment # has compared to segment n-1 on the left side

r,= number of additional cells that segment # has compared to segment n-1 on the right side

Figure 4.4 illustrates these symbols.

56



Figure 4.4: Example of Two Consecutive Segments

In Figure 4.4, three blocks in segment # (i,=3) are bordering the tagged blocks in row -1
(i,.,=2). Row n and n-1 contain £, ,=5 and k,=9 tagged cells respectively. Compared to

the tagged block in segment n-1, segment » comprises three additional tagged cells to the

left (£, ) and an additional tagged cell to the right (7).

As pointed above, the border blocks of segment » may extend beyond the
boundaries of segment n-1. The probability that segment » has j additional cells

compared to segment n-1 on the left and right side is given by the geometric distribution:

Pr(¢, = j)=Pr(r, = )=(-p)p’ , j=012,.. (4.4)

The PGFs of /¢, and r, are found below:

L,(2)=R,(z)= E[z"]=E[z"]= 11_:})% (4.5)

Since L,(z) and R,(z) do not depend on the row number n, the subscript » may be

dropped as shown below,

L(z)=R(2) = 11_‘71’ 4.6)

Then, the number of cells in segment # is given by,
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k" = k + E" + r" (4'7)

n-1
Since we are assuming infinite number of cells in each row, then, the random variables

k,.,, £,and r, are independent random variables. Therefore, the PGF of £, is expressed
as

K, (2) =K, (2)L(2)R(2)
The above recursion results in the following explicit formula for X, (z),

K,(2) = K,@L@RE] (4.8)
where K,(z) is the PGF of number of cells in the first segment. Since L(z)= R(z),
K, (z) can be expressed as

K,(2) =K @[LE)f"" (4.9)

Next we will determine X, (z). From the renewal theory [27], the tagged block in row one

will be “special” and it will have length bias since longer blocks are more likely to

include the sink. The probability that this block contains j cells is given by

J Pr(g =7)

Prk, = j) = (4.10)
q
where Pr(q = j) is expressed in (4.1). The PGF of %, is found as
c N o N
K\(2)= Y Prlk, = j)z == jPrlg = )z’ (@.11)
Jj=1 q j=1 . :

With the use of the following z-Transform propérty [29]

a0

an"z” = z—d—F(z) , where F(z) = Z " z"

n=0 dz : n=0

K,(z) is obtained as
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1 d
Kn(Z)—;ZEQ(Z)

where (O(z) is given by 4.2. Substituting from (4.2) into the above, we find

Kl(z)=—l~z—d—[(~1:p—)z}
g dz| 1-pz

g L(-pz)

With the substitution of (4.3), K (z) is expressed as

K, (2) =Lzli -7 ]

Kl(z)=z[1—pjl (4.12)
1-pz

Finally, substitution of (4.6) and (4.12) into (4.8) gives the PGF of the number of cells in

1 2 1 2((1—1)
K. (z)=z P P
l-pz||1-pz

K"(z)zz[l—p] (4.13)
1-pz

segment »,

From (4.12), the average length of the first segment is given by,

k—:dK,(z)l _l+p
: dz |_ 1-p

(4.14)

Table 4.1 gives the comparison of the numerical and simulation results for the average
length of the first segm‘ent. The numerical results we obtained through (4.14). As we see,
the correspondence between numerical and simulation results is excellent and proves that
the tagged block in row one is in fact “special.” Hence, the hypothesis that the first

segment will have length bias is correct.
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Table 4.1: Numerical and Simulation Results for the Average Length of the First
Segment as a Function of Cell Connectivity Probability, p

p NUM SIM

0.1 19 19.0602
0.3 5.666667 5.6718
0.5 3 2.9912
0.7 1.857143 1.8525
0.9 1.222222 1.2144

4.4 Distribution of the Number of Tagged Blocks in a Row

Next, we will derive the distribution of the number of tagged blocks in a segment.
As shown in Figure 4.5 the boundary of adjacent cells is like a gate, if the two cells have
connectivity then the gate is opened otherwise it is closed. All the gates in a block are

open and on the other hand the closed gates form the borders between the blocks in a

Trow.

ir/

gates

Figure 4.5: Gates of a Block

Next let us consider the cells in segment » that directly interface the cells in
segment n-1. The number of these cells will be given by £,_,. Clearly, the number of

blocks in segment n will be determined only by these k, , cells. The extra cells in

segment n compared to segment n-1 do not create new blocks in segment n. Let us define,

d, = number of gates between adjacent cells in segment # within the borders of segment n-1

/, = number of gates from among d, which are closed.
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Figure 4.6 illustrates these symbols.

rown

row n-1

dy =4

Figure 4.6: Example of how to Calculate the Number of Blocks in Segment n

Then, we have,

d, =k

n n-1

-1 (4.15)
i =f +1 (4.16)

Since each gate will be open independent of the other gates with probability p and closed
with probability 1-p, the conditional distribution of the number of closed gates is given

by the binomial distribution,
. k-1 i k-l—i .
Pr(f, =ilk,_,=k)=| _ {(I-p)Yp ™, i=012,..,k-1 4.17)
i _
The PGF of the binomial distribution may be expressed as

k-1
F,(z|k,y =k) =D 2" Pr(f, =ilk,, =k)
i=0

F,(z|k,, =k)=[p+01~-p)z]" (4.18)

From (4.16), the conditional PGF of the distribution of i, is given by,
I(z|k,_, =k)=zF (z|k,_, =k)
Substituting (4.18) into the above equation gives the following conditional PGF
1(zlk,,=k)=z(p+(1- p)z)*" (4.19)
Finally, the PGF of the distribution of i, is found by unconditioning (4.19) with respect

to the probability distribution of the number of cells in segment n-1,
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I"(Z) = ZI"(Z l kn—] = k) Pr(kn-l = k)
k=1

L= 2(p+ (- p)z) " Pr(k,, = k)

1,(z)= —;(—1—_—)“2(1?+(1 - p)z)* Pr(k, , =k)
I"(Z) B V4 + (1 P)Z [Zz Pr(k" b )z p+(1—-p)z:|
z
I, (2)= p+_(1_-;)—Z—[K"~1(Z) z=p+(1—P)z]

Substituting (4.13) into the above equation,

- 2(n-1)
I(z2)=—"——(p+ (—p))[ P )}

+(1— p)z 1- p(p+(1- p)z

2(n-1)
1,(z)= z[ I=p }
(I1-p)1+p-p2z)

1 2(n-1)
I” (Z) = Z[m} (4.20)

The above gives the PGF of the distribution of the number of tagged blocks in segment n
and it is the main result of this section. The average number of tagged blocks in segment
n is given by,

dl (2)

Eli 1=
l£,] dz

z=1

ai,)=[-pz + p+ D + 2Q(n -1 p-pz + p+ D]
E[i1=1+2(n-1)p (4.21)
The above may be written as,

Eli1=1+2(n-2+1)p

Eli,]=1+2(n-2)p+2p
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which may be written as,

Eli1=Eli,_]1+2p (4.22)
The above equation expresses average number of tagged blocks recursively. As may be
seen, the average number of tagged blocks in segment # is higher by 2p than in segment
n-1, which makes sense since the probability of one or more cells in the right or left hand

block is p. As a result of the special length of the border blocks, the average number of

tagged blocks in each row increases by the constant amount 2p.

Figure 4.7 gives the comparison of the numerical and simulation results for the average
number of tagged blocks in each row. As we see, the correspondence between numerical

and simulation results is excellent.

240
220¢
200 f
180 |

160 | 1
140 ¢ i
120} — ——

100} SM  NUM
80} e ' -

average number of tagged blocks

B0 | p=04 — — —— |

140 142 144 146 148 150
row humber

Figure 4.7: Numerical and Simulation Results for the Average Number of Tagged
Blocks as a Function of Row Number for Different Cell Connectivity Probability, p
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4.5 Length Distribution of the Tagged Blocks

Next, we will determine the distribution of the number of cells in a tagged block.
From the previous section, the number of closed gates interfacing the cells in segment n-1
determines the number of tagged blocks in segment n. Since each gate performs an
independent Bernoulli trial, then, the length of the blocks will have geometric distribution
given by (4.1). As pointed out earlier on, the border blocks of segment » may extend
beyond the boundaries of segment n-1 (see Figure 4.4). The distribution of this extension
length is given by the geometric distribution given in (4.4). The extension introduces
length bias of the renewal processes to the border blocks. As a result, the length
distribution of the border blocks is given by (4.10). Figure 4.8 shows the make up of

these “special” blocks.

Lifetime
+—P
v Residual
Are L e
)

TOW n

row n-/

kn-l
Figure 4.8: Length of Border Blocks According to the Renewal Theory
The simulation results have confirmed that there are two types of tagged blocks: border
and non-border blocks. Figures 4.9 a, b present the mean number of cells as a function of
cell connectivity probability, p, in regular and special blocks from (4.3) and (4.14)
respectively. In each figure we also plot the corresponding simulation results. As may be

seen, the numerical and simulation results have excellent agreement.
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Figure 4.9: Numerical and Simulation Results for the Mean Number of Cells as a
Function of Cell Connectivity Probability, p, in Regular (a) and Special Blocks (b)
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4.6 Classification of the Tagged Blocks

Next, we will classify the tagged blocks in a segment into two groups as primary
and secondary blocks. Those tagged blocks that have connectivity to the sink will be
referred to as primary blocks and the remainder will be referred to as secondary blocks. A
tagged block will be identified as a primary block, if and only if, it has connectivity to
one or more primary blocks in the row below itself. If at least a single cell of a tagged
block has connectivity to a primary block in the lower row, then this tagged block
becomes a primary block. In contrast, none of the cells in secondary block connect to a
cell in a primary block in the row immediately below. The single block in row one will
always be a primary block. If there are no primary blocks in a row, there will not be any
primary blocks in higher rows. The cells of primary (secondary) blocks will be referred to
as primary (secondary) cells. Consecutive primary cells form paths that allow the flow of
traffic towards the sink. There is at least a single path connecting each primary cell to the

sink. These paths may merge or split like the tributaries of rivers (see Figure 4.10)

Secondary fragment

Primary fragment

Figure 4.10: Merging and Splitting Paths Connecting a Primary Fragment to the
Sink

Let us define,

x,= number of primary blocks in segment n.

s, = number of secondary blocks in segment .
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We note that,

i,=x,+s, (4.23)
The primary and secondary blocks will interleave with each other. Let us define a
primary (secondary) fragment as a number of primary (secondary) blocks which are
contiguous. The primary and secondary fragments will alternate with each other. For

example, let x,=3 and i, =5, then, the primary blocks may form one to three fragments,

as illustrated in Figure 4.11.

Fragment Fragment Fragment Fragment Fragment Fragment

Figure 4.11: Possible Fragments for Three Primary Blocks and Five Tagged Blocks

Next, we will determine average number of primary fragments in segment n
which will be used in the following section. Let us assume a constant number of primary
and secondary blocks in segment n and then determine the number of ways that these

primary and secondary blocks may be partitioned. Let

6(a, m)= number of ways that a primary blocks will form m fragments.

(B, f)=number of ways that f secondary blocks will form f fragments.

O(a,m)and O(p, f)are found by the following well known recursive relation [30]:

84,ry=0(l-Lr-1)+6(l—r,r) 424)
0 for f<r
where 9(4,r) : 0 for either [<1 or r<l
1 for L=r
1 for r=1
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6(¢,r) gives the number of ways that an integer /may be partitioned into r fragments

where 1<r</. In our problem, the number of primary and secondary fragments is
dependent since they alternate with each other. Clearly, there are three possibilities,
- The segment begins and ends with a primary fragment, then, f =m—1 where
fand m are, respectively, the number of secondary and primary fragments.
- The segment begins with a primary fragment and ends with a secondary

fragment or the converse of this, then, f =m.

- The segment begins and ends with a secondary fragment, then, f =m+1.

Let us define,

@(m) = number of ways that a primary blocks may be partitioned into m fragments given
S secondary blocks.

¢ = total number of ways that a primary and / secondary blocks may be partitioned to.

Then,

m+l

@ (m)=06(a,m)* > 0(B,f), for m>1 (4.25)
f=m-1
Vf<p

1, if =0
where ¢ (1) =
? D {0, otherwise

p =30 (m) (4.26)

m=1
Next, we will assume that all the partitions are equally likely to occur which will be

justified later on through simulations. Let us define R _as the probability that a primary

blocks may be partitioned into m fragments given f secondary blocks, then,
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R, =—— (4.27)

Finally, the average number of primary fragments is given by
m =) j*R, (4.28)
=

Next, we assume that the above result also holds when the numbers of primary and
secondary blocks in a segment are not constant but chosen to be equal to the average

number of primary and secondary blocks in segment n, @ =Xx,, f=5,. Letting m,

denote the corresponding average number of primary fragments in segment #, then,
m, = Z J*R, (4.29)
Jj=1

The above assumption will be justified by the simulation results to be presented later on.

4.7 Derivation of the Average Number of Blocks Connected to the Sink

In this section, we will derive a recursive relation for the average number of
primary blocks in a segment. First, let us consider the structure of a primary fragment. A
primary fragment has the same structure as a segment, it consists of contiguous number
of blocks and the lengths of border blocks in number of cells should be larger than that of
non-border blocks. However, in practice, the border blocks may not always have the
“special” length. Each primary fragment wili interface a number of blocks in the higher
row which will be called a frame. The border blocks of a frame will have the length bias
of renewal processes. The blocks of each _frame may generate zero, one, two or higher

number of primary fragments in the row above. When the border block of a frame
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happens to be also border block of a primary fragment, then, that border block will have a
special length otherwise it will have a regular length (see Figure 4.12). Thus the special
border blocks of a primary fragment have the special, length dependent, distribution

given by (4.10), while all the other blocks have the geometric distribution given by (4.1).

Frame

A

Secondary block

Primary block

owhn

Secondary fragment
row n-1

Primary fragment

Figure 4.12: Example of a Frame Interfacing a Primary Fragment

Figures 4.13 a, b present the mean number of cells as a function of cell connectivity
probability, p, in primary non-border and border blocks of a frame respectively. In each
figure we also plot the corresponding numerical results given by (4.3) and (4.14)

respectively.

12

—— SIM

—+— NUM

D 1 i 1 | 1
o1 062 03 04 05 06 07 08 09

mean nurmber of cells in primary non-border blocks of frames

cell connectivity probability (p)

a)
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Figure 4.13: Numerical and Simulation Results for the Mean Number of Cells as a
Function of Cell Connectivity Probability, p, in Primary Non-Border (a) and Border
‘ Blocks (b) of a Frame

Figure 4.14 shows the simulation results for the average size of a border block of a
primary fragment. Also shown are the numerical results for the average of the geometric
distribution, 1/(1-p), average of the geometric distribution with length bias, (1+p)/(1-p),
and the arithmetic mean of these two averages. It may be seen that the simulation results
are best tracked by the arithmetic mean of the two averages. This corresponds to the case
that one of the border blocks of a primary fragment is normal and the other is special

confirming our expectation discussed above.
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Figure 4.14: Average Size of Border Blocks of the Primary Fragments as a Function
of Cell Connectivity Probability, p
Let us define,

g,= mean number of blocks in a primary fragment in segment n.

h, = average number of blocks in a frame in row n.
x,=mean number of primary blocks in segment n.

y = Pr (a tagged block is a primary block)

We would expect that the following relation holds,
X, =g,m (4.30)
The average number of blocks in primary fragments and frames in consecutive rows will

have the same relationship as the segments in consecutive rows. However, since on
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average only a single border block of a primary fragment will have a special length, then,

(4.22) is modified as follows,

hn+l =§n +p (4'31)
Let us multiply both sides of the above equation by the number of primary fragments in

TOW 7,

hn+lmn =§nmn +ﬁinp (4°32)

Substituting (4.30) on the right hand side of the above equation,

hn+]mn =in +mnp (4'33)
Next, we multiply both sides of the above equation with probability that a tagged block

will be a primary block,

hn+lmn}/ = (in + mnl))}/ (4'34)
We note that the left side of the above equation corresponds to the average number of the

primary blocks in segment n+1,

X, =X, +m, p)y (4.35)
Next, we determine the probability that a tagged block is a primary block. According to
[27], the portion of the border block partially interfacing the primary fragment in the row
below (the length of the age given in Figure 4.8) is the same size as the non-border
blocks. Since we are not concerned with the extension length given in (4.4), the average

length of the blocks we are dealing with are all normal. Hence,

2 at least one cell from the :
y =) Pr _ |atagged block contains k cells |Pr(q = k)
‘= \ block has lower connectivity
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Substituting for the probability distribution of block length from (4.1),

7= 1-0-p)10-p)p*”
y=1-3 (- p) (- p)p*"

y=1-0-p* > [a-ppl”

-p* _  p
I-(-p)p 1-(1-p)p

(4.36)

The above result enables the calculation of the average number of primary blocks in a

segment n recursively with m, given by (4.29).

4.8 Derivation of the Sensor Node Connectivity Probability to the Sink

Finally, we are ready to determine the probability that a sensor node has
connectivity to the sink. First, we determine the connectivity probability of a cell to the
sink in the first » rows. Let us define,

P =Prob(a cell from the first » segments is connected to the sink)

p _ Mmean number of primary blocks in the first r segments

mean number of tagged blocks in the first r segments

r

2%,

po=he 4.37)
£,
2

where X, and 7, are given in equations (4.35) and (4.22) respectively. Since the nodes

are uniformly distributed in deployment area, P. also gives probability that a sensor node
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located within the first » segments will have connectivity with the sink. P will be

r

referred to as either sensor or network connectivity probability. We note that sensor
connectivity probability is not a constant but a function of the distance of a node to the
sink. Another, may be more useful interpretation of P, is that it corresponds to the

fraction of the nodes that have connectivity to the sink.

Figure 4.15 illustrates the numerical and simulation results of the network connectivity
probability (P.) as a function of the adjacent cell connectivity probability, p, for a
network that contains 100 rows. As may be seen, the network connectivity probability is
very low for p<0.5, it increases linearly in the range 0.5 <p<0.8 reaching to the value of

P = 0.9. The linear increase continues beyond that but more slowly towards one. The

numerical and simulation results show very good agreement which validates the

approximations and assumptions made in the analysis.

Figure 4.16 presents the fraction of the nodes that have connectivity to the sink as a
function of the row number with adjacent cell connectivity, p, as a parameter. As may be
seen for low values of p, the connectivity probability drops to zero quickly with
increasing row number. For moderate values of p, the connectivity probability initially
drops fast and then at a much slower rate with increasing row number. Finally, for high
values of p, following an initial dip, the connectivity probability increases with increasing
row number. This is the reason why at high values of p, the percentage of nodes that have

connectivity to the sink approaches to one.
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Figure 4.15: Numerical and Simulation Results of the Network Connectivity
Probability ( £ ) as a Function of Adjacent Cell Connectivity Probability, p, for a
Network that Contains 100 Rows
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Figure 4.16: Network Connectivity Probability (£ ) as a Function of Row Number
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CHAPTER 5:

NETWORK LIFETIME

5.1 Introduction

In this chapter, by integrating the results obtained from the previous chapters, we
study network connectivity as a function of time. We determine the amount of time that
the percentage of the nodes having connectivity is above a threshold value. Before
calculating the network lifetime of a WSN, we determine the average number of sensor
nodes per cell that are alive over time. In addition, we show that our design inclusively

handles cdverage.

5.2 Cell Density

In this section, we will determine the average number of sensor nodes per cell that
are alive over time, £(f). This value depends on the initial sensor node cell density and
the probability that a sensor node is alive at a certain time ¢. The sensor nodes are
randomly deployed over an area according to a Poisson process with an average of £(0)

sensor nodes per cell. Since the sensor nodes are dying randomly and independently, the
population size of the live sensor nodes continues to follow a Poisson distribution. Hence,

the mean cell density can be determined as,

s(t)=c(0)* P[NL > 1] (5.1)
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Using eq. (2.25), P[NL > t] can be calculated as follows,

P[NL >t}=1-F, (?)
Figure 5.1 illustrates the average cell density as a function of time for a network with
A =15 messages/hour, x=150 messages/hour, and BL=72 hours where the initial cell

density is 5, 10, 15 and 20 sensor nodes per cell. It may be seen that average cell density

remains flat and then sharply drops down.

25 : r
— £(0)=5
— — §0)=10
P 1 N LR L £0)=15 |
V=~ &0)=20
l
2 A5 fer e | -
2 B
s !
S0 ——————— -
I
5 “i _
D 1 1 ] 1 1
0 200 400 600 800 1000

Time in hours (t)

Figure 5.1: Average Cell Density as a Function of Time for £(0)=5, 10, 15, and 20

Table 5.1 illustrates the time it takes for the cell density of the network, with parameter
values 4 =15 messages/hour, =150 messages/hour, and BL=72 hours, to drop to 3, 4, 5

sensor nodes per cell given that its initial cell density is 10, 15, and 20 sensor nodes per

cell.
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Table 5.1: Time it Takes a Network, with 1=15, =150, and BL=72, for £(¢) to
reach 3, 4, and 5 Sensor Nodes Given Different £(0) Values

s | s0=3 | s0)=4 | s®O=5
10 |729.0864 | 726.4931 | 723.8302
15 | 732.1055 | 730.0394 | 726.957
20 | 734.0234 | 732.1897 | 730.5274

As expected, a network with higher initial cell density will last longer. In addition, the

network will last longer if it is serviceable at lower cell densities.

5.3 Network Lifetime

We define the network lifetime as the time that the percentage of sensor nodes can
communicate with the sink is above a threshold value. In the following, we assume that
all the nodes experience the same traffic load. Therefore, at a certain time ¢, we first
calculate the average number of sensor nodes alive in a cell by using equation (5.1).
Then, by using this result and the help of equations (3.9) and (3.10), we determine the
lower and upper bounds of the adjacent cell connectivity probability. Then, using these
bounds, we evaluate the corresponding bounds of the network connectivity probability,
by using equation (4.37). Figure 5.2 illustrates the lower and upper bounds of the network

lifetime for a network with A=15 messages/hour, =150 messages/hour, and BL=72

hours where the initial cell density is 5 sensor nodes per cell.

79



r

o
as]

o
(2]
L)

0.4

0.2}

Network connectivity probability (P)

0
680

700

720

740 760 ?éD

Time in hours (1)

Figure 5.2: Lower and Upper Bounds of the Network Lifetime for a Network with

probability, p, and network connectivity probability,

A=15, 11=150, BL=72, and &£(0) =5

Table 5.2 gives the lower and upper bounds of the adjacent cell connectivity

P, for different cell densities for a

r?

network with A=15 messages/hour, x =150 messages/hour, and BL=72 hours. The area

coverage is also presented.

Table 5.2: Area Coverage, Bounds of Adjacent Cell Connectivity Probability, p, and
Bounds of Network Connectivity Probability, P, as a Function of Cell Density for a

Network with 4=15, =150, and BL=72

Cell Lower Upper Lower bound | Upper bound Area
density | bound of p | bound of p of P, of P, Coverage f,
2 0.565402 0.677226 0.1876 0.5197 0.79212
3 0.713495 0.882402 0.6715 0.9689 0.90522
4 0.811124 0.961012 0.923 0.9866 0.956786
5 0.875486 0.987442 0.9665 0.9889 0.980297
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We have mentioned in chapter 3 that sensor node density less than two would not be of
interest. When the cell density is two, the network connectivity ranges between 18.76 and
51.97% and the area coverage is about 80%. Even though the area coverage is mediocre,
the network connectivity is too low. In this case, the collected data will probably not be
delivered to the sink. For data transfer to be reliable, each cell must contain at least three
sensor nodes. Therefore, the results found in this chapter will have area coverage of at

least 90%.

We can determine the network lifetime for a specific connectivity threshold. For
example, if the network is functional when at least 90% of the sensor nodes are
“connected, the network lifetime is determined by calculating when the lower network

connectivity probability bound drops to 90%.

Figure 5.3 illustrates the lower bound of the network lifetime for a network with 4A=15

messages’hour, =150 messages/hour, and BL=72 hours where the initial cell density is

5,10,15, and 20 sensor nodes per cell.
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Figure 5.3: Lower Bound of the Network Lifetime, where A=15, ;2 =150, and
BL=72, for Different £(0) Values

Table 5.3 presents the time it takes for the plots in Figure 5.4 for the network to have at
least 70, 80 and 90% connectivity. As we can see, when the cell density is higher, the
network lasts longer. In addition, if achievable, the lifetime of a WSN can be lengthened

by selecting a lower threshold network connectivity.

Table 5.3: Amount of Time that the Percentage of Nodes Have Connectivity is
Above a Threshold Value, where 1=15, 1 =150, and BL=72, Given Different £(0)

£(0) 90% 80% 70%
5 717.7455 | 720.2911 | 721.49
10 727.1427 | 728316 | 729.0144
15 730.4687 | 731.4457 | 732.0616
20 732.4965 | 733.3718 | 733.9206
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CHAPTER 6:

CONCLUSION

6.1 Conclusion

In this thesis, we analyzed the lifespan of a WSN for a non-safety-critical
monitoring area application. As time goes on, sensor nodes will die due to battery
depletion. We have addressed the problem of determining the point at which the sensor

node density falls below a critical density such that coverage and connectivity are lost.

First, the probability distribution of the lifetime of a single sensor node was
derived. The sensor node was modeled as an M/M/1 queue alternating between idle and
busy periods to represent the sleep and active modes, respectively. During the idle period,
we assumed that no energy was consumed. Hence, the battery was only drained by the
busy periods. The more time a sensor node spends in the busyb period, the faster the
battery will be depleted. The duration of the busy period depends on the arrival and
service rate of a sensor node. Therefore, the lifetime of a sensor node is influenced by the
following parameters: battery lifetime, arrival rate, and service rate. The probability
distribution of the lifetime of a single sensor node was presented for different parameter
values. We realized that the lifetime of a sensor node can be lengthened by increasing its

battery’s lifetime, increasing the service rate, or decreasing the arrival rate.
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Next, the network connectivity probability was determined; in other words, the
percentage of sensor nodes that can communicate with the sink was found. We
considered a logical grid-network with a large number of sensor nodes randomly
deployed over the area, where an average number of sensor nodes were uniformly placed
in each cell. Since the transmission range of the sensor nodes was set to the side length of
the cell, all the nodes residing in a cell were able to communicate with each other. As a
result, if a cell had connectivity to the sink, then all the sensor nodes in that cell had
connectivity to the sink. Thus, the problem under consideration reduced to the derivation
of the connectivity probability of a cell to the sink. Given an average number of sensor
nodes in a cell, the connectivity probability of two adjacent cells was first determined.
Obviously, as the density of sensor nodes in the cells increases, the probability that two
adjacent cells are connected approaches to one. Based on the connectivity probability of
two adjacent cells, we then derived the ability of a cell to communicate with the sink in
order to determine the network connectivity probability. Logically, as the connectivity
probability of two adjacent cells approaches one, the network connectivity probability
approaches one as well and vice versa. The network connectivity probability was

examined for different values of the connectivity probability of two adjacent cells.

Finally, the results found for the probability distribution of the lifetime of a single
sensor node and the network connectivity probability were integrated to determine the
network lifetime. Initially, the number of sensor nodes that reside in a cell have a
specified average value. As the WSN ages, sensor nodes start to die, because of battery

depletion, causing the number of sensor nodes in the cells to decrease. We derived the
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number of sensor nodes that will reside in a cell over time for a given battery lifetime,
message arrival rate, and message service rate. From this result, we then determined the
connectivity probability of two adjacent cells and the network connectivity probability
over time. Lastly, the network lifetime was discovered by calculating the amount of time
it takes for the network connectivity probability to reach a specific threshold value.
Evidently, choosing parameters to lengthen the lifetime of a single sensor node will also
prolong the lifetime of a network. Furthermore, by deploying a higher number of sensor
nodes will increase the average number of sensor nodes in a cell which subsequently will
increase the connectivity probability of two adjacent cells, network connectivity
probability, and network lifetime. Moreover, the value for the threshold connectivity
probability affects the network lifetime. A network lasts longer for smaller threshold
values. Hence, if a WSN can operate effectively, a lower threshold value should be

elected.
This thesis shows that several parameters have an impact on the network lifetime.

The results presented in this work can be served as a guideline for WSN designers to

optimally choose parameters in order to extend the network lifetime.
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