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Abstract: Digital Engineering, the digital transformation of engineering to 

leverage digital technologies, is coming globally. This paper explores digital 

systems engineering, which aims at developing theory, methods, models, and 

tools to support digital engineering practice. A critical task is to digitalize 

engineering artifacts, thus enabling information & model sharing, traceability, 

and accountability across platforms, across lifecycle, and across domains. We 

identify challenges and enabling digital technologies; analyse the transition from 

traditional engineering to digital engineering; define core concepts, including 

digitalization, unique identification, digitalized artifacts, digital augmentation, 

and others; present a big picture of digital systems engineering in four levels: 

vision, strategy, action, and foundation; briefly discuss each of main areas of 

research. Digitalization enables fast infusing and leveraging novel digital 

technologies; unique identification enables information traceability and 

accountability in lifecycle; provenance enables tracing dependency relations 

among engineering artifacts, supporting model reproducibility and replicability, 

and helping with trustworthiness evaluation of digital artifacts.  
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1.  Introduction 

In order to rapidly infuse innovative digital technologies and to meet the new demands 

from the digitalizing world, Digital Engineering, the digital transformation of 

engineering,  is emerging with different names globally, such as Industry 4.0 (GTAI, 

2014), digital manufacturing or smart manufacturing (White House, 2012, 2018), and 
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others.  Many problems appeared in traditional engineering and acquisition processes, 

such as linear engineering process to develop complex systems, document-intensive and 

stove-piped information flow, hard to change and sustain systems in rapidly changing and 

uncertain operational environment, and others.  To address those problems, the US 

Department of Defense (DoD)  launched the Digital Engineering Strategy (DES) (US 

DoD, 2018), aiming to build digital enterprise and to fast incorporate technological 

innovation by means of digitally representing the system of interest, developing, using, 

integrating and curating formal model across organizational boundaries and lifecycle 

activities, and using "Authoritative Source of Truth" as the central platform and 

repository for collaborating, communicating, and sharing data and models. This strategy 

exhibits a profound vision for “transforming engineering practices to digital engineering 

and incorporating technological innovations to produce an integrated, digital, model-

based approach” (US DoD, 2018). Towards this direction, research efforts combining 

digital technologies into systems engineering (SE) to meet the new demands from the 

digitalizing world are converging into an emerging field – digital systems engineering, 

which aims at developing knowledge and technology to support digital engineering 

practice. This paper explores this exciting area. 

    First of all, let us briefly look into the new landscape of engineering systems. The fast-

growing Internet of Things (IoT) (Atzori, Iera, & Morabito, 2010; IEEE, 2015) is 

dramatically changing the world; IoT has become a trigger for numerous innovative 

applications, leading to various cyber-physical-social smart systems (CPS3) (Huang, 

Seck, & Gheorghe, 2016). Particularly, Industrial IoT (IIoT) (Sisinni, Saifullah, Han, 

Jennehag, & Gidlund, 2018; H. Xu, Yu, Griffith, & Golmie, 2018) and industrial smart 

CPSs are paving the way to the fourth industrial revolution (Schwab, 2017), or in short, 

so-called Industry 4.0 (GTAI, 2014; L. Da Xu, Xu, & Li, 2018). IoT is quickly changing 

the landscape of engineering systems from the beginning of systems design through the 

end of lifecycle. By using IoT, Big Data technologies, AI, and Machine Learning (ML), 

the fingerprints (or footprints) of a system (i.e., the dynamic changes of system status and 

changes of components and behavior) can be potentially traced in the whole system 

lifecycle. Similarly, the dynamic changes of the system's operating environment can be 

observed, recorded, and mined to provide valuable information for engineering systems 

design, testing, manufacturing, operations, maintenance and support, reuse and recycle, 

as well as risk analysis toward trustworthy and resilient systems. 

    Highly associated with IoT, digital transformation, a term reflecting the pervasive 

diffusion of digital technologies in engineering, business, and many societal processes, is 

profoundly changing almost every aspect of human being’s activities, from our daily life 

to various businesses, including science and engineering. 

    Jim Grey had a vision that science is transforming into the fourth paradigm – data-

intensive paradigm, after empirical, theoretical, and computational (Hey, Tansley, & 

Tolle, 2009).  In the data-intensive paradigm, the essential activities are data capture, data 

curation, knowledge discovery from data, and data publishing. A theory is an abstraction 

of the known knowledge about a system, thus having limitations. Data (the observations 

of a system) can bring in new insight for better understanding and can provide 

opportunities for new findings and get a breakthrough towards establishing a new theory. 

This vision has inspired data-intensive research in many science & engineering 

disciplines and the development of Data Science (Hey et al., 2009; NIST, 2015).  

    Digital engineering incorporates digital technologies such as IoT, smart cyber-physical 

systems, big data, AI, ML, robotics, virtual reality (VR), augmented reality (AR), digital 

twin (Glaessgen & Stargel, 2012; Tao et al., 2018), 3D printing, digital trust, and 

blockchain (Katina, Keating, Sisti, & Gheorghe, 2019; Nakamoto, 2008; Wang et al., 
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2019). A remarkable example is the onset of digital manufacturing. Digital engineering is 

a manifestation of digital transformation in the field of engineering. 

    The contents of this paper are organized as follows. Section 2 discusses the goals of 

DoD DES; section 3 discusses the significant challenges to achieving those goals; section 

4 briefly discusses critical enabling technologies; then in section 5, we present the 

framework of digital systems engineering, defines a small set of core concepts, and 

discusses areas of interest in four levels: vision, strategy, action, and foundation with 

enabling technologies; finally, section 6 concludes the paper and briefly discuss further 

research. 

2.  Goals of Digital Engineering Strategy 

The central theme of the DoD’s Digital Engineering Strategy (US DoD, 2018) is to 

digitally represent systems of interest and to enable formal model development, 

integration and use across the system lifecycle phrases through “Authoritative Source of 

Truth”, as illustrated in figure 1. The strategy identifies five tightly related goals. 

 

 
Fig. 1. Illustration of models connected via Authoritative Source of Truth in US DoD 

Digital Engineering (from (US DoD, 2018), Fig.4). 

 

The first goal is fundamental, which targets the formalized planning of model creation, 

curation, integration, and use to support decision making, by advocating digitally 

representing the system of interest; by establishing policy, guidance, rules and 

standardized syntax, semantics, and lexicons for model development and reuse; by 

capturing and maintaining model provenance to enable traceability as a basis of judging 

model trustworthiness for model reuse; and by curating a set of standardized models in 

the “Authoritative Source of Truth” to enable collaborative engineering activities and 

decision making across different disciplines and organizations in the system lifecycle. 

    The second goal targets the establishment of trustworthy knowledge infrastructure, 

called “Authoritative Source of Truth” (AST), for hosting and sharing across the lifecycle 

the standardized models, data, and other digital artifacts, which are traditionally isolated 

within the boundaries of organizations or disciplines. AST supports to capture and curate 

the history of model evolution through the engineering lifecycle, to maintain the 
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traceability, and propagates the updated models and data to all affected systems and 

entities for supporting the coordination of associated activities, thus “to enable delivery 

of the right data to the right person for the right use at the right time." Stakeholder 

organizations will establish policies and procedures to govern the proper use of AST, 

including - access control to ensure access by only the authorized users, the use of AST 

as technical baseline to support engineering decision making on cost, schedule, and 

performance, to support technical review, and to support communication and 

collaboration across teams and organizations.  

    The third goal aims to establish an end-to-end digital enterprise operating in the 

digitalized and connected environment, to rapidly innovate, infuse, and adopt advanced 

technologies such as big data analytics, cloud computing, AI & ML, virtual reality, 

augmented reality, digital twins, digital manufacturing, 3D printing, and many others; 

and to advance human-machine interactions.  

    The fourth goal aims to transform the current IT infrastructures and environment, 

which are “often stove-piped, complex, and difficult to manage, control, secure, and 

support” (US DoD, 2018), into digital engineering infrastructures and environment, 

which are expected to be “a more consolidated, collaborative trusted environment” (US 

DoD, 2018). Digital engineering infrastructures and environments will need able to 

provide: (a) secure connected information networks supporting computing and 

information flows at all security levels; (b) the associated evolving digital engineering 

methods, processes, and tools for visualization, analysis, model management, model 

interoperability, workflow, collaboration, and extension/customization support; (c) 

cybersecurity to secure IT infrastructures and to protect intellectual property such as 

patents, copyrights, trademarks, and other commercial proprietaries through collaborative 

efforts between government and industrial partners. 

    Finally, the fifth goal targets the transformation of culture and workforce, including - 

advance digital engineering policies, standards, and guides; accommodate digital 

engineering development; digital engineering management; building and preparing 

workforce via training and education.  

 

 
Fig. 2. Relations among Goals of DoD Digital Engineering Strategy 

 

    The relations among those goals can be illustrated as a goal stack as shown in figure 2, 

where from bottom to top, 

• Goal 5 is the organizational and human foundation aiming at transforming 

culture and workforce to provide the eco-environment for the growth of digital 

engineering, which is fundamental to all other goals; 

1

G2: Provide Authoritative Source of Truth

G1: Enable formalized model creation, curation, 
sharing, integration and use across boundaries of 
lifecycle phases and organizations

G4: Transform to DE IT infrastructures and environment

G3: Establish end-to-end digital enterprise to rapidly infuse digital technologies 
and incorporate technological innovations

G5: Transform culture and workforce towards Digital Engineering (DE) Workforce foundation

Infrastructure foundation

Trusted repository and the
point of sharing across boundaries

Core transformation

Desired
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• Goal 4 transforms traditional IT into new IT infrastructures and service 

environment for digital engineering. Goal 4 is the IT basis for others; 

• Goal 2 creates and maintains the Authoritative Source of Truth, which is the 

repository and access portal for all standardized models and other digital 

artifacts, with support from goal 4, and is a basis for goal 1; 

• Goal 1 transforms traditional engineering towards formalized model creation, 

curation, sharing, integration, and use across the boundaries of lifecycle phases, 

disciplinary teams, and organizations, with support from goal 2; 

• Goal 3 establishes an end-to-end digital enterprise to quickly infuse advanced 

digital technologies and keep rapid innovations, with support from goal 1. Goal 

3, as a driving force, produces new requirements for all other goals. 

    What is in the core of the digital engineering strategy is the digital transformations 

requiring:  

• Digital representation of the system of interest (including not only the focused 

system and its components, but also possibly the relevant processes, equipment, 

products, parts, functions, services, and other relevant systems in the operating 

environment); 

• Use of Authoritative Source of Truth (AST) as the repository and the access 

portal of standardized models, data, and other digital artifacts; 

• Formalized model creation, curation, sharing, integration, and use across the 

boundaries of disciplinary teams, organizations, and the lifecycle phases, with 

support of AST. 

3.  Challenges  

Given the targeted goals, the core digital transformations in need, and the current 

engineering practice, there are many challenges ahead on the way of digital engineering 

transformation.  

    Challenge 1: Big Data issues in digital engineering – In the envisioned digital 

engineering operating in digital and connected environment, every engineering process 

will face unprecedented Big Data from upstream engineering processes, from engineering 

partners, from the lifecycle of the system of interest and previous engineering systems 

(older versions or similar ones), from interacting external systems, from system operating 

environment, from supply-chain and manufacturing environment, from stakeholders, and 

others. Those data have not only unprecedented large size but also various forms of 

different qualities and possible in high velocity of streaming in. The big data brings both 

opportunities and challenges. On the one hand, an engineering team can leverage new 

information to improve the quality and to reduce engineering time and cost; on the other 

hand, the big data poses a significant challenge regarding how to quickly process, 

manage, mining, analysis, integrate those data and shared models in digital engineering 

practice. It is also a challenge for engineering teams to collect, manage, and share the 

data and models produced in their engineering process. 

    Challenge 2: Centralized standardization vs. distributed evolutionary 

standardization -- Standardized or commonly shared digital representation forms, 

semantics, and vocabulary are critical for sharing digitalized engineering artifacts 

(particularly models). In a centralized approach of standardization, a standardized form is 

defined for digital representation, and the whole community stays with the standard. In a 

distributed evolutionary approach, ontologies are developed in a crowdsourcing fine-
grained evolving process, in which many working groups develop their versions of 
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ontologies by constructing new ontology parts on top of useful parts from other existing 

ontologies. In this way, some ontology parts, which are most commonly used by a 

community, naturally converge to a “standard” language. The DoD digital engineering 

strategy appears towards centralized standardization, which could be a fast and effective 

engineering approach for the US DoD community. However, there exists a risk of stiffing 

innovations if standards are applied too early in emerging new fields of technological 

innovation. Also, business partners worldwide may have their own standards, and the 

compatibility between standards could be a challenge. It is always a challenge to choose 

between centralized approaches and distributed evolutionary approaches. Generally 

speaking, compared with distributed approach, a centralized approach may be more 

efficient and more effective in the current context, and at least in the near term. However, 

it also has two related significant issues: a single point of failure and heading in a wrong 

direction from a long term view. It is of paramount importance to keep and maintain 

diversity in the course of evolution, no matter to biological populations or technological 

approaches. 

    Challenge 3: Centralized vs. distributed mechanisms of trust – In the US DoD 

DES, Authoritative Source of Truth plays a fundamental role in assuring the 

trustworthiness of models about credibility, accuracy, reusability, safety, and security, as 

well as other concerned qualities. The challenging issues between centralized or 

distributed approaches also exist here. The proposed AST appears a centralized 

mechanism of trust; again, this could be a fast and effective engineering approach. 

However, given the fact that today's industry has long and complicated supply-chains and 

many system components could come from allies and trading partners, how to efficiently 

and effectively incorporate distributed mechanisms of trust in AST is a challenge. 

    Challenge 4: Balancing access and control in AST -- DoD DES aims "to enable 

delivery of right data to the right person for the right use at the right time" via AST. 

Access control has been a delicate matter for decades. The challenge still stands in digital 

engineering. Many entities involved in the engineering workflows may use different 

access control models and policies, such as MAC (Bell & LaPadula, 1973), RBAC 

(Sandhu, Coyne, Feinstein, & Youman, 1996), ABAC (Servos & Osborn, 2017), and 

their combinations (Huang, Nicol, Bobba, & Huh, 2012; Jin, Sandhu, & Krishnan, 2012), 

applied to their own domains. It will be challenging to create access control policies for 

AST to work seamlessly with each entity's access control system to reach the targeted 

goal. In addition to the grave threats of cybersecurity, the models and data about products 

are also their owners' major concerns about intellectual property protection and business 

competitivity. All those complex factors have to be taken into account of the access 

control mechanisms in AST. Basically, it is always a challenging regarding to balancing 

“need-to-know” and “need-to-share”. 

    Challenge 5: Scientific Computing Integrity of digital models -- Scientific 

computing integrity (SCI) is defined as “the ability to have high confidence that the 

scientific data that is generated, processed, stored, or transmitted by computers and 

computer-connected devices has a process, provenance, and correctness that is 

understood” by DOE ASCR (Advanced Scientific Computing Research) (Peisert, 

Cybenko, & Jajodia, 2015). Although the concept of SCI is proposed in the context of 

DOE extreme-scale computing, SCI is also a great challenge to digital engineering. Given 

the high complexity of engineering workflows across lifecycle phases, across 

organizational boundaries, and across countries, many models and data produced by 

different entities in those complex engineering workflows, are going to stream into AST 

and be reused later. However, the SCI of those models and data could be compromised 

for many reasons, such as malicious attacks and faults caused by equipment/devices, 
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software, networks, engineers or workers (Huang, 2018). Those risk factors, the 

complexity of engineering workflows, long and complex supply chains, and long and 

complex provenance chains of those models and data make ensuring SCI in Digital 

Engineering extremely difficult, thus posing a significant challenge. 

    Challenge 6: Reproducibility and Replicability – There are different definitions 

about the relevant concepts of reproducibility, replicability, and generalization. This 

paper uses a more popular one from NSF (NSF_SBE_AC, 2015), reproducibility is the 

extent to allow a researcher to independently duplicate the results of a prior study with 

the same procedures and the same data; replicability is to independently duplicate the 

results with the same procedures but different data; generalizability is the extent that the 

results of a study apply to other contexts different from the original one. The journal 

Nature had a special collection dedicated to the “challenges in irreproducible research” to 

reveal the “growing alarm about results that cannot be reproduced” (Nature, 2018).  

Recently, a Nobel laureate retracted her latest paper published in the Science journal for 

reproducibility issue (BBC, 2020). Earlier, among 1576 researchers surveyed by journal 

Nature, “More than 70% of researchers have tried and failed to reproduce another 

scientist's experiments” (Baker, 2016), including engineering. In engineering practice, 

additional complexity comes from the possible loss of techniques, skills, and know-how 

knowledge living in human teams.  

    Challenge 7: Practical difficulties in producing products’ digital counterparts -- In 

digital engineering, an enterprise needs to produce not only products (no matter which is 

hardware, software, or service) and their traditional technical documentation but also the 

associated digital counterparts including the models for a product, the data supporting the 

models, as well as associated knowledge. This change is a significant transformation for 

product producers, thus practically posing some big challenges to enterprises about those 

digital counterparts. Examples of challenging issues include higher standards on model 

credibility, repeatability, interpretability, interoperability, intellectual property protection, 

security, cost, well-trained workforces, and others. 

    Challenge 8: Insufficient knowledge in the workforce – Workforce is essential for 

the realization of digital engineering. The knowledge and skills required for digital 

engineering practice are beyond the ones of the traditional engineering workforce and 

beyond traditional engineering education and training programs. It is a challenge for 

training a large population of engineers with a varied professional background in the 

current workforce through on-job training and engineering education programs.  

    In the emerging digitalized and connected environment, systems engineering is facing 

many new challenges beyond we discussed above and facing many new research issues. 

Just list a few: how does an enterprise transform its enterprise culture and policies with 

sharing engineering artifacts across engineering stages and across multiple organizations? 

How does the digitalized and connected engineering environment impact human-machine 

interactions (Handley, 2019), considering both unprecedented rich information and 

complexity? Furthermore, in this environment, how could teams collaborate (Powell & 

Pazos, 2017) more efficiently? How does transparency in this environment improve trust 

(Huang & Nicol, 2013)? What are new risks introduced in digital engineering? How does 

a better understanding of those risks improve system design (Pinto et al., 2009)? Many 

interesting and important issues need attention. 
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4.  Key Enabling Technologies 

We have been working on to identify a set of key enabling technologies for digital 

engineering. For space limitation, it is impossible to have a comprehensive review of 

enabling technologies in this paper; here, we briefly discuss several clusters of key 

enabling technologies. Let us start with AI&ML cluster, which plays a central and 

fundamental role.  

     AI and machine learning cluster: Enabling to establish a foundation for continuing 

exploration of automation in digital engineering; enabling digital representation of system 

of interest; enabling model building through machine learning; enabling intelligent 

reasoning, control, scheduling, planning, and decision making for digital enterprises. For 

AI’s tremendous impacts to almost every aspect of society, U.S. launched the national AI 

research and development strategy (US NSTC, 2016, 2019). Earlier, Stanford 

University’s report on one hundred year study on Artificial Intelligence (AI100) 

(Stanford, 2016) presents a big picture of AI history and future. Machine learning 

(LeCun, Bengio, & Hinton, 2015) together with Big Data technologies (such as Apache 

Spark's TensorFlowOnSpark, Apache Hadoop Submarine) will enable building system 

models with big data gathered from the digitalized and connected system lifecycle. 

Reinforcement learning (Silver et al., 2018; Sutton & Barto, 2018) (e.g., as achieved by 

AlphGo that defeated world #1 player in Go game) will enable to keep improving a 

system’s performance in operations. After a journey from general to domain-focused, AI 

now again is towards artificial general intelligence (Adams et al., 2012), which is paving 

the way for innovation of new generation of intelligent engineering systems. 

     Ontologies and semantics technologies cluster: Enabling semantic representation of 

the general properties of models and their relations; enabling model sharing and 

integration across boundaries of enterprises, disciplines, and engineering stages; enabling 

digital representation of enterprise-related concepts and processes. "An ontology is a 

formal, explicit specification of a shared conceptualization" (Gruber, 1993; Studer, 

Benjamins, & Fensel, 1998). Ontologies and semantic web are related subfields of AI, 

focusing on formalizing the semantics and knowledge sharing (Baclawski et al., 2018; 

Fritzsche et al., 2017). Intensive research on enterprise modeling and enterprise 

integration has been conducted since 1990s and can be used to support model sharing 

across boundaries (Chen, Doumeingts, & Vernadat, 2008; Fox & Huang, 2005; 

Goranson, 2002). 

     Provenance modeling cluster: Enabling to represent and maintain the provenance of 

engineering artifacts, particularly models; enabling tracing dependency relations among 

digital engineering artifacts; supporting model reproducibility and replicability; helping 

with trustworthiness evaluation of digital engineering artifacts. “Provenance information 

is extremely important for determining the value and integrity of a resource” (Berners-

Lee, Hall, Hendler, Shadbolt, & Weitzner, 2006). Buneman, Khanna and Tan (2001) first 

proposed “Data Provenance” to address where and why issues in complex data workflow. 

Fox and Huang (2003) proposed “Knowledge Provenance” (KP) to address the problem 

regarding how to determine the origin and validity of knowledge, by means of modeling 

and maintaining information sources, information dependencies, as well as trust 

structures. Research on provenance in eScience and scientific workflow has led to a 

milestone work “Open Provenance Model” (Moreau et al., 2011); this work was further 

developed into PROV ontology (W3C Provenance Working Group, 2013), which can 

support modeling provenance for engineering artifacts. 

     Trust management technology cluster: Enabling to build “Authoritative Source of 

Truth” with proper trust mechanisms; enabling access control of digital engineering 
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artifacts stored in AST; enabling trust judgment of digital models and artifacts. Many 

access control paradigms have been developed to meet different needs, such as Bell-

LaPadula model (Bell & LaPadula, 1973) based Mandatory Access Control (MAC) (or 

Multilevel Security) for military and government entities, Role-Based AC (RBAC) 

(Sandhu et al., 1996) for business world, and more recent Attribute-Based AC (Servos & 

Osborn, 2017) allowing making more general access policies based on attributes by using 

standardized policy language XACML (OASIS, 2013). Some frameworks (Huang & 

Nicol, 2012; Huang et al., 2012; Jin et al., 2012) have been proposed to integrate different 

models and to meet the new demands of balancing “need-to-know” and “need-to-share”, 

thus achieving the DES goal of delivering “the right data to the right person for the right 

use at the right time”. Research on using AI to build computational trust in distributed 

environment, e.g. (Cho, Chan, & Adali, 2015; Huang, 2018; Huang & Nicol, 2009; 

Marsh, 1994) enables to design various trust mechanisms (Huang & Nicol, 2013), from 

centralized one with standards and certifications to distributed ones based on evidence, 

distributed attribute certifications, and others. The recent arising Blockchain technology 

(Wang et al., 2019) enables to verify data integrity in digital engineering, which is an 

essential mechanism to assure system security.  

    High-Performance Computing (HPC), Cloud Computing, and Big Data 

technologies: Enabling to store, manage, query, process, mining, analysis, and use a vast 

number of digital models and engineering artifacts in a manner of scalable, elastic, 

timely, and ubiquitous access; enabling large scale collaborative research and 

development across boundaries of disciplines and organizations. Science and engineering 

have been more and more depending on computing power; extreme-scale computing 

(ASCR, 2016) has become a core capability for competitive advantage. Digital 

engineering will depend on computing infrastructures much more than traditional 

engineering. Cloud computing (Armbrust et al., 2010), HPC, and the associated Big Data 

technologies (NIST, 2018) comprise the computing infrastructures for digital 

engineering. In recent years, a trend emerges to combine cloud technologies in scientific 

HPC for providing highly dynamic and customized computing support (Asch et al., 2018; 

Keahey & Parashar, 2014). Computing infrastructures for digital engineering should 

leverage those new developments in computing technologies. 

5.  A Framework of Digital Systems Engineering 

Digital engineering is the destination of digital transformation of engineering. Figure 3 

illustrates a high-level abstraction of digital engineering transformation, which is 

characterized by (1) digitalization of engineering artifacts; (2) engineering in a digital and 

connected environment. There are a variety of engineering artifacts potentially to be 

digitalized. Digitalized models will play a central role in digital engineering. One 

engineering process will have inputs of digitalized products and services from other 

engineering processes in the digital and connected environment and will produce new 

digitalized products and services. Digital engineering is enabled and facilitated by many 

new digital technologies including IoT, smart CPS, Big Data technologies, AI, machine 

learning, digital twin, distributed trust, Blockchain, and others. Among those enabling 

technologies, knowledge representation & reasoning (KR&R), ontology engineering and 

semantic web, all of which are branches of AI, play a critical role in digital representation 

of engineering artifacts particularly digital models. The foundation of KR&R, ontologies, 

and formal semantics is formal logic. As a matter of fact, in systems engineering, 

conceptualization has an essential but implicit foundation – logic, however, which has not 
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received much attention; (Dickerson & Mavris, 2010) is one of very few work addressed 

this critical issue. To reflect this, formal logics together with computing science (which is 

obviously an essential foundation for digital engineering) are considered as one of the 

scientific foundations for digital engineering. 

5.1 Core Concepts 

First of all, let us clarify and define a small set of core concepts. Sometimes, terms 

“digitization” and “digitalization” are used as equivalently, but they have different 

meanings. According to Gartner IT Glossary, “Digitization is the process of changing 

from analog to digital form” (www.gartner.com/it-glossary/digitization/); “Digitalization 

is the use of digital technologies to change a business model and provide new revenue 

and value-producing opportunities; it is the process of moving to a digital business.” 

(www.gartner.com/it-glossary/digitalization/). Gartner's definition of digitalization is 

from business perspective. Technically, in order to enable using digital technologies, a 

digitalized item should be not only computerized but also in a standard form and 

annotated with necessary metadata to enable machines of different types to access and 

operate automatically. From this perspective, a digitized item can be in a preliminary 

digital form and is not fully digitalized. For example, a pure image file in an ad hoc 

format is a digitized photo but not digitalized; a digital photo in standardized format with 

metadata about the technical parameters used, the device, the time, and the location 

where the picture was taken (as the one taken by a digital camera) is digitalized. In 

another example, in the case that a physical book was scanned into a computer or directly 

typed as text in a computer, we call it “digitized”; in the case that a book was produced as 

eBook with attached metadata to allow properly displayed by different reading software 

and protected by digital right management software, we call it “digitalized”. Generally, 

“digitalize” is beyond “digitize”.   
 

 
 

Figure 3. Digital transformation of engineering 

 

5.1.1 Digitalization 

     To clearly characterize the difference discussed above, we define “digitalize” as 

follows. 

Engineering
Process

Products (energy, materials, parts,
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     “Digitalize” is to (1) digitally represent an item or thing in a standard form with well-

defined semantics to make it universally accessible by different types of machines; (2) 

assign and maintain an unique identifier to the item or thing; (3) create necessary 

metadata in a standard form with well-defined semantics, to enable the use of digital 

technologies to manipulate and operate that item or thing automatically; (4) uniquely 

associate the unique identifier and the metadata with the item or thing. 

     The unique association of metadata and a unique identifier with an artifact can be 

achieved by using RDID, digital signature, and Blockchain.  

     There could be different degrees of digitalization, dependent on the degree of fidelity 

of the digital representation, the depth of semantic representation, the compatibility of the 

representing form, and the richness of metadata, which allow a different extent of digital 

operations and interoperations by machines of different types automatically. A digitized 

thing can be in the simplest digital form, while a fully digitalized thing with a high degree 

of digitalization is in the high end of digital form. The loosely used term “digital xxx” 

could be across a broad spectrum from simple to highly digitalized. By leveraging 

emerging innovative digital technologies, a digitalized engineering artifact can gain many 

new advantages such as enhanced or improved performance, fast and agile integration in 

new systems, enabled traceability and accountability, sharing across the boundaries of 

organizations and lifecycle activities, and many others. 

 

5.1.2 Unique Identification 

     Unique identification is a critical part of digitalization because it is a necessary 

component for traceability and accountability. (Note that the “traceability” we address 

here is not limited to requirement traceability in systems engineering; instead, it is a 

general term about tracing information flow, material flow, chain of causality, as well as 

chains of faults.) Barcode and RFID are good examples for better understanding the 

profound impacts of unique identification.  

 

5.1.3 Digitalized Artifacts and Digital Augmentation 

     Based on the definition of term “digitalize”, a digitalized artifact consists of the 

artifact and its digital augmentation, which consists of (1) digital representation, by 

which the artifact is represented in a standard form with well-defined semantics thus 

accessible by different types of machines; (2) an identifier, which is uniquely associated 

with the artifact to enable traceability and accountability; (3) associated metadata, in a 

standard form with well-defined semantics, to enable the use of digital technologies to 

manipulate or operate the artifact.   

      An artifact could be either a digital object such as a model, a dataset, a document, a 

picture, and others, or a physical object such as a physical product or a part. For a digital 

object, the digital representation of it is the object itself. For a physical object, (1) the 

digital representation of that physical object could be as complex as the digital twin of it, 

or as simple as just a picture or text description to characterize it; (2) the identifier could 

be the barcode or the id code of the RFID tag attached to that physical object; (3) the 

associated metadata covers the properties of the object and its digital representation.  

      Among various engineering artifacts, models are a particularly important one for 

digital engineering. In the DoD DES, models will play a crucial role because “digital 

representation” of systems of interest is a central theme. We believe digitalized models 

will enable to leverage the power of innovative digital technologies maximally. In the 
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following, on top of the earlier definition of digitalized artifact, we further conceptualize 

“digitalized model” with different aspects of metadata.  

 

5.1.4 Digitalized Models 

    A digitalized model is composed of a model and its digital augmentation, which 

consists of (1) the digital representation of the model, which is actually the model itself, 

if the model is in a digital form; (2) a unique identifier associated with the model to 

enable traceability and accountability; (3) associated metadata, in a standard form with 

well-defined semantics, to enable to use or interact with the model by engineering 

systems using digital technologies. More specifically, the metadata about the properties 

of the model include possibly:  

• Generic attributes, such as model name, version, date of creation, type of the 

model, and others; 

• Description of inputs, outputs, and parameters; 

• Provenance of the model, such as, who created the model, when the model was 

created, why the model was created (purpose), where the model was developed 

and tested (computing environments), what the model depends on (dependence 

relations to other models, datasets, documents, and others ), the revision history 

of the model, and others; 

• Model utilization guide about how and where the model can be viewed, 

executed, or used. 

• A set of security properties about the model such as check sum (hash code), 

security label, digital signatures, various certificates, and others. 

• A set of machine-processible access control policies, to enable an external guard 

system to enforce the specified policies, or a self-contained access control 

software module to protect the model. 

 

    The models that can be digitalized include all types of models, no matter they are 

mathematical models in print or in a digital form, logic models (a subset of mathematical 

models, e.g., in First Order Logic, modal logic, temporal logic, and others), an executable 

model represented with a programing language, an engineering design, a conceptual 

graphic model (e.g., flowcharts), or others.  

    The term “standard” means to follow precisely defined syntax and semantics, which 

are commonly shared by a community. Therefore, a “standard” form could be a form that 

is complying with a set of officially issued standards or with ontologies commonly used 

in a community.  

    An officially issued standard represents a centralized approach, which is highly 

efficient at least in the short term, but maybe a sub-optimized solution representing a 

local optimum from long term view. Ontologies represent a decentralized or distributed 

crowdsourcing evolutionary and fine-grained level of standardization approach; a concept 

may be formalized and published as several ontologies by several participants, but the 

one that is mostly reused by others becomes de facto “standard”. A concept is typically 

defined on top of other concepts, so the evolution of ontologies represents a fine-grained 

“standardization” process. For short term, the use of ontologies is not efficient as a 

standard does, as ontology mapping is usually needed and sometimes can be complicated 

and inefficient; for the long term, the use of ontologies leverages collective intelligence, 

incentivizes innovation, and allows evolutionary revision in micro-level of a “standard”. 
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When a set of related ontologies become mature, they can be adopted and issued as an 

official standard by an authority for a community. 

    To build the digital augmentations for models, we need to investigate and understand 

the relevant properties of different types of models and their logical relations. We need to 

use knowledge representation to explicitly model and represent those properties and 

relations. We call this type of models as “model of models”. The study of “model of 

models” is a foundation for developing ontologies used to express the digital 

augmentations for models. 

5.2 Overarching Goal and Focusing Areas 

The US DoD digital engineering strategy presents a profound vision for the emerging 

digital engineering, specific to the engineering practice of the DoD enterprise; the 

strategy is also inspiring to the development of digital systems engineering as an 

academic research field to develop corresponding scientific knowledge and technology to 

support the proposed digital engineering transformation. In this section, we attempt to 

draft a general framework for digital systems engineering in the global context of digital 

transformation, Industry 4.0, and Data Science. The development of digital systems 

engineering will support the implementation of the DoD DES as well as digital 

engineering in general with knowledge, methodologies, technologies, as well as training 

and education for the workforce. 

      The core of digital systems engineering is digitalization. The broader overarching 

goal of digital systems engineering is to develop the principles, theories, methodologies, 

methods, models, and technologies for the digitalization of engineering and for systems 

engineering in the digitalized and connected engineering and operating environments.  

     The immediate targets of digital systems engineering are the digitalization of 

engineering artifacts, information and model sharing, and the associated issues of digital 

trust, big data, automatic machine-processing, and machine learning arising from the 

digitalized and connected environment.   

     Digital systems engineering first needs to digitalize a variety of engineering artifacts, 

such as models, data, materials, products, services, processes, enterprise, and others. As 

part of digitalization, unique identification plays a critical role to enable accountability 

and traceability (for tracing information flow, material flow, faulty chain, supply chain, 

and others). A central task is to develop digital augmentation for each engineering artifact 

with well-defined semantics, thus enabling the use of digital technologies to manipulate, 

operate, or interact with those engineering artifacts.   

     If digitalization is a mean to enable rich information for digital engineering, we also 

need to effectively and efficiently deal with those big data. In a digitalized and connected 

environment, every phase of systems engineering lifecycle will face unprecedented rich 

information; it is a great challenge regarding how to leverage those big data, which is 

another focusing theme of digital systems engineering. On this matter, two research 

issues need immediate attention. First, how should the big data be handled in digital 

engineering? How can we leverage Data Science to gain insights from those big data in 

the domain of digital engineering? Secondly, given the distributed nature of data in the 

digitalized and connected environment, the trustworthiness of digitalized engineering 

artifacts (including models) is a critical issue. What digital trust mechanisms will be 

needed?  

     To address the above research issues, digital systems engineering needs to integrate 

and leverage digital technologies such as Big Data technologies (including cloud 

computing), Data Science, ML, AI, semantics technologies, as well as digital 
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mechanisms of security and trust developed in cybersecurity, Blockchain, and 

computational trust communities.  

     Regarding disciplinary relations, “Digital Engineering” is generally engineering 

practice in the digitalized and connected environment to leverage digital technologies. 

Digital systems engineering is an academic research field to develop corresponding 

scientific knowledge and technology to support digital engineering practice. From the 

perspective of digital transformation, digital systems engineering is the digitalization of 

systems engineering; from the perspective of data science, digital systems engineering is 

an extension of data science applied to systems engineering. Digital systems engineering 

is a new development of systems engineering by leveraging digital technologies; as a 

subfield of SE, digital systems engineering is guided by systems thinking, systems 

approach, and SE principles and methodologies. Within the domain of SE, digital 

systems engineering is highly relevant to an active research area -- model-based systems 

engineering (Estefan, 2007; Madni & Sievers, 2018). According to INCOSE’s definition, 

“Model-based systems engineering (MBSE) is the formalized application of modeling to 

support system requirements, design, analysis, verification and validation activities 

beginning in the conceptual design phase and continuing throughout development and 

later life cycle phases” (INCOSE, 2007).  The central goal of MBSE is to transform the 

traditional document-centric approaches to systems engineering into model-centric 

approaches, thus overcoming the deficiencies of the former (INCOSE, 2007; Madni and 

Sievers, 2018). As stated earlier in this section, the core of digital systems engineering is 

digitalization. Digital systems engineering focuses on digitalization (including unique 

identification) of engineering artifacts, as well as associated big data and distributed trust 

issues in digital engineering. Digitalization enables machine-processable 

(understandable) digitalized artifacts and digitalized engineering processes, thus enabling 

adopting, infusing, or integrating new digital technologies rapidly and smoothly; unique 

identification (as a part of digitalization) enables information traceability and 

accountability in systems lifecycle. Digital systems engineering works together with 

MBSE to support digital engineering. The relation stated above can be illustrated in 

figure 4. Digital systems engineering also supports System of Systems Engineering (C. 

Keating et al., 2003) and Mission Engineering (Gold, 2016; Sousa-Poza, 2015) with 

enriched information for complex system governance (C. B. Keating & Katina, 2019) and 

systems coordination and planning.  

 

 
Fig. 4. Relations between digital systems engineering and MBSE as well as classical SE. 
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     From the perspective to realize the digital engineering vision, the knowledge and 

research areas of digital systems engineering can be organized in four levels: vision, 

strategy, action, and foundation, as illustrated in figure 5.  

 

 
Figure 5. Knowledge and Research Areas of Digital Systems Engineering 
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     Transformation of education and workforce development:  Human is the essential 

force to advance engineering; therefore, workforce development and education 

transformation towards digital engineering are necessary. There are two related aspects: 

• Education and training with knowledge and skills for digital engineering 

• AI-powered innovative learning & training systems in digital engineering 

environment 

 

     Transformation of engineering infrastructure: To facilitate digital engineering, it is 

also necessary to develop digital engineering infrastructure for meeting the demands from 

Big Data, security, and distributed nature of a digital & connected environment. 

• Cloud-based platforms for digital engineering 

• Digital mechanisms of trust and security for digital engineering 

 

     Embracing innovative digital technologies in digital engineering operations:  

After realizing digital engineering, an enterprise is able to take full advantages of 

digitalization by fast adopting, interacting, and/or integrating with emerging innovative 

digital technologies, thus achieving fast design, delivery, and sustainment of agile 

intelligent and complex systems in fast changing environment. 

 

5.2.3 Action Level  

     At action-level, there are many research areas, roughly organized in four groups. 

     Digitalization of engineering artifacts: Towards digital engineering, it is a critical 

step to investigate how to digitalize engineering artifacts, potentially including various 

models (formal or informal, numeric or logical, abstract or physical), datasets, various 

documents, bills of materials, processed natural materials, energy, parts, devices, 

products, actions, process, software, functions, services, engineering roles, enterprise 

organizations, and others. In the digitalization, unique identification plays a critical role 

to enable accountability and information traceability (for tracing information flow, 

material flow, faulty chain, supply chain, and others). To digitalize engineering artifacts, 

a digital augmentation will be developed for each artifact, as discussed in subsection 5.1. 

 

     Operations of digitalized engineering artifacts: Once the means to digitalize 

engineering artifacts is created, digital engineering practice will need to explore the 

technologies regarding the following operational aspects of digital engineering artifacts: 

• Creation (manual and automatic approaches) 

• Curation (store, organization, query, retrieval, change, upgrade, …) 

• Qualification (consistency, validity, completeness, usability, accessibility, …) 

• Governance (policies of access, sharing, security, intellectual properties, …) 

• Sharing (information flow across organizations and lifecycle activities) 

• Utilization  

Each type of digitalized engineering artifacts has different features and needs further 

studies to look into them individually. Given the critical role of models in digital 

engineering, digitalized models need immediate attention. Some interesting research 

areas include but not limited to: 

• Automatic generation of digital augmentations for models by machine in an 

Integrated Development Environment for system design 

• Digitalized model creation in a digital environment with a large number of 

relevant digitalized artifacts 
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• Digitalized model creation by integrating a set of existing digitalized models for 

its components 

• Digitalized model creation by big data analytics and machine learning 

• Digitalized model verification and validation 

• Digitalized model curation 

• Digitalized model sharing 

o Sharing across engineering stages or lifecycle phases  

o Sharing across boundaries of disciplines and organizations 

o Digitalized model update and propagation  

• Digitalized model repeatability and reusability 

• Digitalized model interpretability  

• Digitalized model usability 

• Digitalized model interoperability 

• Digitalized model trustworthiness evaluation 

• Digitalized model access control 

• Digitalized model and intellectual property protection 

• Digitalized model security and risk analysis 

 

     Systems engineering lifecycle activities with digitalized engineering artifacts: 

Every phase of SE lifecycle will involve operations of digitalized engineering artifacts 

discussed above and will have and need to investigate how to leverage unprecedented 

information from the digitalized engineering artifacts of upstream lifecycle phases, from 

historical observations of the same or similar work in downstream of lifecycle, and from 

a digital connected environment. Research issues appear in every combination of each 

digital artifact operation type and each SE lifecycle activity, similar to figure 6, which 

illustrates digitalized model operations vs systems engineering lifecycle phases in a 

digitalized environment. 

 

  

Figure 6. Operations of models in systems engineering lifecycle within a digitalized and 

connected environment. 
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     Innovative applications with digital technologies:  Digitalized engineering practice 

will enable to gain the advantages of many digital technologies and develop innovative 

applications. Number a few as follows. 

• AI-aided systems design  

• Autonomous factory  

• Autonomous transportation systems 

• … 

There are many potential innovative applications. We briefly discuss systems design with 

digitalized engineering artifacts. There could be several levels of automation. At a basic 

level, a digitalized model can be just an engineering diagram for human users, wrapped 

with metadata about the diagram; following the information given in its metadata, the 

diagram can be displayed with the required software. At a middle level of formalism, a 

digitalized model can be an executable formal model; following the associated  metadata, 

the formal model can be executed in an environment such as a container (a modern 

approach of virtualization in computing); the origin and the evolution history of the 

model can be traced; the dependency relations of the model can be traced. At an 

advanced level, in addition to what stated above, some examples of the capabilities 

include: (a) using the metadata, a digitalized model can be verified and validated by 

machines, e.g., using a model checker or a theorem prover to prove the validity of a logic 

model. (b) Some types of faults in a model can also be possibly found by machine 

automatically. (c) Based on the properties of a set of digitalized models, they are 

integrated by human modelers to construct a model for a system; At highest level, by 

using AI, a machine can autonomously construct a model on top of available digitalized 

artifacts; a machine can autonomously improve a digitalized system’s structure and 

behaviors. 

     It is a strategic goal of digital engineering to leverage innovative digital technologies, 

such as IoT, CPS, Big Data technologies, Data Science, AI (including ML, KR&R, 

ontologies, Semantic Web), Augmented Reality (AR), Virtual Reality (VR), digital twin 

and digital thread, 3D printing, modeling and simulation (M&S), cybersecurity, 

distributed trust, Blockchain, and others. In the history of engineering, CAD has largely 

digitalized engineering drawing and the detail physical design. Combining with VR&AR 

and M&S, CAD is moving towards digital twins. No doubt there will be many innovative 

applications by combining digital engineering with other emerging digital technologies.   

 

5.2.4 Foundation Level  

     At foundation-level, we identify several groups of foundational research areas and 

enabling digital technologies for digital engineering. 

     Foundation for digitalization: The main foundation of digitalization is from AI, 

more specifically, knowledge representation & reasoning (KR&R) and semantics 

technology developed from ontology engineering and Semantic Web communities. 

Foundational research areas include: 

• Model of models, to categorize models and to create logic model for 

representing each category of models' properties and their relations. 

• Provenance modeling, to create logic models for representing the origin and the 

dependency relations of engineering artifacts. 

• Ontologies for expressing the digital augmentations with well-defined 

semantics, thus enabling or enhancing model integration, model repeatability 



   

 

   

   

 

   

   

 

   

    Towards Digital Engineering    
 

 

    

 

 

   

   

 

   

   

 

   

       
 

and model reusability, model curation and sharing across engineering stages and 

across the boundaries of disciplines, teams, and organizations. 

• Standardization in digitalization 

o Centralized standardization 

o Decentralized standardization and mappings 

o Distributed fine-grained evolutionary convergence with ontologies 

 

     Digital mechanisms of trust: Given the distributed nature of digitalized and 

connected engineering environment, the trustworthiness of digitalized engineering 

artifacts (particularly models) is a critical issue. What digital mechanisms of trust will be 

needed? The US DoD’s “Authoritative Source of Trust” (AST) is a centralized solution; 

what specific mechanisms of trust need to be used in the AST? How other distributed 

digital trust mechanisms can be incorporated in AST? Interesting mechanism types 

include: 

• Centralized mechanisms, e.g. US DOD’s AST 

• Decentralized mechanisms, e.g. multiple ASTs in different domains with certain 

structures such as hierarchical and mesh as for PKIs (Huang & Nicol, 2009). 

• Distributed mechanisms, e.g. using digital signature, distributed key certification 

and attribute certification, evidence-based trust, and blockchain. 

• Hybrid mechanisms. 

 

     Cybersecurity technologies cluster: It is of paramount importance to ensure the 

security of digital engineering and digital enterprises. Worrying failure in cybersecurity 

can be a factor to block digital engineering transformation. There are many interesting 

research areas to support the security of digital engineering, just numbering a few, 

• Access control of digitalized engineering artifacts 

• Engineering computing integrity in a distributed digital engineering environment  

• Identity and attributes management in digital engineering 

• Blockchains-based distributed mechanisms of trust and security 

• Intrusion detection in a distributed digital engineering environment 

• … 

Cybersecurity in digital engineering will be discussed in another paper. 

 

     Big Data and Machine Learning cluster: In the digitalized and connected 

environment, given those unprecedented big data characterized by volume, velocity, 

variety, veracity, and views (Huang, 2018), how do we design and build trustworthy AI 

systems and ML models and algorithms for knowledge discovery from big data to ensure 

reliable performance, explainability, safety, security, resilience, scientific computing 

integrity in digital engineering? Some foundational research areas in this cluster include: 

• Cloud platforms for big data in digital engineering 

• Big data manipulation for digital engineering 

• Big data analytics and machine learning for knowledge discovery from 

observations of the system and its environment in digital engineering 

• Data-intensive Systems Engineering (SE combined with insights and findings 

discovered from data through big data analytics and machine learning) 

 

We have discussed some knowledge and research areas broadly in four levels from 

vision, strategy, action, to foundation, as illustrated in figure 5.  No doubt, many other 
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interesting and important areas were not reflected in the figure for limited space. Some 

examples are: 

• Human-machine interaction in a digitalized connected environment 

• Team collaboration in a digitalized connected environment 

• Parts recycle & reuse evaluation in a digitalized connected environment 

• Environment impact analysis in a digitalized connected environment. 

6.  Concluding Remarks 

     “Digital engineering will require new methods, processes, and tools” (US DoD, 2018). 

To support the digital engineering strategy, digital systems engineering is emerging as an 

academic field, which aims at developing theory, methods, models, and tools to support 

digital engineering practice in the emerging digitalize and connected environment. For 

that end, in this paper, we (1) analyzed the transformation from traditional engineering to 

digital engineering (figure 3); (2) clarified and defined a small set of core concepts 

including digitalization, digitalized artifacts, digital augmentation, and digitalized 

models; (3) presented a big picture of digital systems engineering in four levels: vision, 

strategy, action, and foundation (figure 5), and discussed each of identified main areas of 

research issues. A critical task towards digital engineering is to digitalize engineering 

artifacts, including models, datasets, products, functions, services, and SE processes. 

Digitalization enables universally machine-processable (understandable) digital 

engineering artifacts and processes, thus enabling rapid infusing and leveraging 

innovative digital technologies; as a part of digitalization, unique identification plays a 

critical role to enable information traceability and accountability in systems lifecycle. In 

the digital engineering information flow, provenance also plays critical role in enabling 

tracing the dependency relations among engineering artifacts and improving model 

reproducibility and replicability. 

     This paper presented our vision on digital systems engineering, and much work is 

ahead in that direction. Numbering a few, we will explore the ontological approach to 

digitalizing engineering artifacts with higher priority, developing model of models for 

digitalizing models, and developing provenance representation and reasoning models. We 

will research the distributed digital trust mechanisms for digital identity and attribute 

management and for digital engineering artifacts sharing in more general engineering 

collaboration in today's business environment. We will explore data-intensive systems 

engineering approach by researching trustworthy AI systems and ML models and 

algorithms for knowledge discovery from big data to ensure reliable performance, 

explainability, safety, security, resilience, scientific computing integrity in digital 

engineering. 

     The development of digital systems engineering will support the implementation of 

DoD DES as well as digital engineering in general with the needed knowledge, methods, 

technologies, as well as training and education for the workforces.  
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