
   

 

   

   
 

   

   

 

   

   Int. J. , Vol. x, No. x, xxxx 1    
 

 

Semantic Model-Driven Development of Web Service 
Architectures 

Claus Pahl 
Dublin City University 

Dublin 9 
Ireland 

 
 
Abstract. Building service-based architectures has become a major area of 
interest since the advent of Web services. Modelling these architectures is 
a central activity. Model-driven development is a recent approach to 
developing software systems based on the idea of making models the 
central artefacts for design representation, analysis, and code generation. 
We propose an ontology-based engineering methodology for semantic 
model-driven composition and transformation of Web service 
architectures. Ontology technology as a logic-based knowledge 
representation and reasoning framework can provide answers to the needs 
of sharable and reusable semantic models and descriptions needed for 
service engineering. Based on modelling, composition and code 
generation techniques for service architectures, our approach provides a 
methodological framework for ontology-based semantic service 
architecture. 
 
Keywords. Service-oriented Architecture, Service Process Composition, 
Model-Driven Development, Service Ontology, Semantic Models, Web 
Services. 
 
1 Introduction 
 
Model-driven development (MDD) is an approach to the development of 
software systems that has gained wide support over the past years (OMG, 
2003). MDD focuses on notions of abstraction and automation. MDD 
emphasises the importance of abstract modelling in the software 
development process. Detailed models serve as design specifications that 
support the maintainability of systems and can also provide the basis for 
automated code generation. Service-oriented architecture (SOA) (Bass et 
al., 2003) is a specific development and platform approach for service 
engineering that would benefit from a tailored MDD solution in order to 
realise the MDD objectives. 
 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

Our focus is here on the methodological and technical support of central 
development activities in service-oriented architecture (Alonso et al., 
2004; W3C, 2006). Composition is a central activity in a paradigm that 
addresses architectures of orchestrated services (Bass et al., 2003). Service 
orchestration refers to the assembly or composition of services to service 
processes (Peltz, 2003). Within the Web Services platform (Alonso et al., 
2004) - which is the concrete platform for service-oriented architecture 
that we target here - the business process execution language WS-BPEL 
(WS-BPEL Coalition, 2004) is the most widely used implementation 
language for service processes. 
 
We present a methodology for architecting service-based software systems 
that embraces the MDD-philosophy. We propose to base this methodology 
on ontology technology. Supporting service engineering using MDD and 
ontology-based semantic modelling is beneficial for the composition 
activity: 
• For the SOA context, in particular Web services where compositions 

across organisations and network boundaries are the norm, explicit 
semantic models of services are a prerequisite for the reliable 
composition of services (Rao et al., 2004). 

• Modelling becomes a central activity where services from possibly 
different providers are assembled to form complex, distributed 
architectures. Ontologies can define an advanced semantics-based 
conceptual modelling approach (McIlraith and Martin, 2003). 

• Ontologies provide a formal, logic-based framework for reasoning 
about composition activities and the automation of code generation 
(Pahl, 2007). 

Services description and composition has been combined with ontology 
technology (Mandell and McIlraith, 2003). Model-driven development has 
been enhanced to ontology-driven architecture (Gašević et al., 2006). 
However, the integrated application of both ontology technology and 
MDD to service architecture has so far not been adequately addressed. In 
particular, we propose a novel, process-centric composition approach as 
the core of our framework. 
 
We introduce an ontology-based approach, i.e. a logic-based knowledge 
representation framework, to enable sharable representations of semantic 
service and process descriptions and models. Various attempts in this 
direction include service ontologies such as OWL-S (DAML-S Coalition, 
2002), WSMO (Lara et al., 2005), or SWSF (SWSL Committee, 2006). 
Industrial bodies such as the OMG have also recognised the importance of 
semantic modelling using ontologies, which is reflected in the OMG's 
Ontology Definition Metamodel (ODM) initiative (OMG, 2006). The need 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

for service providers to publish their services in an accepted, standardised 
format is another argument in favour of ontologies. 
 
 
UML-style semantic modelling is an important objective. A tailored UML 
profile based on activity diagrams provides a graphical modelling notation 
for service process composition, which is supported by a mapping from 
this profile into a service ontology. Composition occurs in two forms: 
• Firstly, the orchestration of services to processes at the abstract level 

using process operators (Plasil and Visnovsky, 2004).  
• Secondly, the association of concrete implemented services that match 

the requirements of abstract service process elements. 
The ontology and associated techniques act as a service architecting 
engine for both forms of composition and also support code generation for 
process execution and service publication aspects.  
 
We apply the MDD philosophy to service development. The overall aim is 
to demonstrate, firstly, the internal coherence of an overarching 
methodology that can integrate a number of specific techniques, secondly, 
and to illustrate the benefits of semantic modelling and MDD, and, finally, 
its implementability (feasibility) in the context of Web services, MDD, 
and modelling platforms. 
 
We start with an overview of the service engineering process in our 
context in Section 2. We structure the presentation by the architecting 
activities. In Section 3, we introduce UML-based modelling of service 
processes. Ontology-based composition is the topic of Section 4. We 
discuss the deployment of service processes in Section 5. We end with 
related work and some conclusions. 
 
2 Engineering of Service-based Software 
Architectures 
 
A Web service is defined as a software system, whose public interfaces 
are defined and described using XML (W3C, 2006). Other systems can 
interact with the Web service through XML-based messages. The 
composition of services to orchestrated service processes is a major 
concern in current software architecture and service engineering research 
(Plasil and Visnovsky, 2002; Bass et al., 2003). These recent 
developments have strengthened the importance of these architectural 
questions. Behaviour and interaction processes are central modelling 
concerns for service-based software architectures (Allen and Garlan, 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

1997). Explicit semantic descriptions and exchangeable models enable 
developers and clients of services to create reliable service architectures. 
Three frameworks - methodology, ontology, and platform - provide the 
pillars for our semantic model-driven service engineering approach. 
 
2.1 A Methodological Framework 
 
We embed our service engineering methodology into an ontology-
supported, MDD-based development context. The aim is to support 
platform-independent modelling. At the core is a service-specific software 
process model for ontology-driven semantic service architecture that is 
based on the following steps, summarised in Fig. 1: 
• Service Process Modelling. This activity is about graphical UML 

modelling of process activities in terms of activity diagrams with 
service-oriented semantic extensions. Actions represent services. 

• Service Process Composition. Two composition dimensions for service 
orchestration need to be supported: 
o Abstract Process Composition. The analysis activity, which is 

part of the process modelling, addresses the integrity of a process 
composition based on semantical model enhancements in an 
ontological representation; here we use the Web Service Process 
Ontology WSPO (Pahl, 2007). 

o Service Process Implementation. The focus of this activity is the 
discovery of individual services in repositories and directories 
that match the requirements of the service specified in the process 
model. These concrete services can then be associated to the 
abstract services from the process model. 

• Service Process Deployment. The deployment activity enables the 
implementation of the process as an executable WS-BPEL process 
(BPEL, 2004) based on the associated services. Deployment also 
includes the publication of the overall process as a service in terms of a 
service ontology; we suggest the Web Service Modelling Ontology 
WSMO (Lara et al, 2005). 

 
An ontology-based service architecting engine (Pahl, 2005) supports the 
composition activities within the modelling layer and also guides the 
necessary transformations to the platform-specific deployment layer. 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overview of the Ontology-based Service Architecture 
Technique. 

 
 
2.2 An Ontological Modelling Framework 
 
Ontologies are beneficial for this context for two reasons: firstly, to 
provide semantic service descriptions in a sharable format, and, secondly, 
to allows reasoning about service properties. Both are essential to support 
discovery and composition in service-oriented architecture. 
  
Logic-based knowledge representation can enable sharable representations 
of semantic service and process descriptions. The need for service 
providers to publish their services in a standardised, interoperable 
semantic format is an argument in favour of ontology-based knowledge 
representation for modelling, analysis, and publication (Daconta et al., 
2003). Ontologies are knowledge representation frameworks formalised in 
an ontology language such as OWL (W3C, 2004), which is usually based 
on a terminological logic, such as description logic. Knowledge is 
represented in form of concepts and quantified relationships between these 
concepts. 
 

Service Process 
Modelling

Abstract Process 
Composition

Service Process
Implementation

Service Process
Deployment

UML to
ontology
transformation

service process
publication and
generation

UML activity 
diagram

WSPO ontology

WSPO ontology
+ services

BPEL + WSMO

Service
Architecting

Engine

process:Choice
process:hasInput

process:...
process:hasOutput

process:..."

BPEL
<process>

<flow> ... 
</flow>

</process>

WSMO
<interface>

... 
<capabilities>

...

transformation 
and composition

supports

Service 
Composition

Service Process 
Modelling

Abstract Process 
Composition

Service Process
Implementation

Service Process
Deployment

UML to
ontology
transformation

service process
publication and
generation

UML activity 
diagram

WSPO ontology

WSPO ontology
+ services

BPEL + WSMO

Service
Architecting

Engine

process:Choice
process:hasInput

process:...
process:hasOutput

process:..."

BPEL
<process>

<flow> ... 
</flow>

</process>

WSMO
<interface>

... 
<capabilities>

...

transformation 
and composition

supports

Service 
Composition



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

A number of service ontologies have been proposed, with OWL-S 
(DAML-S Coalition, 2002) and WSMO (Lara et al., 2005) as prominent 
examples. The central goal of service ontologies is not only the semantic 
annotation of services, but also to support reasoning about semantics-
based discovery in Web service registries and automated service 
composition. While OWL-S also supports service composition to a degree 
through process models, we use the Web Service Process Ontology WSPO 
- whose description logic foundations are presented in (Pahl, 2007) and 
which has been developed specifically to support service composition and 
architecture ontologically. An important current development is the 
Semantic Web Services Framework (SWSF), consisting of a language and 
an underlying ontology (SWSL Committee, 2006), which takes OWL-S 
work further and is also linked to convergence efforts in relation to 
WSMO. The FLOWS ontology in SWSF comprises process modelling 
and it equally suited as WSPO to support semantic modelling within the 
MDA context. It is, however, richer and as a consequence undecidable, 
which hampers the automation of reasoning. Some of the reasoning tasks 
we used ontologies for, could also have been addressed using simpler 
languages such as OCL (Warmer and Kleppe, 2003) and their reasoning 
support. However, ontologies provide a full-scale logic and additionally 
allow XML-based sharing and exchange in a Semantic Web framework. 
 
WSPO is an OWL-DL (the Web Ontology Language - Description Logic 
variant) ontology. It uses description logic (Baader et al., 2003) to define 
composition techniques. Services (and processes) in WSPO are not 
represented as concepts, as one might intuitively assume, but as 
relationships denoting accessibility relations between states of the system. 
The states are represented as concepts. WSPO is actually an encoding of a 
dynamic logic (a modal logic of programs) in a description logic format, 
which enables reasoning about dynamic service process properties such as 
safety and liveness, making WSPO a highly suitable candidate for 
ontology that supports the logic-based platform-independent abstract 
modelling of service processes.  
 
UML as a graphical modelling language is a particular target. Our 
modelling methodology can only be successful if existing UML models 
can be reused and integrated. Conforming to the UML notation and the 
Meta Object Facility (MOF) language definition framework, which 
defines the UML notation, is consequently central. It enables tool 
interoperability and application-specific notations to be supported by tools 
easily and it allows model and tool reuse. 
 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.3 An Implementation Platform Framework 
 
Our efforts have to be seen in the context of MDD initiatives and 
modelling frameworks. The need for a specific MDD solution for the Web 
context is, due to the Web's ubiquity and the existence of standardised and 
accepted platform and modelling technology, a primary concern. Model 
Driven Architecture (MDA) defines a layered modelling approach for 
software systems with computation-independent, platform-independent, 
and platform-specific modelling, abbreviated CIM, PIM, and PSM, 
respectively (OMG, 2003). We refer here to the MDA platform layers 
occasionally (CIM, PIM, PSM); these references are meant to be 
indicative rather than prescriptive. 
 
The current effort of defining and standardising an ontology definition 
metamodel (ODM) will allow the integration of our technique with OMG 
standards (OMG, 2006). ODM provides mappings to OWL-DL and also a 
UML profile for ontologies to make UML's graphical notation available. 
Meta-model compliancy for ODM is requested to facilitate tool support. 
Model representations can be exported into XML format, i.e. XML 
Schemas are generated from models. ODM, however, is a standard 
addressing ontology description, but not reasoning. The reasoning 
component, which is important in our framework, would need to be 
addressed in addition to the standard. 
 
QVT (Query View Transformation) is a query, view, and transformation 
framework - also supported by the OMG - that allows transformations to 
be specified in both a declarative and operational format (OMG, 2005). A 
relations language, based on a pattern-matching technique, enables 
declarative specifications of any transformations. The ODM framework, 
for instance, refers to QVT as its notation for transformations. 
 
While this implementation framework is central for the overall success of 
our proposed methodology, due to space constraints full specifications can 
not be given; we revert to schematic examples and motivation of 
principles. 
 
3 Modelling of Service Processes 
3.1 Service Modelling 
 
Service processes are assemblies of individual services or other service 
processes. This form of service composition is part of what is often called 
service orchestration - the other aspect of composition is the association of 
concrete services to abstract service placeholders in the composed process 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

description. Orchestration describes the control and data flow between 
services using basic flow operators. We deal with the correctness of 
service implementation in Section 4. In this section, we address the 
abstract modelling of service orchestrations.  
 
Based on abstract service models, services can be composed to service 
architectures. This is done by defining the process of service invocations 
based on a set of process operators. The following textual representation 
summarises the syntactical aspects in a functional service interface format 
and an example of a service process. The process of using an online 
banking account is described in this service process definition. This 
application is based on four individual services, each described here in 
terms of input and output parameters. 
 
application AccountProcess 
    services  
        login (user:string, account:int) : ID 
        balance enquiry (account:int) : real 
        money transfer (account:int, destination:int, amount:real) : void 
        logout (sessionID:ID) : void 
    process  
        login; !( balance enquiry + money transfer ); logout 
 
The services are composed to a process that captures constraints for 
service invocations within this application, using the combinators 
sequence (;), iteration (!), and choice (+).  
 
3.2 A Service Modelling and Composition Ontology 
 
WSPO is a decidable encoding of a dynamic logic in terms of description 
logic, which enables reasoning about dynamic service process properties 
such as safety and liveness, making WSPO the most suitable service 
ontology for semantic model-driven service engineering. The ontology can 
be used to check the integrity of service process definitions (a safety 
condition), e.g. determine if the output of a service satisfies the semantic 
requirements of the next service in the process. 
 
Core elements of an ontology are concepts and relationships. In WSPO, 
they are defined as follows. The central concepts in WSPO are states (pre- 
and poststates) for each service. Other concepts are parameters (input- and 
output-parameters) and constraints (pre- and postconditions). Two forms 
of relationships are provided. The services themselves or their 
composition to processes are called transitional relationships. These 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

processes are based on operators such as sequence, choice (decision), and 
concurrency (fork) - other operators not present in activity diagrams, such 
as the iterator, could also be added as control flow abstractions. 
Essentially, the transitional relationships define a (labelled) transition 
system. Syntactical and semantical descriptions - here input and output 
parameter objects (syntax) and constraints (semantics) - are associated to 
individual services through descriptional relationships. We present WSPO 
here in a pseudo-OWL notation to avoid the full verbosity of XML-based 
descriptions. The @-construct used in some constraints refers to an 
attribute in the prestate, which we have borrowed from OCL (Warmer and 
Kleppe, 2003). 
 
WSPO can be distinguished from other service ontologies by two specific 
properties. Firstly, although based on description logics, it adds an 
enriched relationship-based process sublanguage enabling process 
expressions based on iteration, choice, and sequential and parallel 
composition operators and adding data to processes in the form of input 
and output parameters - introduced as constant process elements into the 
process sublanguage (Pahl, 2007). Secondly, WSPO is based on a 
decidable description logic, which in comparison to other service 
ontologies, gives a crucial advantage in the context of automation. 
 
Individual service descriptions form the basis of the modelling activity. 
An example that enhances the previous syntactic description of an account 
service by semantic conditions is  
 
process:Service rdfID="money transfer" 
    service:hasInput 
        service:Input rdfID="account" 
        service:Input rdfID="destination" 
        service:Input rdfID="amount" 
        service:precondition 
                rdfConstr="valid(sessionID) and balance(account)>0" 
    service:hasOutput 
        service:Output rdfID="void" 
        service:postCondition 
                rdfConstr="balance = balance@pre - amount" 
 
A service process template with a central process element (the transitional 
relationship) and associated services (descriptional relationship) defines 
the basic structure of states and service process models in WSPO. 
Syntactical parameter information in relation to the individual activities 
and also semantical information such as preconditions and postconditions 
(see example above) are attached to each activity defined in the template. 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

The pre- and poststates will remain implicit in the notation. Service 
processes are defined in terms of operators such as choice, iteration, or 
sequence: 
 
process:Choice 
    process:hasInput 
        process:Input rdfID="login" 
    process:hasOutput 
        process:Output rdfID="balance enquiry" 
        process:Output rdfID="money transfer" 
 
The three services on the right-hand side of Fig. 2 (money transfer has 
already been presented) are part of a composed process, shown on the left-
hand side and already explained above. The process is based on a choice 
construction (based on the decision control flow operator of the UML 
activity diagrams). The left-hand side is a transitional relationship 
expressing the composed process itself. The three services login (as input) 
and balance enquiry and money transfer (both as output of the control 
flow operator) are combined. Input and precondition are (implicitly) 
associated to the prestate and output and postcondition are (implicitly) 
associated to the poststate. This choice process can form the first step in a 
sequence with a logout service to form the overall process that we have 
presented in Section 3.1 in abstract textual form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. WSPO Process and Service Model. 
 

process:Choice
process:hasInput

process:Input rdfID="login"
process:hasOutput

process:Output rdfID="balance enquiry"
process:Output rdfID="money transfer"

process:Service rdfID="login"
service:hasInput

service:Input rdfID="user"
service:Input rdfID="account"
service:preCondition rdfConstr="valid(user,account)"

service:hasOutput
service:Output rdfID="sessionID"
service:postCondition rdfConstr="valid(sessionID)"

process:Service rdfID="money transfer"
service:hasInput

service:Input rdfID="source"
service:Input rdfID="destination"
service:Input rdfID="amount"
service:preCondition
rdfConstr="valid(sessionID) and balance(source)>0"

service:hasOutput
service:Output rdfID="void"
service:postCondition
rdfConstr="balance = balance@pre - amount"

process:Service rdfID="balance enquiry"
service:hasInput

service:Input rdfID="account"
service:preCondition

rdfConstr="valid(sessionID)"
service:hasOutput

service:Output rdfID="result"
service:postCondition
rdfConstr="result = balance(account)"

process:Choice
process:hasInput

process:Input rdfID="login"
process:hasOutput

process:Output rdfID="balance enquiry"
process:Output rdfID="money transfer"

process:Service rdfID="login"
service:hasInput

service:Input rdfID="user"
service:Input rdfID="account"
service:preCondition rdfConstr="valid(user,account)"

service:hasOutput
service:Output rdfID="sessionID"
service:postCondition rdfConstr="valid(sessionID)"

process:Service rdfID="money transfer"
service:hasInput

service:Input rdfID="source"
service:Input rdfID="destination"
service:Input rdfID="amount"
service:preCondition
rdfConstr="valid(sessionID) and balance(source)>0"

service:hasOutput
service:Output rdfID="void"
service:postCondition
rdfConstr="balance = balance@pre - amount"

process:Service rdfID="balance enquiry"
service:hasInput

service:Input rdfID="account"
service:preCondition

rdfConstr="valid(sessionID)"
service:hasOutput

service:Output rdfID="result"
service:postCondition
rdfConstr="result = balance(account)"



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

Although the pre- and poststates are not explicit in the WSPO notation, 
their presence is necessary as the overall process specification is 
interpreted by labelled transition systems. The transitional relationships, 
i.e. the process specification itself, defines the accessibility relationship 
between pre- and poststates. 
 
Pre- and postconditions for the composed process can be derived from the 
individual service specifications - once the overall consistency of the 
abstract composed process definition is established - in order to represent 
the process as a single service to potential users. 
 
3.3 UML-based Service Process Modelling 
 
UML activity diagrams capture activities that are to be performed as 
executable activity nodes in a graph-like structure. The basic diagram 
elements are executable activity nodes, called actions, and edges between 
these activity nodes that represent flow. Control flow nodes allow the 
description of choice (decision) or concurrency (fork) with their joining 
counterparts. The control flow can be enhanced by explicit objects and 
input and output pins that represent input and output elements at activities. 

 
Figure 3. UML Profile (Metamodel) for Semantic Service Process 

Modelling. 
 
These properties make UML activity diagrams an ideal starting point to 
develop a standards-compliant and interoperable grahical modelling 
interface for WSPO. We require some extensions to activity diagrams, 
which we will capture in form of a UML profile, to address the specific 
needs of semantic service process description. This metamodel for service 

Activity

Activity Node Activity Edge

Service

Ontology
Process

Ontology
Object

Control Flow
Input
Pin

Output
Pin

Input Output
decision fork

post-
condition

pre-
condition

Service
Constraint

Activity

Activity Node Activity Edge

Service

Ontology
Process

Ontology
Object

Control Flow
Input
Pin

Output
Pin

Input Output
decision fork

post-
condition

pre-
condition

Service
Constraint



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

architectures is defined in Fig. 3. White rectangles denote the standard 
UML activity diagram elements; medium grey ones denote service-
specific extensions; dark grey ones associate elements of a possible 
domain ontology. Note that often a domain ontology captures central 
concepts, i.e. key objects and processes, of an application context (Pahl, 
2005). The architecture model here is linked to the domain model. 
Although we do not discuss this aspect in detail, the integration with a 
domain model is central for a coherent ontology-based modelling 
approach. 
 
A WSPO service is an activity in UML terms. A service's input and output 
objects are linked to the input and output pins of activities. The lowest 
layer in the metamodel diagram addresses an ontology grounding, i.e. the 
connection of the model elements to concepts of an underlying domain 
ontology. This ontology - we distinguish passive objects and active 
processes - introduces central, accepted domain concepts and their 
semantics. In addition to input and output elements, we need to add 
semantic service descriptions, here in the form of pre- and postconditions. 
  
The application of the profile is presented in Fig. 4. This model represents 
the online bank account process that we have used earlier on to illustrate 
the OWL-based textual representation in WSPO. It visualises the process 
login; !( balance enquiry + money transfer ); logout together with in- and 
out-parameters and semantic conditions. 
 

login

<<postCondition>>
result=balance(account)

balance
enquiry

money
transfer

logout

<<preCondition>>
true

<<postCondition>>
vaild(sessionID)

<<preCondition>>
valid(user,account)

<<postCondition>>
not valid(sessionID)

<<preCondition>>
vaild(sessionID) ∧

balance(account)>0

<<preCondition>>
valid(sessionID)

<<postCondition>>
balance = 

balance@pre -amount
<<decisionInput>>

choice

{user,account}

{account}

{account,
destination,

amount}

{sessionID}

{sessionID}

{balance}

{void}

{void}
login

<<postCondition>>
result=balance(account)

balance
enquiry

money
transfer

logout

<<preCondition>>
true

<<postCondition>>
vaild(sessionID)

<<preCondition>>
valid(user,account)

<<postCondition>>
not valid(sessionID)

<<preCondition>>
vaild(sessionID) ∧

balance(account)>0

<<preCondition>>
valid(sessionID)

<<postCondition>>
balance = 

balance@pre -amount
<<decisionInput>>

choice

{user,account}

{account}

{account,
destination,

amount}

{sessionID}

{sessionID}

{balance}

{void}

{void}

 
 
 

Figure 4. Semantic Service Process Model based on UML Activity 
Diagrams. 

 
We work with a subset of activity diagram features as shown in Fig. 4, 
which is sufficient to express abstract functional service and process 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

properties. The transformation between this subset and WSPO is 
straightforward. Other diagram elements, such as activity partitioning 
mechanisms (swim lanes), could be used in extensions of this approach to 
consider non-functional aspects such as service distribution (Barrett et al., 
2006). 
 
3.4 Mapping Activity Diagrams to Service Ontologies 
 
UML activity diagrams and our extension to model service processes 
based on the UML profile serve mainly as a tool for visual modelling, but 
also enable interoperability, which allows existing UML models to be 
reused and integrated into our proposed framework. The underlying 
ontology framework provides the service architecting engine for platform-
independent and platform-specific modelling. It performs composition 
checks and creates executable process implementations. The ontology acts 
as a formally defined internal representation that enables transformation, 
composition, and reasoning activities.  
 
The mapping from activity diagrams into WSPO is straightforward. The 
ontology representation in Fig. 2 is the result of the transformation of 
(parts of) the UML model in Fig. 4. WSPO is based on a standard template 
that matches the structure of the given activity diagram:  
• A state-based process specification forms the core. 
• Individual descriptions of services that participate in the process are 

associated. 
The activity nodes and edges from UML activity diagrams are mapped 
onto the process template: 
• Service connectors: The activity nodes of services connected by the 

activity edges to processes with their input and output elements are 
mapped onto the process part of the template. The UML control flow 
operators, such as decision and fork, are represented by the WSPO 
process combinators, such as choice and concurrency. 

• Services: For each service (an activity node), a separate service part 
with input and output, precondition and postcondition information is 
generated, where each of the individual information elements is 
considered as attached through a descriptional relationship. The UML 
input and output pins are mapped to WSPO service input and output 
concepts. Pre- and postconditions of the UML extension are equally 
mapped to WSPO concepts. 

This illustrates the ideas behind the transformation. These principles can 
be implemented in terms of the ODM framework. ODM provides 
metamodels for UML and OWL and transformations between them, which 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

make the formulation of the UML-to-WSPO transformation 
straightforward. 
 
4 Composition of Service Processes 
 
Composition occurs, as already mentioned, in two forms in service 
architectures: 
• Process orchestration. The assembly of services to processes is the first 

form of composition. The visual modelling of this composition form is 
supported by the UML profile. The semantic consistency of the 
process composition needs to be addressed at the semantic level. 

• Refinement. The composition of the abstract service process as the 
client and individual implemented services as providers of 
functionality is the second form where the provider properties refine 
the required properties. The problem is the discovery of services in 
service repositories or directories that match the semantic 
requirements.  

We introduce in this section an ontology-based engine to support the 
architecting of service-based systems based on these two composition 
forms. Ontology support aids to achieve the consistency of compositions. 
The notion of a service architecting engine - emphasising the focus on 
architecture development - captures semantic properties of services and 
processes and supports process- and refinement-style composition. An 
operator calculus for process composition and inference rules to support 
matching are integral elements of this engine. As we will see later on, a 
service composition ontology can also provide the foundations for the 
generation of deployment code. We start with process composition 
analysis before looking at the refinement dimension. 
 
4.1 Abstract Process Composition 
 
Services that are visually composed do not necessarily match 
semantically. A semantical analysis of the composition between these 
abstract specifications is required. The excerpt of the bank account model 
in Fig. 4 exemplifies this aspect. 
 
The consistency of a process composition, e.g. for a sequential 
composition, needs to be checked - both in terms of input elements in and 
output elements out and also the semantic matching of postconditions of 
the predecessor postP and precondition preS of the successor service.   
• A required input element in of a service of a composition must be 

provided as an output element of the preceding service in the process 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

composition (cf. pipes) or must be supplied by the overall process 
instance (cf. calls).  

• An implication postP → preS is the semantic consistency constraint for 
the composition. This condition can be verified within the WSPO 
encoding of dynamic logic.  

This applies to all composition operators such as sequence, choice, or 
concurrency. 
 
For example, the login service produces an output object sessionID that 
satisfies the postcondition valid(sessionID).  Although the sessionID is not 
required as an input element for the subsequent balance enquiry service, 
the validity of the sessionID is still required and guards this service. The 
postcondition satisfies the guarding condition of the subsequent service. 
This case, even though a simple one, illustrates the need to check the 
consistency of the composition. 
 
This type of composition can be characterised as horizontal, whereas in 
the following section, we will address the vertical dimension of 
composition by associating concrete provided services to abstract process 
models. 
 
4.2 Composing Service Providers and Clients 
 
The service process defined by modelling the control and data flow 
characteristics visually and by checking its consistency using the ontology 
engine is still an abstract model. Concrete services need to be found that 
match the requirements expressed in the abstract models of service 
orchestrations. Matching is often based on the so-called IOPE (Input 
Output Precondition Effect) characteristics. A refinement relation can 
define the matching notion. 
 
Ontologies enable reasoning about models and their properties. In (Pahl, 
2007), a refinement notion is integrated into an ontological framework, 
based on the ontological subsumption (subclass) relationship. This 
matching notion can be applied to determine whether a service provider 
can be connected to a service user based on their individual service and 
process requirements. Weakening the precondition and strengthening the 
postcondition or effect, which we use here, is a refinement condition that 
can be applied to individual services. (Pahl and Casey, 2003). This can be 
verified using the ontology.  
 
Assume that in order to implement an account process, an implementation 
for the money transfer service with input parameter amount needs to be 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

integrated. For any given state, the process developer might require for the 
balance enquiry 
 
service:preCondition  rdfConstr="balance() > amount" 
service:postCondition rdfConstr="balance() = balance()@pre - amount" 
 
which would be satisfied by a provided service 
 
service:preCondition  rdfConstr="balance() > 0" 
service:postCondition rdfConstr="balance() = balance()@pre - amount 
    and lastActivity = 'transfer' " 
 
The provided service weakens the required precondition assuming that the 
transfer amount is always positive and strengthens the required 
postcondition as an additional result is delivered by the provided service. 
This is a safety condition. Lifeness conditions, i.e. conditions that will 
eventually become true, such as termination, can be dealt with in the same 
way. WSPO focuses on functional properties of services, such as safety 
and lifeness, only. Note that we have used a pseudo-RDF notation here to 
simplify the example. RDF is at the core of OWL. 
 
5 Deployment of Service Processes 
 
The deployment of services within specific platforms such as the Web 
services platform involves two perspectives - clients invoking and 
executing service processes (Section 5.1) and providers publishing 
abstract descriptions and making the process services available (Section 
5.2). 
 
5.1 Code Generation for Service Process Invocation and 
Execution 
 
Automated code generation is one of the central objectives of MDD. In the 
context of SOA, code generation essentially means the generation of 
exectuable service processes. WS-BPEL (BPEL, 2004), which has already 
been looked at from a semantic, ontology-based perspective (Mandell and 
McIlraith, 2003), has emerged as the most widely accepted process 
execution language for orchestrated Web services. 
 
A summary of the transformation rules from WSPO to WS-BPEL is 
presented below. WSPO defines a simple process language that can be 
fully translated into WS-BPEL. BPEL process partners are the client and 
the different service providers. The WSPO specification is already 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

partitioned accordingly. Flow combinators (the WSPO process 
combinators) can also be mapped directly. The principles of the 
transformation are the following: 
• WS-BPEL process: The complex WSPO process relationships are 

mapped to BPEL processes. 
• WS-BPEL process partners: For each process, a BPEL partner process 

(client and server) is created. 
• WS-BPEL orchestration: Each process expression is converted into 

BPEL-invoke activities at the client side and BPEL-receive and -reply 
activities at the server side. 

• WS-BPEL process activities: The process combinators ';', '+', '!', and '||' 
are converted to BPEL flow combinators sequence, pick, while, and 
flow, respectively. 

These principles can be formulated in terms of QVT (OMG, 2005). We 
only present a schematic example here to illustrate the concept of 
declarative transformation specification: 
 
transformation WSPO_to_WS-BPEL (wspo : WSPO, bpel: WS-BPEL)  
{ 
 
    top relation TransRelationship_to_Process   

/* maps transitional relationships to processes */ 
    { 
 checkonly domain wspo w:TransRel {name = pn} 
 enforce     domain bpel b:Process  {name = pn} 
    } 
 
    relation RelExpr_to_ProcessExpr  

/* map each process expression recursively */ 
    { 
 domain wspo r:Relationship { 
     e1 = e:LeftExpr {}, 
     e2 = e:RightExpr {}, 
     op = c:Combinator {} 
 } 
 domain bpel p:Process { 
     process = p:Process {left=e1, pr=op, right=e2}, 
     client =  pe:ProcessExpr {invoke=op(e1,e2)}, 
     server =  pe:ProcessExpr {receive=(op,e1,e2), reply=op(e1,e2)} 
 } 
 when { 
     CombinatorMapping(op) and ProcessPartnerCreation(p); 
 } 
 where { 
     RelExpr_to_ProcessExpr(e1) and RelExpr_to_ProcessExpr(e2); 
 } 
    } 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

 
    relation ProcessPartnerCreation  /* creates server and client process partner */ 
    {...} 
 
    relation CombinatorMapping         /* converts individual process combinators */ 
    {...} 
} 
 
A variety of languages for transformation exist. Among these, QVT is 
poised to become the lingua franca for model-driven transformations due 
to its OMG support. Its declarative nature allows specifying 
transformations at a high level of abstraction. Although its standardisation 
is not completed and only limited tool support is currently available for the 
declarative specifications, QVT is an essential tool in the implementation 
of our methodology in the near future. Therefore, we have presented the 
transformations in terms of QVT, even though we have used a Java-based 
implementation in our prototype. 
 
5.2 Description and Publication of Services and Service 
Processes 
 
The Web Services platform proposes a specific architecture based on 
services provided at certain locations, which can be located using 
directory information provided in service registries. The description of 
services - or service processes made available as a single service – ideally 
in semantical format is therefore of central importance. Information 
represented in the process model and formalised in the service process 
ontology can be mapped to a service ontology. OWL-S, WSMO, or SWSF 
would be suitable here. This transformation would only be a mapping into 
a subset of these ontologies, since they capture a wide range of functional 
and non-functional properties, whereas we have focussed on architecture-
specific properties in WSPO. 
 
We have chosen WSMO here to illustrate this type of code generation. A 
summary of the transformation rules from WSPO to WSMO is outlined 
below. Some correspondences guide this transformation. WSPO input and 
output elements correspond to WSMO messageExchange patterns, which 
are used in WSMO to express stimuli-response patterns of direct service 
invocations, and WSPO pre- and postconditions correspond to their 
WSMO counterparts. 
• WSMO service: Based on the WSPO model, process relationships are 

mapped to WSMO service concept and fill messageExchange and 
pre- and postCondition properties accordingly. 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

• WSMO messageExchange: The WSPO in and out objects are mapped 
onto WSMO messageExchange descriptions. 

• WSMO pre-/postconditions: The WSPO pre- and postconditions are 
mapped onto WSMO pre - and postConditions. 

A formulation in QVT would follow the style to the WSPO-to-WS-BPEL 
transformation presented in Section 5.1. 
 
6 Evaluation 
 
The evaluation of the proposed techniques and the methodology is 
essential to demonstrate their effectiveness. Our main aim was to 
demonstrate the benefits of an ontology-based approach. We have applied 
our framework in two settings: 
• Firstly, we have used the banking scenario, from which the previous 

examples were drawn, as a conceptual case study. This acts a 
comparison instrument as the example is widely used in the 
literature. 

• Secondly, we have used the model-driven development of a learning 
technology system as an empirical setting of a knowledge-driven 
application.  

 
Effectiveness of techniques and methodology is the central quality that we 
aim to demonstrate. Tractability and implementability of the techniques 
are additional requirements. As far as the latter are concerned, tractability 
is given through the decidability of the approach. While visual modelling 
in the UML/MOF context and ontology processing are well supported by 
tools, the MDD and transformation context requires more platform 
technologies, before the proposed techniques can be fully implemented 
using non-proprietary solutions. 
 
The methodology as such is effective. In our empirical case study, we 
have gained semantical models, which serves us now as system 
documentation and which also have eased the creation of code through 
partial automated code generation. This results in better quality and some 
cost savings. Although currently the higher time investment for the 
semantic models is not fully compensated by the semi-automated code 
generation (which is partly due to a lack of tool support), we believe in a 
return of investment when change and evolution has to be dealt with. In 
particular, the learning technology context with the availability of subject 
and instruction domain ontologies, has proved suitable for the application 
of our approach.  
 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

7 Related Work 
 
Some developments have started exploiting the connection between 
ontologies - in particular OWL - and MDA. In (Djurić, 2004), an MDA-
based ontology architecture is defined. This architecture includes aspects 
of an ontology metamodel and a UML profile for ontologies. A 
transformation of the UML ontology to OWL is implemented. It clarifies 
the role of what we have called the implementation framework (Section 
2.3). The work by (Gašević et al., 2006) and (Djurić, 2004) and also the 
OMG (OMG, 2003; OMG, 2006), however, needs to be carried further  
• to address the ontology-based modelling and reasoning of specifically 

service-based architectures using dedicated service ontologies instead 
of OWL in general - in particular, the Web Services architecture needs 
to be addressed in the context of Web-based ontology technology, 

• to provide a process-centric solution that allows the semantic 
representation of service compositions in terms of an ontology and that 
allows reasoning about service process compositions. 

 
Grønmo et al. (2005) introduce - based on ideas from (Djurić, 2004) - a 
model-driven service development approach similar to ours that is based 
on service ontologies and that addresses the first shortcoming identified 
above. Starting with a UML profile based on activity diagrams, services 
are modelled. These models are then translated into OWL-S. Although the 
paper discusses process composition, this aspect is not detailed. We have 
built on (Grønmo et al., 2005) in this respect by considering process 
compositions in the UML profile and by mapping into a service ontology 
that focuses on providing explicit support for service processes. Other 
authors (Mantell, 2005) have directly connected UML modelling with 
WS-BPEL code generation, without the explicit ontology framework. 
Integrating ontologies, however, enhances the semantic modelling and 
reasoning capabilities in the context of service architectures. Our approach 
goes beyond these approaches in that it is based on a service process 
ontology, WSPO in this case, rather than a service ontology. We can 
therefore provide improved composition support. 
 
8 Conclusions 
 
Service-oriented architecture is developing into a service engineering 
paradigm with its own specific techniques. The development of a service 
engineering methodology should - similar to other approaches - adopt 
accepted technologies: 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

• MDD provides, based on UML, a modelling approach that can satisfy 
the modelling requirements necessary to develop service architectures 
and that emphasises tool support and automation. 

• Ontology and Semantic Web technologies provide semantic strength 
for the modelling framework necessary for a distributed and inter-
organisational development and deployment environment. 

 
Our main contribution is a methodology for service engineering based on 
an ontology engine that supports the process of service architecting. The 
central element is a service ontology tailored to support service 
composition and transformation. An ontology-based technique is here 
beneficial for the following reasons. Firstly, ontologies define a rigorous, 
logic-based semantic modelling and reasoning framework that support 
architectural design activities for services such as composition. Secondly, 
ontologies provide a knowledge integration and interoperability platform 
for multi-source semantic service-based software systems. Thirdly, service 
ontologies can be integrated with domain ontologies to integrate different 
software development activities - for instance at the computation-
independent layer of MDA.  
 
We set out to achieve a number of objectives with this service engineering 
methodology. 
• We have demonstrated the suitability of ontologies for this service 

engineering environment through examples and technology discussion 
- for both WSPO to support architectural issues but also for WSMO 
here to support service discovery.  

• We have embedded this service composition ontology into a coherent 
architecture modelling technique, integrating visual UML-based 
modelling, transformation, ontology-based reasoning, and code 
generation. 

• We have outlined that with an implementation context consisting of 
ODM as the metamodel framework for ontological modelling, MDA 
as a standardised framework for MDD, and QVT as a central 
transformation technique, the implementation and application of our 
methodology becomes feasible. 

 
Compared to the current state of the art in MDD, in our approach 
ontologies replace the classical UML models, except that we keep the 
graphical UML notation, but give semantics to a UML profile for service 
architecture by mapping UML models to service ontologies. This 
approach has in addition to the visualisation of models also the benefit of 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

allowing the reuse of existing models. Ontologies add rigorous semantic 
modelling and reasoning. 
 
While we have outlined the core of an ontology-driven service architecture 
methodology, a number of aspects can extend the proposed methodology.  
• Practical considerations: The integration of a wider range of UML 

models can improve the reusability of UML models. For instance, 
interaction and sequence diagrams express aspects of relevance to 
service composition and interaction. Composition aspects such as time 
or error handling could be considered. A reversed mapping from 
ontologies into UML models could also be considered.  

• Standards and Trends: The Ontology Definition Model ODM has 
recently been standardised and can be expected to be widely adopted if 
adequate tool support is available. The full integration of our approach 
with this standard is necessary for interoperability reasons and will 
facilitate model reuse, and should turn out to be feasible due to OWL-
DL as the common underlying ontology language. 

 
 
References 
 
Allen, R. and Garlan, D. (1997). A Formal Basis for Architectural 
Connection. ACM Transactions on Software Engineering and 
Methodology, 6(3), pp. 213–249. 
 
Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004). Web Services 
– Concepts, Architectures and Applications. Springer-Verlag. 
 
Baader, F., McGuiness, D., Nardi, D. and Schneider, P.P. editors (2003). 
The Description Logic Handbook. Cambridge University Press, 2003. 
 
Barrett, R., Patcas, L. M., Murphy, J. and Pahl, C. (2006). Model Driven 
Distribution Pattern Design for Dynamic Web Service Compositions. In 
International Conference on Web Engineering ICW’E06. ACM Press. 
 
Bass, L., Clements, P. and Kazman. R. (2003). Software Architecture in 
Practice (2nd Edition). SEI Series in Software Engineering. Addison-
Wesley. 
 
Daconta, M.C., Obrst, L.J. and Smith, K.T. (2003). The Semantic Web. 
Wiley. 
 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

DAML-S Coalition (2002). DAML-S: Web Services Description for the 
Semantic Web. In I. Horrocks and J. Hendler, editors, Proc. First 
International Semantic Web Conference ISWC 2002, LNCS 2342, pp. 
279–291. Springer-Verlag. 
 
Djurić, D. (2004). MDA-based Ontology Infrastructure. Computer Science 
and Information Systems, 1(1), pp. 91–116. 
 
Gašević, D., Djurić, D., Devedžić, V. (2006). Model Driven Architecture 
and Ontology Development. Springer-Verlag. 
 
Grønmo, R., Jaeger, M.C. and Hoff, H. (2005). Transformations between 
UML and OWLS. In A. Hartman and D. Kreische, editors, Proc. Model-
Driven Architecture – Foundations and Applications, pp. 269–283. 
Springer-Verlag, LNCS 3748. 
 
Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C. and Fensel, D. 
(2005). Web Service Modeling Ontology. Applied Ontology, 1(1), pp. 77–
106. 
 
Mandell, D.J. and McIlraith, S.A. (2003). Adapting BPEL4WS for the 
Semantic Web: The Bottom-Up Approach to Web Service Interoperation. 
In D. Fensel, K.P. Sycara, and J. Mylopoulos, editors, Proc. International 
Semantic Web Conference ISWC’2003, pp. 227–241. Springer-Verlag, 
LNCS 2870. 
 
Mantell, K. (2005). From UML to BPEL – Model Driven Architecture in a 
Web services world. IBM. 
http://www28.ibm.com/developerworks/webservices/library/wsuml2bpel/. 
 
McIlraith, S. and Martin, D. (2003). Bringing Semantics to Web Services. 
IEEE Intelligent Systems, 18(1), pp. 90–93. 
 
Object Management Group (2003). MDA Model-Driven Architecture 
Guide V1.0.1. (OMG Document omg/03-06-01). OMG. 
 
Object Management Group (2005). Query View Transformation - MOF 
QVT Final Adopted Specification (OMG Document ptc/05-11-01). OMG. 
 
Object Management Group (2006). Ontology Definition Metamodel - 
Submission (OMG Document: ad/2006-05-01). OMG. 
 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

Pahl, Claus (2002). A formal composition and interaction model for a web 
component platform. In Proc. ICALP'2002 Workshop on Formal Methods 
and Component Interaction, 8-13 Jul 2002, Malaga, Spain. 
 
Pahl, C. (2005). Layered Ontological Modelling for Web Service-oriented 
Model-Driven Architecture. In European Conference on Model-Driven 
Architecture ECMDA’2005. Springer LNCS Series. 
 
Pahl, C. (2007). An Ontology for Software Component Matching. 
International Journal on Software Tools for Technology Transfer (STTT), 
Special Edition on Component-based Systems Engineering, 7.  
 
Pahl, C. and Casey, M. (2003). Ontology Support for Web Service 
Processes. In Proc. European Software Engineering Conference and 
Foundations of Software Engineering ESEC/FSE’03. ACM Press. 
 
Pahl, C. and Zhu, Y. (2005). A semantical framework for the orchestration 
and choreography of web services. In Proc. International Workshop on 
Web Languages and Formal Methods WLFM'05, 19 Jul 2005, Newcastle, 
UK. 
 
Payne, T. and Lassila, O. (2004). Semantic Web Services. IEEE Intelligent 
Systems, 19(4). 
 
Peltz, C. (2003). Web Service orchestration and choreography: a look at 
WSCI and BPEL4WS. Web Services Journal, 3(7). 
 
Plasil, F. and Visnovsky, S. (2002). Behavior Protocols for Software 
Components. ACM Transactions on Software Engineering, 28(11), pp. 
1056–1075. 
 
Rao, J., Küngas, P. and Matskin, M. (2004). Logic-Based Web Services 
Composition: From Service Description to Process Model. In International 
Conference on Web Services ICWS 2004, pp. 446–453. IEEE Press. 
 
Semantic Web Services Language (SWSL) Committee (2006). Semantic 
Web Services Framework (SWSF). 
http://www.daml.org/services/swsf/1.0/. 
 
Warmer, J.B. and Kleppe, A.G. (2003). The Object Constraint Language – 
Precise Modeling With UML. Addison-Wesley. (2nd Edition). 
 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

World Wide Web Consortium (2004). Semantic Web Activity Statement. 
http://www.w3.org/2001/sw. 
 
World Wide Web Consortium (2006). Web Services Architecture. 
http://www.w3.org/TR/ws-arch. 
 
WS-BPEL Coalition (2004). WS-BPEL Business Process Execution 
Language for Web Services – Specification Version 1.1. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel. 
 
 


