
HAL Id: hal-04232112
https://amu.hal.science/hal-04232112

Submitted on 7 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEv-PROMELA: an extension of PROMELA for the
modelling, simulation and verification of discrete-event

systems
Aznam Yacoub, Maamar El Amine Hamri, Claudia Frydman, Chungman Seo,

Bernard Zeigler

To cite this version:
Aznam Yacoub, Maamar El Amine Hamri, Claudia Frydman, Chungman Seo, Bernard Zeigler. DEv-
PROMELA: an extension of PROMELA for the modelling, simulation and verification of discrete-
event systems. International Journal of Simulation and Process Modelling, 2017, 12 (3/4), pp.313.
�10.1504/IJSPM.2017.085564�. �hal-04232112�

https://amu.hal.science/hal-04232112
https://hal.archives-ouvertes.fr

DEv-PROMELA : An Extension of PROMELA
for the Modeling, Simulation and Verification of
Discrete-Event Systems

Aznam Yacoub
Aix-Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296
13397, Marseille, France E-mail: aznam.yacoub@lsis.org

Maamar el Amine Hamri, Claudia Frydman

Aix-Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296
13397, Marseille, France E-mail: {amine.hamri, claudia.frydman}@lsis.org

Chungman Seo, Bernard P. Zeigler

RTSync Corp. and Arizona Center for Integrative Modeling and Simulation,
University of Arizona,
Tucson, AZ E-mail: {cseo,zeigler}@rtsync.com

Abstract: PROMELA is a well-known formalism for the modeling and the verification
of concurrent systems. PROMELA deals with high-level specifications. As a result,
PROMELA models are expressed in a high-level abstraction which not considers explicit
representation of time or events for example. But, the efficiency of the processes of
Verification and Validation relies on the accuracy of the models. That is why we propose
in this paper work to develop a new extension of PROMELA for the modeling of
discrete-event systems. The verification of these models is then done by combining formal
verification and simulation-based verification using SPIN and the tool DEv-PROMELA
Studio, or using any existing DEVS simulators.

Keywords: DEv-PROMELA; Simulation; Formal Verification; Verification and
Validation.

Reference to this paper should be made as follows: A. Yacoub, A. Hamri, C. Frydman,
C. Seo, B.P. Zeigler (2017) ‘DEv-PROMELA : An Extension of PROMELA for the
Modeling, Simulation and Verification of Discrete-Event Systems’, International Journal
of Simulation and Process Modelling, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Aznam Yacoub received his PhD in Computer Science at the
Aix-Marseille University. His main research interests include formal verification and
discrete-event simulation for the verification and validation of software.

Maamar el Amine Hamri is PhD in Computer Science from the Aix-Marseille University.
He mainly works on DEVS and its extensions G-DEVS and Min-Max DEVS.

Claudia Frydman is Professor of Computer Science at the Aix-Marseille University. Her
main research interests include discrete-event simulation.

Chungman Seo is PhD from the Department of Electrical & Computer Engineering
of the University of Arizona. He is currently Research Engineer at RTSync Corp. and
developer of the MS4 environment.

Bernard P Zeigler is Emeritus Professor of Electrical and Computer Engineering at
the University of Arizona. He is internationally known for his seminal contributions in
modeling and simulation theory and has published several books including Theory of
Modeling and Simulation. He was named Fellow of the IEEE for the Discrete Event
System Specification (DEVS) formalism that he invented in 1976. He is currently Chief
Scientist with RTSync Corp., a developer of the MS4 modeling and simulation software
based on DEVS.

Int. J. of Simulation and Process Modelling, Vol. x, No. x, 2017 2

1 Introduction

Verification & Validation (V&V) is becoming a critical
point in the understanding and design of large systems
like weather events, traffic lights, aircraft autopilot,
smart systems, etc. Developing software or hardware
without failure and in which people can put their trust
is a big challenge for experts and designers. Many
research fields have explored solutions to this problem
for many years, and two domains have emerged. On
the one hand, theory of Modelling & Simulation (M&S)
[Zei76] provides an intuitive way to model systems by
specifying inputs, outputs, states and a time-advance
function expressing the evolution of the model through
time, then encapsulating this simple behaviour into
black boxes and reusing them to design more complex
systems. Even the harder system can thus be quickly
analyzed, but the efficiency of simulations strongly
depends on the hypothesis made on the system under
study and on the played scenarios. Indeed, testing the
entire state space appears like impossible, due to the
impossibility for designers to think to all possible cases;
or it will take a too long time as simulation can deal
with big inputs.

On the other hand, Formal Methods (FM), especially
model-checking [CE82, QS82], are well-known to
systematically explore the total state space of a model
in order to check that it satisfies behavioural properties.
However, formal methods can encouter some limits:
for example, Timed Automata (TA) are not able to
represent systems with non-linear clock constraints
[AD94]. The main problem is that the formal verification
models need to focus on the conceptual aspects of a
design that are relevant to the properties one wants
to verify for two reasons: this guarantees the efficiency
of the model-checking algorithms within a reasonable
time when the state space may be huge, and it is shown
that many problems are undecidable, resulting that the
model-checking cannot be performed in these cases.

The literature thus provides some techniques on
combining formal verification and simulation for specific
fields like validation of integrated circuit design [LTS06]
or system-level performance analysis [KPBT06], and
shows the benefit of combining simulation and formal
verification. These approaches propose to enhance V&V
process by partitioning the model and using on each
part either formal verification or simulation if the first is
not applicable. However, there is no guarantee that each
part is expressed in the right level of abstraction. These
methods generally imply remodelling part of systems
which one wants to check, or provide some morphism
rules between multiple formalisms to get a verification
model from a simulation model. In this context, we
propose another methodology to combine simulation
and model checking. In our approach, we build a new
specification language (called the target formalism)

upon a verifiable language (called the source formalism)
by integrating semantics which comes from simulation.
This increases the expressiveness of the source formalism
without breaking its formal verification capabilities.
Then, simulation is used in order to verify and validate
some properties that formal verification could not verify
and without remodelling the considered part of the
system under study. Thereby, each part of a system can
be verified and validated at many levels of abstraction.
Moreover, thanks to the power of the Discrete-EVent
system Specification (DEVS) Framework, each submodel
can be combined into another complex model which can
represent the entire system at a level of abstraction.
The behaviour of the global model is thus verified and
validated by simulation, overcoming the weakness of
formal methods applied to complex systems.

One result of our proposed approach is the
Discrete-Event PROMELA (DEv-PROMELA) which
we introduced in DEv-PROMELA is based on the
well-known PROcess MEta LAnguage [Hol91] and
on the Classic DEVS semantics [Zei76]. It allows
accurate modelling of discrete-event systems (DES) in a
syntactical way and their verification and validation by
using both formal verification and simulation. Another
advantage of DEv-PROMELA is that specifying a DES
model into a syntactic formalism makes easier the
translation from the conceptual model to a computerized
simulation model. Indeed, transformation rules can
easily be defined and verified between two syntactic
formalisms. This advantage is crucial because it also
allows a kind of interoperability between existing
simulators. By using the DEv-PROMELA Studio which
integrates the SPIN model checker [Hol97] and a DEVS
simulator on the one hand, and the MS4 Me environment
[SZCK13] to illustrate the interoperability on the other
hand, DEv-PROMELA has been successfully applied in
order to model, verify and simulate designs of simple
algorithms, but also more complex conceptual models
of video games.

This article is built as follow: section 2 briefly
introduces formal verification and simulation especially
of timed systems, and talks about existing combining
methods. Then, section 3.1 and 3.4 shortly introduce our
approach combining formal verification and simulation
in a same framework, and briefly recall the semantics
of DEv-PROMELA, a result of our proposed approach.
Section 4 finally talks about few applications of DEv-
PROMELA.

2 Related works

2.1 Introduction to Formal Verification

Formal verification is a well-known verification
methodology that “dates back to the origin of computer

Copyright c© 2017 Inderscience Enterprises Ltd.

DEv-PROMELA 3

sciences” [CC10], and whose the objective is to check
whether a model is correct against some formal
specifications. Formal verification methods are based
on rigorous and mathematical proof techniques. Indeed,
Formal Methods are a set of formal notation and tools
that allow a strict and rigourous description of the
system under study, with formal semantics and an
automatic proof mechanism [BH95]. Formal Methods
are divided into two families:

• Automated theorem proving methods [CL73,
Lov78, Duf91] show that a set of statements
of a system can be deducted from another set
of statements. Formally, we consider Γ, a set
of logical properties describing the system (we
called them axioms and hypothesis), and φ a
set of specifications (that we called conjectures).
Theorem proving methods try to find a proof that
Γ ` φ, in other words, that we can syntactically
deduce specifications from properties of the
system.

• Model Checking methods [CE82, QS82] show that
a system satisfies a set of properties. Formally, we
consider M , a model (in the mathematical sense)
of the system, and φ, a set of logical properties.
Model Checking methods check whether M |= φ
: all models M syntactically and semantically
satisfy φ. In fact, because the system is generally
modelled by a finite automaton, model checking
tools systematically explore the entire state space
of the system model, inducting to the well-known
state space explosion problem, which is extensively
treated in the literature [Cla08, HR05, BK08].

With these definitions, we can easily understand
why formal methods are powerful methods to check the
correctness of a system. Indeed, whatever the family of
formal methods, they are based on logics that is the best
way to describe properties in an unambiguous manner,
and on mathematical formalisms, most of the time state
machines, that are also the best way to describe systems
in an unambiguous manner. However, it is well-known
that these techniques could become very heavy, time
and effort consuming because they require advanced
mathematical skills and knowledge [Hei98], and are not
very practicable in large and complex systems. Although
model checking research is focusing on efficiency and
scalability, formal methods are faced with the complexity
of systems and data domains [ZREF13].

The complexity of systems comes from the complexity
of their behaviour and interactions between their
internal components, on the one hand, and their
environment, on the other hand. Consequently, in
order to be efficient and effective, formal methods
have to apply some restrictions to their modelling
and specifications languages, reducing their expressive
capabilities. Consequently, some assumptions can lead

to a certain idealisation or rigorous hypothesis which
are not representative of the real environment of the
system. The obtained model is certainly simpler than
the real design, but it also increases the requirement
of some expertise to ensure the level of abstraction
is appropriate. The problem does not arise from the
abstraction process itself, because making models is
making abstraction, but the way in which we do
abstraction and how we simplify models in order to make
them fit the tools’ requirement. Abstraction [CGL94]
has many advantages: it guarantees, for instance, that
the model system is finite (or finitely represents an
infinite-state system [To10]), which is a condition for
model checking techniques work [BK08]. Consequently,
this means that a set of problems cannot be checked
with formal verification methods, without making strong
assumptions. For instance, it is shown in [AD94] that
certains classes of timed automata are undecidable and
not computable for model checking. Another example
is given by [BJ14] for the Cyber-physical Autonomous
Cooperative System of Systems (CACSoS). The authors
state that “Despite these drastic simplifications, state
space explosion prevents employing more than a handful
of Uninhabited Air Vehicles (UAVs) and sensors”.
Finally, only strong expert knowledge can guarantee
that the semantics and restrictions of the model checker
tool is enough to make a correct abstraction of the
system.

Furthermore, it is relevant to consider how models
are built. Abstraction-Refinement (A-R) process
[HL98, CGP99, Gru06] is commonly used to approximate
more effectively the behaviour of the original system,
by iteratively adding details to abstract states, abstract
algorithms and types and constants, before verifying
the newly obtained model [DT96]. However, A-R loop
involves a problem: when the abstraction does not satisfy
a property, it does not mean that the real model does not
satisfy this property. And because refinement involves
restrictions, refinement is perhaps representative of only
a part of the checked problem. This is especially true
when it is difficult to prove that the correctness of a
refinement against a property implies the correctness of
the real model against this same property. Indeed, it is
a vicious circle: the more the model is refined, the less
it represents the real system because of restrictions that
the modellers add, although it makes the verification
easier. Conversely, the less a model is refined, the more
it is imprecise or not verifiable with formal methods
(that is the generalisation problem stated by [BK08]).
Finally, according to Baier, “complementary techniques,
such as testing, are [thus] needed to find fabrication
faults (for hardware) or coding errors (for software)”,
although testing is not possible all the time.

The latter point leads to a discussion of the
interoperability and universality of formal methods.
There exists many formal methods, each having an
appropriate expressiveness power to describe specific

4 A. Yacoub et al.

Figure 1 The Basic M&S entities [ZKP00].

models. This is particularly problematic because experts
may have strong knowledge in each formal method,
but also because formal methods could return different
results for the same design: [Owe07] shows, for instance,
Cadence SMV and NuSMV give two different results
for the same requirement and the same input model.
In that sense, we can state that each formal method is
specialised as regards a type of system. This can be a
problem to justify the use of a formal method instead of
another.

2.2 Introduction to Discrete-Event Simulation

M&S domain has been explored since the early 1960s,
but was really theorised in [Zei76]. This theory tried to
make uniform these two notions used extensively in many
disciplines like medicine, physics, etc; it also defines a
global and universal framework and methodology that
is not dependent on the domain of application. As the
name suggests, the two key concepts behind M&S are
“Model” and “Simulation”. The most popular definition
of “model” is perhaps the one given in [Min65]: “To an
observer B, an object A* is a model of an object A to
the extent that B can use A* to answer questions that
interest him about A”. Model is then an abstraction,
a simplification, a representation of the reality. This
definition joins the one given in formal verification
domain, even in the mathematical sense. Indeed, a model
is a semantic interpretation of a structure. Simulation
is thus “executing a model to generate its behaviour”
[Zei76], by acting on inputs and parameters of the
model. Experimental Frame (EF) is a set of conditions
under which the real system is observed. This notion is
also important because it implies a certain abstraction.
From this, a model will be valid in a specific EF (i.e.
the model generates the same behaviour as the real
system in the given conditions) but not in another. This
is the main limitation of simulation. Indeed, we can
easily deduce that simulation strongly depends on the
played scenarios. Unlike formal methods which explore

the entire statespace, simulation focuses only on an
identified part of the statespace. In other words, doing
an exhaustive verification with simulation is hard and
maybe impossible.

Another advantage of M&S is that Zeigler defines
a unique and universal formalism to describe discrete-
event system in a generic manner. DEVS formalism and
its extensions allows modelling a full-range of discrete-
event systems as simple transition system. All these
contribute to make the M&S framework very easy to use
for modelling and simulation of many types of systems,
like complex natural phenomena [Wai15].

In the V&V terminology, an analogy can be made
between testing and simulation. The weakness of
simulation is due to this being an empirical method.
Correctness of the simulation essentially comes from
the precision of the assumptions made on the EF.
Then, simulation-based verification depends on specific
scenarios and conditions under which it is tested. This
does not mean the entire state space cannot be checked
as for formal verification, but it would be probably more
costly (and because efficiency of a simulation model
can only be evaluated by comparing its outputs with
those of the real system for specific inputs). Note that
because simulation is evaluated under specific EF, this
enforces the notion of determinism; in other words, for
the same set of inputs, the model must generate the
same behaviour and the same outputs.

2.3 Complementarity between Simulation and
Formal Verification

In order to overcome the weakness of formal methods
and simulation, the litterature explores some techniques
which combine these methodologies. Firstly, papers
concerning formal verification and model checking
clearly consider simulation. According to [BK08] : “In
order to improve the quality of the model, a simulation
prior to the model checking can take place. Simulation
can be used effectively to get rid of the simpler category
of modeling errors.” [ISS+06] note that “UPPAAL
provides an integrated simulation tool. It allows the user
to examine the dynamic system behavior in a graphical
manner either interactively, [...] or randomly to let the
system run on its own.” And SPIN and NuSMV model
checkers also integrate a “simulator” [Hol97, CCGR99].
These simulators are not in the sense of M&S concepts
because simulation involves determinism of models;
however, they can be seen as the result of the need
of “executing formal specifications” for the purpose
of validation. PROMELA and SMV are based on an
operational semantics that allows the execution, but
that is not the case for all specification languages. [LB03]
prefers the term “animation of specification” for their
ProB Model Checker.

The need of increasing the credibility of simulation

DEv-PROMELA 5

models leads researchers to apply formal methods in
M&S [KCS03] in order to verify simulation models.
Many methods to transform certain DEVS subclasses
into Timed Automata for purpose of static verification
were developed [DG07b, SW09]. Other approaches tend
to integrate Z into DEVS models [TFH09, Tro10] also
by transformation.

What is the problem with existing methodologies
? These techniques combining formal verification and
simulation like in [AHMT14] derive the verification
model from the simulation model in order to verify
it, or derive a verification and a simulation model
from a conceptual model. In the second case, the
derivative does not guarantee that the obtained models
are related to each other [LTS06]. In the first case, the
verification is about the simulation model (meaning the
implementation of the simulator) and not the initial
design. Moreover, it implies to apply some restrictions on
the simulation model in order to enable the verification.
Thus, there is no guarantee that the verification model
represents the initial design.

3 Combining Formal Verification and
Simulation with Discrete-Event
PROMELA

3.1 Overview

Our proposed methodology tries to reduce and overcome
the previous disadvantages. The main idea is introducing
the semantics of a discrete-event simulation language
into a verifiable language. A similar approach was
recently described in [AMT16]. The general approach
that we propose is as follow:

• Choose a verifiable formalism (like PROMELA,
Timed Automata...) called the source formalism.
Identify the missing notions among the three main
concepts related to discrete-event simulation: event
mechanisms, state lifespan, types of transition
(internal or external).

• Introduce syntactical elements into the source
formalism in order to enable modelling of these
notions. Add a new datatype to model infinite
values if needed. If the source formalism is based
on state machines, make sure that adding these
concepts does not change the structure of the
underlying automaton.

• Define the new operational semantics based on
the targeted discrete-event simulation formalism
(DEVS, G-DEVS [GEG01], Temporal Sequential
Machine [Gia09]...)

• Use the obtained formalism to design systems.

Then, we can be sure that we are able to easily
define a morphism which translates models expressed

in the new formalism into models expressed in the
source formalism and which conserve all their structural
properties. Indeed, the automaton underlying the new
formalism is built upon the automaton underlying the
source formalism. Moreover, we are also sure that it
exists a simulation model which has the same behaviour
than the behaviour of the model expressed in the new
formalism. Thus, we can easily define a morphism which
transforms models expressed in the new formalism into
models expressed in the targeted simulation formalism.

In order to illustrate our approach, we apply it to
extend PROMELA.

3.2 Recall about PROMELA

PROMELA is a specification language with an
operational semantics and initially designed for the
modelling and verification of concurrent protocols,
involving synchronous or asynchronous communication
between processes. Based on Djikstra’s Guarded
Command Language, its syntax is close to any
imperative language, making their use very easy,
compared with others formal methods. Because the
language is very complete, we will focus there only on
interesting concepts for the scope of this paper.

A PROMELA specification is thus a set of two
separate parts: the system specification, on the one hand,
which describes the behaviour of the model, and on the
other hand, the properties to verify on the model.

3.2.1 System Specifications

A PROMELA system is a finite set of components:
instances of processes. These instances can communicate
with each other thanks to different mechanisms as
buffered messages, shared global variables or rendez-vous
handshakes. Each instance of each process is modelled
by a finite set of guarded or labeled command called
statements. A statement is said non-blocked if the state
of the system allows its execution, otherwise it is said
blocked. Then, one execution of the specifications, at any
time ti, corresponds to the execution of one among all of
non-blocked statements, without any assumption about
duration of the statement execution.

Instructions are divided into two categories:
statements that modify the system state and control-
flow instructions. Statements relative to state changes
are assignments and message exchange instructions.
Assignment statements involve local and global
variables, whereas communication statements involve
buffered channels. It is important to note that,
if assignements are always considered as enabled
statements (i.e. they can be always executed), the
instructions relative to channels can be blocked if the
associated buffered channel is empty or full. Control-
flow statements are classical conditionnal and loop
instructions. These ones allow selection of the next
statement among different branches regarding a guard.
Because PROMELA processes are non-deterministic, if

6 A. Yacoub et al.

Algorithm 1: A simple example of PROMELA program.

1: int z = 1;
2:

3: active proctype A {
4: int x = 2, y = 2;
5: if
6: :: (x == 2)→ x = 3;
7: :: (y == 2)→ y = 4;
8: fi;
9: }

10:

11: active proctype B {
12: int x = 2, y;
13: do
14: :: (y == 2)→ x = 2;
15: :: (x == 2)→ y = 4;
16: od;
17: }
18:

19: ltl {[](z == 1); }

several guards are satisfied, a random one is selected.
If none of them is satsfied, the control-flow structure is
blocked. PROMELA also provides a timeout instruction
(usable as a guard) which is enabled if all instructions
are blocked in the whole system.

Datas in PROMELA are represented by local and
shared variables. Local variables are those which are
relative to only the process which they belong to,
whereas global variables are shared by all processes. A
variable is characterized by its value and its type, or any
finite combination (structures) or finite arrays of these
types. Each PROMELA type represent a finite set of
values.

The immediate result is that a PROMELA model can
be represented by an underlying finite automaton.

3.2.2 Properties Specifications

SPIN supports the verification of Linear Temporal
Logic (LTL) properties on the PROMELA models. LTL
properties are converted into a never-claim process
(comparable to any normal processes) which don’t
”participate” to the behaviour of the system. The goal
of a never-claim process is only to guarantee the system
satisfies the property which is encoded in it. In this sense,
a never-claim process acts as a monitor. The study of
LTL encoding is out-of-scope of this paper. Thus, we
recommand the SPIN Reference Manual [Hol03] to the
interested readers for further informations.

Then, the formal verification of PROMELA
specifications intuitively corresponds to the checking of
all executable paths against a given property, without
any assumptions of duration. It results that the next
state of a PROMELA model does not depend on the
time elapsed in a previous state. Because it is not

possible to model this elapsed time, timed extensions
were developed.

3.2.3 Executability of a Process

A PROMELA process with a set of statements L is thus
a finite state machine P = (Q,T, s0, F) where

- Q = {qi = (l1, ..., lm, g1, ..., gn, c1, ..., co) ∈∏m
i=1 Li

∏n
j=1Gj

∏o
k=1 Ck}, the finite set of states;

a state is characterized by the values of each local
and shared variables, and channels (the all sets Li,
Gj and Ck);

- T ⊂ Q× L×Q, the finite set of transitions labeled
by a statement l ∈ L;

- s0 ∈ Q, the initial state of the process;

- F ⊂ Q, the finite set of final states of the process;

Denote (qi, qj) ∈ Q2 and l ∈ L a statement (i.e. an
instruction in the PROMELA program). Then, t ∈ T
iff the process can change its state from qi to qj by
executing l only. In other words, a statement denotes two

consecutive states and t = (qi, l, qj) (we will note qi
l→

qj).
Given two states (qi, qj) and a labelled transition

t = qi
l→ qj , t is enabled iff

- l is a non-blocking instruction: an assignment, a
conditionnal instruction with a satisfying guard or
any control-flow atomic instruction (break, skip,
timeout, etc);

- l is an asynchronous message sent over a non-full
channel;

- l is an asynchronous message received from a non-
empty channel;

DEv-PROMELA 7

- l is an unblocking rendez-vous message.

3.2.4 Executability of a Program

A PROMELA program with n processes is a subset of
the cartesian product of the state graph of each process.
Thus, a PROMELA Program M is a Kripke Structure
[Kri63] K =< S, s0, R, L > with

- S ⊆
∏n
i=1Qi, where Qi is the statespace of the

process pi (1 ≤ i ≤ n);

- s0 = (s01 , ..., s0n) where ∀i ∈ [1;n], s0i is the initial
state of the process pi;

- R ⊆ S × S, the set of transitions. By definition,
R is left-total, meaning ∀s ∈ S, ∃s′ ∈ S such as
(s, s′) ∈ R;

- L : S → 2AP , the labeling function, which gives
an interpretation of atomic logic propositions (p ∈
AP) for each state;

Denote r = (sm, sn) ∈ S2. We note qmi
, the state of

the process pi in sm, and qni , the state of the process pi
in sn. Thus, r ∈ R =⇒ ∃t ∈ Ti \ t = (qmi , li, qni), where
Ti is the set of transitions of the process pi and li ∈ Li
(here, Li is the set of statements of the process pi). By
this, we mean r is a transition of a PROMELA program
only if it exists a transition t that changes the state of one
of the processes composing the program. r is said enabled
if ∃t ∈ Ti which is enabled. If at least two transitions
are enabled for any state s, thus the system is said non-
deterministic.

Finally, we call run any finite or infinite alternating
sequence w ∈W of states and transitions: w =
s1r1s2r2....rn−1sn. Formal verification thus consists to
check all runs w against the desired property. Verification
methods and algorithms are out-of-scope of this paper,
and we suggest [BK08] as reference for the interested
reader.

3.3 DEVS Concepts

Discrete-Event Systems (DES) are a specific class of
timed systems, whose state changes at various time
instants, depending on instant occurrences of events.
Thus, a DES evolves along the events that it emits or
consumes. For the modelling of such systems and their
analysis, [Zei76] introduced the DEVS formalism, which
can be seen as a generalization of the Moore Machine
formalism by associating each state with a lifespan. The
traditional DEVS thus relies on the following notions:

• Each state is associated with a real number called
lifespan. This real number can take its value on
[0; +∞]. When the lifetime of a state has expired,
the system emits an output and changes its current
state according to the transition table;

• When an input is consumed, the state of the
system changes according to the transition table,

regardless of the current lifetime of the current
state;

• As a result of the previous point, transitions can
be characterized as internal or external transitions.
Internal transitions model autonomous behaviours
while external transitions correspond to reactions
to any external events;

• Events are well-dated and can be ordered;

• There is no non-deterministic behaviour. If two
events occur at the same time, thus either they are
equivalent events (e1 = e2) or they are prioritized;

• The state, input and output trajectories are
piecewise segments; the distribution of events can
follow any non-linear function, unlike for discrete-
time systems in which the time is determined by a
linear function of periods;

More formally, a DEVS model is a coupling of
DEVS atomic and coupled models. A DEVS atomic
model is the smallest simulable unit defined by A =
(X,Y, S, δint, δext, λ, ta), where:

• X is the set of input values;

• Y is the set of output values;

• S is the set of states;

• δint : S → S is the internal transition function;

• δext : Q×X → S is the external transition
function;

• λ : S → Y is the output function;

• ta : S → R+ is the time advance function;

• Q = {(s, e) | s ∈ S, e ∈ [0, ta(s)]} is the total state
set; e is the time elapsed since the last transition.

The meaning of a DEVS can easily be depicted as
follows. At any time t, the system is in a state s. If
no external event occurs, the system stays in s for time
ta(s). If the lifetime expires, meaning the elapsed time
e from the last event is equal to ta(s), the system
outputs the value λ(s) and changes to the state δint(s).
If an external event x occurs before the expiration time,
meaning that the system is in a state q = (s, e) with
e ≤ ta(s), then the system changes its state to δext(q, x).
The event can transit into the coupled model using the
previously defined coupling: an external event coming in
the system is transmitted to the components using EIC,
while an output generated by a component transits using
EOC or IC.

8 A. Yacoub et al.

3.4 Discrete-Event PROMELA

Using our approach, we developed an extension of
PROMELA called DEv-PROMELA [YHF+15], which is
the result of introducing the semantics of DEVS into
PROMELA. We extended the syntax of PROMELA
as shown in [YHF16], in order to be able to specify
DES concepts and real values. DEv-PROMELA is
thus a syntactic language which allows modelling,
simulating and verifying discrete-event models by formal
verification and simulation. Indeed, the methodology
implies that we can encode any DEv-PROMELA model
into a DEVS model, which can be implemented and
simulated in any DEVS environment. Because it always
exists a PROMELA model structurally equivalent to a
DEv-PROMELA model, the model checker SPIN can be
used to check time-invariant properties. The semantics
alignement between DEv-PROMELA and DEVS is not
the object of this paper, which is only focusing on the
structural relationship between DEv-PROMELA and
PROMELA.

3.4.1 DEv-PROMELA Syntax

As said in the previous section, some syntactic elements
were added to PROMELA in order to model the essential
notions of discrete-event models: clocks and types of
transitions. Because DEVS allows real valuation, a new
data type real was introduced. Each statement of
PROMELA denotes a transition between two states.
Then, in order to define types of transitions and
types of events (internal or external), events descriptors
prefix any statement. The reader is encouraged to read
[YHF16] for more details about the syntactic changes.

3.4.2 DEv-PROMELA Semantics

The operational semantics of DEv-PROMELA
corresponds to the semantics of DEVS.

Semantics of a DEv-PROMELA process. A DEv-
PROMELA process P with a set of statements L is an
automaton T = (Sτ , E, δi, δe, s0, F) where

• Sτ = {si = (ts, i, l1, ..., lm,∈ N×
∏m
i=1 Li ×∏n

j=1Gj ×
∏o
k=1 Ck)} is the set of states. i is the

identifier of the state related to the statement l
which defines it; the sets Li (resp. Gj) are the sets
of values of each local (resp. global) variable li
(resp. gj);

• E is the set of events; E contains at least the silent
event denoted ε;

• δi : Qf → Q0 × E is the internal transition partial
function;

• δe : Q× E → Q is the external transition partial
function;

• s0 is the initial state;

• F is the set of final states.

Moreover, we define:

- ta :

{
Sτ → R+

ta(s) 7→ ts
is the state lifetime function; the

lifetime of each state is given by the delay before
executing the next statement in the specifications;

- Q = {q = (s, dt),∀s ∈ Sτ} such that 0 ≤ dt ≤
ta(s) is the set of total states; dt denotes the time
elapsed in the state s;

- Q0 = {q = (s, 0),∀s ∈ Sτ} ⊂ Q;

- Qf = {q = (s, ta(s)),∀s ∈ Sτ} ⊂ Q.

Consider a DEv-PROMELA process P in a state s at
time t, and the next statement l with its event descriptor.
We can admit the process P is in fact in a state q = (s, t)
(if t denotes the elapsed time since the last event). If
l denotes an internal transition and if t = ta(s), then
the statment l is enabled. The event associated with the
transition is emitted to all the other processes composing
the program, before the transition is triggered, and the
next event for the process P is defined by :

de′ = getCurrentDate+ ta(s′)

with ((s′, 0), e′) = δi(s). If l denotes an external
transition on an event e, then the transition is triggered
only if the process receives the event e. In this case,
denote t the date of the event e. The next state is given
by q′ = δe(q, e) with q′ = (s′, 0). If δe is not syntactically
defined for (s, e), then the next state is given by q′ =
(s, dt) and ta(s) = ts.

Semantics of a DEv-PROMELA program. A DEv-
PROMELA program Pr is a transition system T =
(S,Λ,→) where S is the cartesian product of the set of
states of each process, the set of global variables and
channels that compose the program, Λ is the set of all
statements and → the set of transitions. Consider a
program Pr at time t and two states s = (spi , sqj , ...) and

s′ = (s′pi , s
′
qj , ...). Then, s

l→ s′ with l ∈ Λ if it exists a
transition from spi to s′pi , from sqj to s′qj , ... and if it does
not exist any other transition which can be triggered
before the date t. In other words, the next event of Pr is
the minimum value of all the next events of each process
and external events.

3.4.3 Structural Relationship between DEv-
PROMELA and PROMELA

Denote P a DEv-PROMELA process with L the set of
statements. As previously introduced, P is an automaton
A = (Sτ , E, δi, δe, s0, FA). Denote P ′, a PROMELA
process represented by a finite state machine B =
(S, T, s′0, FB). If P ′ is a structural equivalent to P , that
means it exists a morphism M that transforms P to P ′,
such as:

DEv-PROMELA 9

- ∀s′i = (l1, ..., ln, g1, ..., gm) ∈ S,
∃si ∈ Sτ , si = (ts, l1, ..., ln, g1, ..., gm); we denote
S ⊂ Sτ by abstraction and φ : Sτ → S, the
abstraction function; (1)

- ∀ts ∈ R+, si = (ts, l1, ..., ln, g1, ..., gm) ∈ Sτ =⇒
∃! s′i ∈ S such as s′i = φ(si) = (l1, ..., ln, g1, ..., gm);
(2)

- ∀t = (s′i, l, s
′
j) ∈ T, ∃(si, sj , e) ∈ Sτ × Sτ × E such

as δi(si) = (sj , e) or δe(si, e) = sj , and φ(si) = s′i
and φ(sj) = s′j ; (3)

- ∀(si, sj , e) ∈ Sτ × Sτ × E, δi(si) = (sj , e)
or δe(si, e) = sj =⇒ ∃(s′i, s′j) ∈ S × S \ ∃t =
(si, l, sj) ∈ T and φ(si) = s′i and φ(sj) = s′j ; (4)

- s′0 = φ(s0); (5)

- F ′ = φ(F). (6)

(1) and (2) mean that we can always make a
projection of any state of Sτ to a corresponding state of
S. Moreover, all states s of Sτ sharing the same memory
state are projected to an unique state s′ of S with
the same memory representation. φ is thus a surjective
function.
(3) and (4) mean that if it exists a transition function,
either internal or external, from any state si to any state
sj , and if s′i (resp. s′j) is a projection of si (resp. sj) by
φ, then it exists a transition from s′i to s′j .
(5) and (6) means that initial and final states are
preserved by abstraction.

Suppose M is constructed by only removing the event
descriptors of P. By this, we mean that we delete the
concepts of event, state lifetime and the characterization
of each transition, in other words the notion of internal
and external transition. M is thus an time-abstraction
function such as (1) and (2) are verified (all timed states
are projected to their untimed equivalent depending only
on their memory state). Because we don’t remove any
statement, (3) and (4) are trivially verified. Indeed, even
if a DEv-PROMELA (internal or external) transition
is defined between two states qi = (si, dti) and qj =
(sj , dtj) in Q, a such transition exists only if there
is a relationship between si and sj . However, a such
relationship is defined syntactically (transitions are
defined by the statements). Because we don’t remove any
statements, a such relationship is always existing, and
even for the branching structures. For the same reason,
(5) and (6) are also true.

Because a PROMELA program is a synchronized
product of each automaton that composes it, the graph
of DEv-PROMELA program P is included in the one
of P ′. Indeed, the graph of P ′ is composed by the all
possible permutation between statements, whereas the
graph of P is only composed by the permutation of
ordered events. That means, given two events e1 and
e2 associated to two statement l1 and l2, if date(e1) <
date(e2)), the graph of P will semantically not take into
account the path where l1 is executed before l2 (the path

may exists, but may be not valid). Thus, the morphism
M defined previously is also valid for the entire program.

3.5 Discussions

Before presenting applications of DEv-PROMELA, we
must shortly answer two questions: why discrete-
event simulation and why PROMELA ? For the
former question, discrete-event approach has many
advantages comparing real-time execution or discrete-
time approach. The discrete-event nature assumes that
a system is constant between two occurences of events.
Then, the evaluation of the system is needed only
when an event occurs. This substantially reduces the
statespace compared to discrete-time approaches which
generates a state at fixed rate. Moreover, while real-time
execution enforces to really wait an amount of time,
discrete-event approach allows jumping from a time to
another.

Concerning the second question, we would effectively
have been able to extend Timed Automata (TA) and
the UPAAL model checker, considering there are already
many efforts and a lot of works to encode DEVS
into Timed Automata [DG05]. However, among all the
problems we could encouter, the main problem with
TA would be about clock constraints. DEVS allows
modelling systems with non-constraint clocks, which will
be also done in DEv-PROMELA, while TA impose that
clocks constraints are linear relations. Then, extending
TA would be possible only with the Time Constrained
DEVS (TCDEVS) [DG07a].

4 Applications

4.1 A Soccer Video Game

Numerous works try to improve video games
development environments [EAMS14, CSC+15]. In this
context, DEv-PROMELA was applied to model, verify,
and validate a design of a soccer video game. Indeed,
a video game can be seen as a discrete-event system
at three levels. At a lower level (the implementation
level), a game is a finite automaton in which each
instruction is executed after an amount of time (the
time needed by the CPU or the GPU to execute an
instruction). Thus, an executable statement denotes
two states with a defined lifespan. The lifespan can
be fixed or can evolve through the time. Moreover, in
a higher level (the conceptual level), the design of a
game is reactive, because software must react to inputs
coming from the player. Each input is an event which is
well-dated. If the game is a multiplayer game, events can
come from many players. In this case, each player is a
component of the system. At a middle level, the game is
composed by several components like a graphics engine,
a physics engine... which interact with each other. The
communications are generally done through mechanisms
of events in order to synchronize components. Moreover,

10 A. Yacoub et al.

we know that a game is just a set of images which are
computed with a defined frequency. Thus, each image
depends on the time needed to compute it. By extension,
we can consider that a new picture is shown when their
computation time is done. This corresponds to stay in
a state for a defined time, and go to another state in
an autonomous manner when the lifespan of the current
state is over.

Figure 2 The Goalkeeper design error in a soccer video
game.

If we want to verify the implementation, it seems
that a verification model is enough. Indeed, we can easily
transform an implementation in a PROMELA model to
check liveness properties. Indeed, the verification model
will check all of the possible executions to check deadlock
states, unreachable states... One can argue also we can
use timed automata to model time (i.e. the time needed
to compute an image for exemple). However, if model-
checking can check dynamics which depend on time, it
is not able to check properties on states that depend
themselves on time. For instance, the avatars of a soccer
video game move with a defined speed. Because of the
discrete nature of software, the new position of the
avatar is computed by taking the speed and the time
elapsed in a previous state (i.e. the time taken by the
CPU/GPU to compute the new image.) By making an
linear or a polynomial interpolation (depending on the
physics rules), the new positions are computed. In other
word, each state of the game itself depends not only on
the timed dynamics but also on the time elapsed in a
previous state. Then, if we want to verify a property
related to collision detection, model-checking cannot
be applied because the problem become undecidable
[AD94]. In fact, verification languages will enforce strong
abstractions which ensure that the problem remain
verifiable (for instance, by enforcing that the domains
of values are finite). Then, such cases cannot even be
modelled. And even designers makes an abstraction of
such properties, this one would not be representative of
the real implementation.

With DEv-PROMELA, that kind of properties can
be express through the DEVS semantics, like show
in Algorithm 2. The clt event descriptors (l.4, l.7)
defines the elapsed time before the execution of the

next statement. This corresponds to an autonomous
behaviour. The value can be a constant or a variable, or
any function evaluated to real. However, we introduce
also a reactive transition like in DEVS through the evt

descriptor (l.12). When the goalkeeper receives an event
”MOVE” from any other components of the game, the
instruction l.13 is executed. The new state depends on
the elapsed time from the last evaluation, because it
is defined by the goalkeeper’s new position which is
computed according to the time.

Algorithm 2: A DEv-PROMELA model of
Goalkeeper.

1: active proctype goalkeeper () {
2: gk state = GK IDLE;
3: do
4: :: [clt : 0.5→ emit : silent]
5: (gk state == GK DIV E)→
6: gk state = GK IDLE;
7: :: [clt : 0.5→ emit : silent]
8: (shooted && gk state ! = GK CATCH)→
9: gk state = GK DIV E;

10: :: [clt : 0.5→ emit : silent]
11: (gk state == GK IDLE)→
12: :: [evt : MOV E] else→
13: sk position = sk position −
14: speed ∗ getElapsedT ime;
15: ...

The verification is then done in two steps. Our
tool DEv-PROMELA Studio automatically transforms
the DEv-PROMELA specification into a PROMELA
equivalent model by removing the event descriptors.
The obtained model is structurally equivalent to the
initial model and the classic model-checking can be used
to check structural deadlocks and unreachable states
(because the structure of software does not depend on
time). For instance, the PROMELA model ensures that
the score is always a positive value. For behavioural
properties (like collision, speed, constraints on position,
deadlocks due to absence of events or infinite-life
states...), the model is simulated. A simulation-based
verification is then performed by checking several
scenarios. Scenarios can be randomly generated or
defined by the designer.

4.2 A Crossroad

Another application of DEv-PROMELA is the classical
crossroad problem. We consider a crossroad with four
traffic lights. Each traffic lights stays in a state (red,
yellow, green) for a defined time, and only two of them
can be green at the same time. We want to verify that a
controller software respects this constraint.

The problem is verifiable with Timed Automata
[AD94] and timed extensions of PROMELA if the
clock of each traffic light evolves linearly. But in
the case in which the time elapsed in each state is

DEv-PROMELA 11

Figure 3 The Crossroad Problem.

a non-linear combinaison of all clocks, the problem
becomes undecidable. DEv-PROMELA overcomes this
problem thanks to simulation. Like for the video game
exemple, the model-checking will help designer to see
problems related to the structure of the underlying
automaton, while simulation will allows verification of
timed properties (because non-linear clock evolutions are
not a problem in simulation). In this exemple, we encode
the DEv-PROMELA model into a DEVS model which
we simulate into the MS4 Me Environment [SZCK13].

4.3 A Manufacture Chain

Manufacture problems were classical and already
intensively studied in the litterature [DY00, LMN12,
TER14]. This problem consists on a set of thousand
processes which are executed on several batches of
products. At each stage of the production, a controller
performs some operations which take an amount of time.

Figure 4 The Manufacture Chain. Each square represent
a step or a process/operation.

When an operation is finished, a signal is sent
to the controller which leads the batch to the next
operation. Operations are just encoded with Bash-like
instructions, like shown in Figure 5. In order to show
the potentiel of our proposed methodology, we model
a chain with only two operations and one sensor,
successively using PROMELA, Real-Time PROMELA
[TC96] and DEv-PROMELA. Then, we check if there
is any unreachable state and that, in any cases, the
attribute batch attr1615 is equal to 0 at end of the
manufacturing process when attribute 1001 is equal to
0. While the PROMELA and RT-PROMELA models
are checked using model-checking, the DEv-PROMELA

model is verified using model-checking and discrete-event
simulation.

Figure 5 Exemple of the operation 1180.

The translation from the Bash instruction to
PROMELA is very easy. Each operation is encoded using
a PROMELA process.

Batches’ attributes are modelled using integers
variables batch *. The sensor is modelled using a
process that randomly changes the values of attributes.
Communications between sensors and processes are
modelled using channels. With PROMELA, quantitative
delays are totally abstracted, because they cannot be
modelled, while RT-PROMELA allows modelling of time
using clock, as shown in Algorithm 5.

The DEv-PROMELA model 4 is slightly different.
Because DEv-PROMELA is based on DEVS, the event
mechanism is directly expressed by the transitions, and
each event are well-dated. Moreover, even the sensor
can be also modelled using DEv-PROMELA, we decided
to use a classic DEVS model to represent it. Then,
the model-checking is only applied of the model of
operations. Then, by coupling the DEv-PROMELA
model and the DEVS model of the sensor, we check
by simulation the potential deadlocks, while the safety
property concerning the attribute 1615 is always checked
using model-checking. Results are presented in Table 2.

Models Generation. Two subsequent models are
generated from the DEv-PROMELA models. The formal
verification model is generated using Classic PROMELA
by removing the event descriptors, and using the
mapping previously defined. The obtained untimed
model represents all the possible event permutations,
but does not include the time. This level of abstraction
is enough to verify structural properties or untimed
properties like the one that we want to verify: ”Is the
attribute 1615 equal to 0 at the end of the manufacturing
process ?”.

The second model is a DEVS abstract model
independant of the target simulator. This model has
the same semantics than those of the DEv-PROMELA
model. This DEVS abstract model is then implemented
in a DEVS simulation model (in this case, in the MS4 Me
Environment [SZCK13]) and simulated to check timed
properties.

12 A. Yacoub et al.

Table 1 Results of crossroad checking.

States Transitions Remarks

DT-PROMELA 1251 2759

Timed PROMELA 927 1603 Only linear relations between clocks

DEv-PROMELA 422 834 Simulation allows using of arbitrary clocks

Algorithm 3: PROMELA model of the operation 1180.

1: active proctype op1180 () {
2: event!PRPMARKLAS;
3: event?code; // Log Event PRPMARKLAS
4: if
5: :: batch attr1001 == 0→ goto STEP8511;
6: :: else → skip;
7: fi;
8: event!PRMCHECWID;
9: event?code; // Log Event PRMCHECWID

10: STEP8511: if
11: :: batch attr1615 ! = 0→ goto STEP9000;
12: :: else → skip;
13: fi;
14: event!PRMD0LAS01D;
15: event?code; // Log Event PRMD0LAS01D
16: event!MSLD0LAS01D;
17: event?code; // Log Event MSLD0LAS01D
18: STEP9000: batch attr1615 = 0;
19: ...
20: }

Algorithm 4: DEv-PROMELA model of the operation 1180.

1: active proctype op1180 () {
2: [clt : 0.28→ emit : PRPMARKLAS]
3: skip; // Log Event PRPMARKLAS
4: if
5: :: [evt : laser] batch attr1001 == 0→ goto STEP8511;
6: :: [evt : laser] else → skip;
7: fi;
8: [clt : 0.27→ emit : PRMCHECWID];
9: skip; // Log Event PRMCHECWID

10: STEP8511: if
11: ...
12: }

Results. As expected, clocks in RT-PROMELA
generate a huge statespace compared with PROMELA
and DEv-PROMELA. Indeed, both model generated by
PROMELA and DEv-PROMELA for formal verification
are untimed model. In the three cases, model-checking
was able to detect that the event PRMCHECWID is never
generated by the model. But, the main difference in
this case is about the deadlock found by the checkers.
In the case of PROMELA and RT-PROMELA, no
deadlock were detected in the model, while DEv-
PROMELA allows us to detect some deadlocks. In
fact, the problem comes from the model of the sensor.
The level of abstraction of time used in PROMELA

and RT-PROMELA does not allow modelling cases in
which the sensor does not send the laser event. But,
the discrete-event simulation shows that it exists some
cases in which this event is never generated. In these
cases, the model stays locked, and the operation cannot
progress. It is important to note that if simulation could
detect the deadlock, it was mainly because scenarios
were well-chosen. Indeed, simulation-based verification
depends on the played scenarios.

The other important aspect of DEv-PROMELA is
that we can combine different discrete-event simulation
formalisms for the simulation-based verification. Indeed,
as we said previously, even we could model the sensor

DEv-PROMELA 13

Table 2 Results of chain checking.

States Transitions Time Memory Results

PROMELA 315 558 0.2 128653 4 unreachable states, no deadlock

RT-PROMELA 945 1697 0.5 256686 4 unreachable states, no deadlock

DEv-PROMELA 128 353 0.09 100302 2 unreachable states, no deadlock found by model
checking, deadlocks found in simulation

Algorithm 5: RT-PROMELA model of the operation 1180.

1: int batch attr1615;
2: int batch attr1001;
3: chan event = [1] of byte;
4: byte code;
5:

6: active proctype op1180 () {
7: when {y ≤ 28 } reset { y } event!PRPMARKLAS;
8: event?code; // Log Event PRPMARKLAS
9: if

10: :: batch attr1001 == 0→ goto STEP8511;
11: :: else → skip;
12: fi;
13: event!PRMCHECWID;
14: ...
15: }

using DEv-PROMELA, it is possible to use Petri Nets or
any others discrete-event simulation formalisms to model
the sensor and combine it with the DEv-PROMELA
model (thanks to the DEVS Bus concept). However, in
this case, model-checking is like a supportive method to
the simulation-based verification.

5 Discussion about High-Level Verification,
Validation and Test Techniques

In brief summary, the literature about Verification,
Validation and Test (V&VT) expresses the necessity
of improving modelling, implementation, verification
and validation techniques, since new systems are
increasingly complex. However, it is also admitted
that V&VT best practices must focus on high-level
specifications and abstractions. For instance, new
model-based programming paradigms emerge for the
implementation of event-driven systems [MJGM13]. The
main goal of such techniques is to reduce the number
of errors due to the gap between abstraction and
implementation. These methodologies thus focus on
separating the problems related to the behaviour of
the design on the one hand, from the problems related
to the implementation on the other hand (low-level
messages, queue, data structures...). In other words,
these works are not focusing on how improving existing
V&V techniques, but how encouraging developers to
focus on specifying the core part of the program under
implementation, i.e the event model. DEv-PROMELA is
in this spirit by introducing these event-driven aspects
in a verification language. However, we think that, if

operational details (for example, how real values are
implemented into the program) are not relevant for a
design and its verification, data abstraction is a source
of losing accuracy.

Other works [VD12] state that, if high-level
declarative specification languages like Alloy [Jac06]
are really suitable for high-level modelling of transition
systems (i.e the structure), their lack of operational
semantics enforce designers to translate models to other
tools in order to carry out full model-checking. Vakili
and al. [VD12] also state that

”However, if we wish to provide analysis support for
these models to increase their quality and utility, we
must be able to express the models precisely.”

This statement shows that the models need to embed
details about how they will behave, independantly
of their implementation, but also with respect to
their implementation. Especially, the need of encoding
temporal logic into declarative specifications shows that
untimed models are insufficient to represent systems
with accuracy. DEv-PROMELA goes in this direction
by adding timed aspects into untimed models. However,
DEv-PROMELA goes further by not only focusing on
the ordering of event, but also on the relation between
the elapsed time, states and properties, by using DEVS
and not only temporal logic.

Finally, DEv-PROMELA is a part of this trend that
combines model-checking and simulation for enhancing
formal verification and formal validation [GDP14].
However, while these works focus on the conceptual
modelling at the Subject Matter Expert (SME) level,
DEv-PROMELA is designed to be used at different

14 A. Yacoub et al.

specification levels. We mean that our goal is not
to make easier the conceptual modelling for a SME.
We improve the model-checking results by combining
formal verification and simulation. We are not trying
to define a new Domain-Specific Language (DSL) that
can be then translated into verifiable and simulable
specifications, or explaining how a DSL can be translated
into a verification model (like ConceVE). However,
DEv-PROMELA is designed in order to add more
details about time and events in an untimed verifiable
model. This new model can be then formally verified
or simulated for verying and validating structural
properties on the one hand, and behavioural properties
in the other hand. This is done by automatically
translating the model into a simulation model in order
to analyze its behaviour or into a verifiable model to
check non-timed properties. In this way, new verification
capabilities are added to a verification language, while
the model is kept simple and focused on its core aspects.

6 Conclusion

We described in this paper some work to develop
a new approach which really combines discrete-event
simulation and formal verification for V&V purposes.
The main goal is to add new verification capabilities
to existing formal verification languages. The approach
consists to extend a verifiable language (called the
source formalism) by adding the semantics of the DEVS
abstract simulator. Consequently, this ensures that for
any model expressed in the extended formalism, it
exists an abstraction which can be verified using formal
methods. Moreover, it can also be simulated in order to
verify timed and behavioural properties which can not
be verify with formal methods. A result of this approach
is DEv-PROMELA, which is an extension of PROMELA
for the modeling and simulation of DES. This is
done by introducing the DEVS operational semantics
into PROMELA, without breaking the verification
capabilities of PROMELA. A DEv-PROMELA model
is then a verification model and a simulation model
which can be verified by combining formal verification for
structural properties and simulation-based verification
for behavioral properties. It is interesting to note
that a DEv-PROMELA model is a syntactic model.
This means that a DEv-PROMELA model can be
easily automatically translated and implemented in any
DEVS simulator which supports Classic DEVS. As
an illustration of this capabilites, we use the MS4
Me environment to perform some simulation-based
verifications. DEv-PROMELA was successfully applied
to verify and validate designs of video games.

We also applied it on a model a manufacture
chain, and compared the result with classic model-
checking. The DEv-PROMELA model was able to
reduce the statespace for the verification of time-
invariant properties, while simulation-based verification

was able to detect deadlocks that verification models was
not able to detect.

One of the major drawbacks of this approach
is inherent to the simulation: simulation-based
verifications strongly depends on the verified scenarios.
Identifying scenarios is a challenge for designers [Ban84]
and depends on the applications domains. Several
simulations and coverage tests must be performed like in
[LTS06] to ensure that the main scenarios were tested.
Finally, by integrating discrete-event simulation and
formal verification in a same specification language,
DEv-PROMELA reduces the risk of errors due to
transformations and morphisms.

As future works, we can also explore a way to use
simulation in order to speed-up model-checking. Indeed,
simulation could allow designers to identify execution
paths which have a real meaning in the real world.
Then it could be useful in order to limit the statespace
explosion problem.

Acknowledgement

This work is part of the R&D project ”MAGE”, from
French ”Investing for the Future” national program.

References

[AD94] Rajeev Alur and David L. Dill. A theory of

timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[AHMT14] Abbas Abdulhameed, Ahmed Hammad, Hassan

Mountassir, and Bruno Tatibouët. An approach

combining simulation and verification for sysml

using systemc and uppaal. In CAL 2014, 8ème

conférence francophone sur les architectures

logicielles, 2014.

[AMT16] Hamzat Olanrewaju Aliyu, Oumar Mäıga,

and Mamadou Kaba Traoré. The high

level language for system specification: A

model-driven approach to systems engineering.

International Journal of Modeling, Simulation,

and Scientific Computing, 07(01):1641003, 2016.

[Ban84] Jerry Banks. Discrete-event system simulation.

Prentice-Hall, 1984.

[BH95] Jonathan P. Bowen and Michael G. Hinchey.

Applications of Formal Methods. Prentice Hall

PTR, 1995.

[BJ14] Zeigler B.P. and Nutaro J. Combining devs

and model-checking: Using system morphisms

for integrating simulation and analysis in model

engineering. In Proceedings of the 26th European

Modeling and Simulation Symposium, pages 350–

356, 2014.

[BK08] Christel Baier and Joost-Pieter Katoen.

Principles of Model Checking. The MIT Press,

2008.

DEv-PROMELA 15

[CC10] Patrick Cousot and Radhia Cousot. A gentle
introduction to formal verification of computer
systems by abstract interpretation. In Logics and
Languages for Reliability and Security, pages 1–
29. IOS Press, 2010.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto
Giunchiglia, and Marco Roveri. Nusmv: A
new symbolic model verifier. In Proceedings of
the 11th International Conference on Computer
Aided Verification, CAV ’99, pages 495–499,
London, UK, UK, 1999. Springer-Verlag.

[CE82] Edmund M. Clarke and E. Allen Emerson.
Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic
of Programs, Workshop, pages 52–71. Springer-
Verlag, 1982.

[CGL94] Edmund M. Clarke, Orna Grumberg, and
David E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16(5):1512–
1542, September 1994.

[CGP99] Edmund M. Clarke, Orna Grumberg, and
Doron A. Peled. Model Checking. MIT Press,
1999.

[CL73] Chin-Liang Chang and Richard Char-Tung
Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Inc., Orlando, FL,
USA, 1st edition, 1973.

[Cla08] Edmund M. Clarke. The birth of model
checking. In 25 Years of Model Checking:
History, Achievements, Perspectives, pages 1–26.
Springer Berlin Heidelberg, 2008.

[CSC+15] C. Choi, M.-G. Seok, S.H. Choi, T.G. Kim,
and S. Kim. Military serious game federation
development and execution process based on
interoperation between game application and
constructive simulators. International Journal
of Simulation and Process Modelling, 10(2):103–
116, 2015.

[DG05] H. Dacharry and N. Giambiasi. Formal
verification with timed automata and devs
models: a case study. In Proceedings of Argentine
Symposium on Software Engineering, pages 251–
265, 2005.

[DG07a] Hernán P. Dacharry and Norbert Giambiasi.
Discrete event modeling through a multi-
formalism approach, from a user-oriented
perspective. In Proceedings of the 2007
Spring Simulation Multiconference - Volume 2,
SpringSim ’07, pages 207–213, San Diego, CA,
USA, 2007. Society for Computer Simulation
International.

[DG07b] Hernán P. Dacharry and Norbert Giambiasi.
A formal verification approach for devs. In
Proceedings of the 2007 Summer Computer
Simulation Conference, SCSC ’07, pages 312–
319, San Diego, CA, USA, 2007. Society for
Computer Simulation International.

[DT96] Jonathan Draper and Helen Treharne. The
refinement of embedded software with the b-
method. In In Northern Formal Methods
Workshop. Springer, 1996.

[Duf91] David A. Duffy. Principles of Automated
Theorem Proving. John Wiley & Sons, Inc., New
York, NY, USA, 1991.

[DY00] Richard B Detty and Jon C Yingling.
Quantifying benefits of conversion to lean
manufacturing with discrete event simulation: a
case study. International Journal of Production
Research, 38(2):429–445, 2000.

[EAMS14] R. Ekyalimpa, S.M. AbouRizk, Y. Mohamed,
and F. Saba. A prototype for project
management game development using high level
architecture. International Journal of Simulation
and Process Modelling, 9(3):131–145, 2014.

[GDP14] Ross Gore, Saikou Diallo, and Jose Padilla.
Conceve: Conceptual modeling and formal
validation for everyone. ACM Trans. Model.
Comput. Simul., 24(2):12:1–12:17, 2014.

[GEG01] N. Giambiasi, B. Escude, and S. Ghosh.
Gdevs: a generalized discrete event specification
for accurate modeling of dynamic systems.
In Autonomous Decentralized Systems, 2001.
Proceedings. 5th International Symposium on,
pages 464–469, 2001.

[Gia09] Norbert Giambiasi. From sequential machines
to devs formalism. In Proceedings of the
2009 Summer Computer Simulation Conference,
SCSC ’09, pages 216–222, Vista, CA, 2009.
Society for Modeling; Simulation International.

[Gru06] Orna Grumberg. Abstraction and refinement
in model checking. In Formal Methods
for Components and Objects, pages 219–242.
Springer, 2006.

[Hei98] Constance Heitmeyer. On the need for
practical formal methods. In Proceedings of 5th
International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages
18–26. Springer Berlin Heidelberg, 1998.

[HL98] Y-W Hsieh and Steven P Levitan. Model
abstraction for formal verification. In Proceedings
of the conference on Design, automation and
test in Europe, pages 140–147. IEEE Computer
Society, 1998.

[Hol91] Gerard J. Holzmann. Design and Validation of
Computer Protocols. Prentice-Hall, Inc., 1991.

[Hol97] Gerard J Holzmann. The model checker spin.
IEEE Transactions on software engineering,
23(5):279–295, 1997.

[Hol03] Gerard Holzmann. The SPIN Model Checker :
Primer and Reference Manual. Addison-Wesley
Professional, 2003.

[HR05] M. Huth and M. Ryan. Logic in computer
science: modelling and reasoning about systems.
Cambridge University Press, 2005.

[ISS+06] Martin Instenberg, Axel Schneider, Sabine
Schnetter, Ulrich Heinkel, Kim Guldstrand
Larsen, and Gerd Behrmann. Formal methods for
abstract specifications–a comparison of concepts.
Technical report, IEEE Press, 2006.

[Jac06] Daniel Jackson. Software Abstractions: Logic,
Language, and Analysis. The MIT Press, 2006.

16 A. Yacoub et al.

[KCS03] D Richard Kuhn, Dan Craigen, and Mark
Saaltink. Practical application of formal methods
in modeling and simulation. In Proceedings of
SCSC03, Summer Simulation Multiconference.
Citeseer, 2003.

[KPBT06] Simon Kunzli, Francesco Poletti, Luca Benini,
and Lothar Thiele. Combining simulation and
formal methods for system-level performance
analysis. In Proceedings of the Conference
on Design, Automation and Test in Europe:
Proceedings, pages 236–241. European Design
and Automation Association, 2006.

[Kri63] Saul A Kripke. Semantical considerations on
modal logic. Acta Philosophica Fennica, 1963.

[LB03] Michael Leuschel and Michael Butler. Prob: A
model checker for b. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003:
Formal Methods, volume 2805 of Lecture Notes
in Computer Science, pages 855–874. Springer
Berlin Heidelberg, 2003.

[LMN12] Francesco Longo, Marina Massei, and Letizia
Nicoletti. An application of modeling and
simulation to support industrial plants design.
International Journal of Modeling, Simulation,
and Scientific Computing, 03(01):1240001, 2012.

[Lov78] Donald W Loveland. Automated Theorem
Proving: A Logical Basis (Fundamental Studies
in Computer Science). sole distributor for
the U.S.A. and Canada, Elsevier North-Holland,
1978.

[LTS06] L. Li, M. Thornton, and A.” Szygenda.
Integrated design validation: Combining
simulation and formal verification for digital
integrated circuits. Journal of Systemics,
Cybernetics and Informatics, 4:22–30, 2006.

[Min65] Marvin Minsky. Matter, mind and models. In
IFIP Congress, pages 45–50. Spartan Books,
1965.

[MJGM13] Aleksandar Milicevic, Daniel Jackson, Milos
Gligoric, and Darko Marinov. Model-based,
event-driven programming paradigm for
interactive web applications. In Proceedings
of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages
17–36. ACM, 2013.

[Owe07] David R. Owen. Combining Complementary
Formal Verification Strategies to Improve
Performance and Accuracy. PhD thesis, 2007.

[QS82] Jean-Pierre Queille and Joseph Sifakis.
Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th
Colloquium on International Symposium on
Programming, pages 337–351. Springer-Verlag,
1982.

[SW09] Hesham Saadawi and Gabriel Wainer.
Verification of real-time devs models. In
Proceedings of the 2009 Spring Simulation
Multiconference, page 143. Society for Computer
Simulation International, 2009.

[SZCK13] Chungman Seo, Bernard P. Zeigler, Robert
Coop, and Doohwan Kim. Devs modeling and
simulation methodology with ms4 me software
tool. In Proceedings of the Symposium on Theory

of Modeling & Simulation - DEVS Integrative
M&S Symposium, pages 33:1–33:8. Society for
Computer Simulation International, 2013.

[TC96] Stavros Tripakis and Costas Courcoubetis.
Extending promela and spin for real time.
In Proceedings of the Second International
Workshop on Tools and Algorithms for
Construction and Analysis of Systems, TACAs
’96, pages 329–348, London, UK, UK, 1996.
Springer-Verlag.

[TER14] R. Tajini, S.L. Elhaq, and A. Rachid.
Modelling methodology for the simulation of the
manufacturing systems. International Journal of
Simulation and Process Modelling, 9(4):285–305,
2014.

[TFH09] Mohamed Wassim Trojet, Claudia Frydman, and
Maâmar El-Amine Hamri. Practical application
of lightweight z in devs framework. In Proceedings
of the 2009 Spring Simulation Multiconference,
page 154. Society for Computer Simulation
International, 2009.

[To10] Anthony Widjaja To. Model checking infinite-
state systems: generic and specific approaches.
PhD thesis, 2010.

[Tro10] M.W. Trojet. Approche de vérification formelle
des modèles DEVS à base du langage Z. PhD
thesis, 2010.

[VD12] Amirhossein Vakili and Nancy A. Day. Temporal
logic model checking in alloy. In Proceedings of
the Third International Conference on Abstract
State Machines, Alloy, B, VDM, and Z, ABZ’12,
pages 150–163. Springer-Verlag, 2012.

[Wai15] G.A. Wainer. The cell-devs formalism as a
method for activity tracking in spatial modelling
and simulation. International Journal of
Simulation and Process Modelling, 10(1):19–38,
2015.

[YHF+15] Aznam Yacoub, Maamar Hamri, Claudia
Frydman, Chungman Seo, and Bernard Zeigler.
Towards an extension of promela for the
modeling, simulation and verification of discrete-
event systems. In Proceedings of the 27th
European Modelling and Simulation Symposium
(EMSS 2015), pages 340–348, September 2015.

[YHF16] Aznam Yacoub, Maamar Hamri, and Claudia
Frydman. Using dev-promela for modelling
and verification of software. In Proceedings of
the 2016 annual ACM Conference on SIGSIM
Principles of Advanced Discrete Simulation,
SIGSIM-PADS 2016, Banff, Alberta, Canada,
May 15-18, 2016, pages 245–253, 2016.

[Zei76] Bernard P. Zeigler. Theory of Modeling and
Simulation. John Wiley, 1976.

[ZKP00] Bernard P. Zeigler, Tag Gon Kim, and Herbert
Praehofer. Theory of Modeling and Simulation.
Academic Press, Inc., 2nd edition, 2000.

[ZREF13] Fokion Zervoudakis, David S. Rosenblum,
Sebastian Elbaum, and Anthony Finkelstein.
Cascading verification: An integrated method for
domain-specific model checking. In Proceedings
of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 400–410. ACM,
2013.

