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1 Introduction 

The science of supply chain management has provided 
several scientific procedures for reducing inventory and 
optimising service levels in distribution networks of 
manufactured goods. For many companies, the application 
of these techniques has resulted in achieving significant  
cost reductions For example, Geon (see Hammer, 2001) 
obtained cost improvements by integrating its operations 
with those of its suppliers and customers for inventory 
management, it implemented advanced replenishment 
strategies like VMI. There are numerous examples in the 
industry of organisations that have utilised efficient 
inventory-management systems to reduce the total expenses 
incurred in transportation, storage, and providing service. 

Examples of such companies are producers of food products 
and petroleum. 

An important problem in many distribution networks 
operated under the VMI paradigm is to determine the 
optimal quantities of material to be dispatched to each 
retailer from the local warehouse Usually, the goal is to 
optimise the trade-off between maintaining excessive 
inventory at the retailers, which increases the operating 
costs, and not maintaining enough inventory, which can 
cause stock-outs and lost sales. In addition, one can not 
ignore the issue of transportation costs which can be 
reduced by shipping large batches that unfortunately tend to 
increase inventory-holding costs. In this paper, we consider 
a retailer network of the type found in many real-world  
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systems. Generally, trucks are dispatched from the 
warehouse to the retailers carrying the material needed.  
We assume that the trucks follow a fixed route in which 
each retailer is visited once (see Figure 1). When the truck 
(s) leaves the warehouse it carries the material needed for 
replenishing each retailer. 

Figure 1 A schematic of the route followed by a truck 

 

Contributions of this paper: We develop a  
simulation-optimisation methodology to solve the problem 
of determining the optimal quantities to be delivered to each 
retailer. We show that the methodology presented here can 
accommodate a large number of features of real-world 
systems and can outperform two heuristics. One of the 
heuristics outperformed is used in a local industry.  
The other heuristic is derived from the newsvendor model. 
An interesting finding is that our newsvendor heuristic 
produces reasonably good solutions – although, of  
course, it is outperformed by simulation-based optimisation.  
This implies that managers not interested in pursuing an 
elaborate simulation-optimisation approach can resort  
to the simpler newsvendor model for solution purposes.  
In addition, we also prove that under the general 
assumptions made here, the cost function to be minimised is 
non-convex. 

A number of factors contribute to randomness in the 
system. Some examples of such factors are: randomness in 
customer arrival and size of customer demand and the 
randomness in the transportation. As mentioned previously, 
there are three sources of costs in these systems: 
transportation costs, inventory-holding costs, and stock-out 
costs. Modelling such a system mathematically is often 
difficult and challenging. Although many mathematical 
models have been developed in the literature, they usually 
disregard some complexity – either a cost or a governing 
random variable – to keep the model tractable. As a result, 
we focus on developing a simulation-based model that 
accommodates many features of a real-world system.  
The simulation model is combined with optimisation 
techniques to generate implementable solutions. 

The problem considered in this paper is of tremendous 
relevance to managers of warehouses who have to dispatch 

trucks with the right amounts of material. VMI-based 
systems face this problem on a daily or a weekly basis.  
In fact, this study was motivated by a problem faced in a 
local industry. Solutions using the methods proposed in this 
paper can be obtained easily with computer programs, 
which can be run on personal computers, and used  
directly in the decision-making process. (Computer codes 
are available from the second author upon request).  
Since the simulation model is very general, the manager can 
easily change the system parameters for retailers, travel 
times, and the demand rates as and when needed. 

Seminal work on the static inventory-allocation  
problem is from Clark and Scarf (1960) and Eppen and 
Schrage (1981), which forms the foundation of the 
underlying science in this field. Much of the existing 
literature is devoted to the development of mathematical 
models, and as such, it ignores either one or more  
of the three costs (mentioned above) involved or else  
makes simplifying assumptions about governing random 
variables. For instance, McGavin et al. (1993) ignore 
inventory-holding costs, Federgruen and Zipkin (1984) 
develop a so called ‘myopic’ model which optimises in the 
current time period but disregards costs in future time 
periods, and Nahmias and Smith (1994) develop models for 
the negative-binomial distribution. Some other works  
that look at dynamic allocation and especially routing – an 
aspect that we do not consider – are Kumar et al. (1995), 
Minkoff (1993), Berman and Larson (2001) and  
Kleywegt et al. (2002). Many of these use stochastic 
dynamic programming. 

The rest of the paper is organised as follows: Section 2 
provides a problem statement. Section 3 describes the 
solution methodology adopted and the computational results 
obtained. Conclusions drawn from this work are presented 
in Section 4. 

2 A problem description 

The distribution network, generally, has a hierarchical 
structure in which a warehouse serves a set of retailers.  
The problem considered in this paper is to determine the 
optimal quantities to be delivered from the warehouse  
(also called the transhipment point) to each of the retailers, 
so as to minimise the expected long-run cost of operating 
the system. Our model takes the following costs into 
consideration. 

• inventory-holding costs 

• stock-out costs, which include the cost of lost sales  
and the loss of goodwill 

• transportation costs, which include the operating  
cost of the truck and the cost of transporting goods,  
which, in turn, depends on the quantities transported. 

The random variables governing our system are: the  
inter-arrival time of customers at each retailer, the quantity 
demanded by the customers, the service time for each truck, 
and the travel time between the warehouse and the retailers 
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and the same between the retailers. We have assumed  
that each retailer is distinct and has unique values for  
system parameters. The rate of arrival of customers, the 
inventory-holding costs and the stock-out costs are different 
for each retailer. Our objective is to minimise the average 
cost per unit time of operating the entire system. We now 
present details of the simulation model developed. 

2.1 A simulation model 
The simulator is written using the standard procedure  
for discrete-event systems (see Chapter 2 of Law and 
Kelton, 2000). Our programs were written in C language, 
but could be just as easily written in commercial simulation 
packages. Figure 2 shows the event clock for the simulator. 
Let qi denote the quantity to be delivered to the ith retailer 
and n be the number of retailers. Then 1 2( , , , )nq q q q=G …  
will represent the vector of delivery quantities. We will now 
define the following quantities: 

• ( , ) :iL q tG  the total number of lost sales by time t in the 
simulation (time starts at 0) at the ith retailer, and 

• ( , ) :iI q tG  the positive inventory at time t at the ith 
retailer 

• Ctr : the operating cost per unit time of a truck carrying 
a unit quantity of material (transportation cost) 

• :i
lC  the stock-out (lost-sales) cost per unit quantity  

of sales lost at the ith retailer, and 

• :i
sC  the inventory-holding cost per unit quantity at the 

ith retailer. 

Figure 2 The event clock of the simulator showing the different 
types of events 

 

Then, mathematically, the problem is to determine the 
solution vector qG  in order to minimise the average cost per 
unit time i.e., to minimise 
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such that qi ≥ 0 for i = 1, 2, …, n. The first term in  
equation (1) denotes the transportation cost per unit time, 
and the second term denotes the expected cost of stock-outs 
and holding inventory on a unit time basis. The first term on 
the right-hand side of equation (2) denotes the costs due  
to stock-outs and the second term denotes the costs of 
holding inventory. In equation (2) ( , )iL q tG  is evaluated with 
a separate counter for the ith retailer that is incremented 
whenever a lost sale occurs at the ith retailer, while the 
second quantity is estimated as follows: 
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where ∆j(i, t) denotes the total duration of time interval, 
starting from time 0 until the simulation clock strikes t, 
during which the ith retailer has j units of positive 
inventory. ∆j(i, t) can be easily valuated in the simulation 
program. 

In the next sub-section, we provide a brief description  
of the main optimisation technique used in this paper. 

2.2 Simultaneous Perturbation (SP) 

Gradient-descent methods are defined as those methods in 
which values of partial derivatives of the objective function 
are used in the optimisation (search) process. Derivatives 
can be calculated numerically with a finite difference 
technique when the closed form is unavailable. The age-old 
gradient-descent rule (Cauchy, 1847), which is also called 
the steepest descent rule, can be expressed as follows: 

( ),x x f xµ← − ∇G G  

( ) ( ) ( )( ) , , , .
(1) (2) ( )

f x f x f xf x
x x x n

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 

G G G
…  

In the above equation, ( ) / ( )f x x i∂ ∂G  denotes a partial 
derivative of f(.) with respect to x(i) where (.) : ,nf +ℜ → ℜ  
and µ denotes the step size. 

In the finite differences method, the gradient is 
calculated numerically. This is useful when we do not have 
the closed form of the objective function. In model-free 
simulation-based optimisation (Carson and Maria, 1997; 
Andradóttir, 2002; Fu and Hu, 1997; Gosavi, 2003),  
we do not have access to the closed form, but since the 
performance measure of the sys tem may always be 
evaluated with the simulator, the finite differences approach 
becomes especially useful. To calculate the gradient 
numerically, we can use the central differences formula 
which is given by 

( ) ( ) ( ) .
2

f w f w h f w h
x h

∂ + − −=
∂

 

The difficulty with the above is that the simulator has to be 
run twice for each decision variable in every iteration of the 
search algorithm – once to calculate f (w + h) and once to 
calculate f (w – h). Thus the simulator has to be run 2n times 
if n denotes the number of decision variables. Then, as n 
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increases, the number of runs of the simulator also increases 
and consequently, the computational burden increases 
considerably. 

A way of working around the above-mentioned 
difficulty is via the Simultaneous Perturbation (SP) method 
(Spall, 1992). This is a recent but remarkable development. 
SP requires only two function evaluations per iteration of 
the algorithm regardless of the number of decision 
variables. Hence, in the context of simulation-based 
optimisation, the method is of special interest. The 
algorithm is a stochastic search algorithm. What we present 
below is a slightly modified version of the original 
algorithm; the modification is in Steps 6 and 7. 

Step 1: Set m = 1. Initialise ,mxG  the solution vector in the 
mth iteration, to a feasible solution obtained from the 
problem specific heuristic. The algorithm will be terminated 
when the step size µ becomes smaller than a pre-determined 
value µmin. Define a sequence, whose mth term is cm = l/mζ. 
We will fix ζ to a value in the open interval (0, 1).  
Define A and B such that they satisfy: 0 < A < 1, 0 < B < 1 
and B < A. 

Step 2: Generate a random number H(i), for i ∈ 1, 2, …, n, 
from a Bernoulli distribution, whose two permissible and 
equally likely values are 1 and –1. Compute the values of 
h(i) using the following formula. 

( ) ( ) .mh i H i c=  

Step 3: Compute ( )mf x h+
GG  and ( )mf x h−

GG  as follows, 
where 

( ) ( (1) (1), (2) (2), ..., ( ) ( )),m m m mf x h f x h x h x n h n+ = + + +
GG  

( ) ( (1) (1), (2) (2), ..., ( ) ( )).m m m mf x h f x h x h x n h n− = − − −
GG  

Step 4: For variables i = 1, 2, …, n we obtain the partial 
derivatives using 
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Step 5: Compute yG  using the following rule: 

( )( ) for 1, 2, , .
( )

m
m

m
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Step 6: If ( ) ( )mf y f x<G G  then set 1 and .mx y Bµ µ+ = ←G G  
Otherwise, go to Step 7. 

Step 7: Increase m by 1, set 1 ,m mx x+ =G G  and update µ using: 
µ ← µA. 

Step 8: If µ ≤ µmin, stop. Otherwise, return to Step 2. 

SP takes one to the vicinity of a good solution very rapidly. 
However, one can fine tune the performance of SP by  
using the well-known meta-heuristic, Simulated Annealing 
(SA) (Kirkpatrick et al., 1983), after using SP. In other  
 
 

words, the solution generated by SP can be used as a 
starting solution for SA. In the next subsection, we discuss 
the SA algorithm. 

2.3 Simulated Annealing (SA) 

SA starts at a user-provided solution and searches in the 
neighbouring region for a better solution. The power of SA 
depends on the neighbourhood search strategy used. It has a 
so-called exploratory property which allows the algorithm 
to worsen the objective function value at times. It is claimed 
that this can help in finding the global optimum in a system 
having a lot of local optima. The algorithm accepts the 
worse solution with a probability which decays with the 
number of iterations of the algorithm. The algorithm is 
terminated when the probability of moving to a worse 
neighbour approaches 0. At each iteration, the best solution 
obtained so far is stored. As a result, the best of all  
the solutions tested by the algorithm is returned as the  
near-optimal solution. An important parameter, called 
temperature is used to control the exploratory property.  
It has been established that the algorithm does provide  
the optimal solution if the temperature is decreased  
properly (Lundy and Mees, 1986). We will skip the steps  
in the algorithm referring the reader to any standard  
text on meta-heuristics. However, we do define our 
neighbour-generating strategy next. 

If currentxG  denotes the current solution in the SA 
algorithm, a neighbour (i.e., the new solution) is selected as 
follows. Let π denote the thickness of the neighbourhood. 
When a neighbour is to be selected, generate a random 
number ui for i = 1, 2, …, n between 0 and 1 from the 
uniform distribution (0, 1). If ui ≤ 0.5 then for i = 1, 2, …, n, 
set: 

neighbour current( ) ( ) ,x i x i π= +  

and otherwise set: 

neighbour current( ) max(0, ( ) ).x i x i π= −  

In our experiments, π was set to 10. 

2.4 Problem-specific heuristics 

We now describe some problem-specific heuristics that can 
be used on this problem. These heuristics provide good 
starting solutions and serve as benchmarks for SA and SP 

The mean demand heuristic. The Mean Demand Heuristic 
(MDH) is used in a local dairy product industry in  
New York. It utilises the mean demand at each retailer.  
The computations involved can be explained as follows.  
Let T denote the average cycle time, i.e., the time required 
for one round trip and di denote the average demand per 
customer at the ith retailer. Then, the optimal quantity qi, for 
the ith retailer is given by qi = Tdi i, where i denotes the 
mean rate of arrival of customers at the ith retailer. 
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The newsvendor heuristic. The popular newsvendor model 
(see e.g., Nahmias, 2001) can be used to determine the 
optimal delivery quantity when the commodity is perishable 
and the demand is normally distributed. By using a normal 
approximation to the Poisson distribution, we can also apply 
it to the Poisson distributed demand. The model works as 
follows. The optimal quantity for the ith retailer satisfies the 
following condition: 

( ) ,
i
l

i i i
l s

CF q
C C

=
+

 

where F(.) denotes the cumulative distribution function of 
the demand.  If the demand is normally distributed, then the 
optimal quantity is given by: 

,i i iq Zµ σ= +  

where Z denotes the z-value in the normal table associated 
with F(.) obtained from the above, and µi is the mean and σi 
the standard deviation of the demand at the ith retailer.  
Here µi = Tdi i. For the normal approximation to the 
Poisson distribution, i iσ µ=  for each i. 

3 Computational results 

For testing the efficacy of the simulation-optimisation 
approach, we conducted experiments with a large number  
of systems. We compared the performance with the  
two heuristics discussed above. A popular method for 
simulation-based optimisation uses response surfaces  
(Law and Kelton, 2000). For a full-blown system with ten or 
more retailers, the response surfaces would require too 
many samples. In particular, for a 10-retailer network, one 
would require at the very least 210 points. Hence we used 
response surfaces on smaller versions of the problem with 
retailers. 

3.1 A 2-retailer network 

The central idea underlying the Response Surface Method 
(RSM) is to obtain an approximate form of the objective 
function by simulating the system at a number of points in 
the solution space and fitting a function to the set of 
sampled points. Conventional RSM uses regression for 
fitting the objective function. For regression, it is necessary 
to assume a metamodel. The need to assume the metamodel 
makes the application of RSM limited because it is often 
difficult to recognise an obvious closed form of the 
function. In such cases, we may need to assume a number of 
metamodels sequentially and test each of them to obtain  
a good fit. This can be time-consuming. An alternative  
is to use neuro-response surfaces (Gosavi, 2003) in which 
function fitting is done using artificial neural networks  
(via a standard algorithm like back-propagation), which do 
not require the meta-model apriori. 

For the Neuro-Response Surface Method (NRSM) the 
solution space was sampled at 32 points per retailer.  
 

Thus, the total number of data points used for training  
the neural net became 32 × 32 = 1024. We trained the  
neural net for 3500 iterations. After training the neural  
net, we generated the cost of the running the system  
(for a given set of parameters) using the neural net. We next 
tested if the fit obtained with the neural network was  
good, using the coefficient of determination (Montgomery 
et al., 2001). 

The systems studied are described in Table 1.  
The values of the coefficient of determination are provided 
in Table 2. All values are close to 1, indicating good fits. 
First, SP was employed on every problem. SP rapidly took 
us to very good solutions. Thereafter SA was used to 
improve upon the solution provided by SP by using the 
solution of SP as the starting solution. In all the systems,  
the SP-SA combination outperformed the best heuristic.  
See Table 3 for a comparison of the performance of NRSM 
and the SP-SA combination. Of the two heuristics, the 
newsvendor heuristic obtains the better solution. NRSM 
performs much better than both of the heuristics, but fares 
worse than the SP-SA combination. 

Table 1 The values of parameters used for each system 

System 1
sC  2

sC  1
lC  2

lC  1 2 

1 0.01 0.009 3.0 3.1 110 90 
2 0.01 0.009 1.5 1.4 55 75 
3 0.01 0.009 2.0 1.9 110 90 
4 0.01 0.009 2.0 1.9 55 75 

Table 2 Coefficient of determination 

System Coefficient of determination 

1 0.991 
2 0.995 
3 0.996 
4 0.965 

Table 3 Cost comparison for optimising methods  
(small cases) 

System
Mean-demand 

heuristic 
Newsvendor 

heuristic 

Imp of 
NRSM over 
newsvendor 
heuristic (%)

Imp of  
SP-SA over 
newsvendor 
heuristic (%)

1 17329 3375 63.53 70.37 
2 7646 7153 62.14 84.65 
3 7646 7008 76.64 84.77 
4 23922 20311 86.67 90.34 

3.2 A 10-retailer network 

In this section, we describe our computational results for a 
more realistic 10-retailer network. Some modifications had 
to be made to both SA and SP. We test 18 systems, which 
are described via Tables 4–6. 
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Table 4 Level definitions 

System 
parameters Retailer 1 Retailer 2 Retailer 3 Retailer 4 Retailer 5 

Cs – 1 0.01 0.009 0.0085 0.012 0.015 

Cs – 2 0.025 0.022 0.026 0.023 0.024 

Cs – 3 0.05 0.049 0.048 0.056 0.054 

Cl – 1 1.5 1.4 1.45 1.52 1.56 

Cl – 2 2 1.9 1.95 2.13 2.2 

Cl – 3 3 3.1 2.95 3.2 3.16 

λ – 1 50 60 70 75 80 

λ – 2 65 75 50 62 92 

Table 5 Level definitions (continued from previous table) 

System 
parameters Retailer 6 Retailer 7 Retailer 8 Retailer 9 Retailer 10

Cs – 1 0.0086 0.013 0.015 0.01 0.01 

Cs – 2 0.028 0.027 0.022 0.025 0.026 

Cs – 3 0.054 0.055 0.052 0.05 0.046 

Cl – 1 1.46 1.53 1.35 1.6 1.3 

Cl – 2 2.05 1.9 1.85 2.3 2 

Cl – 3 2.89 2.85 3.05 3 2.99 

λ – 1 85 90 100 110 120 

λ – 2 42 108 129 101 111 

Table 6 System parameters (large cases) 

System Cs-level Cl-level λ-level 

1 1 1 2 
2 1 3 2 
3 1 1 1 
4 1 2 2 
5 1 2 1 
6 1 3 1 
7 2 3 1 
8 2 2 2 
9 2 2 1 
10 2 3 2 
11 2 1 2 
12 2 1 1 
13 3 2 1 
14 3 2 2 
15 3 3 2 
16 3 1 2 
17 3 1 1 
18 3 3 1 

We were able to improve the performance of SP by using a 
‘reactive’ step size. In such a scheme, when the algorithm 
strikes a worse solution, it is returned to the original 
solution, and the step-size-reduction rate for that step is 
increased. The rate is restored to its original value only after 

an improved solution is found. Table 7 shows the behaviour 
of regular S and our reactive SP on System. 

Table 7 Comparison of cost from the two SP methods for 
system 1 

 Regular SP Reactive SP 

Optimised cost 6422 5185 

The results obtained for the 10-retailer network are  
provided in Table 8. Like in the 2-retailer case, an SP-SA 
combination was used. In all the cases but 5, 13 and 18 SA 
was able to improve marginally upon the solution of SP. 
The SP-SA combination outperformed the problem-specific 
heuristics in all cases. The SP-SA combination took no 
more than ten minutes for the 10-retailer case on a UNIX 
Sunblade machine. The percentage improvement of the 
algorithm over the heuristic is denoted by Imp %. 

MDH, although prevalent in a local industry, is not 
likely to perform well because of its inability to take  
all the system variability into account. On the other hand, 
the robust performance of the newsvendor model is an 
encouraging finding; after all, the newsvendor model is 
well-understood, and can be easily adapted into existing 
systems. Thus, managers who prefer not to use ‘black-box’ 
methods could use the newsvendor model instead. 

Table 8 Cost-performance comparison (equation (1))  
of heuristics and SP-SA 

System 
Mean-demand 

heuristic 
Newsvendor 

heuristic 
Imp of SP-SA over 
best heuristic (%) 

1 5687 5605 21.86 
2 8538 8307 38.23 
3 5462 5582 21.22 
4 6715 6581 28.76 
5 6719 6582 18.73 
6 8514 8281 42.05 
7 10196 10032 24.43 
8 8305 8227 13.31 
9 8302 8323 13.01 
10 10127 9964 24.51 
11 7277 7244 5.55 
12 7348 7314 5.32 
13 11650 11654 0.44 
14 11570 11573 3.58 
15 13392 13324 13.57 
16 10541 10579 8.19 
17 10597 10635 8.15 
18 13445 13378 3.17 

3.3 Non-convexity of the objective function 

We wanted to determine if the cost function is convex.  
An important reason for this is that convex functions  
are easier to optimise. Hence, we performed experiments  
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with a two-retailer system in which the quantity delivered to 
Retailer 2 was varied and that delivered to Retailer 1 was 
fixed at a constant value. Table 9 provides cost values at 
some values of the quantity delivered to Retailer 2 (Q); the 
table clearly shows the presence of two local optima.  
It is thus clear that even for the two-retailer problem, the 
function is not convex. 

Table 9 Non-convexity of the objective function 

 Q Cost 

1 4000 2442.878 
2 8400 1996.237 
3 8650 2391.665 
4 14050 1962.567 
5 14700 2908.750 

3.4 A sensitivity analysis 

A full factorial experiment was designed to determine which 
factors affect the optimal objective function obtained from 
our simulation-optimisation approach. The three factors that 
we studied are:  

• the inventory-holding costs at three levels 

• the stock-out costs at three levels 

• the rate of arrival of customers at two levels. 

The values of the factors are enumerated in Table 6.  
The results of the ANOVA are presented in Table 10.  
A number of two-way interactions and one three-way  
inter action were also considered. The inventory-holding 
cost and the stock-out cost were found to be significant.  
This implies that managers interested in using the 
simulation-optimisation approach should exercise great care 
in estimating these elements of the cost. 

Table 10 An analysis of variance 

Source 
Degrees of 

freedom 
Sum of 
squares 

Mean 
squares F P-value

Cs 2 310850715 155425357 184.16 0.000 

Cl 2 27972248 13986124 16.57 0.000 

λ 1 242004 242004 0.29 0.596 

Cs × Cl 4 2388655 597164 0.71 0.592 

Cs × λ 2 457207 228603.5 0.27 0.764 

Cl × λ 2 147208 73604 0.09 0.917 

Cs × Cl × λ 4 926565 231641 0.27 0.893 

Error 36 30383177 843977   

Total 53 373367780    

4 Conclusions 

Determining the optimal quantities to be dispatched to each 
retailer from the warehouse is a long-standing problem in 
the industry. In the past, customers placed orders and 

warehouses met them as and when needed. This led  
to a peak of demands on certain days of the week.  
With the advent of vendor managed inventory systems,  
the warehouse manager sends material at regular time  
intervals on the basis of average demand at each retailer. 
The problem is complicated by randomness arising from 
customer behaviour and transportation delays. There are 
three major costs associated with managing this system:  
the transportation cost, the inventory-holding cost and the 
cost due to lost sales. Accommodating all the governing 
random variables and costs in one mathematical model is a 
challenging task, and hence, much of the literature makes 
simplifying assumptions to develop tractable mathematical 
models. In this paper, we have developed a simulation 
model that accounts for most features of a real-world 
system, and have used optimisation techniques that can be 
combined efficiently with simulation to generate solutions. 
On the basis of our experimentation, we find that a 
combination of SP and SA is able to outperform a heuristic 
used in the real world, namely, MDH. An interesting finding 
is that the newsvendor model can be adapted to develop  
an efficient heuristic for solving this problem. Although  
it was outperformed by simulation-optimisation methods, its 
encouraging performance indicates that managers who do 
not intend to simulate the entire network can resort to the 
newsvendor model for obtaining reliable solutions. 

The solutions developed by the simulation-optimisation 
approach can be directly incorporated into the decision-
making technology of warehouse managers. Simulation is a 
widely used tool in the industry, and hence the solution 
methodology presented here should find ready acceptance  
in the industry. Furthermore, the simulation-optimisation 
approach can be run on any personal computer with  
great ease. 

Several extensions to this research can be envisaged. 
Firstly, a possible alternative is to develop an approximate 
Markov chain model for this system, and use it for 
optimisation. Secondly, one can consider the entire network 
and incorporate the effects of transportation from the 
regional warehouse to the local warehouses into the model. 
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