
Int. J. Space-Based and Situated Computing, Vol. X, No. Y, 200X 1

Copyright © 200X Inderscience Enterprises Ltd.

Use of wireless sensor networks for distributed
event detection in disaster management applications

Majid Bahrepour*, Nirvana Meratnia, Mannes Poel,
Zahra Taghikhaki and Paul J.M. Havinga
University of Twente,
7500 AE, Enschede, The Netherlands
E-mail: m.bahrepour@utwente.nl
E-mail: n.meratnia@utwente.nl
E-mail: m.poel@utwente.nl
E-mail: z.taghikhaki@utwente.nl
E-mail: p.j.m.havinga@utwente.nl
*Corresponding author

Abstract: Recently, wireless sensor networks (WSNs) have become mature enough to go beyond
being simple fine-grained continuous monitoring platforms and have become one of the enabling
technologies for early-warning disaster systems. Event detection functionality of WSNs can be of
great help and importance for (near) real-time detection of, for example, meteorological natural
hazards and wild and residential fires. From the data-mining perspective, many real world events
exhibit specific patterns, which can be detected by applying machine learning (ML) techniques.
In this paper, we introduce ML techniques for distributed event detection in WSNs and evaluate
their performance and applicability for early detection of disasters, specifically residential
fires. To this end, we present a distributed event detection approach incorporating a novel
reputation-based voting and the decision tree and evaluate its performance in terms of detection
accuracy and time complexity.

Keywords: disaster early warning systems; event detection; wireless sensor networks; WSNs;
situated computing.

Reference to this paper should be made as follows: Bahrepour, M., Meratnia, N., Poel, M.,
Taghikhaki, Z. and Havinga, P.J.M. (xxxx) ‘Use of wireless sensor networks for distributed event
detection in disaster management applications’, Int. J. Space-Based and Situated Computing,
Vol. X, No. Y, pp.000–000.

Biographical notes: Majid Bahrepour is a PhD candidate at the Pervasive Group, University of
Twente. His current research is focused on data mining, pattern recognition and information
discovery in wireless sensor networks. In this research, he is translating various existing machine
learning techniques for resource constrained sensor nodes.

Nirvana Meratnia is an Assistant Professor in the Pervasive System Group at the University of
Twente. Her research interests are in the area of distributed data management in wireless sensor
networks, smart and collaborative objects, ambient intelligence and context-aware applications.

Mannes Poel is an Assistant Professor in the Human Media Interaction Group, University of
Twente in The Netherlands. His main research involves applied machine learning for
vision-based detection and interpretation of human behaviour and the analysis and classification
of EEG-based brain signals.

Zahra Taghikhaki is currently a PhD student at the Pervasive System Research Group of
the University of Twente. She received her MSc degree from Iran University of Science and
Technology with emphasis on Wireless Sensor Networks. Her research is currently focused on
in-network data processing, collaborative event detection and situation awareness in WSN.

Paul J.M. Havinga is a Full Professor and the Chair of the Pervasive Systems Research Group at
the Computer Science Department at the University of Twente in the Netherlands. He received
his PhD at the University of Twente on the thesis entitled ‘Mobile multimedia systems’ in
2000, and was awarded with the ‘DOW Dissertation Energy Award’ for this work. He has
a broad background in various aspects of communication systems: on wireless communication,
on chip-area network architectures for handheld devices, on ATM network switching,
mobile multimedia systems, QoS over wireless networks, reconfigurable computing, and on
interconnection architectures for multiprocessor systems.

2 M. Bahrepour et al.

This paper is a revised and expanded version of a paper entitled ‘Distributed event detection
in wireless sensor networks for disaster management’ presented at INCoS 2010, Thessaloniki,
Greece, 24–26 November 2010.

1 Introduction

Disaster management or emergency management is a key
discipline for providing necessary responses whenever and
wherever a catastrophe occurs to save lives and reduce
casualties. From an engineering perspective, machineries
can be designed and used to help with detection or
prediction of the disastrous events. One of the recent
technologies enabling (near) real-time detection of such
events is the wireless sensor networks (WSNs). WSNs
typically consist of a large number of small, low-cost
sensor nodes distributed over a large area. The sensor nodes
are integrated with sensing, processing and wireless
communication capabilities. Each node is usually equipped
with a wireless radio transceiver, a small microcontroller, a
power source, and multi-type sensors (e.g., temperature,
humidity, smoke). These components enable a sensor node
to sense the environment, communicate and exchange
sensory data with other nodes in the area, locally process its
own data and make smart decisions about what it observes.
This will lead to detection of events and unusual data
behaviours whenever and wherever they occur. This
feature is called event detection. Event detection
functionality of WSNs has attracted much attention in
variety of applications such as industrial safety and security,
meteorological hazards, and fire detection (Vu et al., 2007).

Resource constraints of the wireless sensor nodes,
dynamicity of the deployment area (Li et al., 2004), and
unreliability of wireless communication introduce unique
design challenges. As a result, event detection techniques
for WSNs need to be light-weight (to meet limited
computational capability of the sensor nodes), distributed
(to split big processes into several smaller segments to
facilitate parallel processing), and robust against sensor
node and wireless communication failures. It must be
accurate to reduce number of false alarms and to prevent
creating unnecessary chaos and stress. In addition, it needs
to detect disastrous events fast, as this is the first step
towards creating awareness and generating timely alarms.

Developing an event detection approach meeting all the
aforementioned requirements is not a trivial task and many
of the existing approaches often only partially meet these
requirements (Bahrepour et al., 2008).

In this paper, we propose a light-weight and accurate
event detection approach for in-network decentralised event
detection. The proposed approach uses the decision trees as
classifier for the purpose of distributed event detection and a
novel reputation-based voting method for aggregating the
detection results of individual sensor nodes and reaching a
consensus among different decisions. We will show that
despite their simplicity, decision trees are highly accurate
and their simplicity fulfils the WSNs requirements. The
performance of the proposed approach is gauged in terms of

detection accuracy and time complexity. We also analyse
how various internal parameters of the classification
technique influence event detection performance.

2 Related work

Classical research on event detection can be classified into
research on

1 pattern matching for known events

2 pattern recognition for unknown events.

Supervised learning techniques are often used for finding
events that are similar to predefined event signatures, while
unsupervised learning techniques are used for finding
hidden patterns.

Events have different meaning in different applications
and research domains. Event detection is the process of
identifying those sensor readings that do not conform to
normal behaviour and model of data and indicate occurrence
of an event of interest.

A simple approach to detect events is based on
defining thresholds values, with which sensor readings
are compared. Threshold-based event detection techniques
have been proposed in Segal et al. (2000), Vu et al. (2007)
and Werner-Allen et al. (2006). In case of having more than
one feature, Vu et al. (2007) propose evaluating different
sensor values separately by considering them as an ‘atom’
or distinct value using a threshold-based classification. For
example, if fire event is detected using smoke and
temperature sensors, an alarm will be generated when
temperature exceeds 30°C and smoke exceeds 100 mg/L.
Lim et al. (2007) introduce a generic disaster recovery
system using threshold-based event detection technique that
may be applicable for various disaster management
application.

Defining proper threshold values requires having a good
knowledge about the event. Due to the fact that thresholds
are defined beforehand and are fixed, threshold-based
classification techniques suffer from lack of flexibility
and adaptability. To avoid fixed and assumption-based
threshold values, Liang and Wang (2005) propose an
automatically-selected threshold value approach, in which
the threshold value is dynamically calculated using a sliding
window technique.

To improve event detection performance in terms
of detection accuracy, the new trend is to use pattern
recognition techniques. Pattern recognition techniques
can be centralised performed in the base station (Li et al.,
2002; Xue et al., 2006), local performed in the network
(Bahrepour et al., 2009a) or distributed (Bahrepour et al.,

 Use of wireless sensor networks for distributed event detection in disaster management applications 3

2009b; Jin and Nittel, 2006; Krishnamachari and Iyengar,
2004; Luo et al., 2006; Martincic and Schwiebert, 2006).

Map-based (Khelil et al., 2008), probabilistic-based
(Yin et al., 2009), K-nearest neighbourhood-based (K-NN),
maximum likelihood-based, and support vector
machines-based (SVM) (Li et al., 2002) event detection
techniques have been proposed for centralised event
detection.

Other techniques based on naïve Bayes (Bahrepour
et al., 2009a), feed forward neural networks (Bahrepour
et al., 2009a), and SVM (Bahrepour et al., 2010a) have
been proposed to detect an event locally on individual
sensor nodes. To detect events distributedly in the
network techniques based on distributed fuzzy engine
(Marin-Perianu and Havinga, 2007), map-based pattern
matching (Khelil et al., 2008), feed forward neural
networks, naïve Bayes classifiers (Bahrepour et al., 2009c),
distributed Bayesian algorithms (Krishnamachari and
Iyengar, 2004), voting graph neuron algorithm (Baqer and
Khan, 2008), and decision trees (Bahrepour et al., 2010b)
have been proposed.

This paper proposes a distributed event detection
approach in which decision trees detect events locally on the
sensor nodes and a reputation-based voter fuses the local
decisions.

3 Decision-tree-based event detection

To fulfil WSNs requirements mentioned previously, our
proposed approach is a distributed machine learning (ML)
technique that uses decision trees to detect events in a
distributed manner. Unlike many other complicated
approaches, we will show that simplicity of the decision
tress is what WSNs exactly need and our approach can fulfil
both low computational overhead and high detection
accuracy.

A decision tree is a learning algorithm that uses tree-like
graphs to model and evaluate discrete functions (Russell and
Norvig, 2003; Wikipedia). The inputs to the tree might
be either continuous or discrete but the outputs (the
decisions) are discrete. Construction of a decision tree for
classification requires a training phase. This training phase
employs a set of data and a learning algorithm to find a
minimum depth decision tree. The tree should contain the
minimum required nodes (or minimum depth) to reduce
time and memory complexities. Therefore, the training
algorithm is usually a local search greedy algorithm to find
an optimum decision tree. A typical graphical representation
of a decision tree is shown in Figure 1. In a tree, the
decision making process starts from the root of the decision
tree and propagates down to the leaves.

The main concept of our technique along-side its
process and communication model is presented in Figure 2.
All sensor nodes run the same decision tree, which is used
to detect events locally on the node. Then, the detected
events in terms of yes/no or event class type are sent to the
voter. The voter applies a reputation-based voting technique

to reach a consensus between different decisions made by
the nodes.

Figure 1 A typical graphical representation of a decision tree

Figure 2 Block diagram of the proposed approach (see online
version for colours)

Since sensor nodes send their detected event as a singleton
(yes/no or class type) to the voter, the communication
between nodes is unidirectional. These two factors make the
communication overhead of our proposed approach not
high. The rate at which sensor nodes send their data to the
voter is variable and is usually based on estimated rate of
event occurrences (which is also low).

To show superiority of our reputation-based voting, we
additionally investigate three other voting mechanisms
based on the classical majority voting.

3.1 Reputation-based voting

Once each node makes its individual decision about
occurrence of an event, a consensus needs to be reached.
One of the mechanisms to reach this consensus is through
use of voting. There are various voting techniques, among
which is the reputation-based. Reputation-based voting
approaches are based on finding reputation of individual
sensor nodes and choosing the decision made by the nodes
having the highest reputation. To use the reputation-based
technique in our event detection approach, sensor nodes
must first run their local decision tree classifiers. Then
assuming that sensor nodes have detected events correctly,
they should judge how well the other sensor nodes could

4 M. Bahrepour et al.

detect events. To do the judgment, each sensor node first
sends its detected event as a singleton, called detection
value (DV), to all other nodes in its neighbourhood. The
DVs received from the neighbours will be stored in a table
called neighbours detection value table (NDVT). In the next
step, each sensor node should judge about its neighbouring
sensor nodes by considering itself as the reference. The
judgment is accomplished by comparing the difference
between detected value of sensor node itself and detected
value of the other sensor nodes. If the difference is less than
a threshold value θ (representing values that belong to a
single class and is chosen based on the context), the judging
sensor node gives a positive vote (Vnew = Vold + 1) to the
other sensor node. Otherwise, the ‘being judged’ sensor
node receives a negative vote (Vnew = Vold – 1) because its
detected value is not in the same class as ‘judging’ node.
Finally, NDVT tables are sent to the voter (e.g., a cluster
head) to reach a consensus among different opinions. The
challenging part of reputation-based voting is how to assign
a global reputation value to each sensor node in order to
choose high reputed node and its detected event as the result
of event detection. In what follows, we introduce two
reputation-based voting techniques to assign a global
reputation value to each sensor node and to reach a
consensus about the detected event.

3.1.1 Reputation technique 1

The reputation technique 1 checks local reputation of every
individual sensor node for event detection from the other
sensor nodes’ perspective. The local reputation value (Ri) is
obtained based on average value of Vi (positive or negative
votes which were given to node i by the other sensor nodes)
for each sensor node. Then, the average local reputation is
multiplied by the weight of sensor nodes calculated using
equation (1) to assign global reputation values. The event
with the highest reputation weight (W) is the result of the
voting procedure. Equation (1) shows how the weights are
calculated.

i i iW R Acc= × (1)

where Wi is the reputation value corresponding to sensor
node i, Ri is the local reputation value of sensor node i from
other sensor nodes’ perspective, and Acci is weight of
sensor node i for event typeq which is calculated based on
equation (2).

i q

K q1

Weight of sensor node for event type

Weight of sensor type for event type

i

m

K

Acc

=

=

=∑
 (2)

3.1.2 Reputation technique 2

In reputation technique 2, we define two threshold values
called θ1, θ2. Comparing the local reputation value (Ri) with
θ1 and θ2 gives an insight about how well the sensor nodes
detect events. If (Ri ≥ θ1), then the sensor node makes
‘perfect’ decisions, if (θ1 ≥ Ri ≥ θ2) then the sensor node
makes ‘fairly good’ decisions, and if (θ2 ≥ Ri) then the

sensor node makes ‘poor’ decisions. Then we assign a
discrete value for different performances. To do so,
0.5 indicates poor performance, 1 indicates fairly good
performance, and 2 indicates perfect performance.
Reputation technique 2 is performed using equation (3)
based on the performance of each sensor node.

i i iW S Acc= × (3)

where Wi is the reputation value corresponding to sensor
node i, Si is obtained from equation (4), and Acci is the same
output of equation (2) (weight of sensor nodei for event
typeq).

()
()
()

1

1 2

2

2 if
1 if
0.5 if

i

i i

i

R
S R

R

θ
θ θ
θ

⎧ ≥
⎪= > ≥⎨
⎪ ≥⎩

 (4)

θ1 and θ2 show how well reputation is (e.g., perfect, fairly
good, poor), and is chosen based on application context.

To have a means for comparing the reputation-based
voting, in the following subsections three other voting
techniques based on the classical majority voting are
presented. In Section 5, a number of experiments are
conducted and the results are compared.

3.2 Majority voting 1: sensor type-based weighting

In this majority voting technique, we use contribution of
each sensor to the event detection process (presented in
Table 1) as weight. To do this, we run the same classifier as
the event detection classifier with only one sensor type to
calculate the contribution of that specific sensor type to the
whole event detection process. Then each sensor node
receives a weight based on number and types of sensors it
has. The weights are calculated using equation (5).

i

K1

Weight of sensor node

Weight of sensor type
m

K=
=∑

 (5)

where ‘m’ is the total number of sensor types in a
(heterogeneous) network and ‘weight of sensor typek’ is
contribution of sensor typeK to event detection that is
calculated by equation (6).

k

k

p1

Weight of sensor type
Detection accuracy using only sensor type

Detection accuracy using only sensor type
m

p=

=
∑

 (6)

Table 1 Contribution of each sensor to the fire detection using
decision trees

Fire event
detection

(in general)

Flaming
fire

detection

Smouldering
fire detection

Nuisance
detection

Temperature 19% 26% 20% 13%
ION 16% 2% 20% 20%
Photo 23% 2% 27% 23%
CO 42% 70% 33% 44%

 Use of wireless sensor networks for distributed event detection in disaster management applications 5

3.3 Majority voting 2 – event type-based weighting

In majority voting 2, instead of assigning one weight to each
sensor node, we assign p weights to each sensor node,
where p is the number of event types. The reason of
assigning more than one weight to each sensor node is to
have more precise weights in order to perform the voting
more accurately. For example, if a WSN detects four
possible events (e.g., earthquake, fire, storm, flood) there
are four weights assigned to each sensor node and according
to the event detected by the node, the corresponding weight
is used by the voter. Equation (7) calculates necessary
weights for each sensor node.

i q

K q1

Weight of sensor node for event type

Weight of sensor type for event type
m

K=
=∑

 (7)

where ‘m’ is the total number of sensor types in a
(heterogeneous) network and ‘weight of sensor type k for
event typeq’ is calculated by equation (8).

k

q

k

p1

Weight of sensor type for event
= Event detection for event type

Detection accuracy of sensor type for event

Detection accuracy of sensor type for event
m

p=

=
∑

 (8)

3.4 Majority voting 3 – event type-based weighting
(without redundancy)

After studying majority voting techniques 1 and 2, we faced
the problem of redundant weights. This means that the same
event types produced by similar sensor nodes receive more
weights. To cope with this problem, majority voting 3 gives
all sensor nodes having the same sensor types and
producing similar event type only one weight. By doing so,
we remove redundant weights of sensor nodes having the
same sensors and detecting the same events. The rest of the
voting procedure is done according to the majority voting 2.
One notes that majority voting 3 is actually a pre-processing
stage before doing the majority voting 2.

4 Data description and experiments

To test our approach, we consider residential fires as the
disastrous event and test our approach on a residential fire
dataset. The data analysis and simulation of the proposed
approach were conducted in MATLAB. In the following
subsections the data and experiment methods are described.

4.1 Data description

We obtain a set of residential fire data from NIST website
(http://smokealarm.nist.gov/) for training and testing our

approach. The training phase is conducted using 2/3 of data
and testing phase is conducted on 1/3.

The obtained dataset contains flaming and smouldering
fires. Additionally, some nuisance resources (e.g., data of
toasting bread and lighting a cigarette that are not real fire)
are added to make the detection more realistic for residential
areas.

As a result, 1,400 data instances were prepared in such a
way that 933 instances (2/3) were used for training and
467 instances (1/3) for testing. The dataset contains four
sensory data (features) that are temperature, ionisation,
photoelectric, and CO. We also perform a calibration
procedure to make all the data in the same units.

4.2 Experimental method

To test our approach on the residential fire dataset, we have
to first train the decision trees then apply one of the voting
techniques. Training the decision tree is done by using
2/3 of the dataset and testing the whole approach on the rest
of the dataset. In a heterogeneous network, sensor nodes
may have different sensor types. In such networks, we
should either find a decision tree per each sensor node or
make a decision tree that works with all sensor nodes
independent of their sensor types. In this paper, we propose
to make a single decision tree for all sensor types available
in the dataset. Additionally, during the training phase we
deliberately add some missed values per each sensor type.
This is to cope with the situations in which a single sensor
node does not have all the sensor types. In such a case, the
absent sensor types are represented by missed values.

Various experiments considering different number of
sensor nodes and sensor types are conducted. This method
of experiment shows robustness of algorithm in case of
sensor or node failure, as well as in case of imperfect or lost
communication between sensor, which leads to data loss.

The testing phase is conducted by feeding the same
instance of data to all sensor nodes then reaching a
consensus between results of event detection using one of
the voting techniques. The necessary weights for voting part
are obtained from contribution of each sensor to the fire
detection and are presented in Table 1. It can be seen that
CO is contributing the most to the fire detection process.
Sensor nodes having more sensor types or the most
contributing sensors receive more weight and attention in
this study.

In the next section the results of event detection using
decision trees and four aforementioned voting methods are
reported.

5 Experimental results

To test our event detection approach, we consider ten
different network schemas presented in Table 2.

6 M. Bahrepour et al.

Table 2 Network schemas

Availability of sensors

Node TMP ION Photo CO
Number of

sensor nodes Feature

1
2
3
4
5
6

1

7

7 Having at least one and at most two sensor types on each sensor node.

1
2

2

3

3 Having redundant sensor types on each sensor node.

1
2
3
4
5
6

3

7

7 Unavailability of CO sensor
(as CO is the strongest sensor for fire detection).

1
2
3
4
5
6
7

4

8

8 Having only one CO sensor
(as CO is the strongest sensor for fire detection).

1–7 5
8

8 Having redundant sensor types on each sensor node.

1–5
6–10

11–15

6

16–20

20 Scaling network to 20 nodes. 25% of the network consists of strong
sensor nodes (having all sensor types). And the rest is not very strong
(they have only one non-CO sensor type).

1–10 7
11–100

100 Scaling network to 100 nodes, having redundant sensor nodes.
CO presence in 10% of whole network population.

8 1–100 100 Scaling network to 100 nodes. All nodes have similar sensor types.

1–2
3–4
5–6
7–8
9–10

9

11–12

30 Scaling network to 30, having all possible combination of sensor types.

 Use of wireless sensor networks for distributed event detection in disaster management applications 7

Table 2 Network schemas (continued)

Availability of sensors

Node TMP ION Photo CO
Number of sensor

nodes Feature

13–14
15–16
17–18
19–20
21–22
23–24
25–26
27–28

9

29–30

30 Scaling network to 30, having all possible combination of
sensor types.

10 1–50 50 Scaling network to 50 by having the strongest possible sensor
nodes.

Table 3 reports the results of our fire event detection tests.

Table 3 Results of the distributed approach

Net.
architecture # Technique Event detection

accuracy
Standard
deviation

Rep. technique I 96.62% 1.44
Rep. technique II 96.57% 1.54
V. technique #1 92.68% 8.24
V. technique #2 94.16% 8.79

1

V. technique #3 96.35% 3
Rep. technique I 98.18% 0.7
Rep. technique II 93.32% 2.3
V. technique #1 95.5% 2.92
V. technique #2 97.43% 0.54

2

V. technique #3 92.46% 6.46
Rep. technique I 89.64% 6.04
Rep. technique II 79.66% 11.49
V. technique #1 72.48% 15.37
V. technique #2 68.25% 18.55

3

V. technique #3 71.65% 17.25
Rep. technique I 91.39% 6.008
Rep. technique II 84.84% 12.61
V. technique #1 89.25% 5.82
V. technique #2 84.37% 11.80

4

V. technique #3 82.22% 9.45
Rep. technique I 47.79% 11.24
Rep. technique II 47.79% 11.24
V. technique #1 41.92% 16.21
V. technique #2 44.85% 19.85

5

V. technique #3 93.43% 6.89
Rep. technique I 99.57% 0.27
Rep. technique II 99.57% 0.27
V. technique #1 99.14% 0.63
V. technique #2 99.25% 0.38

6

V. technique #3 98.95% 0.52

Table 3 Results of the distributed approach (continued)

Net.
architecture # Technique Event detection

accuracy
Standard
deviation

Rep. technique I 92.38% 0.8
Rep. technique II 92.38% 0.8
V. technique #1 85.53% 9.71
V. technique #2 87.77% 5.04

7

V. technique #3 87.1% 13.54
Rep. technique I 91.61% 1.08
Rep. technique II 91.61% 1.08
V. technique #1 88.57% 6.23
V. technique #2 90.57% 4.5

8

V. technique #3 90.63% 5.16
Rep. technique I 98.72% 0.30
Rep. technique II 98.5% 0.53
V. technique #1 98.9% 0.49
V. technique #2 98.93% 0.3

9

V. technique #3 98.85% 0.59
Rep. technique I 99.64% 0.2
Rep. technique II 99.64% 0.2
V. technique #1 99.12% 0.45
V. technique #2 99.07% 0.31

10

V. technique #3 99.05% 0.39

Based on Table 3, we can generally conclude that
reputation-based voting techniques work better than
majority voting techniques. However, in fifth experiment,
reputation-based voting is not working well because there is
only one sensor node having the most contributing sensor
(CO), and there are seven sensor nodes having only
temperature (not very contributing to fire detection
according to Table 1). Then, the seven sensor nodes because
of their quantity receive higher weights in reputation-based
voting and perform event detection less accurate. One can
also conclude that the reputation-based voting performs best
when redundant nodes in the network are not many.

8 M. Bahrepour et al.

Another conclusion to make is related to the number of
sensor nodes in the network and its effect on detection
accuracy. Comparing the first experiment with seventh and
eighth, it can be seen that increase of number of nodes does
not necessarily improve the detection accuracy. However,
presence of the most contributing sensors has the strongest
effect on detection accuracy.

We additionally compare the proposed technique with
another distributed event detection approach presented in
Bahrepour et al. (2009c), in which neural networks are used
as both the local event detector and voter. We use network
scheme number 10 and reputation-based voting as one of
the best achieved simulation results. Then the same dataset
is given to the distributed neural network (Bahrepour et al.,
2009c) which has the same sensor nodes and sensor types as
network scheme number 10. Table 4 shows the result of this
comparison.

Table 4 Comparing the proposed technique with distributed
neural network approach

Approach Event detection accuracy

Rep. technique I and II 99.64%
Distributed neural network
(Bahrepour et al., 2009c)

96%

Source: Bahrepour et al. (2009c)

As it can be seen in Table 4, the reputation-based technique
outperforms the distributed neural network approach in
terms of event detection accuracy.

6 Time complexity analysis

Our aim is to investigate applicability of computationally
intensive ML techniques for resource-limited WSNs. For
event detection not only detection accuracy but also time
complexity are important.

Time complexity of decision trees depends on two
phases

1 making the decision tree (training)

2 classification using the decision tree.

Since the training part is only performed once in an offline
manner, the time complexity for training phase can be
ignored. In the following subsections time complexities of
the approaches are investigated by only considering the time
they are running in the network independent of their training
part.

6.1 Time complexity of the decision tree

The order of the decision tree appraisal is a function of the
depth of decision tree and equation (9) presents the time
complexity:

(Local approach) (Decision tree appraisal)O O= (9)

(Local approach) ()O O m= (10)

where m is depth of the decision tree.
Once the tree is constructed by its learning algorithm,

it can be pruned to reduce the number of nodes. Reducing
the number of nodes helps with reducing time complexity
but decreases the classification accuracy in most of
circumstances, as well.

6.1.1 Time complexity of the proposed approach
using reputation theory

Time complexity of our proposed approach using reputation
theory is a function of three parts. Firstly, decision tree is
evaluated (that is classification part), then local processes
are performed on the nodes (local judgment), and finally
consensus is reached. The time complexity is calculated by
equation (11).

(Distributed reputation)
max[(Distributed reputation)

 (process on the node) (reputation voting)]

O
O

O O
=
+ +

 (11)

(Distributed reputation)
[() ((1))

 (((1)))]

O
Max O m O n n

O n n n c
= − −
+ − + +

 (12)

()2(Distributed reputation)O O n= (13)

where m is depth of the decision tree, n is the number of
sensor nodes in the network and c is the number of classes.

6.2 Time complexity of the proposed approach using
the majority voting 1

In the distributed approach, sensor nodes detect events in
parallel using decision trees. Therefore, the order of whole
classification part is O(m1 + m2 + … + mn) = O(m); where n
is the number of nodes involved in the event detection and
m is depth of the decision tree. Then these results are given
to the voter to reach a consensus. Since the voting is
independent from the classification, the time complexity is
added to the classification time as shown in equation (14).

(Distributed approach using voting 1)
([]) ([Voting 1])

[(), Voting 1]

O
O m O
Max m

= +
=

 (14)

(Voting 1)
(Assigning weights + Max finding)

O
O=

 (15)

(Voting 1) ([])O O s w c= × + (16)

(Distributed approach using voting 1)
([]) ([])
()

O
O m O s w c
O s w

= + × +
= ×

 (17)

where m is the depth of the decision tree, n is the number of
sensor nodes in the network, s is the number of sensors, w
is the number of assigned weights and c is the number of
classes.

 Use of wireless sensor networks for distributed event detection in disaster management applications 9

6.3 Time complexity of the proposed approach using
the majority voting 2

The time complexity of the proposed approach using the
majority voting 2 is similar to when majority voting 1 is
used with a minor change in the voting part (because it
should find a weight corresponding to the currently detected
event). The time complexity is therefore calculated by
equation (18).

(Distributed approach using voting 2)
([Voting 2])

[(), Voting 2]

O
O m O
Max m

= +
=

 (18)

(Voting 2)
(Assigning weights + Max finding)

O
O=

 (19)

(Voting 2) ([])O O s w c= × × (20)

(Distributed approach using voting 2)
([]) ([])
([])

O
O m O s w c
O s w c

= + × ×
= × ×

 (21)

where m is the depth of the decision tree, n is the number of
sensor nodes in the network, s is the number of sensors, w
is the number of assigned weights and c is number of
classes.

6.4 Time complexity of the proposed approach using
the majority voting 3

The time complexity of the distributed approach using the
majority voting 3 is similar to when majority voting 2 is
used with a minor change because of consolidating similar
outputs which are produced by those sensor nodes having
the same sensor types. The time complexity is therefore
calculated by equation (22).

(Distributed approach using voting 3)
([] ([Voting technique 2])

[(), Voting technique 2]

O
O m O
Max m

= +
=

 (22)

(Voting 3)
(Consolidation + Assigning weights

 + Max finding)

O
O= (23)

()2(Voting 3) []O O s s w c= + × × (24)

()2

(Distributed approach using voting 3)

() []
([])

O

O m O s s w c
O s w c

= + + × ×

= × ×

 (25)

where m is depth of the decision tree, n is number of nodes
in the network, s is the number of sensors, w is the number
of assigned weights, c is number of classes.

6.5 Time complexity comparison

Table 5 shows a comparison between time complexities of
our different approaches. As it can be seen, our approach
using majority voting 1 and reputation-based voting has
lower complexity than the other two techniques. The reason
that makes majority voting 2 and 3 computationally more
intensive is because of assigning more than one weight to
each sensor node. This requires more comparisons and
makes the event detection more complex.

Table 5 Time complexity comparisons

Approach Time complexity

The distributed approach
using majority voting 1

O(s × w)

The distributed approach
using majority voting 2

O(s × w × c)

The distributed approach
using majority voting 3

O(s × w × c)

The distributed approach
using reputation technique

O(n2)

Notes: n is the number of sensor nodes in the network,
s is the number of sensors, w is the number of
assigned weights and c is the number of classes.

7 Communicational overhead

As presented in Figure 2 the communication model of our
technique is unidirectional, in which sensor nodes send their
decision about occurrence of events to the voter (data fuser).
The frequency of sending data to the voter is application
dependent and is based on estimated frequency of
occurrence of the event (which is low). As each sensor node
sends only a singleton (showing decision about occurrence
of events) and not its entire sensor data to the voter, and
sending data is unidirectional towards the voter, the
communication overhead is minimal.

8 Parameter study

8.1 Pruning

Decision trees have no parameter because the whole tree is
made during the training phase and there is no need to
choose parameters. However, after the training phase, the
tree can be pruned and some less-contributing branches can
be removed. Figure 3 shows how pruning a tree can affect
accuracy of a decision tree using our fire dataset.

According to equation (8) and (9) the depth of decision
tree has direct effect on time complexity of the approach.
Therefore, pruning can be considered as a technique to
reduce time complexity. However, by pruning a decision
tree, accuracy rate is also decreased.

As a conclusion, decision tree can be pruned to make a
faster yet less-accurate classifier.

10 M. Bahrepour et al.

Figure 3 Pruning and its effect on final detection accuracy for
fire dataset (see online version for colours)

8.2 Parameter study for reputation-based voting
technique

There are some parameters involved in reputation-based
voting technique that affect event detection accuracy. In this
section we investigate three major parameters of the
reputation-based voting approach. These parameters are

1 reputation update time intervals

2 number of neighbours

3 presence of sensor types.

Moreover, the way reputation is calculated, whether it is
done centrally or in a distributed manner affects the time
complexity of the proposed approach.

8.2.1 Distributed vs. centralised reputation
calculation

Finding the trustworthiness or reputation degree of the
sensor nodes can be accomplished either in a distributed
way (by engaging neighbours of the ‘being judged node’) or
in a centralised manner (in a base station). In some
circumstances the base stations have not enough power to
obtain reputation degree of each sensor node, therefore, a
distributed fashion can come handy, which also provides
load balancing for reputation values calculation between
nodes. However, if base stations have enough power in
terms of computing power, memory capacity, battery and
radio bandwidth, the reputation calculation process becomes
computationally lighter.

As a result of this change, the n(n – 1) + n term,
which belongs to the local communication among the
neighbouring nodes in order to find out the reputation value,
is omitted from equation (12). Every sensor node only needs
to report its detected values to the base station. Therefore,
the number of required communications of each sensor node

is diminished to 1 from (n – 1) + 1 and as a result of this
change the energy dissipation of each node extremely
decreases.

8.3 Reputation update time interval

In our proposed method, each sensor node sends every
detected value to all its neighbours and receives their
corresponding values in each time period. Although, it
results in more reliability but it causes quick energy drain of
the sensor nodes. In contrast, each sensor node can store its
detected values in a table which should be sent to other
neighbours after a certain time period. It also needs then to
receive the neighbours’ tables after a specific time period.
As time interval becomes longer, both communication
overhead and reliability are reduced.

Figure 4 shows the performance of the proposed method
for ten different runs in terms of detection accuracy while
varying the time interval for updating reputation values. As
it is expected, the detection accuracy increases by
decreasing the time interval at the expense of consuming
more energy.

Figure 4 Effect of reputation update time interval on detection
accuracy (see online version for colours)

Figure 5 Detection accuracy for different number of the
neighbours (see online version for colours)

 Use of wireless sensor networks for distributed event detection in disaster management applications 11

8.3.1 Number of neighbours

Number of neighbours around a sensor node has direct
impacts on the detection accuracy as it affects the reputation
and trustworthiness of a given node. Figure 5 presents the
impact of increasing number of neighbours for two different
sensor types (temperature sensor, photon sensor). It can be
seen that detection accuracy is improved by increasing the
number of neighbours for a given sensor type.

8.3.2 Presence of sensors

In addition to number of nodes, presence of the most
contributing sensors affects detection accuracy. As Table 3
shows, when the most contributing sensor (CO, in fire
detection scenario) is not available, the detection accuracy
drops off. This is due the fact that, having many sensor
nodes missing important sensor(s) results in a situation in
which sensor nodes cannot correctly detect an event. As it
can be seen from Figure 5, increasing number of neighbours
of a node with a contributing sensor (photon sensor
in this case) leads to better detection accuracy compared
to increasing number of neighbours of node with less
contributed sensor (temperature sensor for example).

9 Conclusions and discussion of the results

For fast and accurate detection of disastrous events using
WSNs, in this paper we propose a distributed event
detection technique. Our proposed approach is based on
detecting events using decision tree classifiers running on
individual sensor nodes and applying a voting technique to
reach a consensus among detections made by various
sensor nodes. We proposed three majority-based voting
techniques and two reputation-based voting techniques. The
experimental results show that reputation-based voting
approaches perform well in absence of high degree of
redundant nodes in the network.

The motivation behind choosing decision trees and
aforementioned voting techniques is their simplicity, low
computational costs and high accuracy which fulfil the
requirements posed by resource limitations of WSNs.

Our experimental results on residential fire datasets
show that our approach not only achieves a high detection
rate but also has a low computational overhead and time
complexity.

The future works includes implementation of the
proposed approach on Crossbow Telos sensor nodes.

References
Bahrepour, M., Meratnia, N. and Havinga, P.J.M. (2008)

‘Automatic fire detection: a survey from wireless sensor
network perspective’, in Technical Report TR-CTIT-08-73,
Centre for Telematics and Information Technology,
University of Twente, Enschede, ISSN 1381-3625.

Bahrepour, M., Meratnia, N. and Havinga, P.J.M. (2009a) ‘Use of
AI techniques for residential fire detection in wireless sensor
networks’, in AIAI 2009, Greece.

Bahrepour, M. et al. (2009b) ‘Use of event detection approaches
for outlier detection in wireless sensor networks’, in ISSNIP
2009, Melbourne, Australia.

Bahrepour, M., Meratnia, N. and Havinga, P.J.M. (2009c) ‘Sensor
fusion-based event detection in wireless sensor networks’,
in SensorFusion ‘09, IEEE, Editor, Toronto, Canada.

Bahrepour, M., Meratnia, N. and Havinga, P.J.M. (2010a) ‘Fast
and accurate residential fire detection using wireless sensor
networks’, Environmental Engineering and Management,
Vol. 9, No. 2, pp.215–221.

Bahrepour, M. et al. (2010b) ‘Distributed event detection in
wireless sensor networks for disaster management’, in
International Conference on Intelligent Networking and
Collaborative Systems, INCoS 2010, IEEE Computer Society,
Thessaloniki, Greece.

Baqer, M. and Khan, A.I. (2008) ‘Event detection in wireless
sensor networks using a decentralised pattern matching
algorithm’, White Paper.

Jin, G. and Nittel, S. (2006) ‘NED: an efficient noise-tolerant event
and event boundary detection algorithm in wireless sensor
networks’, in 7th International Conference on Mobile Data
Management, IEEE Computer Society.

Khelil, A. et al. (2008) ‘MWM: a map-based world model for
wireless sensor networks’, in Autonomics ‘08, Turin, Italy.

Krishnamachari, B. and Iyengar, S. (2004) ‘Distributed Bayesian
algorithms for fault-tolerant event region detection in wireless
sensor networks’, IEEE Transactions on Computers, Vol. 53,
No. 3, pp.241–250.

Krishnamachari, B. and Iyengar, S. (2004) ‘Distributed Bayesian
algorithms for fault-tolerant event region detection in wireless
sensor networks’, IEEE Transactions on Computers, Vol. 53,
No. 3, pp.241–250.

Li, D. et al. (2002) ‘Detection, classification, and tracking of
targets’, Signal Processing Magazine, IEEE, Vol. 19, No. 2,
pp.17–29.

Li, S. et al. (2004) ‘Event detection services using data
service middleware in distributed sensor networks’,
Telecommunication Systems, Vol. 26, No. 2, pp.351–368.

Liang, Q. and Wang, L. (2005) ‘Event detection in sensor
networks using fuzzy logic system’, in EEE Intl. Conference
on Computational Intelligence for Homeland Security and
Personal Safety, Orlando, FL.

Lim, Y-s. et al. (2007) ‘A fire detection and rescue support
framework with wireless sensor networks’, in International
Conference on Convergence Information Technology, IEEE
Computer Society.

Luo, X., Dong, M. and Huang, Y. (2006) ‘On distributed
fault-tolerant detection in wireless sensor networks’, IEEE
Transactions on Computers, Vol. 55, No. 1, pp.58–70.

Marin-Perianu, M. and Havinga, P.J.M. (Eds.) (2007) D-FLER – A
Distributed Fuzzy Logic Engine for Rule-Based Wireless
Sensor Networks, Springer Verlag, Germany, pp.86–101.

Martincic, F. and Schwiebert, L. (2006) ‘Distributed event
detection in sensor networks’, in Proceedings of the
International Conference on Systems and Networks
Communication.

Russell, S.J. and Norvig, P. (2003) Artificial Intelligence: A
Modern Approach, 2nd ed., Pearson Education.

Segal, M.L. et al. (2000) ‘Method and apparatus for automatic
event detection in a wireless communication system’,
U. Patent, Editor, USA.

12 M. Bahrepour et al.

Vu, C.T., Beyah, R.A. and Li, Y. (2007) ‘Composite event
detection in wireless sensor networks’, in Proc. of the IEEE
International Performance, Computing, and Communications
Conference.

Werner-Allen, G. et al. (2006) ‘Deploying a wireless sensor
network on an active volcano’, IEEE Internet Computing,
Vol. 10, No. 2, pp.18–25.

Wikipedia, Decision Tree, available at
http://en.wikipedia.org/wiki/Decision_tree.

Xue, W. et al. (2006) ‘Contour map matching for event detection
in sensor networks’, in International Conference on
Management of Data, Chicago, IL, USA ACM New York,
NY, USA.

Yin, J., Hu, D.H. and Yang, Q. (2009) ‘Spatio-temporal event
detection using dynamic conditional random fields’, in
International Joint Conference on Artificial Intelligence,
Pasadena, California, USA.

