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Abstract: In proxy re-encryption (PRE) scheme, the message is sent by a delegator to a 
delegatee with help of the trusted third party proxy without knowing the existing plaintext. It is 
known that non-transferable PRE schemes solve some problems of the naive PRE schemes. 
Some non-transferable PRE scheme is extended to group-based schemes, where the proxy diverts 
a ciphertext for a group into another group, but the existing schemes have the proxy colluding 
problem. To resolve the proxy colluding problem for group-based PRE schemes, we propose a 
non-transferable PRE scheme for multiple groups. In our scheme, there are three sub-processes, 
which are based on a non-transferable PRE scheme and a group signature. We show that our 
scheme provides the security for a delegator Alice, a delegatee Bob in the same group with Alice, 
and another delegatee Charlie in a different group from Alice. 
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1 Introduction 

Proxy re-encryption (PRE) is a public key cryptosystem 
which allows a semi-trusted proxy to transform a ciphertext 
encrypted under one key into another ciphertext of the same 
plaintext under another key, without revealing any 
information of the plaintext. The concept of the proxy 

cryptosystem which is also called proxy decryption, is 
introduced by Mambo and Okamoto (1997). A proxy 
decryptor decrypts the encrypted ciphertext by Alice’s 
public key on behalf of Alice. In 1998, Blaze et al. (1998) 
proposed the notion of PRE which is similar to the proxy 
cryptosystem. In PRE, the proxy converts Alice’s ciphertext 
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to a new ciphertext for Bob without exposing the plaintext. 
Thus, the proxy should be key independent to avoid 
compromising the private keys of the sender (Alice) and the 
receiver (Bob). 

The scheme is only useful when the mutual trust 
relationship exists between Alice and Bob. In the PRE 
scheme, a proxy with re-encryption keys can change a 
ciphertext for Alice (a delegator) into another ciphertext of 
the same plaintext for Bob (a delegatee). The proxy cannot 
get any information about the plaintext or the private key 
(Blaze et al., 1998; Canetti and Hohenberger, 2007; Guo 
and Hu, 2012; Phong et al., 2016). 

The PRE scheme can be classified into two types: 
unidirectional PRE schemes and bidirectional PRE schemes. 
In the unidirectional PRE (Ivan and Dodis 2003), Alice can 
delegate to Bob without having to delegate to Alice without 
any secret key of Bob. It only requires the secret key of 
Alice and the public key of Bob to discover a re-encryption 
key from Alice to Bob. It does not allow Bob to Alice (the 
reverse direction). 

In 2010, Matsuda et al. (2010) proposed a bidirectional 
PRE scheme without bilinear maps. The re-encryption key 
to converting ciphertext from Alice to Bob can be also used 
to translate from Bob to Alice. Canetti and Hohenberger 
(Canetti and Hohenberger, 2007) proposed the CCA 
(chosen ciphertext attack) secure bidirectional multi-hop 
PRE scheme in the standard model by using the bilinear 
maps. A bidirectional single-hop PRE scheme without 
bilinear maps is considered by Deng et al. in 2008 and then 
it is also CCA secure in random oracle model. 

Bidirectional PRE schemes have attracted much 
attention from the cryptography community (Ateniese et al., 
2006; Blaze et al., 1998; Guo et al., 2015; Ivan and Dodis, 
2003; Libert and Vergnaud, 2008; Niu et al., 2009; Wang  
et al., 2010) because they have many interesting and useful 
applications, such as the e-mail forwarding, the encrypted 
files distribution, the digital rights management (Nuez et al., 
2015) and the cloud data sharing (Fan and Liu, 2016). 

In 2007, Matsuo (2007) proposed two Identity-based 
Re-encryption schemes where one is the transformation 
from ciphertexts encrypted based on a traditional  
certificate-based public key into the ciphertexts (CBE-IBE) 
and the other one is the transformation from ciphertexts 
encrypted in IBE manner into the different ciphertexts  
(IBE-IBE). However, Wang et al. (2010) gave two types of 
attacks, which show that the identity based PRE schemes 
(CBE-IBE and IBE-IBE) are insecure. 

There is another type of PRE scheme which is called 
group-based PRE. Group communication becomes popular 
in many applications. Generally speaking, two groups are 
supposed: a sender group and a receiver group. Any 
member from the sender group can encrypt a message and 
send to the designated receiver group. Any member from 
the designated receiver group can decrypt the ciphertext. 
However, there have some problems such as PRE or 
forwarding message. For example, by dividing tasks among 
a group A and another group B, an encrypted message from 
the group A should be allowed to decrypt by the group B. 

Such kind of scenarios is supported by the group-based PRE 
scheme, which was first proposed by Ma and Ao (2009). 
Their scheme is bidirectional proxy re-encryption scheme. 
In their scheme, a message is sent from the group A to the 
group B, any member from the group B can decrypt the 
ciphertext. And the proxy allows the reverse direction. 
Because re-encryption key is generated by using the private 
key of the group A and the group B. 

In 2006, Ateniese (2006) proposed a PRE scheme which 
supports unidirectional PRE and uses the delegator’s private 
key for protecting the collusion of a proxy and a delegatee. 
However, this scheme is lacking the non-transferable 
property. This problem was first addressed by Libert in 
2008. The proxy and delegatee are quite difficult to protect 
from colluding. Libert et al. solved the problem instead of 
preventing the collision of proxy and delegatee, by using 
traceable PRE. However, it cannot prevent the re-delegation 
of the proxy. Wang et al. (2010) proposed ‘identity-based 
PRE scheme’ to solve the problem of proxy colluding, in 
2010. Their major advantages are that the proxy and the 
delegates cannot delegate the decryption right to the others 
without the permission of the public key generator (PKG). 
However, PKG in their scheme can decrypt both of the 
original ciphertext and the re-encrypted ciphertext. This 
means that the transferable problem still cannot be solved. 

In 2015, Wang at al. (2015) proposed a new scheme for 
protecting critical information systems which is based 
Cramer-Shoup encryption scheme. But, it can not achieve 
the delegator’s IND-CCA security for the proxy and the 
delegatee. 

All above schemes do not provide non-transferable 
property or collusion property for the proxy re-encryption 
scheme. For example, the proxy or Bob can collude to get 
the decryption key to anyone. In addition, the re-encryption 
key for the proxy is generated by the trusted private key 
generator (PKG). However, this kind of schemes has the 
key escrow problem which PKG is a malicious and PKG 
can decrypt the original ciphertext or re-encrypted 
ciphertext. Furthermore, PKG can generate many re-
encryption keys for adversary without accessing any right 
from the Alice. This problem is called PKG despotism 
problem. In 2012, He et al. (2012) proposed the  
non-transferable PRE scheme which is suitable for the key 
escrow problem and the PKG despotism problem. Their 
scheme is based on the certificateless cryptography. 

1.1 Motivation 

PRE has many practical applications such as email 
forwarding, health care cloud system and so on. For 
example, health care cloud system is a cloud computing 
service using for storing, maintaining and backing up 
personal health information of the patient. This system acts 
as a third party between physicians and patients. Therefore, 
this system needs to secure for patient’s health records and 
their biometric data. By using PRE techniques, the health 
care cloud system can be secured as in Wang et al. (2017). 

Furthermore, Group discussion of active learning system 
(ALS) (Yamamoto, 2016) can improve by using PRE. 
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In particular, our PRE can be used in secure file sharing 
system. In distributed file sharing system, the third party is 
difficult to be trusted from the confidential point of view. 
Therefore, the distributed file users are desired to apply the 
encryption methods for the confidentiality. The proxy can 
distribute the encrypted file without using the information 
of original data. With group or non-group members, our 
scheme supports to decrypt by using the authority of the 
sender. When a receiver accesses to the proxy to request 
forwarding the ciphertext, the proxy re-encrypt the message 
without learning any information from the original 
ciphertext or key. 

1.2 Comparison with previous works 

We compare some existing PRE schemes with our proposed 
scheme as the following properties (as shown in Table 1). 
Our scheme provides the non-transferable property for both 
the members in the same group or the outsider. Here, we 
enumerate several properties in PRE schemes. 

Table 1 Comparison with previous work 

Property He et al. Ma et al. Ours 

Unidirectional Yes No Yes 
Bidirectional No Yes No 
Proxy-Invisible Yes No Yes 
Collusion-resistance Yes No Yes 
Non-Transferable Yes No Yes 
Non-Transitive Yes Yes Yes 
Multi types of groups No No Yes 

• Unidirectional: ‘delegator Alice to delegatee Bob’ – 
does not allow reverse re-encryption ‘Bob to Alice’. 

• Bidirectional: the re-encryption scheme is reversible. 
The re-encryption key can be used to translate message 
from proxy to delegatee, as well as from delegateee to 
the proxy. 

• Proxy-invisible: although the delegator needs to know 
the existence of proxy for re-encryption step, delegatee 
does not need to know that. We have to determine the 
proxy is invisible for delegator or invisible for 
delegatee. 

• Collusion-resistance: the delegatee and proxy’s 
collusion can receive the output from delegator. But 
they cannot recover the secrete key of the delegator. • 

• Non-transferable: even though the proxy and the 
delegatee Bob devise re-encryption for other person, 
the re-encryption key of rkA → C is impossible to 
produce without the permission. 

• Non-transitive: the proxy cannot generate the 
reencryption key rkA → C based on the re-encryption key 
of Alice to Bob (rkA → B) and re-encryption key of Bob 
to Charlie (rkB → C). 

• Multi types of groups: the proxy allows to participate 
any kind of delegatee wich belongs to the delegator’s 
group or outside of the delegator’s group. For example, 
Alice is a delegator from a group A, Bob is a delegatee 
from the group A and Charlie is from another group B. 
In such kind of situation, PRE scheme provides to 
reencrypt whether delegator and delegatee are group 
members or outsiders. 

1.3 Our contribution 

Our new PRE scheme takes the background idea of non-
transferable PRE scheme (He et al., 2012) to support the 
non-transferable property. We suppose that there are three 
kinds of participants: a delegator i (Alice), a delegatee j 
(Bob) who is the same group with Alice and another 
delegatee j (Charlie) who is from the outside of the group. 
Therefore, we need to think about the non-transferable 
property for both the same group or the outsider. For the 
communication between Alice and Bob, we borrow the idea 
of Ma and Ao (2009) for group signature properties. Alice 
does not need to send her certificate to the proxy or Bob. By 
using delegatee ID from Alice’s and Bob’s public keys, the 
proxy can generate the re-encryption key. At the point of the 
communication of Alice to Charlie, Alice has to send her 
signature (certificate) of the designated ciphertext to 
Charlie. When Charlie sends his public key and the proof of 
Alice signature, the proxy can generate the re-encryption 
key (as shown in Figure 1). The characteristics of our 
proposed scheme are as follow: 

• Any kind of delegatee/delegator can participate in our 
PRE scheme. We support both group or non-group 
members of the delegator. 

• No one can decrypt the original ciphertext without 
getting any permission from the delegator. 

• Proxy cannot re-encrypt the ciphertexts without 
knowing the public key of any delegatee. 

We organise the paper as follows. In Section 2, we prepare 
preliminaries. Section 3 provides the construction of our 
scheme. Section 4 shows the security proof of our scheme. 
In Section 5, we give a conclusion. 

2 Preliminaries 

In this section, we will present some primitives that will be 
used in our scheme. 
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Figure 1 Our PRE scheme (see online version for colours) 

 

 
2.1 Bilinear map 

Definition 3.1. Let G  and TG  be multiplicative cyclic 
groups of prime order p, and g be generator of .G We say 
that TG  has an admissible bilinear map e: ,T× →G G G , if 
the following conditions hold. 

• e(ga, gb) – e(g, g)a, b for all a, b 

• e(g, g) ≠ 1 

• There is an efficient algorithm to compute e(ga,gb) for 
all a, b and g. 

2.2 Assumptions 

Definition 3.2 (computational Diffie-Hellman assumption). 
Given ga and gb for some *, ,qa b Z∈  compute 1.abg ∈G  A 
(T, ε)-CDH attacker in 1G  is a probabilistic machine Ω 
running time T such that 

( )1 ( ) Pr , ,a b ab
cdhSucc g g g g ε⎡ ⎤Ω = Ω = ≥⎣ ⎦
G  

where the probability is taken over the random values a and 
b. The CDH problem is (T, ε) intractable if there is no  
 
 
 
 

(T, ε)-attacker in 1.G  CDH assumption states that it is the 
case for polynomial t and non-negligible e. 

Definition 3.3 (transacted decision augmented bilinear 
Diffie-Hellman exponent assumption). The security of our 
proposed scheme is based on a complexity assumption 
named Truncated q-ABDHE (He et al., 2012) which has 
been proposed by (Libert et al., 2008). Let 

: ( ) Te × →G G G  be a bilinear map, where G  and TG  are 
cyclic groups of large prime order p. Given a vector of q + 3 
elements: 

( ) ( )( )2 3, , , , ,q q qg g g g g+ +′ ′ ∈… Gα α α  

and an element TZ ∈G  as input, output 0 if 

( )2 ,qZ e g g+ ′= α  and output 1 otherwise. And algorithm B 
has advantage ε in solving truncated q-ABDHE if: 

( ) ( ) ( )( )( )
( ) ( )( )

2 1

2 , ,

Pr , , , , , , , 0

Pr , , , , 0

q q q

q qg

B g g g g g e g g

B g g g g Z ε

+ +

+

⎡ ⎤′ ′ ′ =⎣ ⎦

⎡ ⎤′ ′− = ≥⎣ ⎦…

…α α α α

α α α
 

where the probability is over the random choice of 
generators ,g g ′  in ,G  the random choice of α in ,pZ  the 
random choice of TZ ∈G  and the random its consumed by 
B. 
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2.3 Syntax of our PRE scheme 

Our proposed scheme belongs to 13 algorithms. ‘Delegator 
i’ (Alice) owns a message, ‘Delegatee j’ (Bob) is the same 
group with ‘Delegator i’ (Alice) and ‘Delegatee k’ (Charlie) 
is the receiver of the message without same group of 
‘Delegator i’ (Alice). 

• Setup: from the input of the security parameter 1k, the 
public parameters mpk and the master secret key msk 
are generated. 

• Key generation: 
1 Set-secret-value. The algorithm generates a secret 

value which is only known to the user himself. 
2 Partial-private-key. On input a user’s identity ID 

and msk, the algorithm generates a partial private 
key for the user. 

3 Set-private-key. On input the partial private key 
and the secret value, the algorithm outputs the 
whole private key for the user. 

4 Set-public-key. On input a user’s identity ID and a 
secret value, the algorithm generates a public key. 

• Private key correctness check: the algorithm checks the 
correctness of the private key. 

• Encryption: the encryption algorithm takes a public key 
upkA of the delegator Alice and a message m as input, 
outputs a ciphertext CA encrypted under upkA. 

• Alice-decryption (delegator i): the decryption algorithm 
takes a private key uski of the delegator i and a 
ciphertext Ci as input, outputs the message m. 

• Bob-re-encryption key generation: the algorithm 
verifies the delegator j s′  signature and the public key. 
The re-encryption key generation algorithm outputs a 
re-encryption key rkj and other relational values. 

• Bob-partial-decryption-key generation: the algorithm 
checks the correctness of the reencryption key, and 
generates a partial decryption key. 

• Bob-re-encryption: the re-encryption algorithm takes 
re-encryption key rkj and ciphertext Ci as input, outputs 
a re-encrypted ciphertext Cj under upkj. 

• Bob-decryption (delegatee j): the decryption algorithm 
takes the private key uskj of delegatee j, the partial 
decryption key and the ciphertext Ci as input, outputs 
message m. 

• Charlie-re-encryption key generation: the algorithm 
verifies the delegator k s′  ID and the public key. The 
re-encryption key generation algorithm outputs a  
re-encryption key rkk and other relational values. 

• Charlie-partial-decryption-key generation: the 
algorithm checks the correctness of the reencryption 
key, and generates a partial decryption key. 

• Charlie-re-encryption: the re-encryption algorithm 
takes re-encryption key rkk and ciphertext Ci as input, 
outputs a re-encrypted ciphertext Ck under upkk. 

• Charlie-decryption (delegatee k): the decryption 
algorithm takes private key uskk of delegatee k, the 
partial decryption key and ciphertext Ci as input, 
outputs the message m. 

2.4 Security model 

The security against IND-ID-CCA is required in many 
applications. To achieve it, we used the technique of He et 
al. (2012) with a little modification. 

Definition 3.4 (IND-ID-CCA secure). We consider the 
following game between an adversary A and a challenger C. 
Chosen ciphertext security for PRE systems is defined via 
the following game between an adversary A and a 
challenger C. 

• Phase 1: C generates the public parameter and sends it 
to A. A generates queries qi, …, qm, with query qi being 
one of the following: 

( )
( )

( )

Public key extraction / pkextract,  :  for user .

Encryption / encrypt,  ,  .

Partial Private KeyExtraction / pskextract, .
Re-encryption KeyExtraction / (rkextract, , , ) :

or delegator  and del

i i

i j

i

i i

i

ID ID

ID m

ID
ID IDi σ

ID
′

( )

egatee 
 by using signature of .

Decryption / decrypt, , .
Re-encryption / (re-encrypt, , , , ) :

by using signature of .

i i

i i

i i i i

i

ID ID
ID c

ID ID c σ
ID

′

′
 

• Challenge: A submits two plaintexts M0, Mi, ∈ M and 
an identity ( , ).j jID ID′  C selects a random bit  
b ∈ {0, 1}, sets C = Encrypt(params, IDj, Mb), and 
sends C to the adversary as its challenge ciphertext. 

• Phase 2: A is restricted from the following queries. 

0 1( , , ) ( , , ).
( , , ).

( , , )
( , , ) -

.
: {0,1} .

j j

j j

j j

j j

j j

Encrypt ID M and Encrypt ID M
Decrypt ID C

Any pair of queries reextract ID ID and
decrypt ID c where cj is the re encrypted

ciphertext using rk
Guess A outputs b as a guess of b

The advant

′→

′

′

′ ′

′∈

[ ]( ) Pr 1 2cpa
A

age ofadversary A can be defined as

Adv λ b b′= = −

 

The PRE scheme is IND-ID-CCA secure for the adversary A 
if this advantage is negligible. 
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3 Construction of the scheme 

We now construct our PRE scheme which is based on He et 
al.’s (2012) PRE scheme using different type of setting for 
different kind of delegatee. There are a delegator i (Alice) 
who owns a message, a delegatee j (Bob) who is the same 
group with the delegator i (Alice) and a delegatee k 
(Charlie) who is from the different group of delegator i 
(Alice). 

3.1 Setup 

We assume G  and TG  be groups of order p such that p is 
an n-bit prime, and : Te × →G G G  be the bilinear map. 

:{0, 1}* , :I p T pH H ′→ →Z G Z  are secure hash functions. 
The PKG selects four random generators h1, h2, h3, g ∈ G  
and randomly chooses .p∈α Z  It sets g1 = gα. Define the 
message .TM ∈G . The public parameters mpk and master 
secret key msk are given by mpk = (g, g1, h1, h2, h3, H1, H, 

,H ′  M) and msk = α. 

3.2 Key generation 

On input the public key/master secret key pair (mpk, msk) 
and an identity IDi ∈ {0, 1}n of entity i, the PKG computes 
idi = HI(IDi). If idi = α, it aborts. Otherwise, the protocol 
proceeds as follow: 

• Set-secret-value. Entity i selects i pr ∈Z  at random. ri is 
i s′  secret value. 

• Partial-Private-Key-Extract. 

1 A sends 1
irR h=  to PKG, and gives PKG the 

following zero-knowledge proof of knowledge: 

1{ : }ir
iPK r R h=  

2 PKG randomly selects , 2 , 3, ,i i i pr r r′ ∈Z   
and computes 1/( )

, 2( ) ,s ir id
i ih Rg h′′ = =α−  

, 2 , 31/( ) 1/( )
2 , 3 3( ) , ( )i ii ir rid id

ih g h h g− −− −=α α  and sends 
i s′  partial private key , 2 , 2 , 3 , 3, , , , ,i i i i i ir h r h r h′ ′  to i. 

• Set-Private-Key. i computes 1/
,1 ,1/ , ( ) iri i i i ir r r h h′ ′= =  

,1 1/( )
1( ) .i ir idh g− −= α  Then, i s′ private key can be denoted 

as uski = (ri, ri, 1, hi, 1, ri, 2, hi, 2, ri, 3, hi, 3). Similarly, the 
delegatee j s′  private key is denoted as uskj = (rj, rj, 1,  
hj, 1, rj, 2, hj, 2, rj, 3, hj, 3). 

• Set-Public-Key. A publishes her public key upki = (Pi, 1, 
Pi, 2), where ,1 1 ,ir

ip g=  and , 2 .i ir id
ip g=  Anyone can 

verify the validity of upki by checking if the equalities 
,1 1 , 2( , ) ( , ),iid

i ie g p e g p= and 1 1 ,11( , ) ( , )ir
ie h g e h p=  

hold (i.e., 1
irh  can be obtained from PKG). 

3.3 Private key correctness check 

On input (mpk, uskID) and an identity ID ∈ {0, 1}n, i 
computes idi = HI(IDi) and checks whether 

,
, 1( , / ) ( , )iid ri t

i t te h g g e h g g−=  for t = 1, 2, 3. If correct, 
output 1. Otherwise, output 0. 

3.4 Encryption 

[Enc(m, upki) → Ciphertext Ci] 
To encrypt a message Tm∈G  using  

public key, the sender checks whether the equalities 
,1 1 , 2( , ) ( , )iid

i ie g p e g p=  and 1 1 ,11( , ) ( , )ir
ie h g e h p=   

hold. If not, output ⊥ and abort encryption. Otherwise,  
the sender generates a unique randomly-selected  
secret parameter s ∈ Zp, and computes idi = HI(IDi).  
Finally, sender outputs the ciphertext C 
where 1 2 3 4 5 6 ,1 , 2( , , , , , ) ( , ( , ) ,s s

s
A AC C C C C C C p p e g g−= =

( ) ( )
1 3. ( , ) , ( , ) , , ( , )).ss H m s H mm e g h e g g g e g h′ ′− + ββ  We set  

β = H(C1, C2, C3, C4). 

3.5 Alice-descryption (delegator i) 

[Dec(uski Ci) → Message m] 
To decrypt a ciphertext C = (C1, C2, C3, C4, C5, C6)  

using secret key uski, delegator Alice computes β = H(C1, 
C2, C3, C4) and tests whether 5 42( , )e C g C C= β   

and , 2 , 3
1

6 1 , 2 , 3 2( , ) .i Bii
r rri iC e C h h C

+
= ⋅β  If it is not equal, 

outputs ⊥. Else computes ,1
1

3 1 ,1 2( , ) .ii
rrim C e C h C= ⋅ ⋅  If 

( )
4( , )H me g g C′ =  holds, return m, otherwise return ⊥. 

3.6 Bob-re-encryption key generation (delegate-j) 

[ReKeyGen(IDj, upkj) → rkj] 

• Delegatee j (Bob) belongs to the same group of 
delegator i (Alice). Delegatee j (Bob) is only allowed to 
decrypt the messages intended for delegator i (Alice) 
during some specific time period t. To achieve this 
property, the delegator i (Alice) generates a random 
value at t pa ∈Z  for each time period t, where t > 1. at 
will be invalid after the period t. Delegatee j (Bob) sign 
the message and send IDj and upkj to the PKG secure 
channel. Delegator Sign: 

( )

( )

Choose and compute

Compute ,  

Compute
The signature of is ,

i V

z
p

I j

r

z U g

V H ID U

W g
j σ U W

+

∈ =

=

=

=

Z

α
 

• PKG verifies the signature of delegatee j (Bob) to 
identify whether delegatee j (Bob) is is from the same 
group of delegator i (Alice) or not. PKG Verify: 
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( )

1 11

Compute , .
Accept the signature if 

( , ) ( , ) ( , ) .i

I j

r V

V H ID U

e h W e h g e h g

=

= α

 

If verification is success, PKG generates a unique 
randomly-selected secret parameter py∈Z  and computes 

re-encryption key 1( ) mod ,j
i j t

i

id
rk a y p i

id→
−

= + =
−

α
α

 

( )
1 21 1 1( ) , ( ) ,

t

i j j

a y
rj a yr r idr y

ih g j h g j h +′− −′− = =α  and sends rki → j, 
i1, j1, j2 to delegator i. 

3.7 Bob-partial-decryption-key generation 

[PartialDecKeyGen check(rkj) → pdkj] 

• Delegatee j (Bob) sends jh′  to delegator i (Alice) via a 
secure and authenticated channel. 

• Delegator i (Alice) checks whether 
1 1 2( , ) ( , )e h j e j h j′= −  to ensure j1 is a valid value 

which will help delegatee for decryption later. If 
correct, output 1, otherwise, output 0. 

• Delegator i (Alice) checks whether 
( )

1 1 1( ) ( )i j t i i i ji iid id a r r rkr r
ih i h g h g →− ′ ′− −′ ⋅ ⋅ =  to ensure that  

rki → j is a re-encryption key generated properly for 
delegation from her to delegator j (Bob). 

• Delegator i (Alice) sends the re-encryption key rki → j 
(Bob) to Proxy via an authenticated channel. 

• Delegator i (Alice) computes 
1
ir

kh′  and 
1

1
krB  and sends 

them to delegator j (Bob) as partial decryption key. 

3.8 Bob-re-encryption (delegator j) 

[ReEnc(rkj, Ci, upkj) → Ciphertext Cj] 
Proxy computes β = H(C1, C2, C3, C4) and tests whether 
5 42( , ) .e C g C C= β  If it is not equal, output ⊥. Else computes 

( )( )

1

j
i i t

i j j

id
r s id a yrk idC C g→

−
− +

−′ = =
α

α
α  and sends ( 1,C ′  C2, C3, C4, 

C5) to delegatee j (Bob). 

3.9 Bob-decryption (delegatee j) 

[Dec(uskj, pdkj, Cj) → Message m] 
Delegatee j (Bob) computes β = H(C1, C2, C3, C4) and 

tests whether 5 42( , ) .e C g C C= β  If it is not equal, output ⊥. 
Else delegatee j (Bob) computes 
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If ( )
4( , )H me g g C′ =  holds, return m; otherwise return ⊥. 

3.10 Charlie-re-encryption key generation  
(delegatee k) 

[ReKeyGen(IDk, upkk) → rkk] 

• Delegatee k (Charlie) is only allowed to decrypt 
messages intended for delegator i (Alice) during some 
specific time period t. To achieve this property, the 
delegator i (Alice) generates a random value i pa ∈Z  
for each time period t, where i ≥ 1. ai will be invalid 
after the period t. Delegator i (Alice) signs delegatee’s k 
(Charlie) identity IDk, and sends the signature σ, IDk, ai 
to PKG via a secure channel. Delegator Sign: 

( )
Choose  and compute   .
Compute , .

z
p

I k

z U g
V H ID U
∈ =

=

Z
 

• PKG verifies the signature of delegatee k (Charlie) is 
from the outside of delegator i (Alice)’s group. PKG 
verify: 

( )
1 11

Compute  , .

Accept the signature  if ( , ) ( , ) ( , ) .i

I k

r V

V H ID U

σ e h W e h g e h g

=

= α
 

• If verification passes, PKG generates a unique 
randomly-selected secret parameter py∈Z , and 

computes re-encryption key ( k
i k

i

idrk
id→

−
=

−
α
α

 

' ( )
1 11 1) mod , ( ) , ( ) ,

t

i k k k

a y
r rr y r id

t ia y p i h g k h g ′− − −+ = = α   

2 1
a yk h +=  and sends rki → k1, k2 to delegator i. 

3.11 Charlie-partial-decryption-key generation 
(delegatee k). 

[PartialDecKeyGen check(rkk) → pdkk] 

• Delegatee k (Charlie) sends kh′  to delegator i (Alice) 
via a secure and authenticated channel. 
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• Delegator i (Alice) checks whether e(h1, k1) = e(k2, h′  
– k) to ensure k1 is a valid value which will help 
delegatee for decryption later. If correct, output 1, 
otherwise, output 0. 

• Delegator i (Alice) checks whether ( )
1

i k tid id a
ih i−′ ⋅  

1( )i i i kr r rkh g →′−⋅  to ensure that rki → k is a re-encryption 
key generated properly for delegation from her to 
delegatee k. 

• Delegator i (Alice) sends the re-encryption key rki → k to 
Proxy via an authenticated channel. 

• Delegator i (Alice) computes 
1
ir

kh′  and 
1

1
krB  and sends 

them to delegatee k (Alice) as partial decryption key. 

3.12 Charlie-re-encryption (delegatee k) 

[ReEnc(rkk, Ci, uprkk) → Ciphertext Ck] 
Proxy computes β = H(C1, C2, C3, C4) and tests whether 
5 42( , ) .e C g C C= β  If it is not equal, output ⊥. Else computes 

( )( )
1

k
i i t

i k i

idr s id a yrk idC C g→

−
− +

−′ = =
αα
α  and sends ( 1,C′  C2, C3, C4, 

C5) to delegatee k. 

3.13 Charlie-decryption (delegatee k) 

[Dec(uskk, pdkk, Ck) → Message m] 
Delegatee k (Charlie) computes β = H(C1, C2, C3, C4) 

and tests whether 5 42( , ) .e C g C C= β  If it is not equal, output 
⊥. Else delegatee k (Charlie) computes 
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If ( )
4( , )H me g g C′ =  holds, return m; otherwise return ⊥. 

According to the above steps, we conclude that the 
proposed scheme ‘non-transferable PRE’ with group or non-
group membership. 
 
 
 
 
 
 

4 Security 

As mentioned in Section 2, the security model under  
IND-ID-CCA can be proved by the following. 

Theorem 1: Let the truncated decision (t, ε, q)- ABDHE 
assumption holds for (G, GT, e). Then, the above non-
transferable re-encryption scheme is IND-ID-CCA secure 
even when the proxy and the delegatees k [non-group 
member] are colluding. 

Proof: We assume A be a polynomial time adversary who 
breaks the IND-ID-CCA. There is an algorithm B solves the 
truncated decision q-ABDHE problem as follows. B inputs 

2 1( , , , , , , )q qg g g g g Z+′ …  where Z is a random elements. 

Setup: B generates three random polynomials f1(x) ∈ Zp[x], 
f2(x) ∈ Zp[x], f3(x) ∈ Zp[x]. It sets 

1 2 3( ) [ ], ( ) [ ], ( ) [ ].p p pf x Z x f x Z x f x Z x∈ ∈ ∈  It sets 
1 2( ) ( )

2,f fg h g=α α  and 3 ( )
3

fh g= α  by computing them from 
(g, g1, …, gq). It sends the public parameters (g, g1, h1, h2, 
h3) to A. B has a list L to store the entry 〈IDQ, phQ, pshQ, 
shQ) of every user. 

Phase 1: A issues the following queries: 

• (pkextract, IDQ): public key extraction for user IDQ 

• (encrypt, IDQ, mQ): encryption of plaintext for user IDQ 

• (pskextract, IDQ): partial private key extraction for user 
IDQ 

• (rkextract, IDQ, ,QID ′  σQ): re-encryption key extraction 
for delegator IDQ and delegatee IDQ, by using signature 
of IDQ. 

• (decrypt, IDQ, cQ): decryption of ciphertext for IDQ 

• (re-encrypt, IDQ, ,QID ′  cQ, is σQ): re-encryption of 
ciphertext for IDQ to ,QID ′  by using using signature of 
IDQ. 

Note: A cannot issue private key extraction queries PKG 
only knows the partial private key. 

• (pkextract, IDQ): if IDQ = α, B uses α to solve the 
truncated decision q-ABDHE. Otherwise, let FQ, 2(x) = 
(f2(x) – f2(IDQ)) / (x – IDQ) and FQ, 3(x) = (f3(x) – 
f3(IDQ)) / (x – IDQ) be two (q – 1)-degree polynomials. 
B sets the partial  
private key for IDQ to be , 2 , 2 , 3 , 3( , , , , , )Q Q Q Q Q Qr h r h r h′ ′  
which is (f1 (IDQ), 1/( )( ) ,Q Qr IDRg ′− α f2 (IDQ), , 2 ( ) ,QFg α  
f3(IDQ), , 3 ( ) )QFg α  respectively. For i = 2, 3. , ( )Q iFg α  

,( ( ) ( ))/( ) 1/( )( ) .Q ii i Q Q Qrf f ID ID ID
ig h g−− − −= =α α α  Next, B 

computes ,1 /Q Q Qr r r′=  and 1/
,1 ( ) Qr

Q Qh h′=  to complete  
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the private key for IDQ. The private key for IDQ thus 
becomes (rQ, rQ, 1, hQ, 1, rQ, 2, hQ, 2, rQ, 3, hQ, 3). Note that 
this is a valid private key for IDQ since for i = 1, 2, 3, 

(1/ ),
, ( , ) QIDrQ hi

Q i ih h g −−= α  as required. B then 

computes the public key for IDQ as 1( , ( ) ),Q Qr IDrQg g  
stores all these information into L and returns the 
public key to A. 

• (encrypt, IDQ, mQ): if IDQ = α, B uses α to solve the 
truncated decision q-ABDHE. If IDQ is in L, B simply 
extracts the public key in the corresponding entry. 
Otherwise, B generates the public key, partial private 
key and private key for IDQ as in the above, stores them 
into L, encrypts mQ by performing the usual encryption 
algorithm with the public key concerned and returns the 
ciphertext of mQ to A. 

• (pskextract, IDQ): if QID ′ = α  or IDQ = α, B uses α to 
solve the truncated decision q-ABDHE. If IDQ is in L, 
B simply returns the partial private key in the 
corresponding entry. Otherwise, B generates the public 
key, partial private key and private key for IDQ as in the 
above, stores them into L and returns the partial private 
key to A. 

• (rkextract, IDQ, ,QID ′  σQ): if IDQ = α or QID ′ = α,  B 
uses α to solve the truncated decision q-ABDHE. If 
IDQ or QID ′  or both are in L, B extracts the partial 
private key(s) in the corresponding entry (entries). 
Otherwise, B generates the public key, partial private 
key and private key for the identity not in L as in the 
above, stores them into L and uses the partial private 
keys concerned for further processing as follows. B 
computes the re-encryption key Q Qrk ′→  using the usual 
re-encryption key calculation algorithm except that B 
generates the random value σQ on behalf of IDQ and α 
is replaced by a random value (since B does not know 
the value of α). Note that although Q Qrk ′→  is an invalid  
re-encryption key, A cannot verify its correctness since 
it does not possess the private key of IDQ and it cannot 
query it from B either. B does not allow to query again. 

• (decrypt, IDQ, cQ): if IDQ = α, B uses α to solve the 
truncated decision q-ABDHE. If IDQ is in L, B simply 
uses the private key in the corresponding entry to 
decrypt cQ by performing the usual delegator 
decryption algorithm. Otherwise, B generates the public 
key, partial private key and private key for IDQ as in the 
above, stores them into L and uses the private key 
concerned decrypt cQ by performing the usual delegator 
decryption algorithm. 

• (re-encrypt, IDQ, ,QID ′  cQ, σQ): if IDQ = α or IDQ = α, 
B uses α to solve the truncated decision q-ABDHE. If 
IDQ or ,QID ′ or both are in L, B extracts the public and  
 
 
 

private keys in the corresponding entry (entries). 
Otherwise, B generates the public key, partial private 
key and private key for the identity not in L as in the 
above, stores them into L and uses the public and 
private keys concerned for further processing as 
follows. B decrypts cQ using the private key for IDQ by 
performing the usual delegator decryption algorithm 
and then encrypts the plaintext obtained using the 
public key for QID ′  by performing the usual encryption 
algorithm. This ensures that the re-encrypted ciphertext 
is decryptable by the private key for .QID ′  

At the end of Phase 1, A outputs (IDA, M0, M1) where A may 
have queried anything about IDA but must not have queried 
(encrypt, IDA, M0) and (encrypt, IDA, M1) before. If IDA = α, 
B uses α to solve the truncated decision q-ABDHE. If IDA is 
in L, B simply extracts the partial private key in the 
corresponding entry. Otherwise, B computes a partial 
private key ( , 2 , 2 , 3 , 3( , , , , , )A A A A A Ar h r h r h′ ′ for IDA as in the 
above. Next B generates bit c ∈ {0, 1}. Let f4(x) = xq + 2 and 
let F4, A(x) = (f4(x) – f4(IDA)) / (x – IDA) be a polynomial of 
degree q + 1. B continues to set 4 4( ( ) ( )) ,A Af f ID ru g −′= α  

4 , ,
0( , )iq F A i

iv Z e g g=′= × ∏ α  and 1// ( , , 1) ,A Ar r
c Aw M e u h v=  

and ( )( , ) McHt e g g ′=  where F4, A, i is the coefficient of  
xi in ( )4, .xAF  After setting β = H(u, v, w, t), B sets 

( ), 2 , 3 4,1/ ( )
, 2 , 3( , ) , .A A AA cFr rr H M

A Ay e u h h v z g g+ ′′= =
β

αββ  B sends 

cA = (u, v, w, t, z, y) to A as the challenge ciphertext. 

Phase 2: this phase proceeds as in Phase 1. However A is 
restricted from issuing the following queries: 

1 (encrypt, IDA, M0) and (encrypt, IDA, M1). 

2 (decrypt, IDA, cA). 

3 Any pair of queries (rkextract, IDA, IDA) and (decrypt, 
IDA, cA) where cA is the re-encrypted ciphertext using 

.A Ark ′→  

At the end of Phase 2, the adversary A outputs guesses 0,1.c′  
If {0, 1},c′∈  B outputs 0 (indicating that 1( , )).qZ e g g+ ′=  
Otherwise, B outputs 1. 

5 Conclusions 

We attempt to solve the proxy colluding problem for 
multiple type of group communication. Most of the authors 
are made their attention on the PRE scheme which is only 
one user to another user. In this paper, we extend the notion 
of non-transferable PRE scheme which is used for one or 
more group communication. In our scheme, the proxy and 
the delegatees cannot collude because they are unable to 
generate re-encryption key for re-delegating decryption 
right without the original delegator’s help. To the members  
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of different two groups, they can decrypt the ciphertext with 
the help of the proxy by using the delegator’s certificate. 
This new feature will more effective for the distributed 
group communication. 

In future, we plan to be applied at the lightweight device 
such as wireless sensor networks (WANs) (Jaballah et al., 
2015) and the machine type communication (MTC) (Zhang 
et al., 2014) which make more effective by using our 
multiple group PRE scheme. We also leave the open 
problems of finding the secure PRE scheme which is not 
using the certificate. 
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