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Abstract

Supermarket models with different servers become a key in modeling resource man-

agement of stochastic networks, such as, computer networks, manufacturing systems,

transportation networks and healthcare systems. While the different servers always

make analysis of such a supermarket model more interesting, difficult and challenging.

This paper provides a novel method for analyzing the supermarket models with dif-

ferent servers through a multi-dimensional continuous-time Markov reward process.

Firstly, some utility functions are constructed for the routine selection mechanism

according to the queue lengths, the service rates, and the probability of individual

preference. Secondly, applying the state jump points of the continuous-time Markov

reward process, some segmented stochastic integrals of the random reward function

are established by means of an event-driven technique. Based on this, the mean of

the random reward function in a finite time interval is computed, and the mean of the

discounted random reward function in an infinite time interval can also be calculated.

Finally, some simulation experiments are given to indicate how the expected queue

length of each server depends on some key parameters of this supermarket model.

Keywords: Supermarket model; Routine selection mechanism; Markov reward

process; Random reward function; Stochastic integral; Event-driven technique.
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1 Introduction

Randomized load balancing, where a job is assigned to a server from a small subset of

randomly chosen servers, is very simple to implement, and can surprisingly deliver better

performance (for example, reducing collisions, waiting times, and backlogs) in a number of

applications, such as, data centers, capacity allocation, hash tables, distributed memory

machines, path selection, and task scheduling. The supermarket model is a dynamic

randomized load balancing method, and its original idea may be inspired by operation

mechanism of supermarket checkout in a large supermarket. Because the supermarket

model has simple operations, quick response, dynamical real-time management, and many

other advantages, it has been regarded as one of the most effective technologies in the study

of large-scale stochastic networks with resource management and task scheduling.

During the last two decades considerable attention has been paid to studying the

supermarket models through queueing theory as well as Markov processes. Since a simple

supermarket model was discussed by Mitzenmacher [31], Vvedenskaya et al. [44] and

Turner [42, 43], subsequent papers have been published on this theme, among which, see,

Vvedenskaya and Suhov [45], Mitzenmacher et al. [32], Graham [10, 11], Luczak and

Norris [26], Luczak and McDiarmid [24, 25], Brightwell and Luczak [5], Bramson et al.

[2, 3, 4], Li and Lui [21, 22], Li et al. [23, 18, 20, 19] and Li [15, 16]. For the fast Jackson

networks (or the supermarket networks), readers may refer to Martin and Suhov [29],

Martin [30] and Suhov and Vvedenskaya [38]. On the other hand, Janssen [13] applied

the discrete-time Markov reward processes as well as the discrete-time Markov decision

processes to the study of supermarket models with N identical servers. The stability of

more general supermarket models was discussed by Foss and Chernova [9], Bramson [1]

and MacPhee et al. [28].

There are some successful research on various Markov reward processes, important

examples include Reibman et al. [34], Ciardo et al. [7], Qureshi and Sanders [33], Telek

et al. [40], de Souza e Silva and Gail [8], Telek and Rácz [41], Telek et al. [39], Li and

Cao [17], Stefanov [36], Stenberg et al. [37], and two books by Cao [6] and Li [14].

Little work has been done on analysis of the supermarket models with different servers,

which is more difficult and challenging due to high complexity and percipient subjectivity

of designing a fair routine selection mechanism with respect to the different servers. Specif-

ically, a practical understanding can indicate that such a routine selection mechanism may
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depend on the queue lengths, on the service rates, on the probability of individual pref-

erence and so forth. Janssen [13] described a simple intuitive outline of discussing the

supermarket model with different servers, and demonstrated that analysis of the super-

market model with different servers will be an interesting and difficult topic in the future

research. Based on this, Li et al. [19] provided a birth-death reward process for the

supermarket model with different servers, and established a system of functional reward

equations which can be solved by a value iterative algorithm. It is worth noting that

this paper uses a more general Markov reward process to set up the segmented stochastic

integrals of the random reward function in the supermarket model with different servers

by means of an event-driven technique, which is shown to be useful for performance sim-

ulation of a more general large-scale stochastic system. In addition to this, we would like

to remark two key points: (1) Although the mean-field theory is an effective method in

the study of supermarket models with the same servers (e.g., see Vvedenskaya et al. [44],

Li et al. [18] and Li and Lui [22]), the complicated routine selection mechanism with

respect to the different servers makes setting up the systems of mean-field equations more

difficult. To our best knowledge, up to now no paper has applied the mean-field theory

to the study of supermarket models with different servers. (2) The generating functions

are always classical and effective for performance evaluation of many practical stochastic

systems, but they are not convenient to deal with a multi-dimensional problem, and are

also very difficult to analyze a system of nonlinear equations.

The main contributions of this paper are twofold. The first one is to describe a super-

market model with different servers, in which the arrival and service processes are given

in a detailed discussion, and the reward value at each state is chosen from some practi-

cal points of view. We show that the arrival process of this supermarket model is very

complicated due to a routine selection mechanism that depends on the queue lengths, on

the service rates, on the probability of individual preference and so forth. Also, it is seen

that the routine selection mechanism is very different from that in the supermarket model

with same servers, where our construction of this routine selection mechanism is based on

the utility functions so that the subjective behavior of customers is also covered in the

routine selection mechanism. The second one is to set up a multi-dimensional continuous-

time Markov reward process, and provide a segmented stochastic integral for expressing

the random reward function in a finite time interval through an event-driven technique.

Furthermore, we calculate the mean of the discounted reward function in an infinite time
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interval. Based on this, we give a simple discussion on optimal criterions for designing the

supermarket model with different servers. Also, we provide some simulation experiments

to indicate how the expected queue length of each server depends on some key parameters

of this supermarket model.

The remainder of this paper is organized as follows. In Section 2, we first describe

a supermarket model with M different servers. Then we construct a routine selection

mechanism that depends on the queue lengths, on the service rates, on the probability of

individual preference and so forth. In Section 3, we set up an M -dimensional continuous-

time Markov reward process, and provide a segmented stochastic integral for expressing

the random reward function in a finite time interval through an event-driven technique.

In Section 4, applying the segmented stochastic integral, we compute the mean of the

random reward function in a finite time interval. In Section 5, we compute the mean of

the discounted reward function in an infinite time interval. Based on this, we provide two

optimal criterions for designing the supermarket model with different servers. In Section

6, we provide some simulation experiments to indicate how the expected queue length of

each server depends on some key parameters of this supermarket model. Some concluding

remarks are given in Section 7.

2 Supermarket Model Description

In this section, we first describe a supermarket model with M different servers. Then we

construct a routine selection mechanism that depends on the queue lengths, on the service

rates, on the probability of individual preference and so forth.

In the supermarket model, there are M different servers whose waiting rooms are all

infinite. The service times in each server are i.i.d. and are exponential, and also the service

rates of the M different servers are denoted as µ1, µ2, . . . , µM , respectively. The arrivals

of customers are a Poisson process with arrival rate λ. Because the servers are different,

it is a key to optimize the service ability of this supermarket model through designing

a better routine selection mechanism. In fact, designing such a better routine selection

mechanism will become not only complicated but also subjective due to the difference of

the M servers. The physical structure of this supermarket model is shown in Figure 1.

In what follows we will provide a detailed description for how to construct such a

better routine selection mechanism. Notice that our method for constructing the routine
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selection mechanism is intuitive and heuristic according to some practical points of view.

1

2

1M

M

1

2

1d

d

The arrival process

M

1M

Figure 1: A physical illustration of the supermarket models with different servers

From Figure 1, it is seen that for the M different servers, each arriving customer joins

a server (or queue) according to a suitable routine selection mechanism. From a practical

point of view, each arriving customer chooses one server based on at least three crucial

factors: (1) Choosing one server with the largest service rate, (2) choosing one server with

the shortest queue length, and (3) choosing one server with the maximal probability of

individual preference.

We write

x = (x1, x2, . . . , xM ) ,

which is the vector of the queue lengths in the M servers;

g = (g1, g2, . . . , gM ) ,

which is a probability vector of individual preference for choosing one of the M servers.

In general, the individual preference is based on the priori knownledge, and the present

feeling etc.; and

µ = (µ1, µ2, . . . , µM ) .

It is worth noting that the two vectors g and µ are always inherent in the system, but

the vector x of queue lengths can change dynamically according to a customer arrival or

a service completion.
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Based on the above analysis, let ∆i(x) = f(xi, µi, gi) be a routine selection func-

tion which represents the measurement of choosing the ith server for i = 1, 2, . . . ,M ,

where f(xi, µi, gi) satisfies three conditions: (1) f(xi, µi, gi) is increasing for xi ≥ 0, (2)

f(xi, µi, gi) is decreasing for µi > 0, and (3) f(xi, µi, gi) is decreasing for gi ∈ (0, 1].

We assume that if

∆i0(x) = min
1≤i≤M

{∆i(x)} ,

then the arriving customer joins the i0th server among the M servers. It indicates that

an arriving customer likes the server with the minimal value in the set of routine selection

functions

∆ = {∆1(x),∆2(x), . . . ,∆M−1(x),∆M (x)} .

From the routine selection function, now we further describe the routine selection

mechanism as follows:

The routine selection mechanism: Each arriving customer chooses d ≥ 1 servers

independently and uniformly at random from the M servers, and joins the server with

the smallest number in ∆d =
{

∆i1(x),∆i2(x), . . . ,∆id−1
(x),∆id(x)

}

, where the d selected

servers are denoted as Servers i1, i2, . . . , id. If there is a tie, servers with the smallest

number in ∆d will be chosen randomly. All customers in any server will be served in the

first come first service (FCFS) manner. We assume that all the random variables defined

for the arrival and service processes are independent of each other.

In what follows we provide some useful interpretation for each element in the set

∆ = {∆1(x),∆2(x), . . . ,∆M−1(x),∆M (x)} of routine selection functions.

Interpretation one: ∆i(x) = f(xi, µi, gi) has some useful forms

Note that f(xi, µi, gi) needs to satisfy the above three monotone conditions for each

element in one of the three vectors x, µ and g, thus such a function f : N+ × (0,+∞) ×

(0, 1] → R+ can be chosen easily, where N+ = {0, 1, 2, . . .} and R+ = [0,+∞). To that

end, we give some examples to indicate how to construct such a function f(xi, µi, gi) as

follows:

(1) A tandem-type decision-making method

For the three decision variables xi, µi and gi, we set up a tandem-type decision-making

structure as xi·
1
µi
· 1
gi
, thus it is seen from a normalization that the routine selection function
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is given by

∆i(x) =
1 + xi

µigi

M
∑

j=1

[

1 +
xj

µjgj

]

, i = 1, 2, . . . ,M.

(2) A weighted-type decision-making method

For the three decision variables xi, µi and gi, we take a weighted-type decision-making

structure as β1xi + β2
1
µi

+ β3
1
gi
, where the weighted coefficients satisfy that βk ≥ 0 and

β1 + β2 + β3 = 1, thus the routine selection function is given by

∆i(x) =
1 + β1xi + β2

1
µi

+ β3
1
gi

M
∑

j=1

[

1 + β1xj + β2
1
µj

+ β3
1
gj

]

, i = 1, 2, . . . ,M.

Interpretation two: There exist multiple minimal elements in ∆d

For ∆d =
{

∆i1(x),∆i2(x), . . . ,∆id−1
(x),∆id(x)

}

, set

ℜmin (d) =

{

i0 : ∆i0(x) = min
1≤k≤d

{∆ik(x)}

}

.

Then we have two cases: (1) ℜmin (d) contains only one element, and (2) ℜmin (d) contains

multiple elements. For the former, the routine selection of the arriving customer is simple

for choosing Server i0; while for the latter, the routine selection of the arriving customer

has a little complicated, for example, a simple mode is taken as that if there is a tie, servers

with the smallest number in ℜmin (d) will be chosen randomly, e.g., see Vvedenskaya et al.

[44] and Mitzenmacher [31].

To use more information in the set ℜmin (d), we may set up some new routine selection

ways. If there is a tie (that is, ℜmin (d) contains multiple elements), then servers with the

smallest number in ℜmin (d) may be chosen by means of other ways, for example, either

(1) for all the different elements in ℜmin (d), the arriving customer joins the server with

the biggest service rate;

(2) for all the different elements in ℜmin (d), the arriving customer joins the server with

the shortest queue length;

(3) for all the different elements in ℜmin (d), the arriving customer joins the server with

the maximal probability of individual preference; or

(4) some hybrid combination from the above (1), (2) and (3).

In this paper, we will not discuss the above four cases, which are interesting and will

be studied in our future work.

7



Interpretation three: Useful relations between our above model and the

ordinary supermarket model

On the one hand, when µ1 = µ2 = · · · = µM = µ and g1 = g2 = · · · = gM = 1
M
, it is

seen that

∆i(x) = f(xi, µi, gi) = f

(

xi, µ,
1

M

)

,

which shows that the routine selection of the arriving customer only depends on the vector

x = (x1, x2, . . . , xM ), hence the arriving customer joins the server with the shortest queue

length, e.g., see Vvedenskaya et al. [44]. On the other hand, we remark that the probability

vector g = (g1, g2, . . . , gM ) of individual preference can give rise to the study of modern

supermarket business or network economy.

In the supermarket model with different servers, data collection and analysis is also

a key task. Therefore, it is interesting that the routine selection mechanism can be de-

signed from a data-based practical point of view. This will motivate statistical analysis of

supermarket models with different servers from many real areas.

3 A Markov Reward Process

In this section, we set up an M -dimensional continuous-time Markov reward process, and

provide a segmented stochastic integral for expressing the random reward function in a

finite time interval through an event-driven technique.

In order to set up a continuous-time Markov reward process, we need to discuss the

arrival and service processes, both of which lead to the state jumps of this Markov re-

ward process. At the same time, we choose a suitable reward value at each state in this

supermarket model.

(1) Analysis of the arrival processes

In this supermarket model, the arrival process of customers is a Poisson process with

arrival rate λ. Each arriving customer chooses d servers independently and uniformly at

random from the M servers, and joins one server with the smallest number in the set

∆d =
{

∆i1(x),∆i2(x), . . . ,∆id−1
(x),∆id(x)

}

. If there is a tie, servers with the smallest

number in the set ∆d will be chosen randomly.

In order to express the routine selection mechanism of each arriving customer, we need
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to introduce an ascending function σ : [0, 1]M → [0, 1]M as follows:

σ
(

∆(x)
)

= (∆k1(x),∆k2(x), . . . ,∆kM (x))

for ∆(x) = (∆1(x),∆2(x), . . . ,∆M (x)), where

0 ≤ ∆k1(x) ≤ ∆k2(x) ≤ . . . ≤ ∆kM (x) ≤ 1. (1)

For the ascending function σ
(

∆(x)
)

, it is necessary to explain the order numbers ki

for 1 ≤ i ≤ M . Note that ki denotes the kith element of the original order number vector

∆(x). For example, if ∆(x) = (1/3, 1/2, 1/6), then σ
(

∆(x)
)

= (1/6, 1/3, 1/2). It is obvious

that ∆k1(x) = 1/6 and k1 = 3; ∆k2(x) = 1/3 and k2 = 1; and ∆k3(x) = 1/2 and k3 = 2. In

general, for these order numbers before and after sorting, we provide their corresponding

relation in Figure 2.

1
k

M
Mk

3
k

2
k

xThe order number in x The order number in

Figure 2: The order relation before and after sorting the M servers

Based on the ascending function with the sorting process, it is a key how to describe

the arrivals of customers at each server in this supermarket model. It is worthwhile to note

that Janssen [13] gave an effective method for analyzing the ascending function as well as

the arrival processes at the M different servers. Here, we provide a detailed description

for the Janssen’s method as follows.

For a sorted vector x with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xM , it follows from (3.6) and (3.7)

in Janssen [13] that the probability that the arriving customer first randomly selects d
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servers from M servers, and then enters the ith server (that is, the ith shortest queue is

also in the d selected servers) is given by

k(M, i, d) =







d (M−i)!(M−d)!
(M−i−d+1)!(M)! , 1 ≤ i ≤ M − d+ 1,

0, M − d+ 2 ≤ i ≤ M,
(2)

and specifically, we may randomly give a sort for these servers whose queue lengths are

equal. At the same time, Lemma 3.2.1 in Janssen [13] proved that for 1 ≤ d ≤ M ,

M
∑

i=1

k(M, i, d) =
M−d+1
∑

i=1

k(M, i, d) = 1. (3)

Now, we explain the probability k(M, i, d) for sorted vector x with 0 ≤ x1 ≤ x2 ≤

· · · ≤ xM .

As seen from Figure 3, notice that the arriving customer first randomly selects d servers

from the M servers, and enters one server with the shortest queue length among the d

selected servers (if there is a tie, then servers with the shortest queue length will be chosen

randomly), thus the routine selection mechanism is converted to the probability k(M, i, d)

of entering the ith server for 1 ≤ i ≤ M . Therefore, λk(M, i, d) is the arrival rate that the

customers arrive at the server with the ith shortest queue length among the M servers.

M-1

M

1

2

1d

d

An arrival

M

1M

Before sorting

The order numbers of servers are original
   After sorting by

The order numbers of servers are rewritten
1 2

0
M

x x x

( ),1,k M d

An arrival

( ), 2,k M d

An arrival

( ), 1,k M M d

An arrival

( ), ,k M M d

An arrival

Figure 3: Some interpretation on the probability k(M, i, d)

For the ascending function σ
(

∆(x)
)

which is similar to the sorted vector x with 0 ≤

x1 ≤ x2 ≤ · · · ≤ xM , it is easy to see that the Janssen’s method still work. Thus, for the

ith element in σ
(

∆(x)
)

(that is, the kith element in ∆(x), this corresponds to the kith
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server in this supermarket model), using (3) we obtain

k(M,ki, d) =







d (M−ki)!(M−d)!
(M−ki−d+1)!(M)! , 1 ≤ ki ≤ M − d+ 1,

0, M − d+ 2 ≤ ki ≤ M.

Obviously, we also have

M
∑

ki=1

k(M,ki, d) =

M−d+1
∑

ki=1

k(M,ki, d) = 1.

According to the probability k(M,ki, d), it is clear that the arrivals of customers at the

kith server is a Poisson process with arrival rate λk(M,ki, d) for i = 1, 2, . . . ,M . Hence,

the Poisson arrival rate at the kith server is given by

λk(M,ki, d) =







λd (M−ki)!(M−d)!
(M−ki−d+1)!(M)! , 1 ≤ ki ≤ M − d+ 1,

0, M − d+ 2 ≤ ki ≤ M.
(4)

(2) Analysis of the service processes

Analysis of the service processes is simpler than that of the above arrival processes in

this supermarket model. Let 1{xi>0} be an indicator function of the event: {xi > 0}, that

is,

1{xi>0} =







1, xi > 0,

0, xi = 0.

The service rate of the ith server may be written as µi1{xi>0}, because the server is idle

when there is no customer (i.e., xi = 0) in this server.

(3) Choosing a suitable reward value at each state

Note that ∆kM (x) ≥ ∆k1(x), it is obvious that if the value [∆kM (x)−∆k1(x)] /∆kM (x)

is bigger, then the customers in the M servers are not distributed well. On the contrary, if

the value [∆kM (x)−∆k1(x)] /∆kM (x) is smaller, then the customers in the M servers are

load balanced very well. Thus, our purpose of designing and optimizing this supermarket

model is to make the value [∆kM (x)−∆k1(x)] /∆kM (x) as small as possible. At the same

time, it is easy to see that

min
d;λ;µk,1≤k≤M

{∆kM (x)} − max
d;λ;µk,1≤k≤M

{∆k1(x)} ≤ ∆kM (x)−∆k1(x).

Based on the above analysis, we may choose two different reward values at state x as

follows:

rmin(x) := ∆k1(x), (5)
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and

rmax(x) := ∆kM (x). (6)

Notice that we use the two reward values: rmin(x) and rmax(x), to be able to provide a

better observation on performance of this supermarket model, which will be studied in

Subsection 5.2.

In the remainder of this section, we introduce a useful continuous-time Markov process,

which will be used to give performance computation and performance simulation in the

supermarket model with different servers.

Let Xk (t) be the number of customers in the kth server of this supermarket model at

time t ≥ 0, and

X (t) = (X1 (t) ,X2 (t) , . . . ,XM (t)) .

Obviously, {X (t) : t ≥ 0} is an M -dimensional continuous-time Markov process on the

space state Ω = {x = (x1, x2, . . . , xM ) : xk ≥ 0, 1 ≤ k ≤ M}.

Let r (x) be a real function for x ∈ Ω, and r (x) denote a reward value of this Markov

process {X (t) : t ≥ 0} at state x. Based on this, we define a random reward function as

Φ (t) =

∫ t

0
r (X (ξ)) dξ, (7)

which is a stochastic integral, e.g., see Chapter 10 in Li [14] for more details.

In what follows we propose an event-driven technique to deal with the random reward

function Φ (t). To this end, we denote by η1, η2, η3, . . . , ηn the n successive state jump

points of the Markov process {X (t) : t ≥ 0} in the finite time interval [0, t], it is clear that

0 < η1 < η2 < · · · < ηn < t < ηn+1. (8)

Note that ηk = η−k , and ηk is a state jump time of Markov process {X (t) : t ≥ 0}, thus

it is helpful for understanding the stochastic integral
∫ t

0 r (X (ξ))dξ under an interval

decomposition as follows:

[0, t] = [0, η−1 ) ∪ [η1, η
−
2 ) ∪ [η2, η

−
3 ) · · · ∪ [ηn−1, η

−
n ) ∪ [ηn, t],

it follows from (7) and (8) that

Φ (t) =

∫ η−1

0
r (X (ξ)) dξ +

n−1
∑

j=1

∫ η−j+1

ηj

r (X (ξ)) dξ +

∫ t

ηn

r (X (ξ)) dξ, (9)

which is a segmented stochastic integral for expressing the random reward function Φ (t).

Note that this segmented stochastic integrals will be useful in our later study.
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4 Computation of the Expected Reward Function

In this section, we use an event-driven technique to compute the mean of the random

reward function in a finite time interval, where our computation is based on the above

segmented stochastic integral, which is expressed through the successive state jump points

generated by either customer arrivals or service completions.

From (a) in Figure 4, let {N (t) : t ≥ 0} be a Poisson process with parameter ω =

λ+ µ1 + µ2 + · · ·+ µM . Then for k ≥ 0

pk (t) = P {N (t) = k} = e−ωt (ωt)
k

k!
.

1
µ

x

y

1
x e

2
x e

3
x e

M
x e

2
µ

3
µ

M
µ

x

1kx e+

2k
x e+

3k
x e+

Mk
x e+

( )3
, ,k M k d

( )1
, ,k M k d ( ), ,Mk M k d

(a)

State transitions from state x

(b)

State transitions from state 

by only an arrival
x

Figure 4: State transitions and associated rates at State x

We assume that the random sequence {Yk : k ≥ 1} is i.i.d. and is exponential with

mean 1/ω. Let ηn =
∑n

k=1 Yk. Then N (t) = sup {n : ηn ≤ t}, and 0 < η1 < η2 < · · · <

ηn < t < ηn+1. From Section 2.3 in Ross [35], it is easy to see that

P {η1 ≤ s | N (t) = 1} = P {Y1 ≤ s | N (t) = 1} =
s

t
.

Let the n-dimensional probability distribution be

F (s1, s2, . . . , sn) = P {η1 ≤ s1, η2 ≤ s2, . . . , ηn ≤ sn}
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and the n-dimensional probability density function

f (s1, s2, . . . , sn) =
∂n

∂s1∂s2 · · · ∂sn
F (s1, s2, . . . , sn) .

Then it follows from Theorem 2.3.1 in Ross [35] that

f (s1, s2, . . . , sn) =
n!

tn
, 0 < s1 < s2 < · · · < sn < t.

At the same time, Theorem 2.3.1 in Ross [35] demonstrates that given thatN (t) = n, the n

arrival times η1, η2, . . . , ηn have the same distribution as the order statistics corresponding

to n independent random variables uniformly distributed on the interval (0, t). Thus,

using the condition: 0 < η1 < η2 < · · · < ηn < t, we obtain

E [η1] = E [η2 − η1] = · · · = E [ηn − ηn−1] = E [t− ηn] =
t

n+ 1
. (10)

It is seen from (a) and (b) in Figure 4 that for k ≥ 1, the Markov process {X (t) : t ≥ 0}

transits to State X (ηk) from State X
(

η−k
)

(i.e., a state jump), where State X (ηk) may be

either State X
(

η−k
)

− ej due to a service completion by Server j for 1 ≤ j ≤ M , or State

X
(

η−k
)

+ eki due to a customer arrival at Server ki with the routine selection mechanism

for 1 ≤ i ≤ M . Note that X
(

η−1
)

= X (0) = x and X
(

η−k
)

= X (ηk−1) for 2 ≤ k ≤ n,

thus we have

X (ηk) ∈
{

X
(

η−k
)

− ej : 1 ≤ j ≤ M
}

∪
{

X
(

η−k
)

+ eki : 1 ≤ i ≤ M
}

= {X (ηk−1)− ej : 1 ≤ j ≤ M} ∪ {X (ηk−1) + eki : 1 ≤ i ≤ M} .

Let An be the nth inter-arrival time of the Poisson process with arrival rate λ, and

S
(k)
n the exponential service time with service rate µk of the nth customer in Server k.

Then {An} and
{

S
(k)
n

}

are all i.i.d for 1 ≤ k ≤ M . In this case, we write that A = A1 and

S(k) = S
(k)
1 for 1 ≤ k ≤ M . Based on these random variables A and S(k) for 1 ≤ k ≤ M ,

we can express the random events of the Markov process {X (t) : t ≥ 0} at time ηk as

follows:

(1) An arrival at time ηk

In this case, we need the sufficient condition

A < min
1≤k≤M

{

S(k)
}

.

It is easy to compute that

a = P

{

A < min
1≤k≤M

{

S(k)
}

}

=
λ

λ+ µ1 + µ2 + · · ·+ µM

.
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(2) A service completion in Server j for 1 ≤ j ≤ M

In this case, we need the sufficient condition

S(j) < min







A, min
k 6=j

1≤k≤M

{

S(k)
}







.

We can that

b(j) = P







S(j) < min







A, min
k 6=j

1≤k≤M

{

S(k)
}













=
µj

λ+ µ1 + µ2 + · · · + µM
.

Now, we compute the conditional mean Ex [Φ (t)], where Ex [•] = E [• | X (0) = x].

We have

E [Φ (t) | X (0) = x] =

∞
∑

n=0

P {N (t) = n}E [Φ (t) | X (0) = x,N (t) = n]

=P {N (t) = 0}E [Φ (t) | X (0) = x,N (t) = 0]

+

∞
∑

n=1

P {N (t) = n}E [Φ (t) | X (0) = x,N (t) = n] , (11)

Since N (t) = 0, it is clear that η1 > t, this gives

E [Φ (t) | X (0) = x,N (t) = 0] = E

[
∫ t

0
r (X (ξ)) dξ | X (0) = x, η1 > t

]

= r (x) t. (12)

For n ≥ 1, notice that the event {N (t) = n} is the same as the event {0 < η1 < η2 < · · ·

< ηn < t < ηn+1}, thus we obtain

E [Φ (t) | X (0) = x,N (t) = n]

= E

[
∫ t

0
r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

= E

[

∫ η−1

0
r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

+
n−1
∑

k=1

E

[

∫ η−
k+1

ηk

r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

+ E

[
∫ t

ηn

r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

(13)

To compute (13), we may observe some useful relations as follows:

(1) If ξ ∈ [0, η−1 ) and X (0) = x, then X (ξ) = x for ξ ∈ [0, η−1 ).

(2) For 1 ≤ j ≤ n−1, if ξ ∈ [ηj , η
−
j+1) and X (ηj) = y, then X (ξ) = y for ξ ∈ [ηj , η

−
j+1).

15



(3) If ξ ∈ [ηn, t] and X (ηn) = z, then X (ξ) = z for ξ ∈ [ηn, t].

Based on the above useful relations, together with (10), we obtain

E

[

∫ η−1

0
r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

= r (x)E
[

η−1
]

= r (x)E [η1] = r (x)
t

n+ 1
,

for 1 ≤ k ≤ n− 1

E

[

∫ η−
k+1

ηk

r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

= E [r (X (ηk)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1] ·E
[

η−k+1 − ηk
]

= E [r (X (ηk)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1] ·E [ηk+1 − ηk]

=
t

n+ 1
E [r (X (ηk)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1]

and

E

[
∫ t

ηn

r (X (ξ)) dξ | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1

]

= E [r (X (ηn)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1] · E [t− ηn]

=
t

n+ 1
E [r (X (ηn)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1] .

We write that for 1 ≤ k ≤ n

ℜk = E [r (X (ηk)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1] .

It follows from (11), (12) and (13) that

E [Φ (t) | X (0) = x] = r (x) te−ωt +

∞
∑

n=1

e−ωt (ωt)
n

n!
·

t

n+ 1

[

r (x) +

n
∑

k=1

ℜk

]

. (14)

Clearly, it is a key to compute the functions: ℜk for 1 ≤ k ≤ n.

Now, we use (14) to compute the conditional mean E [Φ (t) | X (0) = x] of the random

reward function Φ (t) through an event-driven technique. To this end, our computation is

decomposed in the following three steps:

Step one: Compute ℜ1 = E [r (X (η1)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1]

It is seen from (a) and (b) in Figure 4 that the Markov process {X (t) : t ≥ 0} transits

to a state X (η1) from the initial state x, where the state X (η1) may be either State x−ej
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due to a service completion by Server j for 1 ≤ j ≤ M , or State x+ eki due to a customer

arrival at Server ki for 1 ≤ i ≤ M . Using the routine selection mechanism, we have

X (η1) ∈ {x− ej : 1 ≤ j ≤ M} ∪ {x+ eki : 1 ≤ i ≤ M} .

From (a) and (b) in Figure 4, it is seen that the computation of ℜ1 is decomposed into

two parts: One by an arrival, and another by a service completion. Thus we obtain

ℜ1 =
M
∑

i=1

r (x+ eki) · a · k (M,ki, d) +
M
∑

j=1

r (x− ej) · b
(j)1{xj>0}, (15)

where a · k (M,ki, d) is the probability that an arriving customer joins Server ki, and

b(j)1{xj>0} is the probability that a service is completed in Server j.

Step two: Compute ℜ2 = E [r (X (η2)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1]

It is seen from (a) and (b) in Figure 4 that the Markov process {X (t) : t ≥ 0} transits

to a state X (η2) from a state X (η1) in the set

{x− ej : 1 ≤ j ≤ M} ∪ {x+ eki : 1 ≤ i ≤ M} ,

hence we have

X (η2) =



























x− ej + ekm , if an arrival occurs in Server km at time η2,

x+ eki + ekm , if an arrival occurs in Server km at time η2,

x− ej − el if a service is completed in Server l at time η2,

x+ eki − el if a service is completed in Server l at time η2,

thus we have

X (η2) ∈ {x− ej + ekm : 1 ≤ j,m ≤ M} ∪ {x+ eki + ekm : 1 ≤ i,m ≤ M}

∪ {x− ej − el : 1 ≤ j, l ≤ M} ∪ {x+ eki − el : 1 ≤ i, l ≤ M} .

Based on the above analysis, it is seen from (a) and (b) in Figure 4 that

ℜ2 =







M
∑

m=1

M
∑

j=1

r (x− ej + ekm) · b
(j)1{xj>0} · ak (M,km, d)

+

M
∑

m=1

M
∑

i=1

r (x+ eki + ekm) · ak (M,ki, d) · ak (M,km, d)

}

+







M
∑

l=1

M
∑

j=1

r (x− ej − el) · b
(j)1{xj>0} · b

(l)1{(x−ej)l>0}

+

M
∑

l=1

M
∑

i=1

r (x+ eki − el) · ak (M,ki, d) · b
(l)1{(x+eki)l>0}

}

. (16)
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Table 1: The order number of servers with either an arrival or a service completion

State jump points Server number by arrival Server number by service

η1 ki1 j1

η2 ki2 j2

...
...

...

ηn kin jn

Step three: Compute ℜk = E [r (X (ηk)) | X (0) = x, 0 < η1 < η2 < · · · < ηn < t < ηn+1]

for 3 ≤ k ≤ n

From the above two special computations, here we will further develop the event-driven

technique to calculate the conditional mean of the random reward function.

For the general term ℜk, our computation is more complicated than that in the above

two special cases. To that end, we need to introduce some notation to record the order

number of the server with either an arrival or a service completion at each of the state

jump points ηk for k = 1, 2, . . . , n. Observing the two expressions (15) and (16), the order

numbers of the servers need to relate to the state jump points ηk for k = 1, 2, . . . , n. For

simplicity of description, it is necessary to list some notation in Table 1, the purpose of

which is to express the state jump points and associated useful information.

For simplification of description, when deriving some conditional means involved below,

we introduce a convention notation: EY [X] = E [E [X|Y ]] (that is, a deterministic value),

where X and Y are two random variables.

From Steps one and two, it is easy to see that ℜk depends on the k successive samples

for the states X (ηm) for m = 1, 2, . . . , k−1. To describe the states X
(

η−k
)

, we express the

successive state jumps as follows: X (0)×
→

X (η1)×
→

X (η2)×
→

· · · ×
→

X (ηk−1), where A×
→

B

denote the Cartesian product from the set A to the set B. Since X
(

η−k
)

= X (ηk−1)

and our computation depends on the k − 1 successive samples for the states X (ηm) for

m = 1, 2, . . . , k − 1, we set X
(

η−k
)

= X (0) ×
→

X (η1) ×
→

X (η2)×
→

· · · ×
→

X (ηk−1), hence the

first k− 1 samples X (0)×
→
X (η1)×

→
X (η2)×

→
· · · ×

→
X (ηk−1) is used to record our previous

computational process. Therefore, we obtain

ℜk = EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1) [r (X (ηk))] .
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In this case, we need to represent the initial state X (0)×
→
X (η1)×

→
X (η2)×

→
· · ·×

→
X (ηk−1) by

means of X (ηm) ∈ {• − ejm : 1 ≤ jm ≤ M}∪
{

•+ ekim : 1 ≤ im ≤ M
}

for 1 ≤ m ≤ k− 1,

thus we have

X (0)×
→

X (η1)×
→

X (η2)×
→

· · · ×
→

X (ηk−1) ∈ Θ(k−1),

where

Θ(k−1) = Θ0 ×Θ1 ×Θ2 × · · · ×Θk−1,

Θ0 = {x}

Θ1 = {• − ej1 : 1 ≤ j1 ≤ M} ∪
{

•+ eki1 : 1 ≤ i1 ≤ M
}

,

Θ2 = {• − ej2 : 1 ≤ j2 ≤ M} ∪
{

•+ eki2 : 1 ≤ i2 ≤ M
}

,

...
...

Θk−1 =
{

• − ejk−1
: 1 ≤ jk−1 ≤ M

}

∪
{

•+ ekik−1
: 1 ≤ ik−1 ≤ M

}

.

To understand the elements in the set Θ(k−1), we need the Cartesian product as follows:

{A,B} × {C,D} = {A× C,A×D,B × C,B ×D} ,

where A,B,C,D are four sets with finite elements.

In the set Θ(k−1), the k elements are successively taken from the subsets Θ0,Θ1,Θ2, . . . ,

Θk−1, for example, x ∈ Θ0, •− ej1 ∈ Θ1, •+ eki2 ∈ Θ2, . . . , •− ejk−2
∈ Θk−2, •+ ekik−1

∈

Θk−1. For the successive k elements, we have a simple computation through the following

convention

{x} {• − ej1} = x− ej1 ,

{x} {• − ej1}
{

•+ eki2

}

= x− ej1 + eki2 ,

· · · · · · · · ·

{x} {• − ej1}
{

•+ eki2

}

· · ·
{

• − ejk−2

}

{

•+ ekik−1

}

= x− ej1 + eki2 · · · − ejk−2
+ ekik−1

.

Based on this, we can easily give a sample of the initial state X (0) ×
→

X (η1) ×
→

X (η2) ×
→

· · · ×
→

X (ηk−1) in the set Θ(k−1).

Now, we compute the conditional mean EX(0)×
→
X(η1)×

→
X(η2) ×

→
···×

→
X(ηk−1) [r (X (ηk))] by

means of an iterative algorithm as follows:
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(a) For m = 1, we have

EX(0) [r (X (η1))] =

M
∑

i=1

ak (M,ki, d) r (x+ eki) +

M
∑

i=1

b(j)1{xj>0}r (x− ej) .

(b) For m = 2, we have

EX(0)×
→
X(η1) [r (X (η2))] =







M
∑

m=1

M
∑

j=1

r (x− ej + ekm) · b
(j)1{xj>0} · ak (M,km, d)

+

M
∑

m=1

M
∑

i=1

r (x+ eki + ekm) · ak (M,ki, d) · ak (M,km, d)

}

+







M
∑

l=1

M
∑

j=1

r (x− ej − el) · b
(j)1{xj>0} · b

(l)1{(x−ej)l>0}

+

M
∑

l=1

M
∑

i=1

r (x+ eki − el) · ak (M,ki, d) · b
(l)1{(x+eki)l>0}

}

,

(c) For m = k ≥ 3, we take an element yk−1 ∈ Θ(k−1), then

Eyk−1
[r (X (ηk))] =





M
∑

ik=1

r
(

yk−1 + ekik

)

f (yk−1) · ak (M,kik , d)

+

M
∑

l=1

r (yk−1 − el) f (yk−1) · b
(l)1{(yk−1)l>0}

]

, (17)

and f (yk−1) is the probability that the state yk−1 occurs. It is necessary to provide some

interpretation for the probability f (yk−1) by means of the following three examples:

(c-1) f (y0) = 1 due to y0 = x.

(c-2) If y1 = x − ej1 , then f (y1) = b(j1)1{xj1
>0}; If y1 = x + eki1 , then f (y1) =

ak (M,ki1 , d).

(c-3) If y2 = x − ej1 − ej2 , then f (y2) = b(j1)1{xj1
>0}b

(j2)1{
(x−ej1)j2

>0
}; if y2 =

x + eki1 − ej2 , then f (y2) = ak (M,ki1 , d) b
(j2)1{(

x+eki1

)

j2

>0

}; and the other two can

similarly be computed and both of them are omitted here.
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Note that yk−1 ∈ Θ(k−1), using (17) we obtain

EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1) [r (X (ηk))]

=
∑

yk−1∈Θ(k−1)





M
∑

ik=1

r
(

yk−1 + ekik

)

f (yk−1) · ak (M,kik , d)

+

M
∑

l=1

r (yk−1 − el) f (yk−1) · b
(l)1{(yk)l>0}

]

. (18)

Now, we further discuss the key computation of f (yk−1) whose purpose is to provide

some new highlight on the calculation program.

Intuitively, the set of jump states: X (η1)×
→
X (η2)×

→
· · · ×

→
X (ηk), can be decomposed

into two subsets: One for an arrival and another for a service completion. Based on this,

we record the order numbers for either the arrivals or the service completions, for example,

if X (ηm) occurs at an arrival, then we record the order number as Vm; while if X (ηm)

occurs at a service completion, then we record the order number as Wm. Therefore, the

set of the order numbers is given by

{1, 2, 3, . . . , k} =
{

Vi1 , Vi2 , Vi3 , . . . , Vip

}

∪
{

Wj1 ,Wj2 ,Wj3 , . . . ,Wjk−p

}

,

where 0 ≤ p ≤ k. Specifically, if p = 0, then the set of the order numbers only contains

the service completions; while if p = k, then the set of the order numbers only contains

the arrivals.

Based on the two subsets
{

Vi1 , Vi2 , Vi3 , . . . , Vip

}

and
{

Wj1 ,Wj2 ,Wj3 , . . . ,Wjk−p

}

, we

obtain

ap
p

Π
m=1

k(M,kiVim
, d)·

k−p

Π
h=1

b(jWh
)1








(

x−
h−1
∑

m=1
ejWm

+
∑

Vs≤Wh−1
ekiVs

)

jWh

>0











·r

(

x+

p
∑

m=1

ekiVim
−

k−p
∑

h=1

ejWh

)

,

where we have some convention on
0
Π

m=1
• = 1 and

0
∑

m=1
• = 0, and notice that kiVim

depends
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on the state y(Vim−1). Thus we obtain

EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1) [r (X (ηk))]

=

k
∑

p=0

M
∑

iVi1
=1

· · ·
M
∑

iVip
=1

M
∑

jW1
=1

· · ·
M
∑

jWk−p
=1

ap
p

Π
m=1

k(M,kiVim
, d)

×
k−p

Π
h=1

b(jWh
)1








(

x−
h−1
∑

m=1
ejWm

+
∑

Vs≤Wh−1
ekiVs

)

jWh

>0











· r

(

x+

p
∑

m=1

ekiVim
−

k−p
∑

h=1

ejWh

)

. (19)

Similarly, from the two subsets
{

Vi1 , Vi2 , Vi3 , . . . , Vip

}

and
{

Wj1 ,Wj2 ,Wj3 , . . . ,Wjk−p

}

we obtain

f (yk) = ap
p

Π
m=1

k(M,kiVim
, d) ·

k−p

Π
h=1

b(jWh
)1








(

x−
h−1
∑

m=1
ejWm

+
∑

Vs≤Wh−1

ekiVs

)

jWh

>0











.

In the remainder of this section, we finally compute the conditional mean E [Φ (t) | X (0) = x]

of the stochastic integral Φ (t) according to the above steps one to three.

It follows from (14) that

E [Φ (t) | X (0) = x] = r (x) te−ωt +

∞
∑

n=1

e−ωt (ωt)
n

n!
·

t

n+ 1

×

{

r (x) +
n
∑

k=1

EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1) [r (X (ηk))]

}

, (20)

where EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1) [r (X (ηk))] is given in (18) or (19).

5 A Markov Discounted Reward Process

In this section, we provide an effective method for computing the mean of the discounted

random reward function in an infinite time interval. Based on this, we give a simple

discussion on optimal criterions for designing the supermarket model with different servers.

In the infinite time interval [0,+∞), it is possible that E [Φ (+∞) | X (0) = x] =

+∞. To avoid the infinite case, the random reward function is always taken as a dis-

counted reward. Notice that r (x) is a reward value of the M -dimensional Markov process

{X (t) : t ≥ 0} at state x ∈ Ω, we define a discounted random reward function as

Ψ (β) =

∫ +∞

0
e−βtr (X (t)) dt, (21)
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where β ≥ 0 is a discounted rate, and the discounted factor e−βt guarantees that Ψ (β) is

finite a.s..

If Ψ (0) is finite a.s., then Ψ (0) = E [Φ (+∞)] is an ordinary (non-discounted) random

reward function, as studied in Section 4 with t → +∞.

Now, we provide a segmented stochastic integral for expressing the random reward

function Ψ (β), this will be useful in our following computation.

Let η1, η2, η3, . . . be the successive state jump points of theM -dimensional Markov pro-

cess {X (t) : t ≥ 0} in the time interval [0,+∞), it is clear from the Poisson or exponential

assumptions that

0 < η1 < η2 < η3 < · · · .

At the same time, the sequence: η1, ηn+1 − ηn for n ≥ 1, is i.d.d. and exponential with

mean 1/ω. Note that the case with the time interval [0,+∞) is different from that in

Section 4 with respect to analysis of the uniform distributions.

Note that

[0,+∞) = [0, η−1 ) ∪ [η1, η
−
2 ) ∪ [η2, η

−
3 ) ∪ · · · ,

it follows from (21) that

Ψ (β) =

∫ η−1

0
e−βtr (X (t)) dt+

∞
∑

j=1

∫ η−j+1

ηj

e−βtr (X (t)) dt. (22)

Thus we obtain

E [Ψ (β) | X (0) = x] = Ex

[

∫ η−1

0
e−βtr (X (t)) dt

]

+
∞
∑

k=1

E
X(η−k )

[

∫ η−
k+1

ηk

e−βtr (X (t)) dt

]

= r (x)Ex

[

∫ η−1

0
e−βtdt

]

+
∞
∑

k=1

E
X(η−k )

[

r (ηk)

∫ η−
k+1

ηk

e−βtdt

]

.

(23)

Note that our following computation shows that E [Ψ (β) | X (0) = x] is not about the

taken sequence {ηk : k ≥ 1}.

Since r (X (t)) = r (x) for t ∈ [0, η−1 ) and r (X (t)) = r (ηk) for t ∈ [ηk, η
−
k+1), we need

to compute E
[

∫ η−1
0 e−βtdt

]

and E
[

∫ η−
k+1

ηk
e−βtdt

]

for k ≥ 1.

It is easy to check that

E

[

∫ η−1

0
e−βtdt

]

=
1

β + λ+ µ1 + µ2 + · · ·+ µM

. (24)

23



To compute E
[

∫ η−
k+1

ηk
e−βtdt

]

, let the random variable Γ be exponential with parameter

λ+ µ1 + µ2 + · · ·+ µM . Then we have

E

[

∫ η−
k+1

ηk

e−βtdt

]

= E(Γ)

[

E(ηk)

[
∫ ηk+Γ

ηk

e−βtdt

]]

, (25)

where E(Y ) [•] denote such a mean with respect to the random variable Y . It is clear that

ηk is a random variable with the Erlang distribution of order k as follows:

P {ηk ≤ y} = 1− exp {− (λ+ µ1 + µ2 + · · ·+ µM ) y}
k−1
∑

j=0

[(λ+ µ1 + µ2 + · · · + µM ) y]j

j!
.

Hence it follows from (25) that

E

[

∫ η−
k+1

ηk

e−βtdt

]

=

∫ +∞

0

∫ +∞

0

∫ y+x

y

e−βtdtdP {Γ ≤ x} dP {ηk ≤ y} . (26)

Based on (25) and (26), we set

θ0 (β) = E

[

∫ η−1

0
e−βtdt

]

and for k ≥ 1

θk (β) = E

[

∫ η−
k+1

ηk

e−βtdt

]

.

Note that the sequence {θn (β) : n ≥ 0} can explicitly be determined by (25) and (26),

although we omit some computational details.

It is easy to check that

EX(0)

[

∫ η−1

0
e−βtr (X (t)) dt

]

=
r (x)

β + λ+ µ1 + µ2 + · · ·+ µM
= θ0 (β) r (x) .

Now, we compute E
X(η−k )

[

∫ η−
k+1

ηk
e−βtr (X (t)) dt

]

by a similar method given in (18) as

follows:

EX(0)×
→
X(η1)×

→
X(η2)×

→
···×

→
X(ηk−1)

[

∫ η−
k+1

ηk

e−βtr (X (t)) dt

]

=θk (β)
∑

yk−1∈Θ(k−1)





M
∑

ik=1

r
(

yk−1 + ekik

)

f (yk−1) · ak (M,kik , d)

+

M
∑

l=1

r (yk−1 − el) f (yk−1) · b
(l)1{(yk)l>0}

]

. (27)
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It follows from (23), (24) and (27) that

E [Ψ (β) | X (0) = x] = θ0 (β) r (x) +
∞
∑

k=1

θk (β)
∑

yk−1∈Θ(k−1)





M
∑

ik=1

r
(

yk−1 + ekik

)

f (yk−1)

×ak (M,kik , d) +
M
∑

l=1

r (yk−1 − el) f (yk−1) · b
(l)1{(yk)l>0}

]

. (28)

It is seen from (28) that E [Ψ (β) | X (0) = x] is discounted by the β-sequence {θn (β) : n ≥ 0},

which guarantees that E [Ψ (β) | X (0) = x] < +∞.

In the remainder of this section, we provide a simple discussion for optimal design

of the supermarket model with different servers. Specifically, such an optimization may

be realized through an event-driven technique with performance simulation as well as

perturbation realization, e.g., see Cao [6] and Xia and Cao [46].

To realize an optimal design, the parameters of this supermarket model can be classified

as three different groups: (1) The customer arrival parameters λ; and g1, g2, . . . , gM . (2)

The customer service parameters M ; d; µ1, µ2, . . . , µM . (3) The economic parameters r (x)

for x ∈ Ω. In general, the customer arrival parameters are always fixed, given that the

customer resource and environment are fixed; while the economic parameters are chosen in

order that performance optimization of this supermarket model can be easy to be carried

out. Based on this, our optimal design is to focus on taking the optimal service parameters:

M ; d; µ1, µ2, . . . , µM .

From a practical point of view of performance optimization, we take two different

reward values: rmin(x) := ∆k1(x), and rmax(x) := ∆kM (x) for x ∈ Ω, respectively. Thus,

for r (x) = rmin(x) = ∆k1(x) for x ∈ Ω, we write

Ψ (β, rmin) = E [Ψ (β, rmin) | X (0) = x] ;

while for r (x) = rmax(x) = ∆kM (x) for x ∈ Ω, we set

Ψ (β, rmax) = E [Ψ (β, rmax) | X (0) = x] .

Based on E [Ψ (β) | X (0) = x], using an event-driven technique with performance sim-

ulation as well as perturbation realization, we can obtain the optimal decision parameters

M∗; d∗; µ∗
1, µ

∗
2, . . . , µ

∗
M such that

Ψ∗ (β, rmin) = max {Ψ (β, rmin)} . (29)
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Similarly, we can also give the optimal decision parameters M⋄; d⋄; µ⋄
1, µ

⋄
2, . . . , µ

⋄
M such

that

Ψ⋄ (β, rmax) = min {Ψ (β, rmax)} . (30)

Furthermore, we can get the optimal decision parameters M▽; d▽; µ▽
1 , µ▽

2 , . . . , µ▽
M such

that

L▽ (β) = min {Ψ (β, rmax)−Ψ (β, rmin)} . (31)

According to the above analysis, to design the supermarket model with different

servers, it is seen from Equations (29) to (31) that here we provide two optimal crite-

rions as follows:

Criterion one: This supermarket model is better when choosing some parameters

such that |Ψ⋄ (β, rmax)−Ψ∗ (β, rmin) | < δ1 for a given value δ1 > 0.

Criterion two: This supermarket model is better when choosing some parameters

such that L▽ (β) < δ2 for a given value δ2 > 0.

In general, the two optimal criterions can easily be implemented by means of the event-

driven technique with performance simulation as well as perturbation realization, e.g., see

Cao [6] and Xia and Cao [46] for more details.

6 Performance Simulation

In this section, we provide three simulation experiments whose purpose is to simply discuss

how the expected queue length of each server depends on some key parameters: The choice

number d, the service rate vector µ and the probability vector g of individual preference

in the supermarket model with different servers.

In the three simulation experiments, we take the server numberM = 10 and the arrival

rate λ = 10.

Experiment one: In the supermarket model with different servers, we take that the

choice number d = 2; the service rates of the 10 servers are listed as µ1 = 1.1, µ2 = 1.2,

µ3 = 1.3, µ4 = 1.4, µ5 = 1.5, µ6 = 1.6, µ7 = 1.7, µ8 = 1.8, µ9 = 1.9 and µ10 = 2.0,

respectively; the probabilities of individual preference for the 10 servers are given by

g1 = 0.10, g2 = 0.20, g3 = 0.30, g4 = 0.05, g5 = 0.05, g6 = 0.02, g7 = 0.10, g8 = 0.03,

g9 = 0.10 and g10 = 0.05, respectively. We simulate the expected queueing length for each
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Table 2: The expected queue lengths in the 10 servers

Server number Expected queue lengths

One 0.6834

Two 0.9454

Three 1.0440

Four 0.4318

Five 0.4234

Six 0.2894

Seven 0.4864

Eight 0.2793

Nine 0.4319

Ten 0.2640

server by using the routine selection function

∆i(x) =
1 + xi

µigi

M
∑

j=1

[

1 +
xj

µjgj

]

, i = 1, 2, . . . , 10.

The experimented results are shown in Table 1.

Experiment two: This experiment takes the different parameters: only the 10 service

rates, from that in Experiment one. That is, the choice number d = 2; the service rates

of the 10 servers are listed as µ1 = 1, µ2 = 2, µ3 = 6, µ4 = 8, µ5 = 10, µ6 = 16, µ7 = 17,

µ8 = 18, µ9 = 25 and µ10 = 26, respectively; the probabilities of individual preference

for the 10 servers are given by g1 = 0.10, g2 = 0.20, g3 = 0.30, g4 = 0.05, g5 = 0.05,

g6 = 0.02, g7 = 0.10, g8 = 0.03, g9 = 0.10 and g10 = 0.05, respectively. We still simulate

the expected queueing length for each server by using the routine selection function

∆i(x) =
1 + xi

µigi

M
∑

j=1

[

1 +
xj

µjgj

]

, i = 1, 2, . . . , 10.

The experimented results are shown in Table 2. It is seen from Tables 1 and 2 that the
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Table 3: The expected queue lengths in the 10 servers

Server number Expected queue lengths

One 0.3459

Two 0.1656

Three 0.0274

Four 0.0158

Five 0.0105

Six 0.0042

Seven 0.0038

Eight 0.0034

Nine 0.0018

Ten 0.0017

expected queue lengths of the M servers decrease, as the service rates of some servers

increase.

Experiment three: Comparing with Experiments one and two, this experiment takes

more different parameters. We take that the choice number d = 3; the service rates of the

10 servers are listed as µ1 = 1, µ2 = 3, µ3 = 3, µ4 = 6, µ5 = 6, µ6 = 6, µ7 = 6, µ8 = 9,

µ9 = 9 and µ10 = 15, respectively; the probabilities of individual preference for the 10

servers are given by g1 = 0.05, g2 = 0.20, g3 = 0.30, g4 = 0.03, g5 = 0.05, g6 = 0.10,

g7 = 0.10, g8 = 0.05, g9 = 0.02 and g10 = 0.10, respectively. We simulate the expected

queueing length for each server by using the routine selection function

∆i(x) =
1 + xi

µigi

M
∑

j=1

[

1 +
xj

µjgj

]

, i = 1, 2, . . . , 10.

The experimented results are shown in Table 3. It is seen from Tables 1, 2 and 3 that

the expected queue lengths of the M servers decrease largely, as the choice number d

changes from 2 to 3. Therefore, “the power of two choices” is still kept well in the study

of supermarket models with different servers.
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Table 4: The expected queue lengths in the 10 servers

Server number Expected queue lengths

One 0.3447

Two 0.0580

Three 0.8598

Four 0.0265

Five 0.0265

Six 0.0266

Seven 0.0265

Eight 0.0126

Nine 0.0127

Ten 0.0048

7 Concluding Remarks

In this paper, we provide a novel method for analyzing the supermarket model with

different servers through a multi-dimensional continuous-time Markov reward process,

and develop an event-driven technique both for computing the mean of the random reward

function in a finite time interval and for calculating the mean of the discounted random

reward function in an infinite time interval. We indicate that the event-driven technique

are useful in the study of supermarket models with different servers, and more generally, in

the analysis of large-scale Markov reward processes. Notice that the supermarket model

with different servers is an important tool to set up some basic relations between the

system performance and the job routing rule, thus it can also help to design reasonable

architecture to improve the performance and to balance the load in this supermarket

model.

This paper provides a clear picture for how to use the event-driven technique to analyze

multi-dimensional continuous-time Markov reward processes, which leads to performance

analysis of the supermarket model with different servers. We illustrate that this picture is
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organized as three key parts: (1) Constructing a routine selection mechanism that depends

on the queue lengths, on the service rates, on the probability of individual preference and

so forth. (2) From the state jump points of the continuous-time Markov reward process,

we set up some segmented stochastic integrals of the random reward function by means

of an event-driven technique. Based on this, we compute the mean of the random reward

function in a finite time interval, and also calculate the mean of the discounted random

reward function in an infinite time interval. Therefore, the results of this paper give new

highlight on understanding influence of the different servers on designing the routine se-

lection mechanism and on performance computation of more general supermarket models.

Along such a line, there are a number of interesting directions for potential future research,

for example,

• analyzing non-Poisson inputs such as, renewal processes; and discussing non-exponential

service time distributions, for example, general distributions, matrix-exponential dis-

tributions and heavy-tailed distributions;

• studying how to design a new routine selection mechanism with respect to key ran-

dom factors, such as, the least workload, and the subjective behavior of customers;

• developing effective algorithms both for computing the means of the random reward

functions and for solving the optimal problems in the study of supermarket models

with different servers; and

• The event-driven technique is further developed for discussing the sample paths of

continuous-time Markov reward processes, thus the results given in this paper may

be very useful for performance simulation of more general supermarket models with

different servers.

Up to now, we believe that a larger gap exists when dealing with either non-Poisson

inputs or non-exponential service times in supermarket models with different servers,

because the event-driven technique needs be established for being able to deal with more

general Markov reward processes.
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