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Abstract: Recently, wireless sensor networks (WSNs) have become mature enough to go beyond 
being simple fine-grained continuous monitoring platforms and have become one of the enabling 
technologies for early-warning disaster systems. Event detection functionality of WSNs can be of 
great help and importance for (near) real-time detection of, for example, meteorological natural 
hazards and wild and residential fires. From the data-mining perspective, many real world events 
exhibit specific patterns, which can be detected by applying machine learning (ML) techniques. 
In this paper, we introduce ML techniques for distributed event detection in WSNs and evaluate 
their performance and applicability for early detection of disasters, specifically residential  
fires. To this end, we present a distributed event detection approach incorporating a novel 
reputation-based voting and the decision tree and evaluate its performance in terms of detection 
accuracy and time complexity. 
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This paper is a revised and expanded version of a paper entitled ‘Distributed event detection  
in wireless sensor networks for disaster management’ presented at INCoS 2010, Thessaloniki, 
Greece, 24–26 November 2010. 

 

1 Introduction 

Disaster management or emergency management is a key 
discipline for providing necessary responses whenever and 
wherever a catastrophe occurs to save lives and reduce 
casualties. From an engineering perspective, machineries 
can be designed and used to help with detection or 
prediction of the disastrous events. One of the recent 
technologies enabling (near) real-time detection of such 
events is the wireless sensor networks (WSNs). WSNs 
typically consist of a large number of small, low-cost  
sensor nodes distributed over a large area. The sensor nodes 
are integrated with sensing, processing and wireless 
communication capabilities. Each node is usually equipped 
with a wireless radio transceiver, a small microcontroller, a 
power source, and multi-type sensors (e.g., temperature, 
humidity, smoke). These components enable a sensor node 
to sense the environment, communicate and exchange 
sensory data with other nodes in the area, locally process its 
own data and make smart decisions about what it observes. 
This will lead to detection of events and unusual data 
behaviours whenever and wherever they occur. This  
feature is called event detection. Event detection 
functionality of WSNs has attracted much attention in 
variety of applications such as industrial safety and security, 
meteorological hazards, and fire detection (Vu et al., 2007). 

Resource constraints of the wireless sensor nodes, 
dynamicity of the deployment area (Li et al., 2004), and 
unreliability of wireless communication introduce unique 
design challenges. As a result, event detection techniques 
for WSNs need to be light-weight (to meet limited 
computational capability of the sensor nodes), distributed 
(to split big processes into several smaller segments to 
facilitate parallel processing), and robust against sensor 
node and wireless communication failures. It must be 
accurate to reduce number of false alarms and to prevent 
creating unnecessary chaos and stress. In addition, it needs 
to detect disastrous events fast, as this is the first step 
towards creating awareness and generating timely alarms. 

Developing an event detection approach meeting all the 
aforementioned requirements is not a trivial task and many 
of the existing approaches often only partially meet these 
requirements (Bahrepour et al., 2008). 

In this paper, we propose a light-weight and accurate 
event detection approach for in-network decentralised event 
detection. The proposed approach uses the decision trees as 
classifier for the purpose of distributed event detection and a 
novel reputation-based voting method for aggregating the 
detection results of individual sensor nodes and reaching a 
consensus among different decisions. We will show that 
despite their simplicity, decision trees are highly accurate 
and their simplicity fulfils the WSNs requirements. The 
performance of the proposed approach is gauged in terms of 

detection accuracy and time complexity. We also analyse 
how various internal parameters of the classification 
technique influence event detection performance. 

2 Related work 

Classical research on event detection can be classified into 
research on 

1 pattern matching for known events 

2 pattern recognition for unknown events. 

Supervised learning techniques are often used for finding 
events that are similar to predefined event signatures, while 
unsupervised learning techniques are used for finding 
hidden patterns. 

Events have different meaning in different applications 
and research domains. Event detection is the process of 
identifying those sensor readings that do not conform to 
normal behaviour and model of data and indicate occurrence 
of an event of interest. 

A simple approach to detect events is based on  
defining thresholds values, with which sensor readings  
are compared. Threshold-based event detection techniques  
have been proposed in Segal et al. (2000), Vu et al. (2007) 
and Werner-Allen et al. (2006). In case of having more than 
one feature, Vu et al. (2007) propose evaluating different 
sensor values separately by considering them as an ‘atom’ 
or distinct value using a threshold-based classification. For 
example, if fire event is detected using smoke and 
temperature sensors, an alarm will be generated when 
temperature exceeds 30°C and smoke exceeds 100 mg/L. 
Lim et al. (2007) introduce a generic disaster recovery 
system using threshold-based event detection technique that 
may be applicable for various disaster management 
application. 

Defining proper threshold values requires having a good 
knowledge about the event. Due to the fact that thresholds 
are defined beforehand and are fixed, threshold-based 
classification techniques suffer from lack of flexibility  
and adaptability. To avoid fixed and assumption-based 
threshold values, Liang and Wang (2005) propose an 
automatically-selected threshold value approach, in which 
the threshold value is dynamically calculated using a sliding 
window technique. 

To improve event detection performance in terms  
of detection accuracy, the new trend is to use pattern 
recognition techniques. Pattern recognition techniques  
can be centralised performed in the base station (Li et al., 
2002; Xue et al., 2006), local performed in the network 
(Bahrepour et al., 2009a) or distributed (Bahrepour et al., 
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2009b; Jin and Nittel, 2006; Krishnamachari and Iyengar, 
2004; Luo et al., 2006; Martincic and Schwiebert, 2006). 

Map-based (Khelil et al., 2008), probabilistic-based  
(Yin et al., 2009), K-nearest neighbourhood-based (K-NN), 
maximum likelihood-based, and support vector  
machines-based (SVM) (Li et al., 2002) event detection 
techniques have been proposed for centralised event 
detection. 

Other techniques based on naïve Bayes (Bahrepour  
et al., 2009a), feed forward neural networks (Bahrepour  
et al., 2009a), and SVM (Bahrepour et al., 2010a) have  
been proposed to detect an event locally on individual 
sensor nodes. To detect events distributedly in the  
network techniques based on distributed fuzzy engine 
(Marin-Perianu and Havinga, 2007), map-based pattern 
matching (Khelil et al., 2008), feed forward neural 
networks, naïve Bayes classifiers (Bahrepour et al., 2009c), 
distributed Bayesian algorithms (Krishnamachari and 
Iyengar, 2004), voting graph neuron algorithm (Baqer and 
Khan, 2008), and decision trees (Bahrepour et al., 2010b) 
have been proposed. 

This paper proposes a distributed event detection 
approach in which decision trees detect events locally on the 
sensor nodes and a reputation-based voter fuses the local 
decisions. 

3 Decision-tree-based event detection 

To fulfil WSNs requirements mentioned previously, our 
proposed approach is a distributed machine learning (ML) 
technique that uses decision trees to detect events in a 
distributed manner. Unlike many other complicated 
approaches, we will show that simplicity of the decision 
tress is what WSNs exactly need and our approach can fulfil 
both low computational overhead and high detection 
accuracy. 

A decision tree is a learning algorithm that uses tree-like 
graphs to model and evaluate discrete functions (Russell and 
Norvig, 2003; Wikipedia). The inputs to the tree might  
be either continuous or discrete but the outputs (the 
decisions) are discrete. Construction of a decision tree for 
classification requires a training phase. This training phase 
employs a set of data and a learning algorithm to find a 
minimum depth decision tree. The tree should contain the 
minimum required nodes (or minimum depth) to reduce 
time and memory complexities. Therefore, the training 
algorithm is usually a local search greedy algorithm to find 
an optimum decision tree. A typical graphical representation 
of a decision tree is shown in Figure 1. In a tree, the 
decision making process starts from the root of the decision 
tree and propagates down to the leaves. 

The main concept of our technique along-side its 
process and communication model is presented in Figure 2. 
All sensor nodes run the same decision tree, which is used 
to detect events locally on the node. Then, the detected 
events in terms of yes/no or event class type are sent to the 
voter. The voter applies a reputation-based voting technique 

to reach a consensus between different decisions made by 
the nodes. 

Figure 1 A typical graphical representation of a decision tree 

 

Figure 2 Block diagram of the proposed approach (see online 
version for colours) 

 

Since sensor nodes send their detected event as a singleton 
(yes/no or class type) to the voter, the communication 
between nodes is unidirectional. These two factors make the 
communication overhead of our proposed approach not 
high. The rate at which sensor nodes send their data to the 
voter is variable and is usually based on estimated rate of 
event occurrences (which is also low). 

To show superiority of our reputation-based voting, we 
additionally investigate three other voting mechanisms 
based on the classical majority voting. 

3.1 Reputation-based voting 

Once each node makes its individual decision about 
occurrence of an event, a consensus needs to be reached. 
One of the mechanisms to reach this consensus is through 
use of voting. There are various voting techniques, among 
which is the reputation-based. Reputation-based voting 
approaches are based on finding reputation of individual 
sensor nodes and choosing the decision made by the nodes 
having the highest reputation. To use the reputation-based 
technique in our event detection approach, sensor nodes 
must first run their local decision tree classifiers. Then 
assuming that sensor nodes have detected events correctly, 
they should judge how well the other sensor nodes could 
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detect events. To do the judgment, each sensor node first 
sends its detected event as a singleton, called detection 
value (DV), to all other nodes in its neighbourhood. The 
DVs received from the neighbours will be stored in a table 
called neighbours detection value table (NDVT). In the next 
step, each sensor node should judge about its neighbouring 
sensor nodes by considering itself as the reference. The 
judgment is accomplished by comparing the difference 
between detected value of sensor node itself and detected 
value of the other sensor nodes. If the difference is less than 
a threshold value θ (representing values that belong to a 
single class and is chosen based on the context), the judging 
sensor node gives a positive vote (Vnew = Vold + 1) to the 
other sensor node. Otherwise, the ‘being judged’ sensor 
node receives a negative vote (Vnew = Vold – 1) because its 
detected value is not in the same class as ‘judging’ node. 
Finally, NDVT tables are sent to the voter (e.g., a cluster 
head) to reach a consensus among different opinions. The 
challenging part of reputation-based voting is how to assign 
a global reputation value to each sensor node in order to 
choose high reputed node and its detected event as the result 
of event detection. In what follows, we introduce two 
reputation-based voting techniques to assign a global 
reputation value to each sensor node and to reach a 
consensus about the detected event. 

3.1.1 Reputation technique 1 

The reputation technique 1 checks local reputation of every 
individual sensor node for event detection from the other 
sensor nodes’ perspective. The local reputation value (Ri) is 
obtained based on average value of Vi (positive or negative 
votes which were given to node i by the other sensor nodes) 
for each sensor node. Then, the average local reputation is 
multiplied by the weight of sensor nodes calculated using 
equation (1) to assign global reputation values. The event 
with the highest reputation weight (W) is the result of the 
voting procedure. Equation (1) shows how the weights are 
calculated. 

i i iW R Acc= ×  (1) 

where Wi is the reputation value corresponding to sensor 
node i, Ri is the local reputation value of sensor node i from 
other sensor nodes’ perspective, and Acci is weight of  
sensor node i for event typeq which is calculated based on 
equation (2). 

i q
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Weight of sensor  type  for event  type
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=∑
 (2) 

3.1.2 Reputation technique 2 

In reputation technique 2, we define two threshold values 
called θ1, θ2. Comparing the local reputation value (Ri) with 
θ1 and θ2 gives an insight about how well the sensor nodes 
detect events. If (Ri ≥ θ1), then the sensor node makes 
‘perfect’ decisions, if (θ1 ≥ Ri ≥ θ2) then the sensor node 
makes ‘fairly good’ decisions, and if (θ2 ≥ Ri) then the 

sensor node makes ‘poor’ decisions. Then we assign a 
discrete value for different performances. To do so,  
0.5 indicates poor performance, 1 indicates fairly good 
performance, and 2 indicates perfect performance. 
Reputation technique 2 is performed using equation (3) 
based on the performance of each sensor node. 

i i iW S Acc= ×  (3) 

where Wi is the reputation value corresponding to sensor 
node i, Si is obtained from equation (4), and Acci is the same 
output of equation (2) (weight of sensor nodei for event 
typeq). 
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θ1 and θ2 show how well reputation is (e.g., perfect, fairly 
good, poor), and is chosen based on application context. 

To have a means for comparing the reputation-based 
voting, in the following subsections three other voting 
techniques based on the classical majority voting are 
presented. In Section 5, a number of experiments are 
conducted and the results are compared. 

3.2 Majority voting 1: sensor type-based weighting 

In this majority voting technique, we use contribution of 
each sensor to the event detection process (presented in 
Table 1) as weight. To do this, we run the same classifier as 
the event detection classifier with only one sensor type to 
calculate the contribution of that specific sensor type to the 
whole event detection process. Then each sensor node 
receives a weight based on number and types of sensors it 
has. The weights are calculated using equation (5). 

i

K1

Weight of sensor node

Weight  of  sensor  type
m

K=
=∑

 (5) 

where ‘m’ is the total number of sensor types in a 
(heterogeneous) network and ‘weight of sensor typek’ is 
contribution of sensor typeK to event detection that is 
calculated by equation (6). 

k

k

p1

Weight of sensor type
Detection accuracy using only sensor type

Detection accuracy using only sensor type
m

p=

=
∑

 (6) 

Table 1 Contribution of each sensor to the fire detection using 
decision trees 

 
Fire event 
detection 

(in general)

Flaming 
fire 

detection 

Smouldering 
fire detection

Nuisance 
detection 

Temperature 19% 26% 20% 13% 
ION 16% 2% 20% 20% 
Photo 23% 2% 27% 23% 
CO 42% 70% 33% 44% 
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3.3 Majority voting 2 – event type-based weighting 

In majority voting 2, instead of assigning one weight to each 
sensor node, we assign p weights to each sensor node, 
where p is the number of event types. The reason of 
assigning more than one weight to each sensor node is to 
have more precise weights in order to perform the voting 
more accurately. For example, if a WSN detects four 
possible events (e.g., earthquake, fire, storm, flood) there 
are four weights assigned to each sensor node and according 
to the event detected by the node, the corresponding weight 
is used by the voter. Equation (7) calculates necessary 
weights for each sensor node. 

i q

K q1

Weight of sensor node  for event type

Weight  of  sensor  type  for event type
m

K=
=∑

 (7) 

where ‘m’ is the total number of sensor types in a 
(heterogeneous) network and ‘weight of sensor type k for 
event typeq’ is calculated by equation (8). 

k

q

k

p1

Weight of sensor type  for event
= Event detection for event type

Detection accuracy of sensor type  for event

Detection accuracy of sensor type  for event
m

p=

=
∑

 (8) 

3.4 Majority voting 3 – event type-based weighting 
(without redundancy) 

After studying majority voting techniques 1 and 2, we faced 
the problem of redundant weights. This means that the same 
event types produced by similar sensor nodes receive more 
weights. To cope with this problem, majority voting 3 gives 
all sensor nodes having the same sensor types and 
producing similar event type only one weight. By doing so, 
we remove redundant weights of sensor nodes having the 
same sensors and detecting the same events. The rest of the 
voting procedure is done according to the majority voting 2. 
One notes that majority voting 3 is actually a pre-processing 
stage before doing the majority voting 2. 

4 Data description and experiments 

To test our approach, we consider residential fires as the 
disastrous event and test our approach on a residential fire 
dataset. The data analysis and simulation of the proposed 
approach were conducted in MATLAB. In the following 
subsections the data and experiment methods are described. 

4.1 Data description 

We obtain a set of residential fire data from NIST website 
(http://smokealarm.nist.gov/) for training and testing our 

approach. The training phase is conducted using 2/3 of data 
and testing phase is conducted on 1/3. 

The obtained dataset contains flaming and smouldering 
fires. Additionally, some nuisance resources (e.g., data of 
toasting bread and lighting a cigarette that are not real fire) 
are added to make the detection more realistic for residential 
areas. 

As a result, 1,400 data instances were prepared in such a 
way that 933 instances (2/3) were used for training and  
467 instances (1/3) for testing. The dataset contains four 
sensory data (features) that are temperature, ionisation, 
photoelectric, and CO. We also perform a calibration 
procedure to make all the data in the same units. 

4.2 Experimental method 

To test our approach on the residential fire dataset, we have 
to first train the decision trees then apply one of the voting 
techniques. Training the decision tree is done by using  
2/3 of the dataset and testing the whole approach on the rest 
of the dataset. In a heterogeneous network, sensor nodes 
may have different sensor types. In such networks, we 
should either find a decision tree per each sensor node or 
make a decision tree that works with all sensor nodes 
independent of their sensor types. In this paper, we propose 
to make a single decision tree for all sensor types available 
in the dataset. Additionally, during the training phase we 
deliberately add some missed values per each sensor type. 
This is to cope with the situations in which a single sensor 
node does not have all the sensor types. In such a case, the 
absent sensor types are represented by missed values. 

Various experiments considering different number of 
sensor nodes and sensor types are conducted. This method 
of experiment shows robustness of algorithm in case of 
sensor or node failure, as well as in case of imperfect or lost 
communication between sensor, which leads to data loss. 

The testing phase is conducted by feeding the same 
instance of data to all sensor nodes then reaching a 
consensus between results of event detection using one of 
the voting techniques. The necessary weights for voting part 
are obtained from contribution of each sensor to the fire 
detection and are presented in Table 1. It can be seen that 
CO is contributing the most to the fire detection process. 
Sensor nodes having more sensor types or the most 
contributing sensors receive more weight and attention in 
this study. 

In the next section the results of event detection using 
decision trees and four aforementioned voting methods are 
reported. 

5 Experimental results 

To test our event detection approach, we consider ten 
different network schemas presented in Table 2. 
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Table 2 Network schemas 

Availability of sensors 
# 

Node TMP ION Photo CO 
Number of 

sensor nodes Feature 

1     
2     
3     
4     
5     
6     

1 

7     

7 Having at least one and at most two sensor types on each sensor node. 

1     
2     

2 

3     

3 Having redundant sensor types on each sensor node. 

1     
2     
3     
4     
5     
6     

3 

7     

7 Unavailability of CO sensor 
(as CO is the strongest sensor for fire detection). 

1     
2     
3     
4     
5     
6     
7     

4 

8     

8 Having only one CO sensor 
(as CO is the strongest sensor for fire detection). 

1–7     5 
8     

8 Having redundant sensor types on each sensor node. 

1–5     
6–10     

11–15     

6 

16–20     

20 Scaling network to 20 nodes. 25% of the network consists of strong 
sensor nodes (having all sensor types). And the rest is not very strong 
(they have only one non-CO sensor type). 

1–10     7 
11–100     

100 Scaling network to 100 nodes, having redundant sensor nodes. 
CO presence in 10% of whole network population. 

8 1–100     100 Scaling network to 100 nodes. All nodes have similar sensor types. 

1–2     
3–4     
5–6     
7–8     
9–10     

9 

11–12     

30 Scaling network to 30, having all possible combination of sensor types. 

 
 
 
 
 



 Use of wireless sensor networks for distributed event detection in disaster management applications 7 

Table 2 Network schemas (continued) 

Availability of sensors 
# 

Node TMP ION Photo CO 
Number of sensor 

nodes Feature 

13–14     
15–16     
17–18     
19–20     
21–22     
23–24     
25–26     
27–28     

9 

29–30     

30 Scaling network to 30, having all possible combination of 
sensor types. 

10 1–50     50 Scaling network to 50 by having the strongest possible sensor 
nodes. 

 
Table 3 reports the results of our fire event detection tests. 

Table 3 Results of the distributed approach 

Net. 
architecture # Technique Event detection 

accuracy 
Standard 
deviation

Rep. technique I 96.62% 1.44 
Rep. technique II 96.57% 1.54 
V. technique #1 92.68% 8.24 
V. technique #2 94.16% 8.79 

1 

V. technique #3 96.35% 3 
Rep. technique I 98.18% 0.7 
Rep. technique II 93.32% 2.3 
V. technique #1 95.5% 2.92 
V. technique #2 97.43% 0.54 

2 

V. technique #3 92.46% 6.46 
Rep. technique I 89.64% 6.04 
Rep. technique II 79.66% 11.49 
V. technique #1 72.48% 15.37 
V. technique #2 68.25% 18.55 

3 

V. technique #3 71.65% 17.25 
Rep. technique I 91.39% 6.008 
Rep. technique II 84.84% 12.61 
V. technique #1 89.25% 5.82 
V. technique #2 84.37% 11.80 

4 

V. technique #3 82.22% 9.45 
Rep. technique I 47.79% 11.24 
Rep. technique II 47.79% 11.24 
V. technique #1 41.92% 16.21 
V. technique #2 44.85% 19.85 

5 

V. technique #3 93.43% 6.89 
Rep. technique I 99.57% 0.27 
Rep. technique II 99.57% 0.27 
V. technique #1 99.14% 0.63 
V. technique #2 99.25% 0.38 

6 

V. technique #3 98.95% 0.52 

 

Table 3 Results of the distributed approach (continued) 

Net. 
architecture # Technique Event detection 

accuracy 
Standard 
deviation

Rep. technique I 92.38% 0.8 
Rep. technique II 92.38% 0.8 
V. technique #1 85.53% 9.71 
V. technique #2 87.77% 5.04 

7 

V. technique #3 87.1% 13.54 
Rep. technique I 91.61% 1.08 
Rep. technique II 91.61% 1.08 
V. technique #1 88.57% 6.23 
V. technique #2 90.57% 4.5 

8 

V. technique #3 90.63% 5.16 
Rep. technique I 98.72% 0.30 
Rep. technique II 98.5% 0.53 
V. technique #1 98.9% 0.49 
V. technique #2 98.93% 0.3 

9 

V. technique #3 98.85% 0.59 
Rep. technique I 99.64% 0.2 
Rep. technique II 99.64% 0.2 
V. technique #1 99.12% 0.45 
V. technique #2 99.07% 0.31 

10 

V. technique #3 99.05% 0.39 

Based on Table 3, we can generally conclude that 
reputation-based voting techniques work better than 
majority voting techniques. However, in fifth experiment, 
reputation-based voting is not working well because there is 
only one sensor node having the most contributing sensor 
(CO), and there are seven sensor nodes having only 
temperature (not very contributing to fire detection 
according to Table 1). Then, the seven sensor nodes because 
of their quantity receive higher weights in reputation-based 
voting and perform event detection less accurate. One can 
also conclude that the reputation-based voting performs best 
when redundant nodes in the network are not many. 
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Another conclusion to make is related to the number of 
sensor nodes in the network and its effect on detection 
accuracy. Comparing the first experiment with seventh and 
eighth, it can be seen that increase of number of nodes does 
not necessarily improve the detection accuracy. However, 
presence of the most contributing sensors has the strongest 
effect on detection accuracy. 

We additionally compare the proposed technique with 
another distributed event detection approach presented in 
Bahrepour et al. (2009c), in which neural networks are used 
as both the local event detector and voter. We use network 
scheme number 10 and reputation-based voting as one of 
the best achieved simulation results. Then the same dataset 
is given to the distributed neural network (Bahrepour et al., 
2009c) which has the same sensor nodes and sensor types as 
network scheme number 10. Table 4 shows the result of this 
comparison. 

Table 4 Comparing the proposed technique with distributed 
neural network approach 

Approach Event detection accuracy 

Rep. technique I and II 99.64% 
Distributed neural network 
(Bahrepour et al., 2009c) 

96% 

Source: Bahrepour et al. (2009c) 

As it can be seen in Table 4, the reputation-based technique 
outperforms the distributed neural network approach in 
terms of event detection accuracy. 

6 Time complexity analysis 

Our aim is to investigate applicability of computationally 
intensive ML techniques for resource-limited WSNs. For 
event detection not only detection accuracy but also time 
complexity are important. 

Time complexity of decision trees depends on two 
phases 

1 making the decision tree (training) 

2 classification using the decision tree. 

Since the training part is only performed once in an offline 
manner, the time complexity for training phase can be 
ignored. In the following subsections time complexities of 
the approaches are investigated by only considering the time 
they are running in the network independent of their training 
part. 

6.1 Time complexity of the decision tree 

The order of the decision tree appraisal is a function of the 
depth of decision tree and equation (9) presents the time 
complexity: 

(Local approach) (Decision tree appraisal)O O=  (9) 

(Local approach) ( )O O m=  (10) 

where m is depth of the decision tree. 
Once the tree is constructed by its learning algorithm,  

it can be pruned to reduce the number of nodes. Reducing 
the number of nodes helps with reducing time complexity 
but decreases the classification accuracy in most of 
circumstances, as well. 

6.1.1 Time complexity of the proposed approach 
using reputation theory 

Time complexity of our proposed approach using reputation 
theory is a function of three parts. Firstly, decision tree is 
evaluated (that is classification part), then local processes 
are performed on the nodes (local judgment), and finally 
consensus is reached. The time complexity is calculated by 
equation (11). 

(Distributed reputation)
max[ (Distributed reputation)

   (process on the node) (reputation voting)]

O
O

O O
=
+ +

 (11) 

(Distributed reputation)
[ ( ) ( ( 1))

  (( ( 1)) )]

O
Max O m O n n

O n n n c
= − −
+ − + +

 (12) 

( )2(Distributed reputation)O O n=  (13) 

where m is depth of the decision tree, n is the number of 
sensor nodes in the network and c is the number of classes. 

6.2 Time complexity of the proposed approach using 
the majority voting 1 

In the distributed approach, sensor nodes detect events in 
parallel using decision trees. Therefore, the order of whole 
classification part is O(m1 + m2 + … + mn) = O(m); where n 
is the number of nodes involved in the event detection and 
m is depth of the decision tree. Then these results are given 
to the voter to reach a consensus. Since the voting is 
independent from the classification, the time complexity is 
added to the classification time as shown in equation (14). 

(Distributed approach using voting 1)
([ ]) ([Voting 1])

[( ),  Voting 1]

O
O m O
Max m

= +
=

 (14) 

(Voting 1)
(Assigning weights + Max finding)

O
O=

 (15) 

(Voting 1) ([ ] )O O s w c= × +  (16) 

(Distributed approach using voting 1)
([ ]) ([ ] )
( )

O
O m O s w c
O s w

= + × +
= ×

 (17) 

where m is the depth of the decision tree, n is the number of 
sensor nodes in the network, s is the number of sensors, w  
is the number of assigned weights and c is the number of 
classes. 
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6.3 Time complexity of the proposed approach using 
the majority voting 2 

The time complexity of the proposed approach using the 
majority voting 2 is similar to when majority voting 1 is 
used with a minor change in the voting part (because it 
should find a weight corresponding to the currently detected 
event). The time complexity is therefore calculated by 
equation (18). 

(Distributed approach using voting 2)
( [Voting 2])

[( ),  Voting 2]

O
O m O
Max m

= +
=

 (18) 

(Voting 2)
(Assigning weights + Max finding)

O
O=

 (19) 

(Voting 2) ([ ])O O s w c= × ×  (20) 

(Distributed approach using voting 2)
([ ]) ([ ])
([ ])

O
O m O s w c
O s w c

= + × ×
= × ×

 (21) 

where m is the depth of the decision tree, n is the number of 
sensor nodes in the network, s is the number of sensors, w  
is the number of assigned weights and c is number of 
classes. 

6.4 Time complexity of the proposed approach using 
the majority voting 3 

The time complexity of the distributed approach using the 
majority voting 3 is similar to when majority voting 2 is 
used with a minor change because of consolidating similar 
outputs which are produced by those sensor nodes having 
the same sensor types. The time complexity is therefore 
calculated by equation (22). 

(Distributed approach using voting 3)
([ ] ([Voting technique 2])

[( ),  Voting technique 2]

O
O m O
Max m

= +
=

 (22) 

(Voting 3)
(Consolidation + Assigning weights 

        + Max finding)

O
O=  (23) 

( )2(Voting 3) [ ]O O s s w c= + × ×  (24) 

( )2

(Distributed approach using voting 3)

( ) [ ]
([ ])

O

O m O s s w c
O s w c

= + + × ×

= × ×

 (25) 

where m is depth of the decision tree, n is number of nodes 
in the network, s is the number of sensors, w is the number 
of assigned weights, c is number of classes. 

6.5 Time complexity comparison 

Table 5 shows a comparison between time complexities of 
our different approaches. As it can be seen, our approach 
using majority voting 1 and reputation-based voting has 
lower complexity than the other two techniques. The reason 
that makes majority voting 2 and 3 computationally more 
intensive is because of assigning more than one weight to 
each sensor node. This requires more comparisons and 
makes the event detection more complex. 

Table 5 Time complexity comparisons 

Approach Time complexity 

The distributed approach 
using majority voting 1 

O(s × w) 

The distributed approach 
using majority voting 2 

O(s × w × c) 

The distributed approach 
using majority voting 3 

O(s × w × c) 

The distributed approach 
using reputation technique 

O(n2) 

Notes: n is the number of sensor nodes in the network,  
s is the number of sensors, w is the number of 
assigned weights and c is the number of classes. 

7 Communicational overhead 

As presented in Figure 2 the communication model of our 
technique is unidirectional, in which sensor nodes send their 
decision about occurrence of events to the voter (data fuser). 
The frequency of sending data to the voter is application 
dependent and is based on estimated frequency of 
occurrence of the event (which is low). As each sensor node 
sends only a singleton (showing decision about occurrence 
of events) and not its entire sensor data to the voter, and 
sending data is unidirectional towards the voter, the 
communication overhead is minimal. 

8 Parameter study 

8.1 Pruning 

Decision trees have no parameter because the whole tree is 
made during the training phase and there is no need to 
choose parameters. However, after the training phase, the 
tree can be pruned and some less-contributing branches can 
be removed. Figure 3 shows how pruning a tree can affect 
accuracy of a decision tree using our fire dataset. 

According to equation (8) and (9) the depth of decision 
tree has direct effect on time complexity of the approach. 
Therefore, pruning can be considered as a technique to 
reduce time complexity. However, by pruning a decision 
tree, accuracy rate is also decreased. 

As a conclusion, decision tree can be pruned to make a 
faster yet less-accurate classifier. 
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Figure 3 Pruning and its effect on final detection accuracy for 
fire dataset (see online version for colours) 

 

8.2 Parameter study for reputation-based voting 
technique 

There are some parameters involved in reputation-based 
voting technique that affect event detection accuracy. In this 
section we investigate three major parameters of the 
reputation-based voting approach. These parameters are 

1 reputation update time intervals 

2 number of neighbours 

3 presence of sensor types. 

Moreover, the way reputation is calculated, whether it is 
done centrally or in a distributed manner affects the time 
complexity of the proposed approach. 

8.2.1 Distributed vs. centralised reputation 
calculation 

Finding the trustworthiness or reputation degree of the 
sensor nodes can be accomplished either in a distributed 
way (by engaging neighbours of the ‘being judged node’) or 
in a centralised manner (in a base station). In some 
circumstances the base stations have not enough power to 
obtain reputation degree of each sensor node, therefore, a 
distributed fashion can come handy, which also provides 
load balancing for reputation values calculation between 
nodes. However, if base stations have enough power in 
terms of computing power, memory capacity, battery and 
radio bandwidth, the reputation calculation process becomes 
computationally lighter. 

As a result of this change, the n(n – 1) + n term,  
which belongs to the local communication among the 
neighbouring nodes in order to find out the reputation value, 
is omitted from equation (12). Every sensor node only needs 
to report its detected values to the base station. Therefore, 
the number of required communications of each sensor node 

is diminished to 1 from (n – 1) + 1 and as a result of this 
change the energy dissipation of each node extremely 
decreases. 

8.3 Reputation update time interval 

In our proposed method, each sensor node sends every 
detected value to all its neighbours and receives their 
corresponding values in each time period. Although, it 
results in more reliability but it causes quick energy drain of 
the sensor nodes. In contrast, each sensor node can store its 
detected values in a table which should be sent to other 
neighbours after a certain time period. It also needs then to 
receive the neighbours’ tables after a specific time period.  
As time interval becomes longer, both communication 
overhead and reliability are reduced. 

Figure 4 shows the performance of the proposed method 
for ten different runs in terms of detection accuracy while 
varying the time interval for updating reputation values. As 
it is expected, the detection accuracy increases by 
decreasing the time interval at the expense of consuming 
more energy. 

Figure 4 Effect of reputation update time interval on detection 
accuracy (see online version for colours) 

 

Figure 5 Detection accuracy for different number of the 
neighbours (see online version for colours) 
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8.3.1 Number of neighbours 

Number of neighbours around a sensor node has direct 
impacts on the detection accuracy as it affects the reputation 
and trustworthiness of a given node. Figure 5 presents the 
impact of increasing number of neighbours for two different 
sensor types (temperature sensor, photon sensor). It can be 
seen that detection accuracy is improved by increasing the 
number of neighbours for a given sensor type. 

8.3.2 Presence of sensors 

In addition to number of nodes, presence of the most 
contributing sensors affects detection accuracy. As Table 3 
shows, when the most contributing sensor (CO, in fire 
detection scenario) is not available, the detection accuracy 
drops off. This is due the fact that, having many sensor 
nodes missing important sensor(s) results in a situation in 
which sensor nodes cannot correctly detect an event. As it 
can be seen from Figure 5, increasing number of neighbours 
of a node with a contributing sensor (photon sensor  
in this case) leads to better detection accuracy compared  
to increasing number of neighbours of node with less 
contributed sensor (temperature sensor for example). 

9 Conclusions and discussion of the results 

For fast and accurate detection of disastrous events using 
WSNs, in this paper we propose a distributed event 
detection technique. Our proposed approach is based on 
detecting events using decision tree classifiers running on 
individual sensor nodes and applying a voting technique to 
reach a consensus among detections made by various  
sensor nodes. We proposed three majority-based voting 
techniques and two reputation-based voting techniques. The 
experimental results show that reputation-based voting 
approaches perform well in absence of high degree of 
redundant nodes in the network. 

The motivation behind choosing decision trees and 
aforementioned voting techniques is their simplicity, low 
computational costs and high accuracy which fulfil the 
requirements posed by resource limitations of WSNs. 

Our experimental results on residential fire datasets 
show that our approach not only achieves a high detection 
rate but also has a low computational overhead and time 
complexity. 

The future works includes implementation of the 
proposed approach on Crossbow Telos sensor nodes. 
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