Application of deep convolutional neural networks systems in autonomous vehicles
by Souvik Ganguli; Charu Virmani; Vrince Vimal; Gunjan Chhabra; Garima Sinha; Bobur Sobirov
International Journal of System of Systems Engineering (IJSSE), Vol. 15, No. 1, 2025

Abstract: The currently available sensor on those self-driving automobiles does a poor job of detecting the state of the road ahead of them. However, daytime and nighttime weather-related road conditions require safe driving. Deep learning study for daytime roadway identification uses data from a vehicle sensor. An overview of the use of deep convolutional neural networks (CNNs) in autonomous cars is given in this paper. The paper starts by going through the difficulties of creating autonomous vehicles and how CNNs can be utilised to overcome these difficulties. The author thoroughly explains the basis of CNN and how it may be used for tasks like object detection, lane finding, and recognition of traffic signals. The research also examines how CNN focus techniques and transfer learning can be applied to autonomous vehicles. The authors conclude by highlighting the limits of current CNNs in this field and suggesting future research. This review paper gives academic scholars and industry experts a current overview of CNNs in cars.

Online publication date: Fri, 21-Feb-2025

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of System of Systems Engineering (IJSSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com