
20 Int. J. Space-Based and Situated Computing, Vol. 8, No. 1, 2018

Copyright © 2018 Inderscience Enterprises Ltd.

Non-transferable proxy re-encryption for multiple
groups

Ei Mon Cho and Lwin San*
Graduate School of Science and Engineering,
Saitama University,
Saitama, Japan
Email: ei.m.c.749@ms.saitama-u.ac.jp
Email: lwinsan.07@gmail.com
*Corresponding author

Takeshi Koshiba
Faculty of Education and Integrated Arts and Sciences,
Waseda University,
Tokyo, Japan
Email: tkoshiba@waseda.jp

Abstract: In proxy re-encryption (PRE) scheme, the message is sent by a delegator to a
delegatee with help of the trusted third party proxy without knowing the existing plaintext. It is
known that non-transferable PRE schemes solve some problems of the naive PRE schemes.
Some non-transferable PRE scheme is extended to group-based schemes, where the proxy diverts
a ciphertext for a group into another group, but the existing schemes have the proxy colluding
problem. To resolve the proxy colluding problem for group-based PRE schemes, we propose a
non-transferable PRE scheme for multiple groups. In our scheme, there are three sub-processes,
which are based on a non-transferable PRE scheme and a group signature. We show that our
scheme provides the security for a delegator Alice, a delegatee Bob in the same group with Alice,
and another delegatee Charlie in a different group from Alice.

Keywords: proxy re-encryption; PRE; non-transferability; group signature; multiple groups.

Reference to this paper should be made as follows: Cho, E.M., San, L. and Koshiba, T. (2018)
‘Non-transferable proxy re-encryption for multiple groups’, Int. J. Space-Based and Situated
Computing, Vol. 8, No. 1, pp.20–29.

Biographical notes: Ei Mon Cho received her Master degree in Computer Science from the
University of Computer Studies, Yangon in 2011. She is currently a PhD student in Saitama
University. Her interests is cryptography, security, cloud computing and big data analysis.

Lwin San received his Master’s of Engineering from the Saitama University. His current research
interests are the proxy re-encryption, cloud computing and cryptography.

Takeshi Koshiba received his PhD degree in Computer Science from the Tokyo Institute of
Technology in 2001. He was a Professor at the Saitama University until March 2017. He has
been a Professor at the Faculty of Education and Integrated Arts and Sciences, Waseda
University since April 2017. His current interests include theory of cryptography, quantum
computation and computational complexity theory.

This paper is a revised and expanded version of a paper entitled ‘Secure non-transferable proxy
re-encryption for group membership and non-membership’ presented at the 8th International
Workshop on Trustworthy Computing and Security/TwCSec-2017, Ryerson University, Toronto,
Canada, 24–26 August 2017.

1 Introduction

Proxy re-encryption (PRE) is a public key cryptosystem
which allows a semi-trusted proxy to transform a ciphertext
encrypted under one key into another ciphertext of the same
plaintext under another key, without revealing any
information of the plaintext. The concept of the proxy

cryptosystem which is also called proxy decryption, is
introduced by Mambo and Okamoto (1997). A proxy
decryptor decrypts the encrypted ciphertext by Alice’s
public key on behalf of Alice. In 1998, Blaze et al. (1998)
proposed the notion of PRE which is similar to the proxy
cryptosystem. In PRE, the proxy converts Alice’s ciphertext

 Non-transferable proxy re-encryption for multiple groups 21

to a new ciphertext for Bob without exposing the plaintext.
Thus, the proxy should be key independent to avoid
compromising the private keys of the sender (Alice) and the
receiver (Bob).

The scheme is only useful when the mutual trust
relationship exists between Alice and Bob. In the PRE
scheme, a proxy with re-encryption keys can change a
ciphertext for Alice (a delegator) into another ciphertext of
the same plaintext for Bob (a delegatee). The proxy cannot
get any information about the plaintext or the private key
(Blaze et al., 1998; Canetti and Hohenberger, 2007; Guo
and Hu, 2012; Phong et al., 2016).

The PRE scheme can be classified into two types:
unidirectional PRE schemes and bidirectional PRE schemes.
In the unidirectional PRE (Ivan and Dodis 2003), Alice can
delegate to Bob without having to delegate to Alice without
any secret key of Bob. It only requires the secret key of
Alice and the public key of Bob to discover a re-encryption
key from Alice to Bob. It does not allow Bob to Alice (the
reverse direction).

In 2010, Matsuda et al. (2010) proposed a bidirectional
PRE scheme without bilinear maps. The re-encryption key
to converting ciphertext from Alice to Bob can be also used
to translate from Bob to Alice. Canetti and Hohenberger
(Canetti and Hohenberger, 2007) proposed the CCA
(chosen ciphertext attack) secure bidirectional multi-hop
PRE scheme in the standard model by using the bilinear
maps. A bidirectional single-hop PRE scheme without
bilinear maps is considered by Deng et al. in 2008 and then
it is also CCA secure in random oracle model.

Bidirectional PRE schemes have attracted much
attention from the cryptography community (Ateniese et al.,
2006; Blaze et al., 1998; Guo et al., 2015; Ivan and Dodis,
2003; Libert and Vergnaud, 2008; Niu et al., 2009; Wang
et al., 2010) because they have many interesting and useful
applications, such as the e-mail forwarding, the encrypted
files distribution, the digital rights management (Nuez et al.,
2015) and the cloud data sharing (Fan and Liu, 2016).

In 2007, Matsuo (2007) proposed two Identity-based
Re-encryption schemes where one is the transformation
from ciphertexts encrypted based on a traditional
certificate-based public key into the ciphertexts (CBE-IBE)
and the other one is the transformation from ciphertexts
encrypted in IBE manner into the different ciphertexts
(IBE-IBE). However, Wang et al. (2010) gave two types of
attacks, which show that the identity based PRE schemes
(CBE-IBE and IBE-IBE) are insecure.

There is another type of PRE scheme which is called
group-based PRE. Group communication becomes popular
in many applications. Generally speaking, two groups are
supposed: a sender group and a receiver group. Any
member from the sender group can encrypt a message and
send to the designated receiver group. Any member from
the designated receiver group can decrypt the ciphertext.
However, there have some problems such as PRE or
forwarding message. For example, by dividing tasks among
a group A and another group B, an encrypted message from
the group A should be allowed to decrypt by the group B.

Such kind of scenarios is supported by the group-based PRE
scheme, which was first proposed by Ma and Ao (2009).
Their scheme is bidirectional proxy re-encryption scheme.
In their scheme, a message is sent from the group A to the
group B, any member from the group B can decrypt the
ciphertext. And the proxy allows the reverse direction.
Because re-encryption key is generated by using the private
key of the group A and the group B.

In 2006, Ateniese (2006) proposed a PRE scheme which
supports unidirectional PRE and uses the delegator’s private
key for protecting the collusion of a proxy and a delegatee.
However, this scheme is lacking the non-transferable
property. This problem was first addressed by Libert in
2008. The proxy and delegatee are quite difficult to protect
from colluding. Libert et al. solved the problem instead of
preventing the collision of proxy and delegatee, by using
traceable PRE. However, it cannot prevent the re-delegation
of the proxy. Wang et al. (2010) proposed ‘identity-based
PRE scheme’ to solve the problem of proxy colluding, in
2010. Their major advantages are that the proxy and the
delegates cannot delegate the decryption right to the others
without the permission of the public key generator (PKG).
However, PKG in their scheme can decrypt both of the
original ciphertext and the re-encrypted ciphertext. This
means that the transferable problem still cannot be solved.

In 2015, Wang at al. (2015) proposed a new scheme for
protecting critical information systems which is based
Cramer-Shoup encryption scheme. But, it can not achieve
the delegator’s IND-CCA security for the proxy and the
delegatee.

All above schemes do not provide non-transferable
property or collusion property for the proxy re-encryption
scheme. For example, the proxy or Bob can collude to get
the decryption key to anyone. In addition, the re-encryption
key for the proxy is generated by the trusted private key
generator (PKG). However, this kind of schemes has the
key escrow problem which PKG is a malicious and PKG
can decrypt the original ciphertext or re-encrypted
ciphertext. Furthermore, PKG can generate many re-
encryption keys for adversary without accessing any right
from the Alice. This problem is called PKG despotism
problem. In 2012, He et al. (2012) proposed the
non-transferable PRE scheme which is suitable for the key
escrow problem and the PKG despotism problem. Their
scheme is based on the certificateless cryptography.

1.1 Motivation

PRE has many practical applications such as email
forwarding, health care cloud system and so on. For
example, health care cloud system is a cloud computing
service using for storing, maintaining and backing up
personal health information of the patient. This system acts
as a third party between physicians and patients. Therefore,
this system needs to secure for patient’s health records and
their biometric data. By using PRE techniques, the health
care cloud system can be secured as in Wang et al. (2017).

Furthermore, Group discussion of active learning system
(ALS) (Yamamoto, 2016) can improve by using PRE.

22 E.M. Cho et al.

In particular, our PRE can be used in secure file sharing
system. In distributed file sharing system, the third party is
difficult to be trusted from the confidential point of view.
Therefore, the distributed file users are desired to apply the
encryption methods for the confidentiality. The proxy can
distribute the encrypted file without using the information
of original data. With group or non-group members, our
scheme supports to decrypt by using the authority of the
sender. When a receiver accesses to the proxy to request
forwarding the ciphertext, the proxy re-encrypt the message
without learning any information from the original
ciphertext or key.

1.2 Comparison with previous works

We compare some existing PRE schemes with our proposed
scheme as the following properties (as shown in Table 1).
Our scheme provides the non-transferable property for both
the members in the same group or the outsider. Here, we
enumerate several properties in PRE schemes.

Table 1 Comparison with previous work

Property He et al. Ma et al. Ours

Unidirectional Yes No Yes
Bidirectional No Yes No
Proxy-Invisible Yes No Yes
Collusion-resistance Yes No Yes
Non-Transferable Yes No Yes
Non-Transitive Yes Yes Yes
Multi types of groups No No Yes

• Unidirectional: ‘delegator Alice to delegatee Bob’ –
does not allow reverse re-encryption ‘Bob to Alice’.

• Bidirectional: the re-encryption scheme is reversible.
The re-encryption key can be used to translate message
from proxy to delegatee, as well as from delegateee to
the proxy.

• Proxy-invisible: although the delegator needs to know
the existence of proxy for re-encryption step, delegatee
does not need to know that. We have to determine the
proxy is invisible for delegator or invisible for
delegatee.

• Collusion-resistance: the delegatee and proxy’s
collusion can receive the output from delegator. But
they cannot recover the secrete key of the delegator. •

• Non-transferable: even though the proxy and the
delegatee Bob devise re-encryption for other person,
the re-encryption key of rkA → C is impossible to
produce without the permission.

• Non-transitive: the proxy cannot generate the
reencryption key rkA → C based on the re-encryption key
of Alice to Bob (rkA → B) and re-encryption key of Bob
to Charlie (rkB → C).

• Multi types of groups: the proxy allows to participate
any kind of delegatee wich belongs to the delegator’s
group or outside of the delegator’s group. For example,
Alice is a delegator from a group A, Bob is a delegatee
from the group A and Charlie is from another group B.
In such kind of situation, PRE scheme provides to
reencrypt whether delegator and delegatee are group
members or outsiders.

1.3 Our contribution

Our new PRE scheme takes the background idea of non-
transferable PRE scheme (He et al., 2012) to support the
non-transferable property. We suppose that there are three
kinds of participants: a delegator i (Alice), a delegatee j
(Bob) who is the same group with Alice and another
delegatee j (Charlie) who is from the outside of the group.
Therefore, we need to think about the non-transferable
property for both the same group or the outsider. For the
communication between Alice and Bob, we borrow the idea
of Ma and Ao (2009) for group signature properties. Alice
does not need to send her certificate to the proxy or Bob. By
using delegatee ID from Alice’s and Bob’s public keys, the
proxy can generate the re-encryption key. At the point of the
communication of Alice to Charlie, Alice has to send her
signature (certificate) of the designated ciphertext to
Charlie. When Charlie sends his public key and the proof of
Alice signature, the proxy can generate the re-encryption
key (as shown in Figure 1). The characteristics of our
proposed scheme are as follow:

• Any kind of delegatee/delegator can participate in our
PRE scheme. We support both group or non-group
members of the delegator.

• No one can decrypt the original ciphertext without
getting any permission from the delegator.

• Proxy cannot re-encrypt the ciphertexts without
knowing the public key of any delegatee.

We organise the paper as follows. In Section 2, we prepare
preliminaries. Section 3 provides the construction of our
scheme. Section 4 shows the security proof of our scheme.
In Section 5, we give a conclusion.

2 Preliminaries

In this section, we will present some primitives that will be
used in our scheme.

 Non-transferable proxy re-encryption for multiple groups 23

Figure 1 Our PRE scheme (see online version for colours)

2.1 Bilinear map

Definition 3.1. Let G and TG be multiplicative cyclic
groups of prime order p, and g be generator of .G We say
that TG has an admissible bilinear map e: ,T× →G G G , if
the following conditions hold.

• e(ga, gb) – e(g, g)a, b for all a, b

• e(g, g) ≠ 1

• There is an efficient algorithm to compute e(ga,gb) for
all a, b and g.

2.2 Assumptions

Definition 3.2 (computational Diffie-Hellman assumption).
Given ga and gb for some *, ,qa b Z∈ compute 1.abg ∈G A
(T, ε)-CDH attacker in 1G is a probabilistic machine Ω
running time T such that

()1 () Pr , ,a b ab
cdhSucc g g g g ε⎡ ⎤Ω = Ω = ≥⎣ ⎦
G

where the probability is taken over the random values a and
b. The CDH problem is (T, ε) intractable if there is no

(T, ε)-attacker in 1.G CDH assumption states that it is the
case for polynomial t and non-negligible e.

Definition 3.3 (transacted decision augmented bilinear
Diffie-Hellman exponent assumption). The security of our
proposed scheme is based on a complexity assumption
named Truncated q-ABDHE (He et al., 2012) which has
been proposed by (Libert et al., 2008). Let

: () Te × →G G G be a bilinear map, where G and TG are
cyclic groups of large prime order p. Given a vector of q + 3
elements:

() ()()2 3, , , , ,q q qg g g g g+ +′ ′ ∈… Gα α α

and an element TZ ∈G as input, output 0 if

()2 ,qZ e g g+ ′= α and output 1 otherwise. And algorithm B
has advantage ε in solving truncated q-ABDHE if:

() () ()()()
() ()()

2 1

2 , ,

Pr , , , , , , , 0

Pr , , , , 0

q q q

q qg

B g g g g g e g g

B g g g g Z ε

+ +

+

⎡ ⎤′ ′ ′ =⎣ ⎦

⎡ ⎤′ ′− = ≥⎣ ⎦…

…α α α α

α α α

where the probability is over the random choice of
generators ,g g ′ in ,G the random choice of α in ,pZ the
random choice of TZ ∈G and the random its consumed by
B.

24 E.M. Cho et al.

2.3 Syntax of our PRE scheme

Our proposed scheme belongs to 13 algorithms. ‘Delegator
i’ (Alice) owns a message, ‘Delegatee j’ (Bob) is the same
group with ‘Delegator i’ (Alice) and ‘Delegatee k’ (Charlie)
is the receiver of the message without same group of
‘Delegator i’ (Alice).

• Setup: from the input of the security parameter 1k, the
public parameters mpk and the master secret key msk
are generated.

• Key generation:
1 Set-secret-value. The algorithm generates a secret

value which is only known to the user himself.
2 Partial-private-key. On input a user’s identity ID

and msk, the algorithm generates a partial private
key for the user.

3 Set-private-key. On input the partial private key
and the secret value, the algorithm outputs the
whole private key for the user.

4 Set-public-key. On input a user’s identity ID and a
secret value, the algorithm generates a public key.

• Private key correctness check: the algorithm checks the
correctness of the private key.

• Encryption: the encryption algorithm takes a public key
upkA of the delegator Alice and a message m as input,
outputs a ciphertext CA encrypted under upkA.

• Alice-decryption (delegator i): the decryption algorithm
takes a private key uski of the delegator i and a
ciphertext Ci as input, outputs the message m.

• Bob-re-encryption key generation: the algorithm
verifies the delegator j s′ signature and the public key.
The re-encryption key generation algorithm outputs a
re-encryption key rkj and other relational values.

• Bob-partial-decryption-key generation: the algorithm
checks the correctness of the reencryption key, and
generates a partial decryption key.

• Bob-re-encryption: the re-encryption algorithm takes
re-encryption key rkj and ciphertext Ci as input, outputs
a re-encrypted ciphertext Cj under upkj.

• Bob-decryption (delegatee j): the decryption algorithm
takes the private key uskj of delegatee j, the partial
decryption key and the ciphertext Ci as input, outputs
message m.

• Charlie-re-encryption key generation: the algorithm
verifies the delegator k s′ ID and the public key. The
re-encryption key generation algorithm outputs a
re-encryption key rkk and other relational values.

• Charlie-partial-decryption-key generation: the
algorithm checks the correctness of the reencryption
key, and generates a partial decryption key.

• Charlie-re-encryption: the re-encryption algorithm
takes re-encryption key rkk and ciphertext Ci as input,
outputs a re-encrypted ciphertext Ck under upkk.

• Charlie-decryption (delegatee k): the decryption
algorithm takes private key uskk of delegatee k, the
partial decryption key and ciphertext Ci as input,
outputs the message m.

2.4 Security model

The security against IND-ID-CCA is required in many
applications. To achieve it, we used the technique of He et
al. (2012) with a little modification.

Definition 3.4 (IND-ID-CCA secure). We consider the
following game between an adversary A and a challenger C.
Chosen ciphertext security for PRE systems is defined via
the following game between an adversary A and a
challenger C.

• Phase 1: C generates the public parameter and sends it
to A. A generates queries qi, …, qm, with query qi being
one of the following:

()
()

()

Public key extraction / pkextract, : for user .

Encryption / encrypt, , .

Partial Private KeyExtraction / pskextract, .
Re-encryption KeyExtraction / (rkextract, , ,) :

or delegator and del

i i

i j

i

i i

i

ID ID

ID m

ID
ID IDi σ

ID
′

()

egatee
 by using signature of .

Decryption / decrypt, , .
Re-encryption / (re-encrypt, , , ,) :

by using signature of .

i i

i i

i i i i

i

ID ID
ID c

ID ID c σ
ID

′

′

• Challenge: A submits two plaintexts M0, Mi, ∈ M and
an identity (,).j jID ID′ C selects a random bit
b ∈ {0, 1}, sets C = Encrypt(params, IDj, Mb), and
sends C to the adversary as its challenge ciphertext.

• Phase 2: A is restricted from the following queries.

0 1(, ,) (, ,).
(, ,).

(, ,)
(, ,) -

.
: {0,1} .

j j

j j

j j

j j

j j

Encrypt ID M and Encrypt ID M
Decrypt ID C

Any pair of queries reextract ID ID and
decrypt ID c where cj is the re encrypted

ciphertext using rk
Guess A outputs b as a guess of b

The advant

′→

′

′

′ ′

′∈

[]() Pr 1 2cpa
A

age ofadversary A can be defined as

Adv λ b b′= = −

The PRE scheme is IND-ID-CCA secure for the adversary A
if this advantage is negligible.

 Non-transferable proxy re-encryption for multiple groups 25

3 Construction of the scheme

We now construct our PRE scheme which is based on He et
al.’s (2012) PRE scheme using different type of setting for
different kind of delegatee. There are a delegator i (Alice)
who owns a message, a delegatee j (Bob) who is the same
group with the delegator i (Alice) and a delegatee k
(Charlie) who is from the different group of delegator i
(Alice).

3.1 Setup

We assume G and TG be groups of order p such that p is
an n-bit prime, and : Te × →G G G be the bilinear map.

:{0, 1}* , :I p T pH H ′→ →Z G Z are secure hash functions.
The PKG selects four random generators h1, h2, h3, g ∈ G
and randomly chooses .p∈α Z It sets g1 = gα. Define the
message .TM ∈G . The public parameters mpk and master
secret key msk are given by mpk = (g, g1, h1, h2, h3, H1, H,

,H ′ M) and msk = α.

3.2 Key generation

On input the public key/master secret key pair (mpk, msk)
and an identity IDi ∈ {0, 1}n of entity i, the PKG computes
idi = HI(IDi). If idi = α, it aborts. Otherwise, the protocol
proceeds as follow:

• Set-secret-value. Entity i selects i pr ∈Z at random. ri is
i s′ secret value.

• Partial-Private-Key-Extract.

1 A sends 1
irR h= to PKG, and gives PKG the

following zero-knowledge proof of knowledge:

1{ : }ir
iPK r R h=

2 PKG randomly selects , 2 , 3, ,i i i pr r r′ ∈Z
and computes 1/()

, 2() ,s ir id
i ih Rg h′′ = =α−

, 2 , 31/() 1/()
2 , 3 3() , ()i ii ir rid id

ih g h h g− −− −=α α and sends
i s′ partial private key , 2 , 2 , 3 , 3, , , , ,i i i i i ir h r h r h′ ′ to i.

• Set-Private-Key. i computes 1/
,1 ,1/ , () iri i i i ir r r h h′ ′= =

,1 1/()
1() .i ir idh g− −= α Then, i s′ private key can be denoted

as uski = (ri, ri, 1, hi, 1, ri, 2, hi, 2, ri, 3, hi, 3). Similarly, the
delegatee j s′ private key is denoted as uskj = (rj, rj, 1,
hj, 1, rj, 2, hj, 2, rj, 3, hj, 3).

• Set-Public-Key. A publishes her public key upki = (Pi, 1,
Pi, 2), where ,1 1 ,ir

ip g= and , 2 .i ir id
ip g= Anyone can

verify the validity of upki by checking if the equalities
,1 1 , 2(,) (,),iid

i ie g p e g p= and 1 1 ,11(,) (,)ir
ie h g e h p=

hold (i.e., 1
irh can be obtained from PKG).

3.3 Private key correctness check

On input (mpk, uskID) and an identity ID ∈ {0, 1}n, i
computes idi = HI(IDi) and checks whether

,
, 1(, /) (,)iid ri t

i t te h g g e h g g−= for t = 1, 2, 3. If correct,
output 1. Otherwise, output 0.

3.4 Encryption

[Enc(m, upki) → Ciphertext Ci]
To encrypt a message Tm∈G using

public key, the sender checks whether the equalities
,1 1 , 2(,) (,)iid

i ie g p e g p= and 1 1 ,11(,) (,)ir
ie h g e h p=

hold. If not, output ⊥ and abort encryption. Otherwise,
the sender generates a unique randomly-selected
secret parameter s ∈ Zp, and computes idi = HI(IDi).
Finally, sender outputs the ciphertext C
where 1 2 3 4 5 6 ,1 , 2(, , , , ,) (, (,) ,s s

s
A AC C C C C C C p p e g g−= =

() ()
1 3. (,) , (,) , , (,)).ss H m s H mm e g h e g g g e g h′ ′− + ββ We set

β = H(C1, C2, C3, C4).

3.5 Alice-descryption (delegator i)

[Dec(uski Ci) → Message m]
To decrypt a ciphertext C = (C1, C2, C3, C4, C5, C6)

using secret key uski, delegator Alice computes β = H(C1,
C2, C3, C4) and tests whether 5 42(,)e C g C C= β

and , 2 , 3
1

6 1 , 2 , 3 2(,) .i Bii
r rri iC e C h h C

+
= ⋅β If it is not equal,

outputs ⊥. Else computes ,1
1

3 1 ,1 2(,) .ii
rrim C e C h C= ⋅ ⋅ If

()
4(,)H me g g C′ = holds, return m, otherwise return ⊥.

3.6 Bob-re-encryption key generation (delegate-j)

[ReKeyGen(IDj, upkj) → rkj]

• Delegatee j (Bob) belongs to the same group of
delegator i (Alice). Delegatee j (Bob) is only allowed to
decrypt the messages intended for delegator i (Alice)
during some specific time period t. To achieve this
property, the delegator i (Alice) generates a random
value at t pa ∈Z for each time period t, where t > 1. at
will be invalid after the period t. Delegatee j (Bob) sign
the message and send IDj and upkj to the PKG secure
channel. Delegator Sign:

()

()

Choose and compute

Compute ,

Compute
The signature of is ,

i V

z
p

I j

r

z U g

V H ID U

W g
j σ U W

+

∈ =

=

=

=

Z

α

• PKG verifies the signature of delegatee j (Bob) to
identify whether delegatee j (Bob) is is from the same
group of delegator i (Alice) or not. PKG Verify:

26 E.M. Cho et al.

()

1 11

Compute , .
Accept the signature if

(,) (,) (,) .i

I j

r V

V H ID U

e h W e h g e h g

=

= α

If verification is success, PKG generates a unique
randomly-selected secret parameter py∈Z and computes

re-encryption key 1() mod ,j
i j t

i

id
rk a y p i

id→
−

= + =
−

α
α

()
1 21 1 1() , () ,

t

i j j

a y
rj a yr r idr y

ih g j h g j h +′− −′− = =α and sends rki → j,
i1, j1, j2 to delegator i.

3.7 Bob-partial-decryption-key generation

[PartialDecKeyGen check(rkj) → pdkj]

• Delegatee j (Bob) sends jh′ to delegator i (Alice) via a
secure and authenticated channel.

• Delegator i (Alice) checks whether
1 1 2(,) (,)e h j e j h j′= − to ensure j1 is a valid value

which will help delegatee for decryption later. If
correct, output 1, otherwise, output 0.

• Delegator i (Alice) checks whether
()

1 1 1() ()i j t i i i ji iid id a r r rkr r
ih i h g h g →− ′ ′− −′ ⋅ ⋅ = to ensure that

rki → j is a re-encryption key generated properly for
delegation from her to delegator j (Bob).

• Delegator i (Alice) sends the re-encryption key rki → j
(Bob) to Proxy via an authenticated channel.

• Delegator i (Alice) computes
1
ir

kh′ and
1

1
krB and sends

them to delegator j (Bob) as partial decryption key.

3.8 Bob-re-encryption (delegator j)

[ReEnc(rkj, Ci, upkj) → Ciphertext Cj]
Proxy computes β = H(C1, C2, C3, C4) and tests whether
5 42(,) .e C g C C= β If it is not equal, output ⊥. Else computes

()()

1

j
i i t

i j j

id
r s id a yrk idC C g→

−
− +

−′ = =
α

α
α and sends (1,C ′ C2, C3, C4,

C5) to delegatee j (Bob).

3.9 Bob-decryption (delegatee j)

[Dec(uskj, pdkj, Cj) → Message m]
Delegatee j (Bob) computes β = H(C1, C2, C3, C4) and

tests whether 5 42(,) .e C g C C= β If it is not equal, output ⊥.
Else delegatee j (Bob) computes

() ()()
() ()()

()
()() ()

() ()()()
()

()()

, 1

, 1

,1
1

, 1 ,

1 , 1/
2 2

3 1 , 1
1 1

1

1 ,1
3

,

1

3 1

,

,

, (,)

, (,)

i j j

i j

j
i i

riji i

a yt
rj riidi i j

j
i

j ji j

r r r
j

r r

id
r s id rr sid id j

r s id h g

id
s id

r s rid id

e C h C
C

e C j

e g h g e g g
C

e g

C e g h g e g g

−
−

−⎛ ⎞
− ⎜ ⎟ −−⎝ ⎠ −

−

−⎛ ⎞
− ⎜ ⎟ − ∗−⎝ ⎠ −

′ ′

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=

⎢ ⎥
⎢ ⎥⎣ ⎦
⎛ ⎞
⎜ ⎟= ⎝ ⎠

α

α
α

α α

α

α
α

α α

() () ()()()
1

,1
1

,1
1 1, , (,)j jj j

s g id srr idm e g h e g h g e g g
m

− − − −= ⋅

=

α α

If ()
4(,)H me g g C′ = holds, return m; otherwise return ⊥.

3.10 Charlie-re-encryption key generation
(delegatee k)

[ReKeyGen(IDk, upkk) → rkk]

• Delegatee k (Charlie) is only allowed to decrypt
messages intended for delegator i (Alice) during some
specific time period t. To achieve this property, the
delegator i (Alice) generates a random value i pa ∈Z
for each time period t, where i ≥ 1. ai will be invalid
after the period t. Delegator i (Alice) signs delegatee’s k
(Charlie) identity IDk, and sends the signature σ, IDk, ai
to PKG via a secure channel. Delegator Sign:

()
Choose and compute .
Compute , .

z
p

I k

z U g
V H ID U
∈ =

=

Z

• PKG verifies the signature of delegatee k (Charlie) is
from the outside of delegator i (Alice)’s group. PKG
verify:

()
1 11

Compute , .

Accept the signature if (,) (,) (,) .i

I k

r V

V H ID U

σ e h W e h g e h g

=

= α

• If verification passes, PKG generates a unique
randomly-selected secret parameter py∈Z , and

computes re-encryption key (k
i k

i

idrk
id→

−
=

−
α
α

' ()
1 11 1) mod , () , () ,

t

i k k k

a y
r rr y r id

t ia y p i h g k h g ′− − −+ = = α

2 1
a yk h += and sends rki → k1, k2 to delegator i.

3.11 Charlie-partial-decryption-key generation
(delegatee k).

[PartialDecKeyGen check(rkk) → pdkk]

• Delegatee k (Charlie) sends kh′ to delegator i (Alice)
via a secure and authenticated channel.

 Non-transferable proxy re-encryption for multiple groups 27

• Delegator i (Alice) checks whether e(h1, k1) = e(k2, h′
– k) to ensure k1 is a valid value which will help
delegatee for decryption later. If correct, output 1,
otherwise, output 0.

• Delegator i (Alice) checks whether ()
1

i k tid id a
ih i−′ ⋅

1()i i i kr r rkh g →′−⋅ to ensure that rki → k is a re-encryption
key generated properly for delegation from her to
delegatee k.

• Delegator i (Alice) sends the re-encryption key rki → k to
Proxy via an authenticated channel.

• Delegator i (Alice) computes
1
ir

kh′ and
1

1
krB and sends

them to delegatee k (Alice) as partial decryption key.

3.12 Charlie-re-encryption (delegatee k)

[ReEnc(rkk, Ci, uprkk) → Ciphertext Ck]
Proxy computes β = H(C1, C2, C3, C4) and tests whether
5 42(,) .e C g C C= β If it is not equal, output ⊥. Else computes

()()
1

k
i i t

i k i

idr s id a yrk idC C g→

−
− +

−′ = =
αα
α and sends (1,C′ C2, C3, C4,

C5) to delegatee k.

3.13 Charlie-decryption (delegatee k)

[Dec(uskk, pdkk, Ck) → Message m]
Delegatee k (Charlie) computes β = H(C1, C2, C3, C4)

and tests whether 5 42(,) .e C g C C= β If it is not equal, output
⊥. Else delegatee k (Charlie) computes

() ()()
() ()()

()
()() ()

() ()()()
()

()()

, 1

, 1

,1
1

,1

1 , 1/
2 2

3 1 , 1
1 1

1

1 ,1
3

,

1
,1

3 1

,

,

, (,)

, (,)

ki k

i j

k
i i

riki k

a yt
rj riidi i k

k
i

kki k

rr r
k

r r

idr s id rr sid id k

r s id h g

ids id
s rrid id

e C h C
C

e C j

e g h g e g g
C

e g

C e g h g e g g

−
− +

−⎛ ⎞− ⎜ ⎟ −−⎝ ⎠ −

−

−⎛ ⎞− ⎜ ⎟ ∗−−⎝ ⎠ −

′ ′

⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥
⎣ ⎦
⎛ ⎞⎜ ⎟= ⎝ ⎠

α

αα
α α

α

αα
α α

() () ()()(), 1 , 1
1

1 1, , (,)j kk k
s r srg id idm e g h e g h g e g g

m

− −− −= ⋅

=

α α

If ()
4(,)H me g g C′ = holds, return m; otherwise return ⊥.

According to the above steps, we conclude that the
proposed scheme ‘non-transferable PRE’ with group or non-
group membership.

4 Security

As mentioned in Section 2, the security model under
IND-ID-CCA can be proved by the following.

Theorem 1: Let the truncated decision (t, ε, q)- ABDHE
assumption holds for (G, GT, e). Then, the above non-
transferable re-encryption scheme is IND-ID-CCA secure
even when the proxy and the delegatees k [non-group
member] are colluding.

Proof: We assume A be a polynomial time adversary who
breaks the IND-ID-CCA. There is an algorithm B solves the
truncated decision q-ABDHE problem as follows. B inputs

2 1(, , , , , ,)q qg g g g g Z+′ … where Z is a random elements.

Setup: B generates three random polynomials f1(x) ∈ Zp[x],
f2(x) ∈ Zp[x], f3(x) ∈ Zp[x]. It sets

1 2 3() [], () [], () [].p p pf x Z x f x Z x f x Z x∈ ∈ ∈ It sets
1 2() ()

2,f fg h g=α α and 3 ()
3

fh g= α by computing them from
(g, g1, …, gq). It sends the public parameters (g, g1, h1, h2,
h3) to A. B has a list L to store the entry 〈IDQ, phQ, pshQ,
shQ) of every user.

Phase 1: A issues the following queries:

• (pkextract, IDQ): public key extraction for user IDQ

• (encrypt, IDQ, mQ): encryption of plaintext for user IDQ

• (pskextract, IDQ): partial private key extraction for user
IDQ

• (rkextract, IDQ, ,QID ′ σQ): re-encryption key extraction
for delegator IDQ and delegatee IDQ, by using signature
of IDQ.

• (decrypt, IDQ, cQ): decryption of ciphertext for IDQ

• (re-encrypt, IDQ, ,QID ′ cQ, is σQ): re-encryption of
ciphertext for IDQ to ,QID ′ by using using signature of
IDQ.

Note: A cannot issue private key extraction queries PKG
only knows the partial private key.

• (pkextract, IDQ): if IDQ = α, B uses α to solve the
truncated decision q-ABDHE. Otherwise, let FQ, 2(x) =
(f2(x) – f2(IDQ)) / (x – IDQ) and FQ, 3(x) = (f3(x) –
f3(IDQ)) / (x – IDQ) be two (q – 1)-degree polynomials.
B sets the partial
private key for IDQ to be , 2 , 2 , 3 , 3(, , , , ,)Q Q Q Q Q Qr h r h r h′ ′
which is (f1 (IDQ), 1/()() ,Q Qr IDRg ′− α f2 (IDQ), , 2 () ,QFg α
f3(IDQ), , 3 ())QFg α respectively. For i = 2, 3. , ()Q iFg α

,(() ())/() 1/()() .Q ii i Q Q Qrf f ID ID ID
ig h g−− − −= =α α α Next, B

computes ,1 /Q Q Qr r r′= and 1/
,1 () Qr

Q Qh h′= to complete

28 E.M. Cho et al.

the private key for IDQ. The private key for IDQ thus
becomes (rQ, rQ, 1, hQ, 1, rQ, 2, hQ, 2, rQ, 3, hQ, 3). Note that
this is a valid private key for IDQ since for i = 1, 2, 3,

(1/),
, (,) QIDrQ hi

Q i ih h g −−= α as required. B then

computes the public key for IDQ as 1(, ()),Q Qr IDrQg g
stores all these information into L and returns the
public key to A.

• (encrypt, IDQ, mQ): if IDQ = α, B uses α to solve the
truncated decision q-ABDHE. If IDQ is in L, B simply
extracts the public key in the corresponding entry.
Otherwise, B generates the public key, partial private
key and private key for IDQ as in the above, stores them
into L, encrypts mQ by performing the usual encryption
algorithm with the public key concerned and returns the
ciphertext of mQ to A.

• (pskextract, IDQ): if QID ′ = α or IDQ = α, B uses α to
solve the truncated decision q-ABDHE. If IDQ is in L,
B simply returns the partial private key in the
corresponding entry. Otherwise, B generates the public
key, partial private key and private key for IDQ as in the
above, stores them into L and returns the partial private
key to A.

• (rkextract, IDQ, ,QID ′ σQ): if IDQ = α or QID ′ = α, B
uses α to solve the truncated decision q-ABDHE. If
IDQ or QID ′ or both are in L, B extracts the partial
private key(s) in the corresponding entry (entries).
Otherwise, B generates the public key, partial private
key and private key for the identity not in L as in the
above, stores them into L and uses the partial private
keys concerned for further processing as follows. B
computes the re-encryption key Q Qrk ′→ using the usual
re-encryption key calculation algorithm except that B
generates the random value σQ on behalf of IDQ and α
is replaced by a random value (since B does not know
the value of α). Note that although Q Qrk ′→ is an invalid
re-encryption key, A cannot verify its correctness since
it does not possess the private key of IDQ and it cannot
query it from B either. B does not allow to query again.

• (decrypt, IDQ, cQ): if IDQ = α, B uses α to solve the
truncated decision q-ABDHE. If IDQ is in L, B simply
uses the private key in the corresponding entry to
decrypt cQ by performing the usual delegator
decryption algorithm. Otherwise, B generates the public
key, partial private key and private key for IDQ as in the
above, stores them into L and uses the private key
concerned decrypt cQ by performing the usual delegator
decryption algorithm.

• (re-encrypt, IDQ, ,QID ′ cQ, σQ): if IDQ = α or IDQ = α,
B uses α to solve the truncated decision q-ABDHE. If
IDQ or ,QID ′ or both are in L, B extracts the public and

private keys in the corresponding entry (entries).
Otherwise, B generates the public key, partial private
key and private key for the identity not in L as in the
above, stores them into L and uses the public and
private keys concerned for further processing as
follows. B decrypts cQ using the private key for IDQ by
performing the usual delegator decryption algorithm
and then encrypts the plaintext obtained using the
public key for QID ′ by performing the usual encryption
algorithm. This ensures that the re-encrypted ciphertext
is decryptable by the private key for .QID ′

At the end of Phase 1, A outputs (IDA, M0, M1) where A may
have queried anything about IDA but must not have queried
(encrypt, IDA, M0) and (encrypt, IDA, M1) before. If IDA = α,
B uses α to solve the truncated decision q-ABDHE. If IDA is
in L, B simply extracts the partial private key in the
corresponding entry. Otherwise, B computes a partial
private key (, 2 , 2 , 3 , 3(, , , , ,)A A A A A Ar h r h r h′ ′ for IDA as in the
above. Next B generates bit c ∈ {0, 1}. Let f4(x) = xq + 2 and
let F4, A(x) = (f4(x) – f4(IDA)) / (x – IDA) be a polynomial of
degree q + 1. B continues to set 4 4(() ()) ,A Af f ID ru g −′= α

4 , ,
0(,)iq F A i

iv Z e g g=′= × ∏ α and 1// (, , 1) ,A Ar r
c Aw M e u h v=

and ()(,) McHt e g g ′= where F4, A, i is the coefficient of
xi in ()4, .xAF After setting β = H(u, v, w, t), B sets

(), 2 , 3 4,1/ ()
, 2 , 3(,) , .A A AA cFr rr H M

A Ay e u h h v z g g+ ′′= =
β

αββ B sends

cA = (u, v, w, t, z, y) to A as the challenge ciphertext.

Phase 2: this phase proceeds as in Phase 1. However A is
restricted from issuing the following queries:

1 (encrypt, IDA, M0) and (encrypt, IDA, M1).

2 (decrypt, IDA, cA).

3 Any pair of queries (rkextract, IDA, IDA) and (decrypt,
IDA, cA) where cA is the re-encrypted ciphertext using

.A Ark ′→

At the end of Phase 2, the adversary A outputs guesses 0,1.c′
If {0, 1},c′∈ B outputs 0 (indicating that 1(,)).qZ e g g+ ′=
Otherwise, B outputs 1.

5 Conclusions

We attempt to solve the proxy colluding problem for
multiple type of group communication. Most of the authors
are made their attention on the PRE scheme which is only
one user to another user. In this paper, we extend the notion
of non-transferable PRE scheme which is used for one or
more group communication. In our scheme, the proxy and
the delegatees cannot collude because they are unable to
generate re-encryption key for re-delegating decryption
right without the original delegator’s help. To the members

 Non-transferable proxy re-encryption for multiple groups 29

of different two groups, they can decrypt the ciphertext with
the help of the proxy by using the delegator’s certificate.
This new feature will more effective for the distributed
group communication.

In future, we plan to be applied at the lightweight device
such as wireless sensor networks (WANs) (Jaballah et al.,
2015) and the machine type communication (MTC) (Zhang
et al., 2014) which make more effective by using our
multiple group PRE scheme. We also leave the open
problems of finding the secure PRE scheme which is not
using the certificate.

Acknowledgements

This work is supported in part by JSPS Grant-in-Aids for
Scientific Research (A) JP16H01705 and for Scientific
Research (B) JP17H01695.

References
Ateniese, G., Fu, K., Green, M. and Hohenberger, S. (2006)

‘Improved PRE schemes with application to secure
distributed storage’, ACM Transactions on Information and
System Security, Vol. 9, No. 1, pp.1–30.

Blaze, M., Bleumer, G. and Strauss, M. (1998) ‘Divertible
protocols and atomic proxy cryptography’, in EUROCRYPT
‘98, Lecture Notes in Computer Science, Vol. 1403,
pp.127–144, Springer, Berlin.

Canetti, R. and Hohenberger, S. (2007) ‘Chosen-ciphertext secure
proxy re-encryption’, in Proc. ACM Conference on Computer
and Communication Security, pp.185–1946.

Cho, E-M., San, L. and Koshiba, T. (2017) ‘Secure non-
transferable proxy re-encryption for group membership and
non-membership’, in Barolli, L. et al. (Eds.): NBiS 2017,
Lecture Notes on Data Engineering and Communications
Technologies, Vol. 7, pp.876–887, Springer, Cham,
Switzerland.

Deng, R.H., Weng, J., Liu, S. and Chen, K. (2008)
‘Chosen-ciphertext secure proxy re-encryption without
pairings’, in Franklin, M.K., Hui, L.C.K. and Wong, D.S.
(Eds.): CANS, Lecture Notes in Computer Science, Vol. 5339,
pp.1–7, Springer, Berlin; Heidelberg; New York, NY.

Fan, X. and Liu, F. (2016) ‘Various proxy re-encryption schemes
from lattices’, IACR Cryptology ePrint Archive 2016/278
[online] https://eprint.iacr.org/ 2016/278.pdf.

Guo, H., Zhang, Z. and Xu, J. (2015) ‘Non-transferable proxy
re-encryption’, IACR Cryptology ePrint Archive 2015/1216
[online] https://eprint.iacr.org/2015/ 1216.pdf.

Guo, L. and Hu, L. (2012) ‘Efficient bidirectional proxy
re-encryption with direct chosen-ciphertext security’,
Computers and Mathematics with Applications, Vol. 63,
No. 1, pp.151–157.

He, Y., Chim, T.W., Hui, L.C.K. and Yiu, S-M. (2012)
‘Non-transferable proxy re-encryption scheme’, in Proc. 5th
International Conference on New Technologies, Mobility and
Security, IEEE, pp.1–4.

Ivan, A. and Dodis, Y. (2003) ‘Proxy cryptography revisited’, in
Proc. NDSS’03, The Internet Society.

Jaballah, W.B., Mosbah, M., Youssef, H. and Zemmari, A. (2015)
‘Lightweight secure group communications for resource
constrained devices’, in International Journal of Space-Based
and Situated Computing 2015, Vol. 5, No. 4, pp.187–200.

Libert, B. and Vergnaud, D. (2008)’Tracing malicious proxies in
proxy re-encryption’, in Pairing 2008, Vol. 5209, pp.332353,
Lecture Notes in Computer Science, Springer, Berlin; New
York.

Ma, C. and Ao, J. (2009) ‘Group-based proxy re-encryption
scheme’, in ICIC 2009, Vol. 5754, pp.1025–1034, Lecture
Notes in Computer Science, Springer, Berlin; New York.

Mambo, M. and Okamoto, E. (1997) ‘Proxy cryptosystems:
delegation of the power to decrypt ciphertexts’, IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E80A, No. 1,
pp.54–63.

Matsuda, T., Nishimaki, R. and Tanaka, K. (2010) ‘CCA proxy
re-encryption without bilinear maps in the standard model’, in
PKC 2010, Vol. 6056, pp.261–278, Lecture Notes in
Computer Science, Springer.

Matsuo, T. (2007) ‘Proxy re-encryption systems for identity- based
encryption’, in Pairing 2007, Vol. 4575, pp.247267, Lecture
Notes in Computer Science, Springer, Berlin; New York.

Niu, K., Wang, X.A. and Zhang, M. (2009) ‘How to solve key
escrow problem in proxy re-encryption from CBE to IBE’, in
Proc. 1st International Workshop on Database Technology
and Applications, IEEE Computer Society, pp.95–98.

Nuez, D., Agudo, I. and Lopez, J. (2015) ‘A parametric family of
attack models for proxy re-encryption’, in Proc. IEEE 28th
Computer Security Foundations Symposium, CSF 2015,
pp.290–301.

Phong, L., Wang, L., Aono, Y., Nguyen, M. and Boyen, X. (2016)
‘Proxy re-encryption schemes with key privacy from
LWE’. IACR Cryptology ePrint Archive 2016/327 [online]
https://eprint.iacr.org/ 2016/327.pdf.

Wang, L., Wang, L., Mambo, M. and Okamoto, E. (2010) ‘New
identity-based proxy re-encryption schemes to prevent
collusion attacks’, in Pairing 2010, Vol. 6487, pp.327346,
Lecture Notes in Compuer Science, Springer.

Wang, X.A. and Yang, X. (2010) ‘On the insecurity of an identity
based proxy re-encryption scheme’, in Fundamenta
Informaticae, Vol. 98, Nos. 2–3, pp.277–281.

Wang, X.A., Ma, J. and Yang, X.Y. (2015) ‘A new proxy
re-encryption scheme for protecting critical information
systems’, in Journal of Ambient Intelligence and Humanized
Computing, Vol. 6, No. 6, pp.699–711.

Wang, X.A., Ma, J., Xhafa, F., Zhang, M. and Luo, X. (2017)
‘Cost-effective secure E-health cloud system using identity
based cryptographic techniques’, in Journal of Future
Generation Computer Systems, Vol. 67, pp.242–254.

Yamamoto, N. (2016) ‘An improved group discussion system for
active learning using smartphone and its experimental
evaluation’, in International Journal of Space-Based and
Situated Computing, Vol. 6, No. 4, pp.221–227.

Zhang, Y., Chen, J., Li, H., Cao, J. and Lai, C. (2014)
‘Group-based authentication and key agreement for
machine-type communication’, in International Journal of
Grid and Utility Computing, Vol. 5, No. 2, pp.87–95.

