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Learning curves and technology assessment 
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Schlossplatz 1, A-2361 Laxenburg, Austria 
Fax: +43-2236-807-488 E-mail: leo@iiasa.ac.at 

Abstract: This paper uses the formal concept of learning curves to analyse 
regular behaviour of performance improvements in various energy 
technologies. The concept allows the estimation of a single indicator of 
technological progress, the learning rate, which expresses the constant 
percentage improvement (usually in terms of cost reductions) in a technology 
for each doubling of the technology's cumulative installed capacity. We present 
42 energy-related learning rates, either calculated directly from available data 
or assembled from the literature. We elaborate briefly on eight of these to 
illustrate issues addressed by technology assessments to convert these raw 
historical learning rates into prospective learning rate distributions for use in 
long-term energy models. The paper includes a sensitivity analysis of policy
relevant variables with respect to learning rates, a discussion of possible 
extensions and limitations of the approach and an outlook on future work in the 
field. 

Keywords: Technological learning; technology assessment; energy; energy 
modelling. 
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including the analysis of the role of research and development in enhancing 
technological progress. 

1 Introduction: energy technology assessment 
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The 1998 IIASA-WEC study Global Energy Perspectives [l] concluded that 
technological change will be critical for future energy systems. The Council on Foreign 
Relations' Study Group on Global Warming Technology Policy for the USA states as its 
starting premise that "cutting emissions will require massive technological change toward 
clean, carbon-free fuels". Factor Four, von Weizsacker et al.'s [2] new report to the Club 
of Rome describes itself as ''herald[ing] nothing less than a new direction for 
technological progress". The 2000 IPCC Special Report on Emissions Scenarios (SRES) 
[3] concluded that technological change is effectively the inost important driving force of 
the energy system, more important than demographic change and economic development. 

The emphasis given to technology in these and other studies reflects the increasing 
research on the dynamics of technological change and on incorporating the results in 
long-term large-scale energy models. The ultimate objective behind using such models is 
to assess alternative policies for efficiently steering technological change in desirable 
directions. 

One concept we consider particularly useful for incorporating technological change in 
energy models is that of learning curves. A learning curve describes technological 
progress (measured generally in terms of decreasing costs for a specific technology) as a 
function of accumulating experience with that technology. This is a significant departure 
from most earlier energy models (both top-down and bottom-up), in which the stan~d 
input assumptions include prescribed cost reductions for various technologies as 
functions of time. Early work on incorporating learning curves in energy models was 
carried out particularly by IIASA [4], at Chalmers University [5] and in the US 
Department of Energy [6] and technological learning curves have since been included in 
several E3 (energy-economy-environmental) models [7]. As a result, such models are 
capable of identifying longer-term optimal strategies that would not be optimal if viewed 
myopically, considering relative technology costs only at a given point in time. The 
longer-term view, taking learning into account, can thus uncover possibilities for 
profitably investing in technologies that are expensive today, but will become 
significantly cheaper as experience with their production and use accumulates. 

Ultimately to draw useful policy conclusions, we need reasonably reliable estimates 
of the learning curves that these new expanded models should use in extrapolating into 
the future, plus model features that can deal with remaining uncertainties. Learning 
curves, after all, hardly represent a physical law. Rather they describe a persistent 
empirical phenomenon with still significant uncertainties surrounding both the estimation 
of specific learning rates and their extrapolation in long-term energy scenarios. 
Plausibility must therefore take the place of predictability and the quality of the fit with 
which a learning curve is estimated for a given set of data is the principal measure of the 
reliability of the tool. Both because the quality of fit is sometimes low and because of the 
uncertainty inherent in projecting empirical patterns 100 years into the future (the 
planning horizon of many long-term energy models), energy models that can take as 
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inputs distributions of learning rates rather than single values have an advantage. Against 
this advantage one must weigh the numerical complexity of model calculations and the 
associated computing requirements, as well as the difficulty of generally comprehending 
and fully assimilating voluminous complex model outputs and their subtle multiple 
sensitivities. But even if we opt for simpler, more comprehensible models, the variability 
of observed learning rates remains important. As shown in the next section, the 
sensitivity of policy-related variables to such variability is highly non-linear. 

Section 2 of this paper introduces the concept of learning curves in a formal 
mathematical way and presents a first step in sensitivity analysis. Section 3 presents a 
total of 42 learning r.ates for a variety of energy technologies ranging from primary 
energy supply and conversion to end-use and energy services. We have estimated 26 of 
these (or re-estimated to assure that the results are consistent) directly from data sets we 
have assembled. The remaining 16 are estimates reported in the literature, for which we 
do not have the original data. We elaborate briefly on eight of these to illustrate issues 
addressed by technology assessments to convert these raw historical learning rates into 
prospective learning rate distributions for use in long-term energy models. Section 4 
provides a methodological discussion of the learning curve concept. Alternative causes of 
technological learning, some of them closely related to experience accumulation, are also 
discussed in Section 4. Finally Section 5 provides a summary and offers an outlook on 
further work. 

2 The concept of technological learning 

2.1 Definitions 

The concept of technological learning was first introduced over 60 years ago (8). As used 
in this paper, it assumes that a technology's performance improves as experience with the 
technology accumulates. The concept can be used with a variety of different indicators of 
technological performance and experience, but we will start with specific capital costs as 
the performance indicator and total cumulative installed capacity as the experience 
indicator. In this case, technological learning is defined by the following power function. 

Cost= A* Ccapb (2.1) 

where: Cost . .. Specific capital costs (e.g., $/kW), 

A .. . Specific capital costs at a total (initial) cumulative capacity of l, 

Ccap ... Total cumulative installed capacity (e.g, gigawatts) and 

b ... Learning elasticity (a constant). 

From this definition it follows that a doubling of total cumulative capacity reduces 
specific costs by a factor of 2b. In the usual case where b is negative, 2b (labelled the 
progress ratio, pr) is between zero and one. The complement of the progress ratio (1-pr) 
is called the learning rate (Ir) [9]. A learning elasticity of -0.32, for example, yields a 
progress rate of 0.80 and a learning rate of 20%. This means that the specific capit.al cost 
of newly installed capacity decreases by 20% for each doubling of total installed 
capacity. On a double-logarithmic scale, the decrease in costs appears as a straight line. 
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Most of the results and discussion in this paper use specific capital costs (or prices) 
and cumulative capacity as performance and experience indicators respectively. 
However, we include among the technologies singled out for additional discussion in 
Section 3.3, examples in which the performance indicator is efficiency or the cost of 
production (i.e., cost per unit output). In the case where performance is measured in 
terms of production costs (wind power), we use total cumulative production as the most 
appropriate matching experience indicator. 

Note that time does not figure explicitly in the concept of learning curves. 
Nonetheless, empirical learning curves are usually derived from time series of costs and 
capacities and thus carry invisible time labels with potentially interesting information. 
These become important if we want to address the possibility of knowledge depreciation 
(see Section 4.1), i.e., the possibility that experience acquired a long time ago is not as 
valuable as experience acquired yesterday. Moreover, in the hypothetical case of exact 
exponential growth, the logarithmic transformations of the cost functions over time are 
linear, a property that is useful in cases where information on total installed capacity is 
difficult to obtain or unreliable. If, in such a case, exponential capacity growth can be 
plausibly assumed, the validity of the 'learning model' can be judged by checking 
whether the logarithm of cost is a linear function of time. However, to calculate the 
learning rate for that learning curve we would have to know the rate of exponential 
capacity growth. 

As in any one-formula model, the application of equation 2.1 to the data sets in 
Table 1 is a substantial simplification. But as was the case with other simple tools for 
statistical measurement (such as a data set's mean and standard deviation), if the 
usefulness of calculated learning rates becomes widely accepted, the importance of the 
concept's 'truth value' becomes secondary. Nonetheless, in this paper we discuss the 
shortcomings of equation 2.1 to help identify the practical limits of its validity. Exploring 
such shortcomings leads to suggested modifications (see Section 4) and to insights about 
translating empirical learning rates into appropriate inputs to energy models that look 
ahead as much as 100 years (Section 3.3). Note also that our use of the term 'learning 
curve,' and a single learning rate, to describe cost or performance in the aggregate differs 
from the way others sometimes use the terms. We will not review here all the different 
ways in which the terms have been used, but to avoid confusion we should note that our 
usage differs, in particular, from that of the Boston Consulting Group [10]. It uses the 
term 'learning curve' to refer to performance improvements related to one specific input, 
such as labour or raw materials. The aggregate pattern it refers to as an 'experience 
curve.' 

2.2 Sensitivity of policy-relevant variables 

To illustrate the sensitivity of policy-relevant variables to variations in estimated learning 
rates, we define two variables for a new technology, the break-even capacity and the 
technology maturing costs, as follows. If we assume for the moment that the new 
technology's competitive cost target is unchanging over time and if we know the 
technology's learning rate and current cost, we can calculate how much more capacity 
will have to be installed for the technology to become competitive. The capacity at which 
this happens is called the break-even capacity. The extra expenditures required to bring 
costs down to the competitive cost target are called the technology maturing costs. 
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Technology Country/ Time Period 
Region 

Solar PV modules• World 1968-1998 

Solar PV panels USA 1959-1974 

Solar PV systems EU 1985-1995 

Solar PV modules World 1976-1992 

Solar PV modules EU 1976-1996 

DC converters World 1976-1994 

Ethanol Brazil 1979-1995 

Ethanol Brazil 1978-1995 

Retail petrol processing USA 1919-1969 

Model-T Ford USA 1909-1918 

Compact fluorescent lamps, USA 1992-1998 
integral-electronic type 

Air conditioners Japan 1972-1997 

4-function pocket calculators USA Early 1970s 

SONY laser diodes - 1982-1994 

Source: McDonald and Schrattenholzer (3 J] 

Estimated 
learning Rate 

20% 

22% 

35% 

18% 
21%r 

37% 

20% 

22%8 

20% 

14% 

16% 

10% 

30%. 

23% 

R'" 

0.99 

0.94 

0.35 

0.89 

0.96 

0.66 

0.82 

n.a. 

0.95 

Performance Measure Experience Measure 

investment price (S/W ,....) capacity (MW) 

sale price ($/W .... J capacity (MW) 

production cost (ECU/kWh) production (TWh) 

sale price ($/W .,.J sales (MW) 

sale price (SfW peak) sales (MW) 

conversion losses(%) capacity (units) 

sale price (S/boe) production (m3
) 

sales price (S/boe) production (m3
) 

production cost ($/bbl) production (bbl) 

sale price (S per car) production (cars) 

sale price($ per lwnen) production (units) 

sale price (Yen per unit) sales (units) 

sale price($ per unit) production (uni ts) 

production cost (Yen per unit) production (units) 

a Two cautions are in order concerning values for R2
• For each line in the Table, R2 expresses lhe quality oflhe fit between the data and the estimated 

learning curve. However, R2 values in different lines should not be compared because sample sizes are different. Second, R2 measures lhe correlation for 
a straight-line fit lo the logarithms oflhe dependent and independent variables. As linear regression minimises the swn of error squares, this means that 
relative rather than absolute errors are minimised. 

b The geographical scope of the data is not reported explicitly. The context suggests it is the whole world. 

c Note that these learning rates are based on prices, and one explanation of the negative 1981-1991 'learning rate' could be oligopolistic pricing behaviour. 

d Based on Neij [20). The learning rate of 4% considers only wind turbines equivalent to 55 kW or larger. The 8% learning rate reported two entries below 
includes all Danish wind turbines. 

e Based on preliminary data.· 

f 21% is the learning rate for the ' stability' stage shown in Figure 7. For the 'development' and 'price umbrella' stages the learning rate is 16%. For the 
'shakeout' stage it is 47%. 

g 22% is the learning rate for to the 'stability' stage shown in Figure 7. For the 'development' and 'price wnbrella' stages the learning rate is 10%. For the 
'shakeout' stage it is 53%. 

h Joskow and Rose estimate a range of learning rates for different utilities, architect-engineering firrns, and technology categories, after accounting for 
inflation, plant size, the inclusion of scrubbers or cooling towers, whether certain structures are indoors or out, and whether a unit is the first on a site. 
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With these definitions, we can demonstrate the sensitivity of break-even capacities and 
technology maturing costs in Figure 1. The Figure shows a hypothetical situation in 
which the competitive cost target is $1 per watt ($1000/kW) and initial costs are twice as 
high at $2/W. Break-even capacities and technology maturing costs are calculated for 
learning rates between 7 .5% and 20%. 

Figure 1 Sensitivity of break-even capacities and technology maturing costs 

1,000 ....------------------, 

• Technology maturing costs 
--..,,,,..,,....--t in billions of dollars 

7.5 10.0 12.5 15.0 17.5 20.0 

Leaming rate (%) 

Note that the vertical axis in Figure 1 is logarithmic. Because the horizontal axis is linear, 
the most important observation from the figure is that with decreasing learning rates, 
technology maturing costs and break-even capacities grow faster than exponentially. In 
terms of absolute values, going from a learning rate of 20% to one of 10% increases 
technology maturing costs from $2 billion to $16 billion and break-even capacities from 
9 to 96 gigawatts (GW). Although these cost figures are illustrative, they are nonetheless 
in a realistic range and the calculated results are thus indicative of realistic orders of 
magnitude. 

This is particularly important for novel technologies, for which learning curves are 
not statistically estimated but constructed directly from a postulated learning rate and 
initial values for costs and the total installed capacity at time zero. Estimating the initial 
capacity can be difficult, making the sensitivity of estimated technology maturing costs 
and break-even capacities with respect to this parameter especially important. Because 
both technology maturing costs and break-even capacities depend linearly on the initial 
capacity, their sensitivity to variations in the initial capacity is linear. If the initial 
capacity is actually twice the value assumed, for example, that doubles the technology 
maturing costs and break-even capacities. 

While the simple definitions of break-even capacities and technology maturing costs 
introduced here indicate the sensitivity of policy variables to variations and uncertainty in 
estimated learning rates, we recognise that ultimately more detailed calculations will be 
needed. In particular, competitive cost targets drop over time as other technologies also 
improve. Thus more detailed energy models are needed to answer completely policy 
questions as to whether near-term subsidies to speed currently expensive but promising 
technologies down their learning curves will be fully compensated by eventual cost 
reductions (including external costs if those are known). 
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3 Energy technology learning curves 

This section describes the formats we have used for assembling data, estimating learning 
rates and presenting these together with estimates published by others. Table 1 
summarises the results, both calculated and collected. These are compared in Section 3.2 
with the range of learning rates in manufacturing activities that Dutton and Thomas 
published in 1984 [32]. Section 3.3 provides additional observations on selected 
technologies from Table 1. 

3.1 A format for presenting learning curves 

As noted above, empirical learning curves are usually derived from time series of costs 
and capacities and thus carry invisible time labels. To keep track of these time labels, 
among other things, we used the format shown in Figure 2 for assembling the database 
underlying many of the learning rates presented below in Table 1. The top panels of 
Figure 2 show the time series for the performance indicator (specific prices of solar PV 
modules, in this case, on the left) and the experience indicator (cumulative shipments, on 
the right). The lower left panel shows the fitted learning curve, with its estimated learning 
rate and correlation coefficient (R2

) [33]. The lower right panel represents the goodness
of-fit in further detail, showing all the learning rates that can be calculated from any two 
points in the data set. For example, the curve labelled '1968' (the top label in the legend 
box) describes the learning rates between 1968 and the year described by the value on the 
horizontal axis. In this example, the curves in the lower right panel seem to show more 
variability than revealed by the lower left panel's R2 value of0.99. 

Figure 2 Solar PV modules: prices (upper left), cumulative shipments (upper right), learning 
curve (lower left) and learning rates (lower right) 

Solar PV Module Price 

100 ~--------------, 

I~~~~-~ 
0 
1ssa 1971 1974 1&n 1sao 1983 1sss 1sas 1ss2 1995 1ssa 

Leaming Curve, LR = 2D'k 

y = 35.173x' '"' 
········ ········· ··· · ·· · · ······· ·············· ···· · · ··- ~·=·o-g-s2r······ · · · ·· 

200 400 600 800 1000 

Cumulative shipments 

Source: Harmon [23) 

Cumulative Shipments of PV Modules, Worlcl 

1000 -------------~ 
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500 ·•·•···•··••··•·•·•·••···••·••· ··••·•···••·•·••······•·•···••····•··•••···· •...•.•.... 
400 ·····•········ ·······•··· ····· ··· ······· ··· · ·· ···· ·· ···•·•· ··•······ ....•........... 

Learning Rates 

1970 1975 1980 1985 1990 1995 2000 

-?:168 
....... . '9~ .,. 
- " &1r 

~·" _.,, _., _.,., ... , ..... . .. 
·• ... . .. , 

··- · 988 ... 
_.,, 
·- · B9Z 



726 A. McDonald and L. Schrattenholzer 

Both time series at the top of Figure 2 are relatively smooth. In cases where the curves 
are less smooth, the timing of irregular ups and downs may help interpret results. 
Particularly when performance is measured by specific prices (rather than costs), 
fluctuations around the long-term trend may reflect market shocks or non-equilibrium 
pricing strategies (Sections 3.3.3, 3.3.6 and 3.3.7 address specific examples). Looking at 
the underlying time series can help identify such instances. These may reduce values of 
R2

, but such fluctuations are largely irrelevant for long-term energy scenarios and their 
effects on R2 should probably be ignored if estimated learning rates are to be used in such 
scenarios. 

Keeping careful track of the underlying data, as in Figure 2, can also help avoid 
potential analytic pitfalls, particularly in terms of mismatches between time series for the 
performance and experience variables. Two examples emphasised in a recent 
International Energy Agency report [16] are the following. The first involves combining 
total installed capacity of a technology as the experience variable with production costs 
as the performance indicator. Consider the case of wind turbines. Accumulated installed 
capacity reflects the experience of companies producing wind turbines. As their 
experience increases, the costs of producing turbines should drop, resulting in a 
corresponding drop in the specific investment costs for utilities buying turbines. But the 
utilities' total costs of producing electricity include the additional impact of improving 
capacity factors - improvements related to utility experience best measured in terms of 
cumulative electricity production, rather than capacity. The second example involves 
misleading mismatches between world market prices as a performance indicator and 
cumulative national or regional capacities as the experience indicator [34]. 

Together, the formats of Figure 2 and Table I (which identifies the geographic scope 
of each dataset) provide a succinct summary of much of the information needed to go 
beyond estimating historical learning curves to more comprehensive technology 
assessments. One objective of such assessments is a set of learning rates appropriate for 
long-term future energy scenarios. In addition to the summary of important ancillary 
information provided by Figure 2 and Table I, there is a further motive for presenting 
these formats here. By so doing we hope to encourage other authors to use similar 
formats in assembling and presenting their own data in future publications. 

3.2 Overview 

Table 1 presents 42 learning rates that we have either calculated for different energy 
technologies (26) or collected from the literature (16) [31]. The distribution of all 42 
learning rates is shown in Figure 3. The overall pattern is quite irregular. Even if we 
disregard the outlying negative 'learning' rate, the distribution has 'holes' that cannot be 
plausibly explained and three apparent modes. One possible reason is that our sample 
size is simply still too small and that as more learning rate estimates are added to the 
distribution, it will become more regular. Another reason could be that in those cases 
where we could not estimate learning rates ourselves, different methods or conventions 
were used. One observation supporting this possibility is that the distribution of just those 
learning rates for which we did the original estimation, or re-estimated published learning 
rates, is more regular. In any case, the observed irregularities were ·an important 
motivation for us to 'dig deeper', i.e., to look at each technology in more detail - some 
examples are given in Section 3.3 - to understand additional factors (like market shocks 
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and predatory pricing strategies) that might cause bias or variability in the underlying 
data sets. 

Figure 3 Learning rates of 42 energy technologies 
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A smoother representation of the distribution of learning rates in Table I is provided by 
the cumulative curve, as shown in Figure 4. For comparison, Figure 4 also shows the 
distribution of manufacturing learning rates from Dutton and Thomas. Figure 4's 
presentation leads to a smoother image and shows that, by and large, the two distributions 
are similar, in particular above the median - near a 16% learning rate for both curves. 
The biggest divergence between the curves is between the I 0th and 40th percentiles. The 
20th percentile for energy technologies is at a learning rate of 6%. For manufacturing it is 
at 13%. 

Figure 4 Cumulative distributions of two surveys oflearning rates 

100% ,....,.~~~~~~~~~~~~~~"'"="""""""""' 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
6 
8 

a 
i--..l 
CD 

Source: Dutton and Thomas [32) and McDonald and Schrattenholzer [31] 



728 A. McDonald and L. Schrattenholzer 

Given the irregular shape of the distribution in Figure 3, however, it is important to look 
at the data behind Table l's learning rates for possible misleading biases. Identifying 
such biases is the first step in moving beyond the exercise of estimating historical 
learning rates towards a technology assessment using past learning rates as just one input 
among several for generating prospective learning rate distributions for use in long-term 
energy scenarios. An examination of all Table l's entries is beyond the scope of this 
paper. But the next section highlights possible biases in eight selected entries, chosen to 
cover the technology range from primary energy extraction to final energy use. 

3.3 Towards technology assessment 

3.3.J North Sea oil extraction 

Technological progress in oil extraction is one of the remarkable success stories of the 
past 20 years. It has enabled producers in the North Sea to stay in business through, in 
particular, the drastic decline in international crude oil prices in I 985 and 1986. 
Unfortunately for our efforts in estimating a learning rate, oil extraction technology costs 
are not very transparent and extraction cost reductions are therefore difficult to compile. 
Our estimate is based on a small amount of performance-related numerical information 
presented by Blackwood [11], who reports reductions in the average number of man
hours needed to construct one ton of three platform jackets for the Eastern Trough Area 
Project. According to Blackwood, 'significant improvement' was achieved in comparison 
with an earlier project (Andrew) requiring 66 man-hours per ton and a knowledgeable 
source 'would not confirm' a proposed estimate of 50 man-hours per ton for the Eastern 
Trough Area Project. If we assume that the 50 man-hours per ton conjecture is correct 
and that the construction was the second of its kind (i.e., that it constitutes the first 
doubling), we get a progress rate of 50/66 = 0.75 and a learning rate of 25%. There are 
two principal uncertainties in this calculation. First is the uncertainty about the 50 man
hours per ton as the right number to attach to the phrase 'significant improvement.' 
Second is the assumption than the improvement from 66 to 50 man-hours corresponds to 
the first capacity doubling for this technology. If Andrew and the Eastern Trough Area 
Project represent points beyond the first capacity doubling, then the improvement from 
66 to 50 man-hours would correspond to a learning rate higher than 25%. Both sources of 
uncertainty would have to be taken into account when developing a learning-rate 
distribution for this technology that might be input into long-term energy scenarios. 

Two other caveats concern the fact that the improvement measure in this case is not 
specific cost. In all such cases with non-cost performance indicators, we must remember 
that, at any point in time, higher efficiency versions of a technology (from light bulbs to 
power plants) are generally available at a higher cost. Thus if preferences (or government 
regulations) shift toward higher efficiency versions of a technology, for example and this 
shift is not taken into account, resulting estimates of learning rates may be misleadingly 
high. The second caveat is that improvements in parameters like efficiency and 
productivity may be significantly motivated by increasing costs in various factors of 
production. The learning rate calculated during such periods of market pressure may well 
be higher than the learning rate most appropriate for long-term energy scenarios. We 
have no reason to believe that market pressure or preference shifts toward higher 
efficiency technology played distorting roles in the case of North Sea oil, but our use of a 
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non-cost performance indicator in this case makes it the appropriate place to raise a 
warning flag. 

3.3.2 AC/DC converters 

Moving from primary energy extraction to energy transnnss10n, we have included in 
Table 1 one learning rate based on a study by Rabitsch of electricity grids and 
transformers in Eurasia [25). Rabitsch also uses a non-cost performance indicator, 
specifically losses in converter stations connecting AC and DC lines. Losses are currently 
in the range of0.5 to 0.7% of the rated power, down from 1.4% in 1976. Based on _these 
values and data from several ABB projects, Rabitsch estimates a learning rate of 37%, 
with a comparatively high correlation coefficient of 0.95 (Figure 5). 

Figure 5 Converter losses for a single station versus the cumulative installed capacity of all DC 
systems in the world 
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As was the case for platform jackets in the North Sea, these non-cost performance 
improvements may have been partly caused by changing market circumstances. In 
particular the optimal design of a converter is usually driven by expectations (or 
intentions) about the appropriate interest rate, economic lifetime, utilisation factor and 
costs of electricity, among other factors. Changes in these factors will influence converter 
designs and the resulting losses. However, in the absence of a more complete description 
from Rabitsch or others of changes in these factors during the period covered by his data, 
we essentially assume that their effects are either consistent or largely random with 
respect to experience accumulation. In either case, for long-term energy modelling it 
would be appropriate to anchor a learning rate distribution on the value of 3 7% estimated 
by Rabitsch. 
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3.3.3 Gas turbines 

Figure 6 presents data assembled by Claeson [18] for gas turbine combined-cycle power 
plants (GTCC). She fits a two-stage learning curve over the period from 1981 to 1997 
using specific investment prices as the performance indicator. The first part of the curve 
( 1981-1991) shows an increasing trend in GTCC investment prices, corresponding to a 
'learning' rate of -11 % and a bad fit (R2 = 0.37). The second part, after 1990, implies a 
learning rate of 26% with R2 

= 0.90. (Estimating a single learning curve for the full data 
set results in a correlation that is close to inconclusive (R2 = 0.18) and a 'learning rate' of 
5.4%.) One explanation for the irregular data pattern could be the high variability of the 
original data. Due to different conditions prevailing in different cases (with respect to the 
size, location, changing pollution abatel!lent requirements, the ·exact definition of costs, 
etc.), strict comparability of data from different years cannot be assumed. Claeson does 
average all prices for each year to get one average data point per year and this smoothes 
out part of such variability. But it is unlikely to compensate for it all. A second partial 
explanation arises from the fact that technological performance in this case is measured 
in terms of prices rather than costs. The use of prices instead of costs is discussed in more 
detail in the next section on wind energy. As pointed out by Claeson, for GTCCs, this 
raises the possibility that the negative 1981-1991 'learning' rate could be a result of 
oligopolistic pricing behaviour during that period. The subsequent price reduction could 
then be the 'shakeout' described in Figure 7. 

Figure 6 Two-stage learning curve of GTCCs, 1981-1997 
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Figure 7 Price-cost relations for a new product 
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3.3.4 Wind energy 
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Wind turbines for electricity production are an increasingly popular technology as a 
result of their substantial external environmental benefits. Although they are still, in 
many circumstances, more expensive than their competition, electricity production costs 
have dropped by more than an order of magnitude within less than 20 years and many 
expect that there is still a lot of room for further improvement. 

Given the current popularity of wind power, Table 1 includes seven different wind 
data sets and their calculated learning rates. These fall into two groups: one for electricity 
production (with performance and experience indicators based on production) and one for 
wind turbines (with performance and experience indicators based on capacity). The 
learning rates based on production are significantly higher than those based on capacity. 
One explanation is the significant technological progress that has occurred in turbine 
design to lower the threshold wind speed for power production. Thus one unit of capacity 
generates an increasing number of kilowatt-hours. 

Another possible cause of differences among wind power learning rates is illustrated 
by comparing the 32% learning rate for 1985-1994 US wind electricity production, 
reported by IEA [16], to the much lower rate of 18% that we estimated for California for 
1981-1994. Ifwe re-estimate our learning curve for California for the same period as the 
IEA estimation (1985-1994), we get a learning rate of 34%, a figure much more in line 
with IEA. Because both the data series in question are in terms of prices rather than costs, 
one explanation for this result may be the hypothesis suggested originally by the Boston 
Consulting Group and shown in Figure 7. The Figure presents a possible relationship 
between a straight-line learning curve for costs (the dashed line) and price reductions (the 
kinked solid line) that are driven by assumed changes in market structure as well as by 
declining costs. The market structure is assumed to move through four characteristic 
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stages. The first two stages ('development' and 'price umbrella') reflect an oligopolistic 
market that manages to keep the learning rate for price reductions below the learning rate 
for costs. In the 'shakeout' stage the learning rate for prices is higher than that for costs 
and in the 'stability' stage, learning rates for prices and costs are identical. The 1981-
1994 data set for California on which our calculations are based suggests a transition 
similar to the first kink in the solid line in Figure 7. To the extent that such a transition 
explains the higher learning rate estimates of 34 and 35% from post-1985 data, such 
estimates would be too high to use as approximations for the underlying constant learning 
rate for costs (i.e., corresponding to the dashed line in Figure 7). 

3.3.5 Solar photovoltaic modules 

As was the case with wind energy, a number of learning curves have already been 
published for solar photovoltaic technology. One recurring problem with past estimates is 
that the technology has not always been defined precisely. Given that for decision and 
policy makers, it is probably electricity costs that will matter most in their economic 
assessment of solar photovoltaic technology, analyses should focus on the development 
of total PV system costs rather than just modules. Still, most reported learning curves 
have analysed only solar cells or modules. 

Harmon [23] has surveyed the existing literature on solar PV and has estimated the 
learning curve shown in the lower left panel of Figure 2. It is based on a compilation of 
the data behind currently published learning curves, mainly Ayres et al. [35]. The Figure 
presents cost data for modules, rather than total solar systems as recommended above, for 
two reasons. One was simply that a Jot more data are available for modules. The second 
reason - which also partly explains why module data are more available - is that systems 
come in several variants, which serve different purposes and have different costs. 
Harmon includes a detailed discussion of the many possible non-module, or balance-of
system (BOS), cost factors and their possible future developments. Among other things, 
these include structural components, AC converters, other power conditioning equipment 
and energy storage. 

The correlation coefficient (R2 = 0.99) in Figure 2 is rather high. Moreover, the 
estimated learning rate of 20% is quite consistent with other published PV learning rates 
based on shorter time intervals. For long-term energy modelling, therefore, we would be 
justified in using a distribution for the learning rate for PV modules (around a mode of 
20%) that is tighter than those for the other technologies discussed in this section. 
Harmon also found little difference among the different types of PV modules (e.g., mono 
and poly-crystalline silicon, or thin-film, plus their sub-classes) that have dominated the 
industry at different times. Similarly, the geographical coverage of the data suggests 
significant geographical invariance, i. e., that PV learning rates are quite similar in Japan 
and the USA. 

3.3. 6 Ethanol in Brazil 

Goldemberg [26] presented an analysis of technological learning in ethanol production 
for Brazil. From his raw data on ethanol prices paid to producers (which serve as an 
approximation to costs) and cumulative ethanol production, we have plotted the learning 
curve shown in the left part of Figure 8. The results are a learning rate of 20% and a 
correlation coefficient of0.89. The fit appears to be quite good, except perhaps for prices 
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between about 80 and 120$/boe. Figure 8 shows the underlying time series for ethanol 
prices. From this we can see that the divergence of the data between 80 and 120$/boe 
from the fitted learning curve corresponds to high ethanol prices in particularly 1984 and 
1985, followed by an abrupt drop in 1986. This suggests that the decline in ethanol prices 
between 1985 and 1986 was partly driven by the concurrent sharp drops in the prices of 
international oil and, subsequently, petrol, ethanol's main competitor. Similarly, the rise 
in the price of ethanol after 1990 could be connected with general uncertainties in the 
international oil market following the 1990-91 Gulf crisis. Both of these causes would be 
unrelated to technological change in ethanol production and would therefore be best 
ignored when developing an ethanol learning rate distribution for long-term energy 
modelling. 

Figure 8 Learning curve estimated for ethanol production in Brazil (left) and prices paid to 
producers (right), 1979-1995 
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3.3. 7 Air conditioners in Japan 
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Akisawa [30] has studied the technological and market development of room air 
conditioners in Japan since 1961. Figure 9 shows a learning curve estimated from price 
data for a 'beat-pump' design (i.e., it can work both as an air conditioner and a heat 
pump) that currently dominates the Japanese air conditioning market. The estimated 
learning rate for the entire data series is I 0%, but the correlation coefficient (R2

) of 0.82 
is not very high. Most of the problem appears to be due to irregular price behaviour in the 
early periods [36], corresponding to prices between 250,000 and 200,000 Yen. From 
1990 onwards (when prices drop - and stay - below 200,000 Japanese Yen per unit), the 
fit becomes much better. Considering just the period from 1990-1997, we get a learning 
rate of 17% and a correlation coefficient of 0.94. 
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Figure 9 Learning curve (I 0% learning rate) of air conditioners (beat pump type), Japan, 
1972-1997 
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Again we are dealing not with costs, but with prices and should therefore consider 
plausible factors other than costs that might have an impact on prices. Because the early 
erratic price behaviour in Figure 9 corresponds to the period when the now dominant 
design faced the most competition, some of the ups and downs could reflect pricing 
strategies related to a changing market structure analogous, but not identical, to Figure 7. 
In this case the post-1990 learning rate of 17% would seem the most appropriate for long
term energy modelling. 

3.3.8 SONY laser diodes 

The final item from Table 1 on which we want to make additional observations is laser 
diodes. These constitute not so much an energy end-use technology as we normally 
define the term, as they do an important component in an increasing number of true 
energy end-use technologies, such as compact disc players. We have chosen laser diodes 
for two reasons. First, the data (see Figure 10) stretch over almost six orders of 
magnitude of cumulative production and are suggestive of the hypothesis that a 
technology's learning rate decreases as it moves down its learning curve. Lipman and 
Sperling [28), whose data are presented in Figure 10, argue that the data seem to follow a 
learning rate of first 25% and then 20% and then eventually reach a floor. On the other 
hand, while the unchanging prices over the last three data points do support the notion of 
'floor costs,' the data also show a wave-like pattern that would suggest an eventual return 
to more rapid learning. This raises the second reason for highlighting laser diodes - given 
current production of six million units per year and the present cumulative production 
level of 10.8 million, more doublings in the near future will make it possible to test 
particularly the 'floor' hypothesis against real data. 
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Figure 10 Leaming curve (23% learning rate) of Sony laser diode manufacturing costs 1982-1994 
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4 Variations on the basic concept and discussion 

As noted in several of the examples above, learning is one of several possible factors 
contributing to observed cost decreases. Other possibilities include: 

R&D expenditures 

2 unit size (economies of scale) 

3 unit lifetimes (technologies that turn over frequently have more opportunities to 
incorporate learning) 

4 market size (technologies where annual production is of the order of millions of units 
have more opportunity for learning than technologies produced in the tens or 
hundreds) 

5 the stage of the technology's lifecycle (perhaps technologies still in the R&D phase 
learn faster than commercialised technologies) 

6 time (ageing equipment may increase production costs and thus bias performance 
indicators; experience may depreciate over time and general technological progress 
in subcomponents like computers may reduce overall costs) 

7 progress in closely related technology clusters (progress in stationary fuel cells may 
have spillover effects on mobile fuel cells) 

8 market structure and prices (more competitive markets and prices increase incentives 
for cost reductions) and 
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9 government regulations (environmental mandates, for example, may slow or reverse 
cost reductions). 

Even more detail is considered in many econometric analyses of particularly 
US power plant costs. These include factors such as regional labour costs or whether 
sites at different latitudes require different amounts of construction to be done 
indoors [17,37-41]. 

The additional possible causes of cost reductions that are most important to examine 
depend on one's objectives. If you are a decision maker in a US utility pondering when 
and where to build your next power plant, you probably care about cost variations 
between northern and southern building sites, or between union and non-union states. But 
these are of less interest to our principal audience - developers and users of long-term, 
global or national energy models. Moreover, for long-term energy models it is not clear 
how much effort should be put into trying to distinguish among factors that may be 
highly correlated. For example, given the data that are available, model inputs in which 
learning and scale economies are lumped into a single estimated learning rate may be 
simpler, as reliable and therefore more useful than efforts to extract the two separate 
effects from the empirical data and then treat them separately in long-term energy 
models. 

More generally, the descriptive power of estimated learning curves is still important 
and valuable even if their explanatory power is imperfect. In much the same way that the 
standard error of a given data sample can be informative whether or not the sample is 
distributed normally, learning rates can be informative indicators of time series relating 
technological performance to experience. A similar example is the extraordinarily rich set 
oflogistic curves collected by Marchetti [42], Nakicenovic [43], Griibler [44] and others. 
Their regularity is impressive even in cases where the original model (the differential 
equation defining the logistic function, describing species growth in a limited 
environment) may not be a satisfactory representation of the market substitutions 
reflected in the data. From this perspective it is less necessary to analyse in detail the 
separate effects of the items above than it is to find descriptive phenomenological 
correlations. For example, Neij [20] classified technologies into three categories - plants, 
module technologies and continuous processes - for which she found average learning 
rates of 10, 20 and 22% respectively. 

Given our ultimate objective of compiling learning rates useful for long-term energy 
modelling, the above list is particularly useful in two ways. For some items, it helps us to 
pre-process the raw data to extract a learning rate appropriate for long-term scenarios. An 
example is the model in Figure 7, explaining differences between prices and costs as a 
function of market structure. For long-term energy modelling we are interested in the 
learning rate corresponding to the ' stability' portion of the curve and it is indeed such 
learning rates that are reported in Table 1 for two items, solar PV modules in the EU 
between 1976 and 1996 and Brazilian ethanol between 1978 and 1995 as calculated by 
the IEA (see footnotes to Table 1). 

Secondly, some of the items appear to have long-term effects and should be 
considered for direct inclusion in long-term modelling of learning. Examples are the first, 
fifth and sixth items, which concern possible learning rate changes as time passes and a 
technology matures from its R&D stage to widespread adoption. Several authors address 
this possibility using kinked learning curves that are only piece-wise linear on a double
logarithmic scale (see, for example, Nakicenovi6 et al. [1]). Although this is motivated 
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partly by efforts to fit specific data sets better, it has been justified by qualitative 
arguments that learning rates should be higher for technologies still in their R&D phase, 
then decrease as technologies become commercialised and then decrease again when they 
can be labelled 'mature.' (Note that the argument that learning rates should be higher in 
the R&D phase suggests that R&D expenditures could be a mechanism for steepening 
learning curves and thus complement policy mechanisms discussed in Section 4.2 for 
moving faster down a given learning curve of unchanged slope.) 

Section 4.1 presents an alternative to kinked learning curves that models decreasing 
learning rates as the result of continuous knowledge depreciation, rather than sharp 
transitions among life-cycle stages. Turning to potential policy considerations, Section 
4.2 then addresses one anticipated potential result of fully endogenising technological 
learning in energy models - technological lock-in. 

4.1 Knowledge depreciation 

Knowledge and the relevance of knowledge depreciate with time. A well-known example 
of knowledge depreciation, or 'forgetting by not doing,' is the one case of negative 
learning reported by Dutton and Thomas [32]. It describes Lockheed's experience 
producing the L-1011 TriStar aircraft. As production increased from 1972 to 1975, costs 
reductions were generally consistent with a standard learning curve [37]. But production 
cuts began in late 1975. In 1976 only six planes were produced, compared to 41 in 1974. 
Although Lockheed geared back up to 24 planes in 1979 and 25 in 1979, real unit costs 
rose after the 1975 cuts and appear to have remained above the selling price until 
Lockheed decided to phase out production altogether in 1981. The overall result was a 
negative 'learning' rate, much of which is often attributed to the loss of knowledge 
associated with laying off many experienced workers starting in 1975, only to have to 
hire new recruits later to ramp up production. 

Argote models knowledge depreciation by including knowledge (K) as a factor of 
production in a Cobb-Douglas production function, with knowledge defined as 

(4.1) 

where q1 is production at time t and A. is a knowledge depreciation parameter to be 
estimated. If A.=l, there is no knowledge depreciation and knowledge equals exactly 
cumulative production. At the other extreme, A.= 0 implies no knowledge accumulation. 

Argote estimates values of A. for data sets describing Liberty Ship construction in the 
USA during World War II, a North American truck plant and fast-food franchises. The 
estimates for A. are 0.75 for the ships (for monthly time steps), 0.989 for the trucks (for 
weekly time steps) and 0.83 for the fast-food franchises (for weekly time steps). 
Corresponding learning rates for the ships and trucks are 26% and 17% respectively. (No 
learning rate is given for the fast-food franchises.) The estimated values of A. mean that 
over the course of a year, experience depreciates to only 3% of its initial value in the 
shipyards and to 56% of its initial value in the truck plant. For the fast-food franchises, 
knowledge loses over half its value each month. 

Given the differing estimates of knowledge depreciation across studies, Argote 
(whose focus is more on organisations than technologies) hypothesises that more 
technologically sophisticated organisations have less knowledge depreciation. She notes 
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that for high-technology organisations a greater portion of their knowledge is embedded 
in hat;dware and computer software where it may be more resistant "t<? depreciation. 

If we adjust equati_on 2.1 to include depreciated experience in a manner analogous to 
Argote' 's production function formulation, we get the following: 

C1= A* (Q1)b 

where (4.2) 

How the adjustment in equation 4.2 bends the straight line that equation 2.1 leads to 
when plotted on double-log scales, depends . on how production changes with time. If 
production grows exponentially, equation 4.2 still defines a straight line on a double-log 
plot, but if annual production stops growing and becomes a constant, equation 4.2 starts 
to flatten and relatively quickly becomes horizontal. This reflects the fact that for uniform 
annual production each capacity doubling takes longer than the last. That extra time 
means that knowledge depreciation has a bigger effect on later doublings. The percentage 
cost reduction for each doubling would consistently decrease and the learning curve 
would bend toward the horizontal. Such a learning curve would be effectively a 
continuous sister of the 'kinked' learning curves mentioned above. Kinked learning 
curves have the disadvantage relative to equation 4.2 that they require largely arbitrary 
definitions of the boundaries between different life-cycle stages. 

With respect to the data reported in Table 1, knowledge depreciation may account for 
part of the variation in the EC-TEEM [7] learning rates across different power production 
technologies. The learning rates for established technologies (nuclear, hydro, coal and 
lignite) are well below that for today's preferred choice for new power capacity, GTCC. 
If capacity doublings are occurring more slowly for the established technologies than for 
GTCC (which they are), knowledge depreciation should have a greater opportunity to 
depress their calculated learning rates relative to that of GTCC. 

4.2 Implications for policy assessment 

The ultimate objective of this research is useful advice to policy makers. To illustrate 
how we envisage that goal, this section begins by outlining one possible policy 
assessment application that could be undertaken once all the data and model extensions 
are in place. 

The premise is that people with limited planning horizons - i.e., energy businesses 
looking only at the next 10 or 20 years, or consumers looking at only the next one or two 
years · - will tend to underinvest (from the long-term global perspective) in new 
technologies that are currently expensive. The fact that, thanks to learning effects, these 
technologies have the potential to become important inexpensive clean contributors to the 
energy system does not influence their purchasing decisions. Advocates of solar power, 
wfud power and fuel cells would all consider their technologies to fall at least partly into 
this class, where consumers and companies, left to their own devices, are likely to under
invest relative to the long-term social interest. Where the market fails to serve perceived 
social interests, we all naturally turn to governments to compensate. This is the logic 
behind government subsidies, in all their myriad forms, for new technologies such as 
wind, solar and fuel cells. It is also partly the logic behind government procurement, e.g., 
new-technology buses for public transportation systems. And it is part of the logic behind 
government technology mandates - e.g., green certificates to show that by a given date, 
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say, 10% of the electricity we consume comes from renewable sources. In the first 
instance, subsidies will lower the consumer's price and encourage use. Expanded use 
means quicker progress down the learning curve. Government purchases directly increase 
use and thus speed progress down the learning curve. And mandates that force consumers 
to buy more of a new technology than economic considerations would warrant also 
increase use and accelerate progress down the learning curve. 

To compare such policies and different levels for subsidies, purchases and mandates, 
one would start by running a model that includes full learning effects and perfect 
foresight. For such a case, the imposition of carbon constraints would be likely to result 
in scenarios that include earlier investments and/or R&D expenditures in Cl!Ilently 
expensive low-carbon technologies than in a situation with exogenous technological 
progress. This is because the model - thanks to perfect foresight- 'knows' that these will 
pay off in the long run. To incorporate the limited time horizon of purchasing and 
investment decisions, the model would then be run with limited foresight. Depending, 
among other things, on the assumed degree of risk aversion and discount rate, this would 
lead to a different portfolio of 'optimal' investments in technologies and a different time 
pattern and portfolio of R&D expenditures. The final step would be a series of model 
runs, again with limited foresight, but this time incorporating various alternative 
technology acceleration policies. The resulting costs and environmental impacts would be 
used to compare the relative efficiency and effectiveness of different policies in steering 
an imperfect myopic world towards the benchmark provided by the scenario with perfect 
foresight. 

One potential difficulty faced by this analytic approach is the possibility of 
technological lock-in. To illustrate technological lock-in consider the example of the 
QWERTY keyboard - the standard keyboard design in which the first six letters on the 
top row spell QWERTY. This is clearly not the only possible arrangement of keys and 
Paul David and others have argued that there exist alternatives that were found 
ergonomically superior [45-47). But the QWERTY keyboard is as pervasive as ever. At 
least two arguments are given for its success. First, when the QWERTY keyboard was 
introduced, the mechanical hammers that actually struck the typewriter ribbon and paper 
were less likely to jam together than was the case with other designs. Second, early 
chance events gave the QWERTY keyboard an initial advantage and thus an essential 
headstart toward becoming transformed into a standard. Typing courses began to teach 
typing on QWERTY typewriters, businesses purchased QWERTY typewriters and 
expected new recruits to be proficient on them, suppliers supplied them and 
manufacturers manufactured them. Now, particularly in computer applications, hammer
lock has disappeared as an issue. But we are locked in to the QWERTY design and the 
alternative designs advertised as ergonomically superior have been locked out of the 
market. 

This is an example of lock-in largely through so-called network effects - i.e., the 
value of QWERTY keyboards and proficiency for each of us increases as more and more 
people use them. Technological learning can also contribute to a form of lock-in. As 
experience with early technological innovations improves their costs and performance, it 
widens their advantage over later competitors and makes it increasingly difficult for late
starting alternatives to catch up. This means that technologies entering into the energy 
market early have a significant increasing advantage - other things being equal. Future 
developments are partially locked in to the direction set by early innovations. (This is not 
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necessarily bad. Environmentalists might be very happy to see technological learning 
help lock in a chance head start enjoyed by some renewable technologies - e.g., for 
synthetic fuels - over fossil alternatives.) 

For policy makers this result raises the stakes surrounding early investments. Get 
them right, the logic seems to argue and thanks to learning the 'system' will spread the 
right technologies to all comers of the world. Get them wrong and you may never be able 
to undo the harm. While this is an overstatement, it emphasises the point that learning can 
magnify the impacts of early cost-reducing investments. Nonetheless several caveats are 
in order. A good place to start is a critique of exactly the example we used to introduce 
the notion oflock-in, the QWERTY keyboard. 

In 1990 Liebowitz and Margolis published a paper entitled 'The fable of the keys' 
[ 48] and have more recently produced a full-length book criticising mistaken analyses of 
path dependence and lock-in [ 49]. They argue, in contrast to David, that the QWERTY 
keyboard is not an example of the market inefficiently locking in an inferior design due 
to a few largely chance events a long time ago. They fault David's analysis on three 
points. First, the evidence is very weak that QWERTY is inferior to other keyboards. If 
QWERTY is not inferior, its popularity as a standard introduces no economic 
inefficiency. Second, the initial competition among alternative keyboard layouts from 
which QWERTY emerged the victor was long and extensive. Therefore QWERTY 
provides no economic analogy to the proverbial flap of a remote butterfly's wings that 
leads to a hurricane thousands of miles away. Third, it is only inefficient to stick with an 
inferior standard when the gains from switching to the new standard exceed the transition 
costs (e.g., retraining, retooling, or replacing people, procedures and technology). 
Liebowitz and Margolis argue, with a number of examples, that where a new standard's 
proponents believe it will generate gains in excess of transition costs, they have a market 
incentive to cover all or part of the transition costs in order to profit from the remaining 
gains. Mechanisms for doing so include discounts for early adopters, guarantees of 
satisfaction, rental offers, rebates for those turning in equipment using the old standard, 
subsidised or free training with the new aspiring standard (as took place during the early 
competition among typewriter keyboards) and subsidised conversion of old technologies 
to the new standard (as was also done with typewriters). Liebowitz and Margolis direct 
particular scorn at David's citation of studies alleging that the costs of retraining 
QWERTY typists on Dvorak keyboards would be paid back in ten days. Noting that this 
amounts to returns on the order of 2,200%, Liebowitz and Margolis consider the failure 
of any entrepreneur, in more than 60 years, to exploit such a huge profit opportunity as 
persuasive evidence that it does not exist. 

Liebowitz and Margolis are concerned with network effects, i.e. , situations where the 
value one consumer places on a product grows with the number of other people using the 
product. The more people who ov11n telephones or fax machines, the more valuable a 
telephone or fax machine is to me. The more video rental stores and relatives who use 
VHS-standard equipment, the more valuable VHS-standard equipment is to me. David's 
argument was that the QWERTY keyboard is an example of network effects locking in 
an inferior technology only because it got a bit of a head start on its rivals many years 
ago. Liebowitz and Margolis strongly and persuasively disagree for the reasons 
summarised above. 

Path dependency and lock-in tendencies arising from learning have little to do 
directly with network effects. But the general observation above is still valid for learning 
effects. That is, while they create a tendency for the early technological leader to lock in 
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its initial advantage over time, such lock-in is hardly inevitable or permanent. Partly this 
is because the relative benefits and costs of a technology can change with time and its 
scale of use. For example, local pollution from internal combustion engines and even 
global pollution (from their C02 emissions) are now more serious concerns than when the 
automobile was first introduced. Government regulations have already internalised some 
of these pollution costs and may internalise more, thereby changing the internal 
combustion engine's relative costs and benefits among prospective competitors. Another 
reason learning does not make lock-in inevitable is that experience is not the only 
determinant of cost and performance. Competitors may prove to be better managed, more 
inventive, more responsive to consumers, or better able to undertake and exploit 
scientific research. And where there is a profit to be made by persuading consumers to 
switch products, entrepreneurs will use the sorts of transition cost-sharing mechanisms 
listed above to encourage customers to switch. However, other factors being equal, 
learning effects mean that the hurdle that competitors need to overcome tends to grow 
with time. 

In weighing tendencies toward lock-in and their different degrees of reversibility, it is 
important to note that Liebowitz and Margolis (in their 1999 book) argue that software 
applications are 'instantly scalable,' i.e., production can expand essentially 
instantaneously to meet rapid demand growth. The ease of reversing lock-in is higher for 
such technologies. Even where energy technologies display network effects, most energy 
technologies do not have this instant scalability. And while some end-use technologies, 
like light bulbs and small motors, may cost less than software and be as easy to change, 
other energy technologies are much more expensive and long-lived. (Path dependence 
due to the durability of expensive long-lived acquisitions Liebowitz and Margolis label 
first-degree path dependence, with which they have no quarrel.) First-degree path 
dependence does not mean that competitors cannot overcome the learning effects and 
network effects that currently favour, for example, the internal combustion engine. But it 
does mean that the hurdle that needs to be overcome is relatively higher for long-lived 
energy technologies than for instantly scalable software applications. 

We have spent a fair amount of time on lock-in because some expect that sufficiently 
sophisticated modelling of technological learning will lead to policy results with 
significant lock-in effects. That is, a small change in initial assumptions may give one 
technology a small head start that, thanks to learning effects, eventually locks the system 
in to that technology. Another small change in assumptions may give a different 
technology the initial head start and lead to a totally different end result, again because of 
learning and lock-in. If uncertain initial conditions are modelled stochastically, learning 
and lock-in could transform smooth probability distributions for uncertain input variables 
into highly non-smooth, unpredictable output distributions. Similarly, outcomes could be 
extremely sensitive to small policy interventions early in the planning horizon and quite 
insensitive to much larger interventions later. 

We are so far unaware of research where smooth input distributions have produced 
non-smooth results due to lock-in driven by technological learning. But that may just be 
because the models are not yet sufficiently sophisticated. Our purpose here has been to 
anticipate the possibility of such results and caution that, should they materialise, they 
could well be overly sensitive to early uncertainties, overly reinforcing of early policy 
actions and overly unforgiving of early policy 'mistakes.' It will thus be important to 
include within our models various unlocking mechanisms and creative options for 
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sharing transition costs in ways that make reversing undesirable lock-in profitable for 
consumers and suppliers alike. Yes, early decisions are important, but their importance 
should not be overestimated. Next year's choices will not totally determine the future 
energy system. There will be good reasons and opportunities to continue to intervene 
creatively. 

5 Conclusions and outlook 

In this paper we have presented an overview of learning rates of energy-related 
technologies, mainly from the perspective of energy modelling in support of energy 
policy making. The importance of learning curves for policy making has been recognised 
by several research groups which, following an initiative by the International Energy 
Agency, have recently formed a 'virtual network' with the acronym EXCETP 
(Experience Curves for Energy Technology Policymaking). One visible output of this 
group is a system of WWW pages [50]. 

We believe that the incorporation of technological learning in energy modelling for 
policy making represents significant progress over previous analyses in which 
technological progress was an exogenous factor whose beneficial influence just unfolded 
automatically with time. Although future learning rates remain uncertain and 
unpredictable, simply recognising the concept should motivate policies to invest in new 
R&D as even cautious assumptions about future learning can make support for certain 
technologies worthwhile. Because such investments may only pay off in the long run, 
however, there is a particularly important role for governments with their responsibility 
for the larger long-term interests of society and (limited) experience in successfully 
managing trade-offs between short-term costs and longer-term benefits. 

In terms of future research, the learning-curve formulation presented in equation 2.1 
may be regarded as overly deterministic. With cumulative capacity as the only 
explanatory variable, the only policy options for accelerating cost or performance 
improvements involve speeding capacity growth - through subsidies or mandates to spur 
demand or through direct government procurement programs. Additional policy options 
are, however, suggested by Section 4's list of additional possible causes of cost 
reductions. One of the most obvious items on the list relevant to energy policy making is 
R&D. This has been the motivation for a new set of activities, partly supported by the 
European Community, which aims to quantify the impact of R&D support on 
technological progress in a fashion similar to what has been done for cumulative 
experience. This effort, labelled the SAPIENT project, began in March 2000 and is 
scheduled for two years. SAPIENT involves, as did its predecessor, the TEEM project 
[7], the joint research of the major European groups working on technological learning in 
long-term energy scenarios. SAPIENT goes beyond TEEM in also including Japanese 
and US groups. 
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