
A Secure and Privacy–Preserving Approach to Comm. in Smart Grids 1

A Secure and Privacy–Preserving Approach to
Communications in Smart Grids

Christian Callegari, Stefano Giordano,
Michele Pagano, and Gregorio Procissi
CNIT and Dept. of Information Engineering,
University of Pisa,
Pisa, Italy
E-mail: {c.callegari,s.giordano,m.pagano,g.procissi}@iet.unipi.it

Abstract: Smart grids are electricity networks that can intelligently integrate
the action of all connected users - producers, consumers, and prosumers (i.e.,
producers and consumers at the same time) - in order to efficiently deliver
sustainable, economic and secure electricity supplies. Smart grids rely on a two–
way communication infrastructures in which energy measurement data taken at
users located smart meters, as well as control information, must be exchanged
in real–time or – at least – near real–time, while simultaneously guaranteeing
a secure and privacy preserving communication. This paper addresses such a
problem by presenting a distributed communication architecture that guarantees
the privacy of fine–grained users data while enabling the energy supplier to access
aggregate energy measurements and per–user coarse–grained data for billing
purposes. The key idea underlying the proposed architecture is to adopt a Secure
Multiparty Computation method based on a verifiable secret sharing of the keys
used by the smart meters to encrypt their sensitive data. This approach allows to
remove the need for any intermediate aggregator element with clear benefits in
terms of scalability and robustness.

Keywords: Smart Grid; Secure Multiparty Computation; Homomorphic Secret
Sharing; Bi-Homomorphic Cryptography

1 Introduction and Motivation

The power grid is probably the most fundamental and crucial large scale infrastructure as
everyone depends on it in all daily activities. However, in spite of that, present power grids
have been conceived on technology dating from the beginning of the last century when
renewable energies and consumers able to produce energy were far to come.

As such, huge modernization efforts are undergoing to migrate from current grids to the
so called smart grids, namely grids capable of meeting new requirements such as energy
efficiency, reduced environmental impacts, incorporation of alternative energy sources, and
so forth.

The term smart grid [1, 2] commonly denotes the new engineering paradigms and
challenges in electrical grid that go beyond the traditional broadcast grids, aiming at
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integrating the action of all connected users - producers, consumers, and prosumers (i.e.,
producers and consumers at the same time) - in order to efficiently deliver sustainable,
economic and secure electricity supplies.

A smart grid leverages on emerging products and services together with monitoring,
control, communication, and self-healing technologies [3] to:

• facilitate the connection and operation of generators of all sizes and technologies;

• allow consumers to play a part in optimizing the operation of the system;

• provide consumers with greater information and choice of supply;

• significantly reduce the environmental impact of the whole electricity supply system;

• deliver enhanced levels of reliability and security of supply;

• save energy, reduce cost and increase reliability and transparency.

The bottom-line feature of the smart grid concept is that its components are
interconnected by means of a two–way communications network, fostering real–time or –
at least – near real–time communication of monitoring and control information. Such an
information should be effectively and reliably communicated across the four conceptual
components of the power grid, namely generation, transmission, distribution and customers,
as well as the entity in charge of operational control.

The key players in smart grid are the smart meters, namely meters introduced at
prosumers locations that measure energy consumption and production in much more
detail than conventional meters and –mostly automatically– communicate this information
to associated parties (typically utility providers) over IP networks, to perform several
operations, such as billing and accounting functions as well as innovative user profiling
operation to optimise the energy distribution.

These last mentioned operations raise significant concerns both in term of scalability (the
volumes of data generated by a large number of devices may easily reach high figures) and
privacy. Indeed, it is pretty obvious that such detailed data may reveal sensitive information
about the users behavior (e.g., if she is at home and to some extent which devices she is
using) [4] and therefore need to be transferred from the smart meter to the utility server
(i.e., the energy supplier) over a secure channel.

The above mentioned privacy concerns have been recently addressed in [5], by
elaborating a set of guidelines regarding the transmission of such data and the type and
amount of information that has to be transmitted to the different parties in the energy grid
(also see works referred to in Section 2). In particular, a lot of research efforts have been
devoted to the need of securely exchanging data produced by the frequent metering of the
energy production/consumption and needed by a utility or electrical energy distribution
network for operational reasons. Conversely, it has been advocated that such data may not
necessarily need to be attributable to a specific smart meter or consumer, while it must be
securely attributable to a specific location (for example a group of houses or apartments)
within the electricity distribution network. Therefore, with the exception of the information
required by billing purposes, a large amount of such data can be anonymised at the user
level and then transmitted, while still preserving the location information.

This paper finds its roots (and borrows several functional components from) in the
previous papers [6, 7] as it proposes a privacy preserving communication architecture for
smart grids that relies on a Secure Multiparty Computation method based on Verifiable



A Secure and Privacy–Preserving Approach to Comm. in Smart Grids 3

Secret Sharing of data. However, differently from [6, 7], it brings in a completely new
approach about the type of data used for the secret sharing phase and simplifies the overall
architecture. Indeed, the current proposal bases the security and privacy of the transmission
of the measurement data on the sharing (i.e., secret sharing) of encryption keys rather than
of energy consumption values themselves (please note that the idea will be better described
in the following). On one side, in a trusted environment, this allows a less frequent exchange
of data (indeed, if energy consumption changes instantaneously, the key used to encrypt
such data may be updated only periodically) with obvious benefit in terms of the scalability
of the overall system. On the other side, the overall complexity is strongly reduced as this
approach allows to totally remove the need for intermediate aggregators (the so–called
Privacy Peers) that, in turn, increases the robustness of the system itself (the intermediate
Privacy Peers may possibly represent vulnerable points of failures).

The rest of the paper, which significantly extends the preliminary work presented in
[8], is organized as follows: section 2 reviews the literature more directly connected to our
proposal, while section 3 provides the reader with the theoretical background information
needed for better understanding our proposal. Then, section 4 presents the innovative
contribution of this paper by introducing the distributed communication architecture idea
at a system level, while postponing the the analysis of the security of the proposed scheme
to section 5. Final remarks are given in section 6.

2 Related Works

Security and privacy issues related to the emerging smart grid and smart metering networks
have stimulated a pretty large number of works focusing on this topic. Far from being fully
exhaustive, the following review presents the papers that – to the best of our knowledge –
are somewhat related to our approach.

Peers for Privacy (P4P) [9, 10, 11, 12] is a generic framework for distributed and
privacy–preserving computation that may apply to many real–world applications. It features
a novel heterogeneous architecture and a number of efficient tools for performing private
computation and ensuring security at large scale, as well as providing resiliency against
realistic adversaries. However, P4P does not address the issue of billing or account
management for which the metering data need to be attributable, i.e. securely attached to a
particular consumer and/or account holder.

The work [13] introduces a communication architecture based on a new set of functional
nodes, the so–called Privacy Preserving Nodes (PPNs), in charge of collecting customer
data masked by means of Shamir’s Secret Sharing scheme and aggregate them directly in
the masked domain, according to the consumer’s needs and access rights. The information
consumers, such as utilities and third parties, can recover the aggregated data by collecting
multiple shares from the PPNs. However, such an architecture assumes that both the node
and the PPN are trusted entities and it adopts the honest-but-curious adversary model only.

Acs and Castelluccia [14] proposes an architecture based on the use of SSS applied
to noisy data, without the need for an intermediate aggregator. Nonetheless, as discussed
in the paper our proposal is much more efficient, not requiring the application of the SSS
scheme at each transmission round.

The authors of [15] focus on the privacy and on the vulnerabilities of smart metering data
and propose a solution for anonymising high–frequency metering data. In a few words, they
address the smart metering privacy issue by anonymising the identity of high–frequency
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metering data through an escrow service. They point out that the key to the security offered
is the trust level of such an escrow service, along with the random time intervals between
the setup of attributable and anonymous data profiles at the smart meter.

The approach of [16] is based on the use of a trusted third party (TTP). Smart meters
encrypt their measures and send them to an intermediate node that performs aggregation
and forwards the result to the energy supplier. Such an approach is based on conventional
cryptography; the intermediate node can see the single values of measurements, although
it may not be able to map such values to the specific originating smart meters. Hence, the
system guarantees privacy at the user level as long as the TTP and the energy supplier do
not maliciously collaborate.

The big benefit of our architecture over that of [16] relies on the amount of trust given to
the aggregator. Indeed, in our approach, the aggregator is the energy supplier itself which,
thanks to bi–homomorphic cryptography, cannot see the single measures of smart meters
as it does not have the single keys used to encrypt such data. Only a coalition of at least
k smart meters and the energy supplier may reveal single keys to open the smart meters
secrets.

In [17] the authors propose a two–protocol that allows the energy supplier to know
the aggregate consumption values of a group of smart meters by taking advantage of a
combination of additive homomorphic cryptography and secret sharing of data. In each
reference period, each smart meter executes n− 1 data encryption and one data decryption
to aggregate the measures taken in a group of n smart meters. With respect to our proposal,
such a scheme is more computationally intensive: indeed, our scheme achieves a lower
computational cost at the energy supplier due to the use of a (lighter) symmetric key
cryptography versus a public key cryptography and to the aggregation of the keys themselves
instead of the measured data. This way, such an operation may be performed less frequently.
For these reasons, our system turns out to be less resource consuming that those of [6, 7, 18]
as well.

In particular, the authors of [18] present an approach based on homomorphic
cryptography, in which data are sent through the smart meters that, on their side, are logically
organised in a tree. Each smart meter performs a homomorphic aggregation and passes data
up stream all the way to the root node (the collector node). This scheme assumes that all
smart meters are honest, hence they do not (either on purpose or by mistake) cheat. In [19],
instead, a smart meter at–a–time is elected as key aggregator of a group. As such, it needs
to be trusted against malicious attackers as it collects (and knows) all the keys.

Finally, as widely discussed in the introduction, the works [6, 7] originated this work.
However, the current proposal simplifies their architecture by changing the nature of the
data (the encryption keys rather than the energy consumption data) to be shared amongst
the system components.

3 Theoretical Background

This section presents the details on the functional building blocks adopted in our approach,
i.e. cryptography, verifiable secret sharing scheme, and secure multiparty computation. For
the sake of clarity, in the presentation some background notions about such techniques are
also given.
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3.1 Definitions

The following definitions [10] will be used in the paper :

• Homomorphic Commitment Given an integer value a, a homomorphic commitment
to a with randomness r is written as C(a, r). It is homomorphic in the sense that
C(a, r)C(b, s) = C(a+ b, r + s). It is cryptographically hard to determine a given
C(a, r). We say that a prover “opens” the commitment if it reveals a and r.

• Zero-Knowledge Proof (ZKP) ZK protocols allow a prover to demonstrate the
knowledge of a secret to a verifier, without revealing any partial information that would
help the verifier to infer the secret, other than the fact that the prover knows the secret.

• ZKP of Knowledge A prover who knows a and r (i.e. who knows how to open
C(a, r)) can demonstrate that it has this knowledge to a verifier who only knows the
commitment. The proof does not reveal anything about a or r.

• ZKP for equivalence Let A = C(a, r) and B = C(a, s) be two commitments to the
same value a. A prover who knows how to openA andB can demonstrate to a verifier
in ZK that they commit to the same value.

• ZKP for product Let A, B and C be commitments to a, b, c respectively, where
c = ab. A prover who knows how to open A, B, C can prove in ZK to a verifier who
has only the commitments that the relationship c = ab holds among the values they
commit to.

• Bit commitment Let A = C(a, r) be a commitment to a value a where a ∈ { 0, 1 },
which is called a bit commitment. A prover who knows how to open A can prove in
ZK that it commits to either 0 or 1 (but not to which value).

• ZKP for boundedness Let A = C(a, r) be a commitment to a value a. Using the
above methods, a prover can show that A contains a k-bit integer, i.e. that it encodes
the same value as Bk−1 · · ·B0, where each Bj encodes 0 or 2j . If the leading “bit”
Bk−1 instead encodes 0 or L− 2k−1 + 1 where k = blog2 Lc, then the ZKP proves
that a ∈ [0, . . . , L] for any k-bit positive L. Adding an additional bit which encodes 0
or −L, gives a proof of boundedness in the range [−L, . . . , L].

3.2 Bi–Homomorphic Cryptography

Homomorphic encryption refers to a set of encryption algorithms with the property that
computations carried out on cipher-text generate an encrypted result that, once decrypted,
matches the result of operations performed on the plaintext. As an example, we can consider
the case in which the decryption of the sum of several cipher-texts (encrypted by using the
same encryption key k) gives the sum of the corresponding plain-texts. Formally, we can
write:

E (X1 + · · ·+Xn, k) = E (X1, k) + · · ·+ E (Xn, k) (1)

Bi-homomorphic encryption represents an extension of the homomorphic encryption,
in which the homomorphic property is also applied to the encryption keys and not only to
the cipher-texts. To better clarify such an example, let us refer to the following:

E (X1 + · · ·+Xn, k1 · · ·+ kn) = E (X1, k1) + · · ·+ E (Xn, kn) (2)
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in which the sum of several cipher-texts, each encrypted with a different encryption key ki,
can be decrypted with a key given by the sum of the encryption keys, obtaining the sum of
the corresponding plain-texts.

A simple – though effective – solution is provided by the bi–homomorphic additive
encryption scheme from Castelluccia [20].

Encryption:

1. let X be an integer in {0, 1, . . . ,M − 1} with M large;

2. let k be a random key in {0, 1, . . . ,M − 1};

3. compute X̂ = E (X, k,M) = X + k mod M ;

Decryption:

1. X = D
(
X̂, k,M

)
= X̂ − k mod M ;

Notice that it is trivial to verify the bi–homomorphic additive property as:

E (X1, k1,M) + E (X2, k2,M) =X1 +X2 + k1 + k2 mod M
=E (X1 +X2, k1 + k2,M)

and, conversely,

D
(
X̂1 + X̂2, k1 + k2,M

)
=D

(
X̂1, k1,M

)
+D

(
X̂2, k2,M

)
= X̂1 − k1 + X̂2 − k2 mod M
=X1 +X2

3.3 Secret Sharing Scheme

One of the key elements to protect personal data is to split the secret data and to share
portions of them among all of the parties participating in the communication. In general,
the method for a party (the dealer) to share a secret among a group of n participants, such
that each of them is allocated a portion of the secret itself, is called Secret Sharing Scheme
(SSS).

An SSS consist of two phases:

• a distribution phase, in which the dealer who knows the secret s creates and distributes
the shares si amongst the participants Pi;

• a reconstruction phase in which a set of participants form a coalition to recover the
secret by combining their shares.

Several schemes are defined on the basis of the method used to create the shares, two
of the most commonly used ones are:

• Additive Secret Sharing Given a secret s ∈ F , where F is a Galois Field GF (p),
the dealer D selects n− 1 random integers r1, . . . , rn−1 uniformly from F , and then
computes

sn = s−
n−1∑
i=1

ri mod p
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D sends each player Pi, 1 ≤ i ≤ n− 1, the share si = ri, and the share sn is sent to
Pn. The reconstruction of secret s is trivial and it is simply obtained adding all of the
shares together:

s =

n∑
i=1

si mod p

The above additive secret sharing scheme requires all participants to contribute their
shares in order to reconstruct the secret. If one or more of the participants are missing,
no information about the original secret can be recovered; such a scheme is known as
a perfect secret sharing scheme1.

• Shamir Secret Sharing Shamir constructs a (k, n)-threshold secret sharing scheme
to show how to divide a secret s into n pieces in such a way that the secret is easily
reconstructable from any k ≤ n pieces, but even complete knowledge of k − 1 pieces
reveals absolutely no information about s [21]. In order to create the shares, the dealer
D first selects a secret s ∈ F , where F , as before, is a Galois Field GF (p), then
constructs a random k − 1 degree polynomial

f(x) = s+ r1x+ r2x
2 + · · ·+ rk−1x

k−1 mod p

subject to the following conditions:

– the secret s ∈ F is the free term

– the threshold k ≤ n
– the coefficients { r1, . . . , rk−1 } are chosen independently and randomly from the

interval [0, p)

Each share si of the secret can be then created by an evaluation of the function f :

s1 = f(1), s2 = f(2), . . . , sn = f(n).

Finally, given n participants { P1, . . . , Pn }, the secret can be reconstructed by using
polynomial interpolation: a minimum of k participants, one more than the degree of
the polynomial, will have to contribute to the reconstruction of the polynomial. Some
of the useful properties of the Shamir (k, n)-threshold schema are:

1. Secure: information theoretic secure

2. Minimal: the size of each piece does not exceed the size of the original data

3. Extensible: when k is kept fixed, some pieces can be dynamically added or deleted
without affecting the other pieces

4. Dynamic: security can be easily enhanced without changing the secret, but
by changing the polynomial occasionally (keeping the same free term) and
constructing new shares to the participants

5. Flexible: in organizations where hierarchy is important, we can supply each
participant different number of pieces according to his importance inside the
organisation. For instance, the president can unlock the safe alone, whereas 3
secretaries are required together to unlock it
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6. Homomorphic: shares of multiple secrets combine together to form a “composite
share”; the composite shares are shares of composite secrets.

In our architecture, we require a (k, n)–threshold scheme, that is a secret sharing scheme
in which the secret is divided into n portions, but any k portions of it are sufficient to fully
reconstruct it. The main reason for using a threshold scheme is resiliency: indeed, if all n
portions were required to reconstruct the secret, even the failure of a single smart meter
would prevent the secret recovery.

As far as the architecture concerns, every threshold SSS may work as good as long as
the selected SSS holds the homomorphic property with respect to the sum operation. In
other words, we require that the sum of the shares of the secret are shares of the sum of the
secrets.

Several known SSSs satisfy the previously listed requirement. Out of them, we selected
the well known Shamir secret sharing scheme [21], even though others homomorphic
schemes such as the Blakeley [22] scheme or the Asmuth–Bloom [23] (to cite the most
famous only) may work as well.

It is worth noticing that the Shamir secret sharing scheme proves to be perfect (in the
information theoretic sense), in that even the complete knowledge of k − 1 pieces of the
secret does not disclose any information on the overall secret.

3.4 Verifiable Secret Sharing

Since all SSSs rely on the distribution of shares from a dealer to a set of participants, they
all can suffer from the following drawbacks:

• during the distribution phase, the dealer may send inconsistent shares, i.e. not all of
them simultaneously obey to the mathematical formula used for their distribution (in
case of Shamir SSS, that means they may not simultaneously belong to the same
polynomial);

• during the reconstruction phase, players may contribute false shares so that s̃ 6= s is
reconstructed, instead.

To address the above listed issues, Verifiable Secret Sharing (VSS) schemes have been
introduced in order to convince players that their shares are k-consistent, i.e., each player
is assured that every subset of k out of n shares defines the same secret.

The basic idea underlying VSS is that the dealer sends some extra information to each
participant during a distribution phase and each participant verifies that her secret share is
consistent with this extra information. The extra information is called commitment [24, 25].
By making a commitment, a player is able to choose a value from some (finite) set and
commit to this choice, with no chance to change this value. However, she does not have to
reveal her choice – although she may choose to do so at some later time.

In our proposal, we adopt the VSS proposed by Pedersen [26] as a natural complement
of the Shamir secret sharing scheme. The Pedersen method proves to be secure in the
information theoretic sense, but the consistency of the shares is only computationally secure.

According to the Pedersen VSS scheme, a player is allowed to non-interactively check
whether the share she has received is consistent. The method works as follows: Let p and
q be prime, and assume q divides p− 1 (typically p = 2q + 1, for suitable values). Let Gq

be a subgroup of Zp of order q and g a generator of Gq . Let g and h be elements of Gq

chosen by a trusted party before using the scheme or by some other cryptographic primitive
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(like coin flipping) so that logg h remains unknown to the participants. Define the operation
commit to be:

C(s, r) = gshr mod p

where s ∈ Zq is the value, the dealer wishes to commit to, and r ∈ Zq is a random value
chosen by the dealer. The commit operation is perfectly hiding, that is, for any s′ 6= s we
can find unique r′ such that

C(s′, r′) = gs
′
hr

′
= gshr = C(s, r)

and computationally binding, that is, the player committing to s cannot open a commitment
to s′ 6= s unless she can solve logg h. The scheme is also homomorphic:

C(a+ b, ra + rb) = ga+bhra+rb

= gahra · gbhrb
=C(a, ra) · C(b, rb)

(3)

In order to create a VSS scheme by using the Pedersen commitment, given g, h ∈ Gq ,
the Shamir distribution scheme of a secret s ∈ Zq changes as follows:

1. the dealer publishes a commitment to s: c0 = C(s, r) for a randomly chosen r ∈ Zq;

2. the dealer chooses two polynomials of degree at most k − 1:
f = s+ a1x+ · · ·+ ak−1x

k−1 and f ′ = r + b1x+ · · ·+ bk−1x
k−1

3. the dealer secretly sends si = f(i) and ri = f ′(i) to each participantPi, for 1 ≤ i ≤ n
and broadcasts the commitments c1 = C(a1, b1), . . . , ck−1 = C(ak−1, bk−1)

When each participant has received her share (si, ri), she can verify its validity by the
equation:

ci = c0

k−1∏
j=1

ci
j

j .

3.5 Secure Multiparty Computation

SMPC [25] is a method that allows parties to jointly compute a function over their inputs,
while at the same time keeping these inputs private.

In Multiparty Computation (MPC), we consider a number of players P1, . . . , Pn, who
initially hold inputs x1, . . . , xn, and we want to securely compute some function f on
these inputs, where f(x1, . . . , xn) = (y1, . . . , yn), such that Pi learns yi but no other
information. The goal can be accomplished by an interactive protocol π that the players
execute. Intuitively, we want that executing π is equivalent to having a trusted party T that
privately receives xi from Pi, computes the function, and returns yi to each Pi [27].
This should hold, even if players exhibit some amount of adversarial behaviour.

SMPC is concerned with the possibility of deliberately malicious behaviour by some
adversarial entity [28], either an external entity, or a subset of the participating parties. The
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aim of this attack may be to learn private information or cause the result of the computation
to be incorrect. Thus, two important requirements on any secure computation protocol are
privacy and correctness. The privacy requirement states that nothing should be learned
beyond what is absolutely necessary (i.e., parties should learn their own output and nothing
else). Instead, the correctness requirement states that each party should receive its correct
output.

The parties under the control of the adversary are called corrupted, and follow the
adversary instructions.

1. Corruption strategy The corruption strategy deals with the question of when and how
parties are corrupted. There are two main models:

• Static corruption model: In this model, the adversary is given a fixed set of parties
whom it controls. Honest parties remain honest throughout and corrupted parties
remain corrupted.

• Adaptive corruption model: Rather than having a fixed set of corrupted parties,
adaptive adversaries are given the capability of corrupting parties during the
computation. The choice of who to corrupt, and when, can be arbitrarily decided
by the adversary and may depend on its view of the execution (for this reason it is
called adaptive). This strategy models the threat of an external “hacker” breaking
into a machine during an execution. It can be noted that in this model, once a party
is corrupted, it remains corrupted from that point on.

An additional model, called the proactive model, considers the possibility that parties
are corrupted for a certain period of time only. Thus, honest parties may become
corrupted throughout the computation (like in the adaptive adversarial model), but may
later also become honest again.

The corrupted parties can be divided into two main categories:

• Semi-honest adversaries: in the semi-honest adversarial model, even corrupted
parties correctly follow the protocol specification. However, the adversary obtains
the internal state of all the corrupted parties (including the transcript of all the
received messages), and attempts to use this to learn information that should remain
private. This is a rather weak adversarial model. Semi-honest adversaries are also
called “honest-but-curious” or “passive” adversaries.

• Malicious adversaries: in this adversarial model, the corrupted parties can
arbitrarily deviate from the protocol specifications, according to the adversary
instructions. In general, providing security in the presence of malicious adversaries
is preferred, as it ensures that no adversarial attack can succeed. Malicious
adversaries are also called “active” adversaries.

2. Complexity Finally, we consider the assumed computational complexity of the
adversary. As above, there are two categories here:

• Polynomial-time: The adversary is allowed to run in (probabilistic) polynomial-
time (and sometimes, expected polynomial-time). We remark that probabilistic
polynomial-time is the standard notion of “feasibly” computation; any attack that
cannot be carried out in polynomial-time is not a threat in real life.
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Figure 1 The architecture at-a-glance (operations performed by one smart meter are highlighted)

• Computationally unbounded: In this model, the adversary has no computational
limits whatsoever.

One of the paradigms in SMPC uses secret sharing, which allows unconditionally secure
protocols solving the multiparty computation problem.

4 The Privacy Preserving Architecture

In this section we detail the general architecture of the proposed system. It is important to
highlight that, for sake of easiness, we describe here a simplified version of our proposal,
which, yet complete from the working point of view, does provide full protection against
malicious users. For the complete protocol we refer the reader to Section 5, where all the
missing details will be provided.

Figure 1 shows the architecture’s big picture, its main components and the data
communication channels targeted by this work in a pretty common smart grid scenario.
Several residential apartments (e.g. a large building), each of them equipped with a smart
meter in charge of collecting and sending data either from/to nearby smart meters or from/to
a higher level energy supplier, form a neighborhood or group that, together with nearby
neighbourhoods are connected in a smart grid. More precisely:

• smart meters are responsible for collecting the measurements from the different
sensors and devices distributed in the house about energy consumption and production
both at low and high frequency. Each user must be provided with a smart meter.
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Smart meters are not assumed to be trusted, since users can cheat on the energy
consumption/production data.

• the energy supplier is responsible for billing, account management, demand side
response, demand side management activities operations, as well as user profiling. The
energy supplier, by definition, is assumed to be trusted.

Two types of data are typically exchanged within a smart grid:

• Low frequency data: these data, equivalent to the measurements collected by the meters
of the “classical" electricity grids, are used for billing purposes only and are collected
quite scarcely. From a privacy perspective they do not pose any serious concern (not
allowing any profiling of the users) and thus they are directly sent by the smart meter
to the energy supplier;

• high frequency data: these data are related to the instantaneous energy production and
consumption and are used for user profiling purposes. As discussed in the introduction,
they pose severe privacy concerns as may reveal information related to the activities
of the user, and therefore cannot be directly sent to the energy supplier as plain data.

Smart meters send low frequency data directly to the energy supplier that, in turn, use
such data for billing purposes. As this type of data exchange is not privacy sensitive, it does
not need any refined protection mechanism.

High frequency data, instead, carry user sensitive content and, as such, they must be sent
to the energy supplier as per–neighborhood aggregate by means of a secure (and complex)
process in order to prevent the energy supplier (and each other smart meter alone) from
deriving their per–user value.

By assuming that the number of smart meters of the neighbourhood is n and that all
smart meters that belong to the same neighbourhood and energy supplier are authenticated
within the same group, the scheme for the distribution of such data evolves according to
the following procedure:

1. Each smart meter (say the ith smart meter) measures the instantaneous electricity
consumption Xi and encrypts this value by means of its own private key ki to obtain:

X̂i = E (Xi, ki) , (4)

where E(·, ·) is a bi–homomorphic encryption scheme with respect to the sum
operation.

2. Each smart meter has its own private key ki. Such key is the secret and is not disclosed
to any other smart meter; however, each smart meter splits the key ki in n shares
kij , j = 1, 2, . . . , n and sends the jth share to the jth smart meter according to a secret
sharing scheme with (+,+) homomorphic properties. As such, at this stage, every
smart meter acts a the dealer of the secret sharing scheme.

3. The jth smart meter receives the jth portions of the keys of all other smart meters in
the neighbourhood and computes a new composite key χj as the sum:

χj =

n∑
i=1

kij (5)



A Secure and Privacy–Preserving Approach to Comm. in Smart Grids 13

Figure 2 Smart meter operations (simplified scheme)

and sends the pair
(
X̂j , χj

)
to the energy supplier.

4. The homomorphic secret sharing scheme guarantees that the sum of shares equals the
sum of secrets. Therefore, the energy supplier can compute the sum of all private keys

of smart meters k =

n∑
i=1

ki from its n shares { χ1, χ2, . . . , χn }.

5. Finally, thanks to the bi–homomorphic cryptography (in our proposal we have
used Castelluccia’s encryption algorithm [20]), the energy supplier decrypts the
instantaneous aggregate consumption X of all smart meters as:

X =

n∑
i=1

D
(
X̂i, ki

)
=D

(
n∑

i=1

X̂i, k

) (6)

For the sake of clarity, in the above description the secret sharing scheme is applied to
a single encryption key. In fact, Castelluccia’s encryption algorithm requires the use of a
distinct key at each encryption round. This constraint can be easily met by applying the SS
scheme to a vector of Q pre-shared keys, hence avoiding the need for a data exchange at
any transmission round. Therefore, ki in the algorithm should be kqi , where q refers to the
qth transmission round. Obviously the SS scheme has to be repeated every Q rounds.
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Figure 3 Energy supplier operations (simplified scheme)

Although reasonably intuitive, the proposed architecture consists of several functional
stages that need to be further explored to provide an overall feasible scheme. In particular,
the process for sharing the encryption keys has to be carried out in a more complex way in
order for the system to be robust against cheating users, as discussed in Section 5.

5 Security Analysis

A crucial concern in the proposal of distributed architectures based on a SMPC (such as
the one presented) is the possible malicious behavior of some adversarial entity, either an
external one or a subset of the participating parties. In our case, possible attacks might
be aimed at either disclosing private information or making the overall computation fail
because of incorrect data.

The privacy requirement dictates that no extra information should be learnt other than
that strictly necessary to perform the computation. The correctness requirement, instead,
can be achieved as long as each party receives the correct data.

As already discussed, two main adversarial models can be identified: semi–honest
adversaries (also known as honest–but–curious or passive adversaries) and malicious
adversaries (also known as active adversaries).

Before entering in the security discussion of our proposal, it is worth reminding two
main assumptions underlying the presented architecture: i) all of the involved players in
the system (energy supplier and smart meters) require authentication before starting their
communication and ii) the energy supplier is – by definition – assumed to be trusted, while
smart meters are not.
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Under the above hypotheses, in our architecture the main concerns may arise from
two different cases: single smart meters corrupted by an external attacker and single users
cheating either on the consumption measures or on the encrypted keys they share. According
to the above introduced model, smart meters can be seen as semi–honest adversaries, as
an attacker may try to obtain information from them even though they follow a correct
behaviour. As an example, consider an attacker that at some time happens to obtain the
information stored in k or more smart meters, either corrupting them or taking control of
the machines, with the aim of disclosing the measurements data of the users. Such an attack,
by itself, would not have effects as the attacker may be able to reconstruct the single keys
only. Indeed, smart meters do not receive the high frequency values of energy consumption
of users as they are directly sent to the energy supplier. To be effective, such an attack needs
to be complemented by the ability of the attacker to “sniff” the information sent by each
smart meter to the energy supplier.

A typical example of malicious adversary, instead, is that of a user that cheats on the
measurement data in order to get an economical advantage (although in our case this specific
type of data is carried through the low frequency communication channel).

This kind of attack cannot be fully dealt by the architecture as presented so far, and
requires further processing with the adoption of ZKP techniques [6, 7], as detailed in the
following subsection.

5.1 Cheating User

Let us detail the case in which the user cheats on the measurement data to have some
economical revenue and can be seen as a malicious adversary. It is important to highlight
that the user may want to cheat on both the low frequency and high frequency data, thus
differently from what already described (for sake of simplicity), not only are the low
frequency data sent directly to the energy supplier, but they also undergo a secret sharing
procedure (as described in the following).

To face this kind of misbehaving, a few more operations on the data to be transmitted
have to be carried out by every smart meter (as described in Figure 4, where a nearly
complete version – with the exception of commitments – of Figure 2 is presented and in
Figure 5, where the security related operations are depicted – the numbers in the circles are
associated with the different steps of the algorithm).

Before describing the algorithm, it is worth noticing that, according to the “classical”
SMPC terminology, each smart meter acts as a privacy peer for the other smart meters,
hence in the following we will use the term privacy peers for indicating the n− 1 smart
meters other than the one sending the shares. Moreover, given that such a procedure is
applied both to the encryption keys and to the low frequency data, in the following we will
generically refer to both these data as secret data vector.

In order to protect the secret data vector d, each user generates a uniformly distributed
random vector u and computes the vector v = d− u. Hence, she directly sends the vector
u to the energy supplier, given that it does not include any information on the actual data, so
no privacy concern arises from the possibility of assigning u to a specific smart meter. The
vector v, instead, is divided into n different shares vi, i = 1, . . . , n and each share is sent
to a different privacy peer. Note that the privacy peers are not required to be honest and the
proposed architecture assures that they do not have any information about the user vector
d, given that the shares have been randomly generated and are of no use on their own.
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Figure 4 Smart meter operations (for a single smart meter)

At this point, the privacy peer i will sum the shares received from all the users to form
a composite share Vi, which is then sent to the energy supplier.

On its side, the energy supplier at first computes the sum of the u vectors of the users,
obtaining U =

∑
users u. In parallel, it also computes the sum of the composite shares

received from the different privacy peers, that is V =
∑

users Vi. These two quantities
are then summed up to obtain D = U+ V that, given the homomorphic properties of the
secret sharing scheme, is equivalent to the sum of the secret data vectors of the users, i.e.,
D = U+ V =

∑
users d. In practice, in this way, the energy supplier is able to reconstruct

the sum of the secret data vectors of the users.
Given that, to provide the required protection against cheating users, each party provides

ZKP that her input is valid, namely that the L2-norm of the secret data vector d is small
(i.e., bounded by a constant L). It is worth noticing that the verification operation over the
data can be easily changed.

More precisely the user computes a different proof for the energy supplier and for each
other smart meter participating in the SMPC.

In our case, the smart meter is the prover, the energy supplier is the verifier and the data
vector is the secret.

The ZKP works as follows: the energy supplier generates and broadcasts several
challenge vectors ck (k = 1, . . . , 50 in our implementation), whose elements are drawn
from { −1, 0, 1 } with probabilities { .25, .5, .25 }; the purpose of the challenge vectors is
to come up with a random vector so that the user can project his data vector onto it (via
inner product). This projection is a random summary or sketch of the user data that encodes
some statistical properties of the data. By computing a number of such projections (onto
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Figure 5 Privacy-related operations (for a single smart meter)

independently generated random directions), we can verify the user data’ properties (in our
case, the L2-norm). For each challenge vector, user computes projections of u onto ck for
the energy supplier (i.e., it computes xk = u · ck), and of each single share of the vector v
for the privacy peers (i.e., it computes yik = vi · ck); in addition user also computes the sum
of these projections and the sum of their squared values (note that, for sake of simplicity,
these steps are not shown in Figure 5). For the purpose of verifying the user vector L2-norm,
we do not have to check the sum of squares. We can just check the magnitude of each
individual projection. However, this leaks more information than desired, the verifier can
know on which direction the user vector is large or small. Checking the sum of squares is
thus more secure, in the sense that the server only knows that the user vector is larger or
smaller on some direction(s), which is equivalent to the fact that its L2-norm is larger or
smaller than L, but it does not know on which direction. This conforms to the principle of
ZKP: you only reveal information strictly necessary for proving the statement.

User then computes the Pedersen commitments to all these values and sends them
altogether with the values to the privacy peers and the energy supplier.

In order to completely verify the proof, the energy supplier must first obtain the peers data
and verification. The utility then combines the data with its own to form the complete proof.
In this scenario, privacy peers only verify the commitments to their shares, by computing
the commitments to the received shares and comparing them with the values sent by the
users. Note that, actually, given that both the data and the verification are sent by the users,
the peers verification always returns true (except in case of corrupted transmission). Indeed
this step is introduced for checking the consistency of the transmission and because it is
considered that the smart meter can only transmit the low frequency data to the energy
supplier, directly.
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At this point, the privacy peers forward the commitments to the utility which will perform
the complete verification. If this proof succeeds, the user is accepted, while if any of these
proofs fails the user is excluded from the set of qualified users. If all users result qualified,
the utility will sum all their vectors u, and add the sum of the composite shares received
from the privacy peers, obtaining D.

If a user fails in any of these proofs, the utility will not include her contribute u in the
computation, while the composite shares received from the privacy peers will also contain
her contribute, given that privacy peers do not have any influence in the disqualification of
the user. As a consequence, the sum of the valid vectors u and of the composite shares will
not match and the verification test will fail. This mechanism assures that a user does not
cheat and exert too much influence in the computation.

6 Conclusion

In this paper we presented a privacy preserving communication architecture for smart grids
that relies on a Secure Multiparty Computation method based on Verifiable Secret Sharing
of data.

The main innovation is the use of the encryption key employed by any smart meters
as the secret information to be shared among all other smart meters that belong to the
same group of authentication. In a nutshell, the idea underlying the proposed algorithm
is that each user holds a “sub–secret”, and that there exists a “super–secret”, which is the
sum of the sub-secrets. With an appropriate secret sharing homomorphism, shares of the
sub–secrets can be distributed amongst a group of privacy peers, each of whom can then
compose its “sub–shares” into a single “super–share” to be forwarded to the utility. In this
way, revealing the super-shares determines the super-secret without sharing any information
about the constituent sub-secrets.

Hence, this approach guarantees the privacy preservation of personal sensitive data,
while allowing the energy supplier to retrieve aggregate measurements as well as individual
coarse–grained energy consumption values for billing purposes. Moreover, this approach
removes the need for any further intermediate aggregator and with beneficial effects in terms
of the overall scalability of the system as well as in terms of its robustness.

As a future work, the authors will perform an in-depth analysis of the performance
offered by the proposed system, so as to validate it and evaluate its suitability to “real-world"
applications.
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