
accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 1

A Study of Securing Route Structures for Mobile Agents Dispatched in
Parallel
Yan Wang, Kian-Lee Tan and Yue Wang
Department of Computer Science
National University of Singapore
3 Science Drive 2, Singapore 117543
E-mail: ywang@comp.nus.edu.sg
E-mail: tankl@comp.nus.edu.sg
E-mail: wangy@comp.nus.edu.sg

Abstract: For mobile agents to be effective in practice, they have to be securely and efficiently
deployed. In this paper, we first present and discuss five secure route structures for mobile agents
dispatched in parallel. These schemes aim to protect the route information against malicious hosts and
facilitate efficient dispatching of a large number of agents, combining public-key encryption and
signature schemes and exposing minimal route information to hosts. In term of security, they are
improved one by one. In the 5th structure, nested route and signature structures are adopted in order to
detect attacks as early as possible. Meanwhile, the feedback based mechanism is adopted that can
enforce the dispatch order to be strictly followed. Additionally, a robustness mechanism with substitute
routes is provided for skipping temporarily unreachable hosts to activate descendant agents. Finally, we
evaluated our models both analytically and empirically.
Keywords: Mobile agent, secure route structure, parallel dispatch model, robust route structure
Biographical notes: Yan Wang received his Bachelor Degree of Engineering, Master Degree of
Engineering and Doctorate Degree of Engineering on computer science and technology in 1988, 1991
and 1996 respectively from Harbin Institute of Technology (HIT), China. He ever worked at the
Department of Computer Science, City University of Hong Kong as a Senior Research
Assistant/Associate in 1997 and 1999. He is currently a Research Fellow of the Department of
Computer Science, School of Computing, National University of Singapore (NUS). His research
interests cover mobile agent, computer security and electronic commerce.

Kian-Lee Tan, received his Ph.D. in computer science in 1994. He is currently an Associate Professor
in the Department of Computer Science, School of Computing, National University of Singapore (NUS).
His current research interests include multimedia information retrieval, query processing and
optimization in multiprocessor and distributed systems, and database performance, database security and
genome databases. He has published numerous papers in conferences such as SIGMOD, VLDB, ICDE
and EDBT and two books. Kian-Lee was a Visiting Scientist at IBM's Almaden Research Center,
California (Jan 92 -- Jul 92), and CSIRO's Canberra Laboratory, Australia (Jun 94 -- Jun 95). He was a
Senior Scientist at the Genome Institute of Singapore (Joint appointment (June 01 -- June 03). Kian-Lee
is a member of ACM and an affiliate member of IEEE.

Yue Wang received her honorable degree on computer science in 2001 from the National University
of Singapore. She was a Research Associate at the Department of Computer Science, School of
Computing, National University of Singapore in 2002. She is currently a PhD student at the Department
of Computer Science, Concordia University, Canada.

1. INTRODUCTION
Mobile agents can be employed in many applications [1,2], for example, in e-commerce, they can be

used to visit a large number of e-shops to find the best price for certain products. While they can be
efficiently dispatched in parallel to improve efficiency [3], there is a greater need to protect the agents
against potential malicious hosts (e-shops) en route from tampering with the data/code they are carrying.
Otherwise, a malicious host, say an e-shop, may prevent other e-shops from being visited so that its offer

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 2

and service may become the best offer. Moreover, mechanisms should be provided so that a host is
capable of verifying the validity of incoming agents and their carried routes.

While hardware-based mechanisms like tamper-poof devices [4] and secure coprocessors [5] can be
used to protect mobile agents and hosts, they are limited in the types of protection they offer. Software-
based approaches involve more work, such as encrypted functions [6, 7] and digital signatures with
proxy certificates [8]. This paper adopts a software approach to protect the routes that are embedded
within an agent. Secure route structure for an individual mobile agent has been discussed in [9,10] to
protect the route of a serially migrating agent. However, as discussed in [11], the response time of a
serial agent is unacceptable unless the number of hosts (e.g., e-shops) to visit is small. When the number
of hosts is large, parallel dispatch is essential for performance reasons. Moreover, it is more essential
and complicated to secure the route structures for parallel dispatch.

In this paper, we build on the binary dispatch model [3] to protect the route structures of agents
dispatched in parallel. We present five route structures and discuss their security properties. Meanwhile,
the confirmation feedback based mechanism is adopted in the dispatch protocol to ensure that the
dispatch order is strictly followed, preventing any malicious host from breaking the dispatch sequence
and hence worsening the dispatch performance. Thus, we preserve the efficiency of the hierarchical
dispatch model while ensuring route security.

In addition, a robustness mechanism with substitute routes is provided. With this mechanism, when a
predefined right child host is unreachable, a substitute agent can be dispatched to the substitute host so
that the descendant agents in this branch can be activated. The strategy to select substitute hosts is
presented to minimize the cost for generating substitute routes. A model for distributing the workload of
decrypting multiple substitute routes is also
presented.

In this paper, we employ well-known public-
key cryptography scheme, signature generating
scheme and X.509 authentication framework [12,
13]. We assume that there exists a secure
environment including the generation,
certification and distribution of public keys and
each host can know the authentic public key of
other hosts.

The rest of this paper is organized as follows.
Section 2 reviews the basic binary dispatch
model. Section 3 presents five secure route
structures for the binary dispatch model. A formal description on the 5th route structure and the
corresponding dispatch protocol are presented in Section 4. Section 5 presents the robustness
mechanism. In Section 6, after presenting two existing serial models, the complexities of
dispatch/migration and route generation of both serial and parallel models are analyzed. Section 7
illustrates the results of experimental study. Finally, Section 8 concludes our work.

2. THE BASIC BINARY DISPATCH MODEL
In this section, we briefly review a typical parallel dispatch model [3] where each parent agent can

dispatch two child agents resulting in a binary tree structure as shown in Figure 1.
We term a stationary agent as a Master Agent if it is created at the home host and is responsible for

dispatching a pool of mobile agents to pre-found remote hosts. We assume that a home host is an
authorized host just like the MASP (Mobile Agent Service Provider) in [3]. We call a mobile agent a
Worker Agent (WA) if its sole responsibility is to perform simple tasks assigned to it, e.g. accessing
local data. If a WA also dispatches other worker agents besides performing the task of local data
accessing, it is called a Primary Worker Agent (PWA).

 Layer L0

Layer L1

Layer L2

Layer L3

Layer L4

 A0

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

 4T 4T 4T 4T 4T 4T 4T 4T 5T 5T 5T 5T 5T 5T 5T 5T

A1(3T) A3(3T) A5(3T) A7(3T) A9(4T) A11(4T) A13(4T) A15(4T)

 A1
L2(2T) A5

L2(2T) A9(3T) A13(3T)

 A1
L1(T) A9 (2T)

Figure 1 Dispatch tree with 16 mobile agents

Master Agent PWA WA
 Dispatch Virtual Dispatch

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 3

As shown in Figure 1, suppose master agent A0 has to dispatch 16 agents to 16 hosts (i.e. agent Ai is
dispatched to host Hi and H0 is the home host where A0 resides). Now, 16 mobile agents are divided into
2 groups led by two PWAs respectively, say A1 and A9. When agents A1 and A9 are dispatched to H1 and
H9 respectively, each of them has 8 members including itself. For A1 at layer L1, it will dispatch its right
child agent A5 and distribute 4 members to it. A5 is a PWA responsible for activating its 4 members in
binary. After dispatching A5, A1 will transfer to layer L2, which is called a virtual dispatch costing no
time. Now A1 has 4 members only. Following the same process, A1 dispatches A3 and A2 successively.
During all these processes, A1 always resides at H1 without any migration. At the same time when A1
dispatches A5, A0 dispatches A9 to H9 to activate all agents in parallel in the other branch. At last, after
all dispatch tasks have been completed, A1 becomes a WA and starts its local data-accessing task at H1.
The whole dispatch process can be illustrated by a dispatch tree, as shown in Figure 1.

To summarize, the tasks of A1 is to act as a PWA and dispatch A5, A3 and A2 in sequence. Then, it
becomes a WA. The virtual dispatch/transfer implies the changes of different layer positions and
corresponding states of a PWA only, without any time cost. But they will cause the changes of logical
relationships between different agents. To describe the route more clearly, we may have to label the
layer position for an agent and use AiLx denoting the agent Ai at layer Lx. For instance, A1L1 at layer L1
is the parent agent of agent A5L2 at layer L2. After transferring to layer L2, A1L2 becomes the left sibling
agent of A5L2.

Clearly, when there are n mobile agents the dispatch complexity is O(log2n). In contrast, a serial
migration model has a complexity of O(n).

3. SECURE ROUTE STRUCTURES AND THEIR SECURITY PROPERTIES
Following the binary dispatch model, if no secure route structure is provided, the route information of

an agent will be revealed to the host it visits. Attacks can be easily mounted without being detected.
These attacks include

ATK1: route forging attack (forge a route)
ATK2: replay attack (dispatch a forged agent to a visited host)
ATK3: wrong dispatch attack (dispatch an agent to a wrong host)
ATK4: dispatch skip attack (skip a predefined dispatch)
ATK5: sub-route deleting attack (delete a unused sub-route), or
ATK6: dispatch disorder attack (break the predefined dispatch order)
The structure of an agent can be briefly described as follows [11]:

{CerH0/idH0, S, C, D}
where CerH0 is the certificate of its sender, say H0, which should be a registered host in PKI (Public Key
Infrastructure) environment. With it, a receiver could verify the ownership of an arriving agent. Without
loss of generality, for simplicity, CerH0 can be replaced by the unique id, say idH0, of the sender since we
assume the certificates can be obtained in advance. S is the state of an agent represented by a set of
arguments. A route is part of it. C is the code of the agent and D is the results obtained after execution.
D can be sent back to the query node through messages.

In the following context, we suppose agent Ai should be dispatched to host Hi where upon arriving,
Ai should deploy its subsequent child agents if it is a PWA or access local data if it is a WA.

During the process of dispatching, a PWA resides at the same host, but its layer positions vary in a
dispatch tree. As we mentioned in Section 2, the logical relations between agents are dynamically
changed due to the changes of their layer positions. To describe the route more clearly, we may have to
label the layer position for an agent and use AiLx to denote the agent Ai at layer Lx. As shown in Figure
2, Ai-P denotes the parent agent of Ai. If Ai resides at layer Lx, Ai-P will reside at a higher layer Lx-1,
denoted as Ai-PLx-1. But we can simply denote it as Ai-P if it is known that Ai is residing at layer Lx.

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 4

Likewise, the left sibling agent of AiLx residing at layer Lx is denoted as Ai-LS while the right child agent
of AiLx is denoted as Ai-RC. So r(AiLx) and r(AiLx+1) are different because of the same agent with
different layer positions. But for hosts, we do not need to label their layer position since their address
and key do not change with the change of layer position. All terms and symbols used in our models are
listed and explained in Table 1.

Table 1 Terms and Symbols Used in Our Models
A0 The master agent at home host H0
Ai A mobile agent residing at host Hi
Ai-LS The left sibling agent of agent AiLx
Ai

Lx A mobile agent Ai at layer Lx
Ai-P The parent agent of agent Ai
Ai-RC The right child agent of agent Ai
Ai-RC’ The substitute right child agent

EntityAi The whole entity of agent Ai received by host Hi including its code and data
H(…) the digest with fix-length returned by hash function H;
H0 Home host where master agent A0 resides
Hi A host where agent Ai should go
Hi-LS The left sibling host of host Hi
Hi-P The parent host of host Hi
Hi-RC The right child host of host Hi
Hi-RC’ The substitute right child host where the substitute right child agent Ai-RC’ should go
ip(Hi) The network address of host Hi
isPWA A token denoting the current agent is a PWA
isWA A token denoting the current agent is a WA
Lx Layer position Lx
PHi The public key of host Hi

r(Ai
Lx) The encrypted route for agent AiLx

r’(Ai-RC’) The route for the substitute right child agent Ai-RC’; it is encrypted by the public key of APWA
SH0 The secret (private) key of host H0

SH0(H(…)) The signature generated at H0
t The time when a route is generated at H0
tir The time when agent Ai is received by host Hi

ti-Result The time when Ai gets result at host Hi
In all the proposed schemes presented in this section, the route is generated by A0 at H0 before any

dispatch is performed. The route is encrypted using public keys of the corresponding hosts that will be
visited. The encrypted route can be decrypted with the assistance of the current host. The agent can
verify the validity of plaintext using the included signature.

In this paper, PB[m]denotes encrypting a message m using the public key of participant B while SB
denotes B’s secret key. One-way hash function H operated on message m is denoted as H(m). SB[H(m)]
denotes the signature generated by B.

3.1 Route Structure (I): Atomic Route and Atomic Signature
Suppose agent Ai is dispatched to current host Hi, its dispatch layers from Hi are L1,L2,…,Lm

(m≥1). The route of Ai is:

Figure 2 An Example of Symbols in a Dispatch Tree

 Ai-P at Hi-p

Ai
Lx at host Hi Ai-LS at Hi-LS

Ai-RC at Hi-RC Ai
Lx+1 at Hi

Layer Lx-1

Layer Lx

Layer Lx+1

Ai

Lx
 : A mobile agent residing at host Hi

Ai-P: The parent agent at layer Lx-1 of agent Ai

Ai-LS : The left sibling agent at layer Lx of agent
Ai

Lx
Ai-RC: The right child agent at layer Lx+1 of

agent Ai

current agent/host

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 5

(i) r=r(AiL1)||r(AiL2)||r(AiL3)||…||r(AiLm)
(ii) if 1≤x<m, where Ai is a PWA,

r(Ai
Lx)=PHi[isPWA,ip(Hi-RC),r(Ai-RC),t,SH0(H(isPWA,ip(Hi-P),ip(Hi),
ip(Hi-RC),r(Ai-RC),idH0,t))]

(iii) if x=m, Ai should be a WA, r(AiLm)=PHi[isWA,ip(H0),t,SH0(H(isWA,ip(Hi-P),
ip(Hi),ip(H0),idH0,t))]

where Hi-P is the parent host of Hi; Hi-RC is the right child host of Hi where the right child agent Ai-
RC should be dispatched to; H0 denotes the home host where A0 resides. isPWA is the token meaning
the current agent is a PWA while isWA means the agent is a WA. t is the unique timestamp for this
pool of mobile agents when all routes are generated at home host H0. PHi is the public key of Hi; SH0
is the secret key of H0. SH0(H(…)) is the signature generated at H0. It can be used to authenticate the
owner, for this pool of mobile agents.
In this structure, the route of a PWA is the concatenation list of routes in different layers. Each route

contains the network address of the right child host Hi-RC (say ip(Hi-RC)), the token (isPWA or isWA)
showing the agent is a PWA or a WA, the route for the right child agent (say r(Ai-RC)) and
corresponding signature. Also the addresses of the parent host Hi-P, current host Hi and right child host
Hi-RC are included in the signature so that wrong dispatch attack (ATK3) can be detected by the
destination host. With the signature, a forged route (ATK1) can be easily detected by the current agent.
With t, any replay attack (ATK2) that should use a signature copy will not be successful since the
destination host can verify the signature.

However, in structure (I), a sub-route can be deleted (ATK5) by the parent or current host since there
is no dependence between routes. A dispatch skip attack (ATK4) can be performed by the current host.
Dispatch disorder attack (ATK6) may be successful since routes at different layers are all encrypted by
the public key of Hi, say PHi. The dispatch order can be arbitrarily controlled by Hi since it performs
decryption and transfers the plaintext to the agent. It can pass routes to the agent in a reverse order so
that the dispatch sequence is totally broken. As long as all dispatches are performed, it is not easy to
detect this kind of attack but the whole dispatch performance is worsened. For example, H1 can make A1
dispatch A2, A3 and A5 in sequence after having performed its local data-accessing task. In such a case, if
each host makes the current agent access the local data before performing any dispatches, the total
performance will be almost the same as a serial model.

3.2 Route Structure (II): Nested Route and Atomic Signature
Suppose agent Ai is at current host Hi, the layers are L1,L2,…,Lm
(i) r(Ai)=r(AiL1)
(ii) if 1≤x<m, Ai is a PWA, r(AiLx)=PHi[isPWA,ip(Hi-RC),r(Ai-RC),r(AiLx+1),t,

SH0(H(isPWA,ip(Hi-P),ip(Hi),ip(Hi-RC),idH0,t))]
(iii) if x=m, Ai is a WA, r(AiLm)=PHi[isWA,ip(H0),t,SH0(H(isWA,ip(Hi-P),ip(Hi),

ip(H0),idH0,t))]
Adopting the combination of encryption and signature, structure (II) shares the security properties as

structure (I) against attacks ATK1 to ATK3. In structure (II), the route is in a nested structure. But the
signature is an atomic structure. Some attacks cannot be detected earlier.

The subsequent route r(Ai-RC) can be obtained only after r(AiLx) is decrypted. But r(Ai-RC) can
be deleted without being detected after route r(AiLx) is just decrypted since route r(Ai-RC) does not
appear in the signature of r(AiLx)(ATK5). This will result in a successful dispatch skip attack (ATK4)
that can only be detected by master agent A0. Meanwhile, dispatch disorder attack (ATK6) can be
successful if Hi decrypts all routes and gives Ai route information in an arbitrary sequence.

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 6

3.3 Route Structure (III): Atomic Route and Nested Signature
Suppose agent Ai is dispatched to current host Hi, its dispatch layers from Hi are L1, L2, …, Lm.
The route of Ai is:
(i) r=r(AiL1)||r(AiL2)||r(AiL3)||…||r(AiLm)
(ii) if 1≤x<m, Ai is a PWA, r(AiLx)=PHi[isPWA,ip(Hi-RC),r(Ai-RC),t,

SH0(H(isPWA,ip(Hi-P),ip(Hi),ip(Hi-RC),r(Ai-RC),r(Ai
Lx+1),…,r(Ai

Lm),
idH0,t))]

(iii) if x=m, Ai is a WA,
r(Ai

Lm)=PHi[isWA,ip(H0),t, SH0(H(isWA,ip(Hi-P),ip(Hi),ip(H0),idH0,t))]
Like structure (II), structure (III) can protect against attacks ATK1 to ATK4. Since r(Ai-RC),

r(Ai
Lx+1),…,r(Ai

Lm) appear in the signature of r(AiLx), deletion of these subsequent routes before
use can be detected by agent Ai when verifying the signature. However, routes are in concatenation list.
If r(AiLx) is deleted before it is used or decrypted, the attack cannot be detected by the current agent.
The reason is that an earlier route does not appear in the signature of subsequent routes (ATK5).
Meanwhile, the dispatch disorder attack (ATK6) cannot be detected as long as all child agents are
dispatched.

3.4 Route Structure (IV): Nested Route and Nested Signature
In structure (IV), both nested route and nested signature are used. Suppose agent Ai is dispatched to

current host Hi, its dispatch layers from Hi are L1,L2,…,Lm. The route of Ai is:
(i) r=r(AiL1)
(ii) if 1≤i<m, Ai is a PWA, r(AiLx)=PHi[isPWA,ip(Hi-RC),r(Ai-RC),r(AiLx+1),t,

SH0(H(isPWA,ip(Hi-P),ip(Hi),ip(Hi-RC),r(Ai-RC),r(Ai
Lx+1),idH0,t))]

(iii) if i=m, Ai is a WA, rLm(Ai)=PHi[isWA,ip(H0),t,SH0(H(isWA,ip(Hi-P),
ip(Hi),ip(H0),idH0,t))]

Since both the route and the signature are in a nested structure, deleting subsequent routes before
encryption will not be possible (ATK5). So the security property is improved in comparison with above-
mentioned three structures. However, since all routes are encrypted by PHi, the dispatch disorder attack
(ATK6) remains unsolved. Similarly, if host Hi passes to the current agent Ai only subsequent routes and
deletes earlier routes after decrypting all routes (ATK4), Ai cannot find the attack since earlier routes
cannot be included in subsequent routes. This attack can only be confirmed after the successful
investigation conducted by A0. This is the same as the above three structures.

3.5 Route Structure (V): A Secure Route Structure Ensuring Dispatch Order
Based on structure (IV), structure (V) can provide the capability based on confirmation feedback

mechanism to restrict the dispatch order to be strictly followed while ensuring other security properties.
The route for next right dispatch is included in the route for the current right child agent. Only after the
right dispatch is successful, can current agent receive the route for the next dispatch from the
confirmation feedback sent by the dispatched right child agent.

To make the protocol clearer, in this section we introduce the basic idea via an example. The formal
description on route structure and dispatch protocol are presented in Section 4.

In Figure 3, master agent A0 dispatches 2 PWAs respectively, namely A1L1 and A9L1, encapsulating
routes r(A1L1) and r(A9L1) to them. To simplify, let us look at the branch rooted by A1L1 only.

The route of A1L1 is:
r(A1

L1)=PH1[isPWA,ip(H5),r(A5
L2),t,SH0(H(isPWA,…,t))]

Where r(A5L2)=PH5[isPWA,ip(H7),r(A1L2),r(A7L3),t,SH0(H(isPWA,…,t))]
And r(A1L2)=PH1[isPWA,ip(H3),r(A3L3),t,SH0(H(isWA,…,t))]

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 7

Note r(A1L1) has only one sub-route, say r(A5L2), that is prepared for the right child agent A5L2.
r(A5

L2)has two sub-routes. One is r(A7L3), the route for its right child agent A7L3. The other is
r(A1

L2), that should be returned to agent A1. Thus, the main difference between route structure (V) and
(IV) is that A5L2 and A1L2 are sibling agents but r(A1L2)is included in r(A5L2)in structure (V). Only
after A5L2 is successfully dispatched to H5, can A5
send r(A1L2) back to A1 so that A1 can know it
should transfer to layer L2 and dispatch A3 to H3.
Note that r(A1L2)is encrypted by PH1 so A5 and H5
cannot decrypt it and H1 cannot get it before
dispatching A5 to H5. Hence, the dispatch order is
ensured (ATK6). As all sub-routes appear in the
signature, route deletion attack (ATK5) and
dispatch skip attack (ATK4) can be detected by the
current agent.

As shown in Figure 3, the dispatch processes
of A1 are as follows:
Step 1: Master agent A0 dispatches agent A1 to H1.
Step 2: When A1 (i.e. A1L1) arrives host H1, H1 decrypts the route r(A1L1) and A1 gets an decrypted

route as
R=SH1[r(A1

L1)]=(isPWA,ip(H5),r(A5
L2),t,SH0(H(isPWA,…,idH0,t)). A1 then

sends a reply to A0 confirming the successful dispatch:
msg_A1

L1_to_A0=PH1[t1r,SH1(H(ip(H0),ip(H1),EntityA1,t1r))]
where t1r is the time when A1L1 is received.

Step 3: From R, A1L1 knows it is currently a PWA so it dispatches its right child agent, namely A5L2, to
host H5 encapsulating the route r(A5L2) to it.
r(A5

L2)=PH5[isPWA,ip(H6),r(A1
L2),r(A6

L3),t,SH0(H(…)]
Step 4: Once having arrived host H5 and having decrypted its route r(A5L2), A5L2 will send a reply to

A1
L1 including r(A1L2) to confirm the successful dispatch:

msg_A5
L2_to_A1

L1= PH1[r(A1
L2),t5r,SH5(H(…,t5r))]

After that, A5L2 deploys the branch including agents A5, A6, A7 and A8.
Step 5: From the above message, agent A1L1 obtains r(A1L2), and transfers to layer L2 hereafter

becoming A1L2, where r(A1L2)=PH1[isPWA,ip(H3),r(A3L3),t,SH0(H(…))]
Step 6: From r(A1L2), A1L2 knows it is still a PWA and should dispatch its new right child agent A3

(i.e. A3
L3) to host H3. The route r(A3

L3) can be found from route r(A1
L2):

r(A3
L3)=PH3[isPWA,ip(H4),r(A1

L3),r(A4
L4),t,SH0(isPWA,…,idH0,t)]

Step 7: Similarly, the successful dispatch of agent A3L3 returns A1L2 a message msg_A3L3_to_A1L2
including r(A1L3): msg_A3L3_to_A1L2=PH1[r(A1L3),t3r, SH3(H(…,t3r))]

Step 8: From this message, A1L2 obtains r(A1L3) and knows it should transfer to layer L3 becoming
A1

L3, where r(A1L3)=PH1[isPWA,ip(H2),r(A2L4),SH0(…)]

 Layer L0

Layer L1

Layer L2

Layer L3

Layer L4

A0

 A1L1 A9L1

(4)

(3)

(5)

(7)

(6)

(8)

(10)

(9)
(11)

A1
L2

A1
L3

A1
L4 A2

L4

A3
L3

A5
L2

Figure 3 Dispatch Process by Agent A1

Master Agent PWA WA
Dispatch Virtual Dispatch Sending a Message

(1)
 (2)

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 8

Step 9: After decrypting r(A1L3), A1L3 dispatches agent A2L4 to host H4 encapsulating route r(A2L4)
to it, r(A2L4)=PH2[isWA,ip(H0),r(A1L4),t,SH0(…)]

Step 10: After the successful dispatch, A1L2 will get a message msg_A2L4_to_A1L3 from A2L4.
msg_A2

L4_to_A1
L3=PH1[r(A1

L4),t2r, SH2(H(…,t2r))]
Step 11: From the above message, A1L3 obtains route r(A1L4) and knows it is a WA after transferring

to layer L4 and hereafter it should complete its local data-accessing task at host H1. The result
should be sent to master agent A0.
r(A1

L4)=PH1[isWA,ip(H0),t,SH0(…)]

Though the feedback may make the average dispatch time longer, the nature of parallel dispatch is not
changed. In fact, in structure (IV), the feedback is essential too in an encrypted structure [11] but it is
used for confirming successful dispatch only.

3.6 Discussion
To summarize, the above-proposed secure route structures ensure some basic security properties.

They aim to expose only minimal addresses to a host to perform dispatches. Structures (I) to (III) have
relatively simple structures, but their security properties are not satisfactory. For structure (IV), the
dispatch skip attack (ATK5) can be detected by A0. However, the dispatch disorder attack (ATK6) cannot
be prevented though it can be considered as a benign attack. For structure (V), its security performance
is the best. Table 2 summarizes the security properties of the different route structures.

4. ROUTE STRUCTURE (V) AND ITS DISPATCH PROTOCOL
In this section, we present the formal description of route structure (V) and the corresponding secure

dispatch protocol.

4.1 Secure Route Structure

For a PWA, there are 2 kinds of route structures. For example, in Figure 3, the routes for A1L2 and
A5

L2 have different structures since A5L2 is a newly dispatched agent but A1L2 is formerly A1L1. The route
of A5L2 should include a sub-route (i.e. r(A1L2)) that should be returned to its parent agent A1L1. For
A1

L2, though its parent agent is A1 too (i.e. A1L1), its route does not have such a sub-route that should be
returned to parent agent. Meanwhile, for a WA, there are 2 kinds of route structures too. For example,
A1

L4 and A2L4 are 2 WAs (see Figure 3). But A2L4 is a newly dispatched agent. As presented in Section

Table 2 Security Properties of Different Route Structures
 Route Forging

Attack
(ATK1)

Replay Attack
(ATK2)

Dispatch to
Wrong Host
Hw (ATK3)

Dispatch
Skip Attack

(ATK4)

Sub-Route Deletion Attack
(ATK5)

Dispatch
Disorder Attack

(ATK6)

I

Yes, by current
agent.

Yes, by destination
host.

Yes, by Hw Yes, by A0 Any route can be deleted by parent
host or current host before
decryption. Only A0 may detect it.

No.

II Yes, by current
agent.

Yes, by destination
host.

Yes, by Hw Yes, by A0 An included route can be deleted
after decryption.

No.

III

Yes, by current
agent.

Yes, by destination
host.

Yes, by Hw Yes, by A0 Front routes can be deleted by
parent host or current host before
decryption. Only A0 may detect it.
Deleting a subsequent route before
use can be found by current agent
by checking the signature of its
front route.

No.

IV Yes, by current
agent.

Yes, by destination
host.

Yes, by Hw Yes, by A0 Deleting subsequent routes before
encryption is not possible because
of the nested structure. Deleting an
included route can be detected by
current agent.

No.

V Yes, by current
agent.

Yes, by destination
host.

Yes, by Hw Yes, by
current agent.

Yes, by current agent. Dispatch order is
strictly followed.

“Yes”: the attack can be detected; “No”: the attack cannot be detected.

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 9

3.1.5, once A2L4 is successfully dispatched to H2, it should send A1L3 a confirmation feedback including a
route indicating A1L3 to become a WA, namely A1L4. So r(A2L4) should has a sub-route.

The formal route structures are as follows.
Secure Route Structure (V):
(1) For a PWA AiLx residing at layer Lx,

a) if AiLx is virtually dispatched (e.g. A1L2 at layer L2 in Figure 3) or it is dispatched by master agent A0
(e.g. A1L1 or A9

L1 in Figure 1), the route of AiLx has one sub-route for its right child agent:
r(Ai

Lx)=PHi[isPWA,ip(Hi-RC),r(Ai-RC),t,

SH0(H(isPWA,ip(Hi),ip(Hi-RC),r(Ai-RC),idH0,t))] (V-i)
b) otherwise, AiLx should be newly dispatched by its parent agent Ai-P (e.g. A5L2 in Figure 3). Hereby,

besides the route for right child agent, namely r(Ai-RC), r(AiLx) includes an extra sub-route for its
left sibling agent-namely r(Ai-LS). Then the route for AiLx is
r(Ai

Lx)=PHi[isPWA,ip(Hi-RC),r(Ai-LS),r(Ai-RC),t,SH0(H(isPWA,ip(Hi-P),
ip(Hi),ip(Hi-RC),r(Ai-LS),r(Ai-RC),idH0,t))] (V-ii)

(2) For a WA AiLx, residing at layer Lx,
a) if it is a newly dispatched agent (e.g. A4L4 in Figure 3), the route has one sub-route for the left

sibling agent:
r(Ai

Lx)=PHi[isWA,ip(H0),r(Ai-LS),t,SH0(H(isWA,ip(Hi-P),ip(Hi),ip(H0),
r(Ai-LS),idH0,t))] (V-iii)

b) otherwise, AiLx (e.g. A1L4 in Figure 3) is virtually dispatched by its parent agent which is itself at a
higher layer Lx-1. Its route has no sub-route:
r(Ai

Lx)=PHi[isWA,ip(H0),t,SH0(H(isWA,ip(Hi),ip(H0),idH0,t))] (V-iv)

4.2 The Feedback based Dispatch Protocol with Secure Routes
Algorithm 1: The feedback based binary dispatch protocol with secure routes (structure (V))
1: When an agent AiLx is successfully dispatched to a host Hi, Hi will use its secret key SHi to decrypt

the carried encrypted route r(AiLx), getting the plain route R as:
R=SHi[r(Ai

Lx)] (1)

2: WHILE AiLx is a PWA DO
3: IF R has 2 sub-routes THEN //AiLx is virtually dispatched
4: Ai

Lx first sends a message to its parent agent Ai-P as follows:
msg_Ai

Lx_to_Ai-P=PHi-P[r(Ai-LS),tir,

SHi(H(ip(Hi-P),ip(Hi),EntityAi,r(Ai-LS),tir)] (2)

where r(Ai-LS) is originally included in route r(AiLx); EntityAi is the whole entity of agent
Ai

Lx received by host Hi including its code and data; tir is the time when Hi received AiLx.
(Note: Host Hi-P will store this message in its dispatch record database that is useful for future
investigation. With r(Ai-LS), the parent agent of AiLx can transfer to layer Lx (virtual dispatch)
and starts to dispatch its new right child agent after the route is decrypted by Hi-P.)

5: ELSE //AiLx is newly dispatched and R has only 1 sub-route
6: With the assistance of Hi, AiLx sends a reply to parent agent A0 showing that the agent has been

successfully dispatchd.
msg_Ai

Lx_to_A0= SHi(H(ip(Hi-P),ip(Hi),EntityAi,tir)) (3)

7: End IF
8: Ai

Lx dispatches its right child agent Ai-RC to host Hi-RC at layer Lx+1 encapsulating the route r(Ai-
RC) to it (r(Ai-RC) can be obtained from the decrypted route R).

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 10

9: Then AiLx will get a reply from the right child agent Ai-RC which includes an encrypted route, say
Rnew, for its next action;

10: Ai
Lx virtually dispatches/transfers itself to layer Lx+1 still residing at host Hi. Let x=x+1 and

r(Ai
Lx)=Rnew

10: Ai
Lx get the decrypted route R=SHi[r(AiLx)];

11: END WHILE //(now AiLx is a WA)
12: IF R has 1 sub-route THEN // AiLx is a newly dispatched WA
13: Ai

Lx sends a message to its parent agent Ai-P as follows:
msg_Ai

Lx_to_Ai-P=PHi-P[r(Ai-LS),tir,

SHi(H(ip(Hi-P),ip(Hi),EntityAi,r(Ai-LS),tir)] (4)

where r(Ai-LS) is originally included in the encrypted route r(AiLx).
14: END IF
15: AiLx starts its task for local data accessing at host Hi;
16: When the data access task is completed, AiLx will dispose after having successfully sent a message

to agent A0,

msg_Ai
Lx_to_A0=PH0[ip(Hi-P),ip(Hi),ResultHi,

SH0(H(isWA,…,t)),ti-Result,SHi(H(ip(Hi-P),ip(Hi),ResultHi,ti-Result,

SH0(H(isWA,…,t)),ti-Result))] (5)
where SH0(H(isWA,…,t))is the signature by H0 which is included in the route of AiLx. Here
it is used to show the identification of the agent AiLx. SHi(H(…,SH0(H(isWA,…,t)),
tResult)) is the signature generated by current host Hi. ResultHi is the result obtained at Hi.
ti-Result is the time when getting the result.

17: STOP.

5 ROBUSTNESS ENHANCED EXTENTION
So far we have presented a security enhanced dispatch protocol for mobile agents based on route

structure (V). However, at a certain layer, each PWA only knows the right child host Hi-RC where its
right child agent is to be dispatched. As such, should the right child host be unreachable, the right
dispatch branch cannot be deployed and all the grouped members will thereby not be activated.

A straightforward solution is for a PWA to have a substitute route for dispatching its right child
agent. In this way, if the predefined right child agent cannot be successfully dispatched due to some
reasons from the destination host, the PWA can have another route for the right dispatch. In this section,
we extend secure route structure (V) to handle unreachable hosts.

In the robust route structure, besides the route for the right child agent, a substitute route r’ is
included in the route of a PWA. But it is encrypted by the public key of the first PWA of another
branch. For instance, in Figure 1, any substitute routes for the branch rooted by A1 are encrypted by the
public key of A9, which is the root of the other branch. Likewise, any substitute routes in the branch
rooted by A9 are encrypted by the public key of A1. Here A1 and A9 are called Assistant PWA (APWA).
Once a destination host is unreachable, the current host can send the substitute route to its APWA. After
decryption, the current host will know the substitute host (SH), where it can send an agent to continue to
activate the right branch. The route for a WA is the same as structure (V).

Without the loss of generality, we suppose the addresses of APWAs are public.
If we were to provide one substitute route, secure route structure (V) presented in Section 4 can be

extended as follows:
Robustness Enhanced Secure Route Structure (VI):

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 11

(1) For a PWA AiLx residing at layer Lx,
a) if AiLx is virtually dispatched by its parent agent or it is dispatched by master agent A0, the route for
Ai

Lx is r(Ai
Lx)=PHi[isPWA,ip(Hi-RC),ip(Hi-RC’),r(Ai-RC),r’(Ai-RC’),t,SH0(

H(isPWA,ip(Hi),ip(Hi-RC),ip(Hi-RC’),r(Ai-RC),r’(Ai-RC’),idH0,t))] (VI-i)
where
- Hi-RC’ is the substitute right child host where the substitute right child agent Ai-RC’ should go;
- r’(Ai-RC’) is the substitute route for agent Ai-RC’ encrypted by the public key of the APWA;
- ip(Hi-RC’) and r’(Ai-RC’) appears in the signature of H0 after being hashed;
- the rest is similar to route structure (V-i).

b) otherwise, AiLx should be dispatched by its parent agent Ai-P at layer Lx-1. Then the route for AiLx is
r(Ai

Lx)=PHi[isPWA,ip(Hi-RC),ip(Hi-RC’),r(Ai-LS),r(Ai-RC),r’(Ai-RC’),t,
SH0(H(isPWA,ip(Hi-P),ip(Hi),ip(Hi-RC),ip(Hi-RC’),r(Ai-LS),r(Ai-RC),
r’(Ai-RC’),idH0,t))] (VI-ii)

where
- Hi-RC’ is the substitute right child host where the substitute right child agent Ai-RC’ should go;
- r’(Ai-RC’) is the substitute route for agent Ai-RC’ encrypted by the public key of the APWA;
- ip(Hi-RC’) and r’(Ai-RC’) appears in the signature of H0 after being hashed;
- the rest is similar to route structure (V-i).

(2) For a WA AiLx, residing at layer Lx,
a) if it is a newly dispatched agent, the route is r(AiLx)=PHi[isWA,ip(H0),r(Ai-LS),
t,SH0(H(isWA,ip(Hi-P),ip(Hi),ip(H0),r(Ai-LS),idH0,t))] (VI-iii)

b) otherwise, AiLx is virtually dispatched by its parent agent which is itself at a higher layer Lx-1. Its
route is r(AiLx)=PHi[isWA,ip(H0),SH0(H(isWA,ip(Hi),ip(H0),idH0,t))] (VI-iv)
Now suppose A1 is the first PWA in the left dispatch sub-tree; A9 is the right first PWA as shown in

Figure 4(a). r’(A1-RC’) is encrypted by the public key of H9, say PH9.
If the dispatch failure occurs when A1 is dispatching its right child agent A1-RC to the right child host

H1-RC, A1 should report it to A9 attaching the substitute route r’(A1-RC’).
In this way by robust route structure, a PWA will have a substitute route for the dispatch of its right

child agent. Once the original dispatch is not successful, with the assistance of its APWA, it can have
another destination to perform the right dispatch.

What we should address is that the substitute host is originally included in the members for the right
dispatch branch. Taking the dispatch tree in Figure 4 as an example, if the dispatch failure occurs when
A1 at host H1 is dispatching A5 to H5, A1 can get a substitute route with the assistance PWA A9 at H9. To
generate the substitute route, choosing H6 to be the substitute host is better. By exchanging the positions
of H5 and H6 as shown in Figure 4(b), H6, which is originally a pure leaf node (i.e. the corresponding

A0

r’
r’’ r’’’

Figure 5 A Model with 3 Substitute Routes and 4 Branches

APWA1 APWA2 APWA3 APWA4

r’ r’’
r’’’

? ?

Figure 4 Examples of Substitute Routes

(a) original sequence (b) if H5 is not reachable,
 H6 becomes a substitute

H9 H1
H0

H6 H5 H7 H8

 H6 H7

 H6
H9 ?

H0

H5 H6 H7 H8

 H5 H7

 H5

H1

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 12

agent is a Worker Agent only), becomes the root of the branch with H5 to H8. Most sub-branches under
H6 are kept unchanged. Thus, we can reduce the complexity to generate a new substitute route.

Following the same idea, the second substitute route can be generated. H8 instead of H7 can be the
second substitute. An originally unreachable host should be put to be a leaf node so that the failure of
the second dispatch attempt can be made without increasing more load of the APWA for route
decryption.

Figure 5 presents an extension providing 3 substitute routes and all agents are equally distributed into
4 APWAs, termed as APWA1, APWA2, APWA3 and APWA4. In each branch following an APWA, the
dispatch is performed in binary way. Each substitute route is encrypted by different public keys of hosts
where different APWAs reside. For instance, when a dispatch failure occurs in the first branch, the first
substitute route is sent to APWA2 for decryption. If the substitute host is not yet reachable, the second
substitute route will be sent to APWA3. Likewise the 3rd substitute route can only be decrypted by
APWA4. Similarly, the first substitute route in the branch led by APWA2 should be sent to APWA3 for
decryption and so on. In this way, the workloads of decryption for APWAs are partitioned and the whole
dispatch efficiency is not significantly decreased while the robustness is enhanced.

6. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of the proposed structure (V). As comparison, we shall

use two existing serial models as reference.

6.1 Two Related Serial Models
The model by Westhoff et al in [10] adopted a fully serial migration providing a secure route

structure without any robustness mechanism. An agent visits a set of hosts one by one. Suppose the
visited hosts are H1, H2,…, Hn, the route is:
 r(Hi)=PHi[ip(Hi+1),r(Hi+1),t,SH0(H(ip(Hi),ip(Hi+1),r(Hi+1),t))](1≤i<n)
 r(Hn)=PHn[EoR,t,SH0(H(ip(Hn-1),ip(Hn),t)] (Serial I)
where SH0 is the secret key of home host H0 and EoR is the token meaning the end of the route.

Obviously the migration complexity is O(n) if there are n hosts to be visited one by one.
In [13] Li et al proposed a robust route structure for serial migrating agents and the route robustness

is enhanced by equally dividing a route into two parts. They are distributed to two agents A1 and A2
respectively. A1 and A2 are in partner relationship. Each agent residing at any host en route knows the
addresses of the next destination and an alternative host. But the latter is encrypted by the public key of
its partner agent. In case the migration cannot be performed, the encrypted address will be sent to the
partner agent for decrypting. With its assistance, the agent can continue its migration.

In Li’s model, as the addresses of n hosts are equally distributed to two agents, say
{ip(H1),…,ip(Hm)} and {ip(Hm+1),…,ip(Hn)}. The nested route structure is:

r(Hi)=PHi[ip(Hi+1),r(Hi+1),r(Hi)’,t,SH0(H(ip(Hi+1),r(Hi+1),r(Hi)’,t))]

(Serial II)
where r(Hi)’=PPA[ip(Hi+2),r(Hi+2),r(Hi+2)’,t,SH0(H(ip(Hi+1),r(Hi+2),r(Hi+2)’,
t))] is the substitute route where Hi+2 is the new destination if Hi+1 is not reachable. PPA is the
public key of the partner agent.
The problem of this model is that since both A1 and A2 are dynamically migrating. So when one

needs the other’s assistance, locating each other will be costly for both time and system resources.
Meanwhile, the model is serial so it is neither efficient nor suitable for large-scale mobile agents. The
whole migration time can be theoretically half of Westhoff’s model. However the time complexity
remains O(n).

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 13

6.2 Complexity Analysis
In this section, we’d like to have some rough idea about the complexities of serial models and

parallel models. To simplify, we first assume the time for encrypting an arbitrary-length message is a
constant. Empirical studies are illustrated in Section 7.

As analyzed in Section 6.1, we can know the migration complexity of two serial models.
Theorem 1: Neglecting the time spent on local data access, the time complexity of migration of
Westhoff’s model and Li’s model for visiting n hosts is O(n).

As analyzed in our previous work [3], if n (n≥2) WAs are dispatched by binary dispatch model,
h= nlog2 (h≥1) is an integer and the height of the dispatch tree, ∆t is the time for dispatching a PWA or a

WA, then the total dispatch time for n WAs is T=(h+1)∆t. So we have
Theorem 2: If n (n≥2) mobile agents are dispatched by binary dispatch model, the dispatch complexity
is O(log2n).

For Westhoff’s model, the route with n addresses can be generated after the route with n-1 addresses
has been generated. So, the complexity T(n) can be calculated from the follows

T(n)=T(n-1)+C
T(1)=C, C is a constant and the time for encrypting a route

From T(n)=T(n-1)+C, we have T(n)=nC. So T(n) is O(n).
Theorem 3: Assuming that the time to encrypt a route is a constant, the time complexity for generating
a route with n addresses in Westhoff’s model is O(n).

In [11], the route generation complexity of structure (IV) is analyzed. It is O(n) where T(n)=2T(n/2)
(n=2k), T(i)=2T(i/2)+C (i=2h, 2k-1≤ i ≤2) and T(1)=C.

For route structure (V), the route of a PWA with i addresses consists of the sub-route of its right
child agent, which has i/2 address and includes the route of its left sibling agent with another i/2
addresses. So, for our model, the complexity for generating routes without substitute route is O(n),
where

T(n)=2T(n/2) (n=2k)// 2 routes are generated for left branch and right branch, each has n/2 addresses
T(i)=2T(i/2)+2C (i=2h, 2k-1≤ i ≤2)// if r(AiLx)has i addresses, each sub-route of its left sub-branch

and right sub-branch has i/2 addresses
T(1)=C

Theorem 4: In the secure binary dispatch model (V), the complexity for generating routes without
substitute route is O(n).

Table 3 summarizes and compares the features of Westhoff’s model and binary dispatch model.
Table 3 Comparison of Models without Substitute Routes

Features
 Models

Nested Secure
Route

Dispatch/ Migration
Complexity

Route Generating
Complexity

Westhoff’s Model Yes O(n) O(n)
Binary Dispatch with Secure Routes (IV) Yes O(log2n) O(n)
Binary Dispatch with Secure Routes (V) Yes O(log2n) O(n)

Theorem 5: Assuming that the time to encrypt a route is a constant, the time complexity for generating
a route with 1 substitute route of Li’s model is O(n).

In Li’s model, suppose the hosts in predefined sequence are {H1,…,Hi,Hi+1,Hi+2,…,Hm}, if host
Hi+1 is not reachable, Hi+2 will become the next destination from Hi and Hi+1 will never be visited for
this journey. Consequently, from the route structure (Serial II), when generating r(Hi), both r(Hi+1)
and r(Hi)’ should be generated first. r(Hi)’=PPA[ip(Hi+2),r(Hi+2),r(Hi+2)’,
SH0(ip(Hi+1),r(Hi+2),r(Hi+2)’,t)], it is a substitute route with the addresses of

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 14

Hi+2,Hi+3,…,Hn in sequence. Note r(Hi+1)=PHi+1[ip(Hi+2),r(Hi+2),r(Hi+2)’,t,
SH0(ip(Hi+1),r(Hi+2),r(Hi+2)’,t)]. The difference of r(Hi+1) and r(Hi)’ is that they are
encrypted by different public keys. Therefore when generating r(Hi)’, r(Hi+2), r(Hi+2)’ exist
already and the cost for generating r(Hi)’ is a constant C only. Hereby the route generation
complexity with 1 substitute route is

 T(m)=T(m-1)+2C // each of the 2 dispatched agents has m addresses, 2m=n
 T(1)=C
From T(m)=T(m-1)+2C we have T(m)=2mC-C. So T(n) is O(n).
However, if a failed host is used for a second attempt in Li’s model, the complexity for generating

routes will become extremely bad since the sequence of hosts in a substitute route has been changed and
the route should be generated and encrypted again.

In Li’s model, if host Hi+1 is not reachable from Hi, and Hi+1 is put as the last destination for the
second attempt, the host sequence in the substitute route will be {Hi+2,Hi+3,…,Hn,Hi+1}. In such a
case, when a route includes 1 substitute route, since the substitute route should be re-generated, the time
complexity will be T(n)=2T(n-1)+C and T(n) is O(2n). Likewise, when there are 3 substitute routes, the
time complexity will be T(n)=4T(n-1)+C and T(n) is O(4n). So we have Theorem 6.

Table 4 Comparison of Models with Substitute Routes
Features

Models
Nested Secure

Route
Dispatch/ Migration

Complexity
Route Generating Complexity
With 1 or 3 Substitute Routes

Try Failed Hosts
Latter

Li’s Model Yes O(n) O(n)orO(2n)/ O(n)orO(4n) No
Binary Dispatch (VI) with
1 or 3 Substitute Routes

Yes O(log2n) O(nlog2n) Yes

Theorem 6: The time complexity for generating routes with 1 substitute route or 3 substitute routes of
Li’s model making the 2nd attempt to failed hosts are O(2n) or O(4n) .

In robust binary dispatch model, when generating the first substitute route for a branch, only a few
steps should be taken in the left sub-branch of this branch. Considering the case in Figure 4(b), when
H17 and H18 are exchanged, the branches with the root of H19, H21 and H25 are all not changed. The
number of the steps is the height h of the sub-branch. And hereby T(n) is O(nlog2n), where
T(n)=2T(n/2)+C, T(i) ≤2T(i/2)+2(h+1)C (n=2k , i=2h+1, 2k-1≤ i ≤2) and T(1)=C.

Similarly, the step numbers for generating the second substitute route and the third one are all (2h-
1). The time complexity for generating a route with 3 substitute routes and 4 branches is O(nlog2n),
where T(n)=4T(n/4)+C, and T(i) ≤2T(i/2)+(5h-1)C (n=2k , i=2h+1, 2≤ i ≤2k-2) and T(1)=C. So we have
Theorem 7.
Theorem 7: In the secure binary dispatch model, the complexity for generating routes with 1 or 3
substitute routes is O(nlog2n).

Table 4 summarizes and compares the features of the 2 models with substitute routes. The proofs of
theorems can be found in [17].

7. EXPERIMENTS
In Section 6, for simplicity, the analysis is based on the assumption that the encryption time of a

message of any length is a constant. But it does not hold in real application since encrypting a longer
message needs longer time. To further study the performance of the different models, we conducted
some experiments on a cluster of PCs. These PCs are connected to a LAN with 100Mbytes/s network
cards running Window NT, JDK, IBM Aglets 1.0.3 [14]. For route generations, the experiments are
based on a PC of Pentium IV 1.8GHz CPU and 512 Mbytes RAM. For serial migration and binary
dispatch, the experiments are put on a cluster of PCs of Pentium 200MMX CPU and 64 Mbytes RAM.
All programs run on the top of the Tahiti servers from the ASDK [1, 14] and JDK from Sun
Microsystems [15].

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 15

To encrypt a route, we use the RSA algorithm [16] and the length of each key is 1024 bits. Before
generating a signature, hash function MD5 [12] is used to generate a hash value with a fixed-length of
128 bytes. For the third experiment, since all PCs have the same configuration, the performance
differences are totally from the difference of serial migration and parallel dispatch. All results are
illustrated in Figures 6 to 8. Each result is the average of four independent executions.

7.1 Experiment 1-Route Generation: Westhoff’s Model vs. Binary Dispatch Model (Structure I-V)
In this experiment, we compare the route generation time of Westhoff’s model and our 5 secure

structures. All results are shown in Figure 6. When the number of addresses is fewer than 64, all models
deliver similar performances. When the number becomes 64 or more, the binary dispatch model begins
to outperform the serial model.

The route generation performances of 5 secure structures are pretty close to each other. The time for
structure (V) is longer other 4 structures since they are simpler. With the increase of the number of
addresses, the time for Westhoff’s model increases very fast. When generating the route with 1024
addresses, the program of the Westhoff’s model ran out of memory after the 771st address is added
where the heap size is set up to 1200 Mbytes and it has reached the maximum.

Theoretically, when there are n addresses, the binary dispatch model should do the encryption for
2n-2 times. For the serial model, it is n times only. The time complexities are both O(n). If the
encryption time for a message is a constant, the route generation time of the binary dispatch model is
obviously longer. Nevertheless, the encryption time varies with the length of the encrypted message. For
the binary dispatch model, n times’ encryptions are spent on all leaf nodes in the dispatch tree where the
length of each route is only about 200 bytes. Unfortunately for Westhoff’s model, each time after
encryption, the route’s length is increased at least with a length of a network address and a signature. So,
the encryption time will gradually increase with the increase of the route length. When the number of
addresses is large, the total encryption time will become very long.

For example, when there are 512 addresses, the Westhoff’s model performs 512 encryptions. As we
measured, it uses 190 seconds (about 9.6% of overall time) to complete the first 256 encryptions and
1793 seconds (about 90.4% of overall time) for the last 256 encryptions. The total time is 1983 seconds.
For the binary dispatch model (structure (V)), it completes all encryptions in 114 seconds for 512 nodes
taking 39 seconds (about 34% of overall time) for first 256 leaf nodes. The binary dispatch model
(structure (V)) obtains 94% saving for 512 addresses.

Figure 6 Route Generation Time for Westhoff's Model and
Binary Dispatch Model

0

400000

800000

1200000

1600000

2000000

4 8 16 32 64 128 256 512 1024
Number of Addresses

R
ou

te
 G

en
er

at
io

n
Ti

m
e

(m
s)

 Westhoff's Model
Sturcutre I
Structure II
Structure III
Structure IV
Structure V

7.2 Experiment 2-Route Generation: Li’s Model vs. Robust Binary Dispatch Model

In this experiment, we compare the route generation time for models with one substitute route. For
Li’s model, we implemented the case of skipping a failed host.

The results shown in Figure 7 illustrates that though the time complexities of two models analyzed
in Section 5 are different (i.e. O(n) vs. O(nlog2n)), their performance difference is not very significant.

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 16

Li’s model can outperform a bit better in most cases. But when the there are 1024 addresses, Li’s model
becomes inferior. The binary dispatch model obtains 70% saving. When having 2048 addresses, the
program of Li’s model runs out of memory after running several hours. The reason is the same as we
analyzed in experiment 1.

Figure 7 Comparison of the Time for Generating a Route
with 1 Substitute Route

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

4 8 16 32 64 128 256 512 1024 2048
Number of Addresses

R
ou

te
 G

en
er

at
io

n
Ti

m
e

(m
s) Li's Model (skipping failed host)

Robust Binary Dispatch Model

7.3 Experiment 3: Serial Migration vs. Binary Dispatch

In this experiment, we tested up to 64 hosts to compare the migration/dispatch time of different
models neglecting any robustness mechanism. In the implementation, a mobile agent does not access
any local data so that the measured time is used for migration or dispatch only. To obtain each
independent result, we rebooted the Tahiti server to prevent the affect from the cache. The results are
shown in Figure 8.

When the number of visited hosts is no more than 8, the performance differences are not significant.
With the increase of the number of hosts, the migration time of any serial migration model increases
very fast. In comparison, the dispatch time for binary dispatch model increases fairly slowly.
Meanwhile, the migration time for Li’s model is always shorter than that of Westhoff’s model since in
Li’s model, 2 mobile agents are dispatched and each only visits n/2 hosts. Nevertheless, its performance
is not comparable to the binary dispatch model. When having 64 hosts, the binary dispatch model can
get 70% and 82% savings respectively in comparison to Li’s model and Westhoff’s model.

Figure 8 Comparison of The Migration/Dispatch Time

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32 64
Number of Hosts

M
ig

ra
tio

n/
D

is
pa

tc
h

Ti
m

e
(m

s)

Westhoff's Model

Li's Model

Binary Dispatch Model

8. CONCLUSIONS

This paper presented several schemes to protect the route structures of mobile agents dispatched in
parallel. A feedback based secure dispatch protocol further ensures that the dispatch sequence is strictly
followed. We further explored a robustness mechanism to bypass temporarily unreachable hosts so as to
deploy the predefined agents through substitute hosts and agents.

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 17

Our model can also be applied to the mobile code distribution in a Grid environment and secure
message distribution in a distributed environment with minor modifications. For practical applications,
mobile agents having the same type tasks and having physically close destinations can be put in the
same group encapsulated with pre-encrypted routes. The clone-like strategy can be employed to create
an instance of a new agent. For verifying the integrity of a coming agent, the pure code can be included
in the signature of a route after being hashed when it is generated at the side of home host. We plan to
study this next. Another direction for future work is to improve our model toward extensible route
structures to facilitate a more flexible dispatch process.
9. ACKNOWLEDGMENTS

This work is supported by the NSTB/MOE funded project on Strategic Program on Computer
Security (R-252-000-015-112/303). We would also like to thank the anonymous reviewers for their
insightful and valuable comments.
REFERENCES
[1] Lange D. and Oshima M. (1998) Programming and Deploying Java Mobile Agents with Aglets, Addison-

Wesley Press, Massachusetts, USA
[2] Papastavrou S., Samaras G. and Pitoura E. (2000) ‘Mobile agents for World Wide Web distributed database

access’, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, Issue 5, pp. 802 –820
[3] Wang Y., Tan K.-L. and Ren J. (2002) ‘A study of building Internet marketplaces on the basis of mobile

agents for parallel processing’, World Wide Web Journal, Kluwer Academic Publishers, Vol. 5, Issue 1, pp
41-66

[4] Wilhelm U. G. (1997) ‘Cryptographically protected objects’, Technical Report, Ecole Polytechnique Federale
de Lausanne, Switzerland

[5] Palmer E. (1994) ‘An Introduction to Citadel-a Secure Crypto Coprocessor for Workstations’, Proceedings of
IFIP SEC’94, Curacao

[6] Sander T. and Tschdin C.F. (1998) ‘Protecting Mobile Agents Against Malicious Hosts’, Mobile Agents and
Security, LNCS Vol. 1419, Springer-Verlag, pp. 44-60

[7] Kotzanikolaou P., Burmester M. and Chrissikopoulos V. (2000) ‘Secure transactions with mobile agents in
hostile environments’, Proc. The 5th Australian Conference on Information Security and Privacy (ACISP
2000), LNCS 1841, pp.289-297

[8] Romao A. and Sliva M. M. (2001), ‘Secure mobile agent digital signatures with proxy certificates’, E-
Commerce Agents, LNAI 2033, pp.206-220

[9] Varadharajan V. (2000) ‘Security enhanced mobile agents’, Proceedings of the 7th ACM conference on
Computer and Communications Security, November 1 - 4, Athens, Greece, pp. 200 – 209

[10] Westhoff D., Schneider M., Unger C. and Kenderali F. (1999) ‘Methods for protecting a mobile agent’s
route’, Proceedings of the Second International Information Security Workshop (ISW’99), Springer-Verlag,
LNCS 1729, pp. 57-71

[11] Wang Y. and Tan K.-L. (2001) ‘A secure model for the parallel dispatch of mobile agents’, Proc. of 4th
International Conference of Information and Communications Security (ICICS2001), Springer-Verlag, LNCS
Vol. 2229, pp 386-397

[12] Menezes A., Oorschot P. and Vanstone S. (1996) Handbook of Applied Cryptography, CRC Press
[13] CCITT Recommendation X. 509-1989 (1989) The Directory-Authentication Framework. Consultation

Committee, International Telephone and Telegraph, International Telecommunication Union, Geneva
[13] Li T., Seng C. K. and Lam K. Y. (2000) ‘A secure route structure for information gathering’, Proceedings of

2000 Pacific Rim International Conference on AI (PRICAI00), pp 101-114
[14] http://www.trl.ibm.co.jp/aglets/
[15] http://java.sun.com/products/
[16] Rivest R.L., Shamir A., Adleman L. (1978), ‘A method for obtaining digital signatures and public-key

cryptosystems’, Communications of the ACM, Vol.21, No.2, pp 120-126

accepted by International Journal of Web Engineering and Technology (IJWET) 2003

 18

[17] Wang Y., Tan K.-L. and Wang Y. (2003) ‘A study of securing route structures for mobile agents dispatched
in parallel’, unpublished manuscript available upon request from authors.

