

 Int. J., Vol. x, No. x, xxxx 1

A Conceptual Architecture for Semantic Web Services
Development and Deployment

Claus Pahl
Dublin City University

School of Computing

Dublin 9

Ireland

Abstract. Several extensions of the Web Services Framework (WSF) have been
proposed. The combination with Semantic Web technologies introduces a notion of
semantics, which can enhance scalability through automation. Service composition to
processes is an equally important issue. Ontology technology – the core of the
Semantic Web – can be the central building block of an extension endeavour. We
present a conceptual architecture for ontology-based Web service development and
deployment. The development of service-based software systems within the WSF is
gaining increasing importance. We show how ontologies can integrate models,
languages, infrastructure, and activities within this architecture to support reuse and
composition of semantic Web services.

Keywords. Web Services, Semantic Web, ontology technology, semantics, service
processes, conceptual development and deployment architecture.

1 Introduction

The Web Services Framework (WSF) [1] aims at opening the Web for software
applications. Services are self-contained computational entities, made available
through the infrastructure provided by a provider and used as is by service
requesters.

The focus of the WSF core is on the boundaries of systems or services and on
the interaction between these. A number of extensions of the WSF can be identified
[2,3]. On the structural level, composing services is not part of the WSF. The
description of services is limited to syntax and type aspects. On the descriptional
level, no support is provided for functional and non-functional semantical properties.
Whereas the first development phase of the WSF has focussed on infrastructure,
other aspects have become more important since then. Besides infrastructure support
for service deployment, the development of service-based software systems is now
the focal aspect.

The combination of the WSF core with the Semantic Web [4], in particular
ontology technology [5], can provide an essential step forward that introduces

Copyright © 200x Inderscience Enterprises Ltd.

 Author

meaning to Web services and that provides the foundations to enable a software
component-style composition of services to service processes [6].

Previous work on the combination of the Semantic Web and Web Services has
often focussed on modelling and language aspects [2,3,7]. More service architecture-
oriented treatments have neglected the semantical aspects [1]. Here, our aim is to
identify the common aspects of semantic Web services approaches [8,9] and capture
these in a conceptual architecture. We identify models, languages, infrastructure, and
stakeholder activities as the central layers of this architecture. We focus on
technologies, such as ontology technology, that can play an integrating role in this
endeavour. These technologies are central building blocks of the architecture.

Such a conceptual architecture can form the underlying foundation of a
methodology for semantic Web services development and deployment. It provides a
taxonomy for a development and deployment platform. A major aim of our proposed
architecture is to link models, languages, infrastructure, and activities. The
conceptual architecture results from an empirical analysis of work on semantic Web
services and Web services infrastructures such as [2,3,9,10,11,12,13,14,15].

In Section 2, we introduce the Web services framework and semantic services.
We present our conceptual architecture and the research that led to this architecture
in Section 3. In Section 4, we investigate model and language aspects of the
conceptual architecture. Infrastructure and activity aspects of the architecture are
subject of Section 5. We end with some conclusions.

2 Semantic Web Services – Background

Before we introduce our conceptual architecture, we give an overview of the
background technologies – Web services, ontologies, and semantic Web services –
involved.

2.1 Web Services

A Web service is defined as a provided software system identified by a URI, whose
public interfaces are defined and described using XML [1]. Other software systems,
i.e. requesters of the service, may interact with the provided Web service in a manner
prescribed by its definition, using XML-based messages conveyed by Internet
protocols. A wider scope of the service notion includes distributed object – or Web-
mediated – services.

In the Web services framework WSF [1], a description language, WSDL (Web
Services Description Language), is used to describe syntax and type aspects of
services, in particular message formats and message exchange details, and their
binding to a communications protocol. A registry service, UDDI (Universal
Description, Discovery, and Integration), is a repository that allows providers to
publish service descriptions and service requesters to search for services. A protocol,
SOAP (Simple Object Access Protocol), is used to invoke services.

 Title

2.2 Ontology Technology

The Semantic Web initiative aims at making the Web more meaningful and open to
manipulation by software applications [4]. A logic-based approach based on
knowledge representation and reasoning forms the backbone. Annotations to Web
resources express meaning, which can be used by software agents to extract
semantical information about the resource. The requirement for this to work is a
precise, shared understanding of these annotations.

Ontologies provide a solution for this requirement. Ontologies define
terminologies and semantical properties. Essentially, ontologies are hierarchical
definitions of concepts of a domain and descriptions of the properties of these
concepts. Logics such as description logics [5] provide the reasoning support.
Integrated into an ontological Web framework based on OWL – the Web Ontology
Language – sharing of ontologies becomes possible.

Knowledge representation through ontologies can be utilised to describe Web
services. Two types of knowledge relevant to the services context need to be
represented ontologically. Domain knowledge captures entities from the application
domain and their properties – domain modelling is a widely accepted requirements
engineering method. Software knowledge captures software artefacts and their
properties. Expressing semantics and reasoning about it is the central goal. Software
knowledge is often expressed by incorporating domain knowledge. Description and
reasoning facilities provided by ontologies are essential building blocks of a semantic
Web services approach.

2.3 Semantic Web Services

Different development scenarios for services-based software systems involving
requester and provider can be imagined (Fig. 1): collaborative development of
services or provider-based development of services with human or automated
discovery. In any case, the existence of requester and provider makes sharing of
knowledge about services and their context through ontologies necessary. Often, the
automation of development and deployment processes involving Web services –
from the discovery to the final invocation – is seen as the ultimate goal [3]. The
degree of automation determines the scalability of the architecture. A cornerstone of
such an endeavour is the support of semantics [2,3,7,12,13,14,15,16]. The WSF
focuses on message format and message exchange mechanisms to provide and
invoke services. In addition, various semantical properties of services are relevant for
a service user, e.g. [2,10]:
� Transitions: the abstract behaviour is often represented in a transitional form

describing in/out-transitions.
� Dependencies: the interaction of a requestor with a service might be constrained,

i.e. operations can only be invoked following an interaction pattern or protocol.

 Author

� Interaction processes: the internal process and interaction structure, possibly
involving other services, that provide the functionality for the service. While
similar to the external interaction patterns, this needs to address data and control
flow and synchronisation more explicitly.

In order to support semantic service reuse and composition, ontology
technology has been proposed as a means based on successful techniques used in
WSF extensions – domain modelling [3], design-by-contract [2], and process
composition [17]. We propose to integrate these into a coherent conceptual
architecture for semantic Web services. Semantical properties – including behaviour
and dependencies – enable the reuse of services and their independent composition,
resulting in a platform-specific development and deployment style for Web services.
Ontologies can represent semantics in a shared, machine-processable format.

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Service Service

ontology

requires provides

& match

composition &
process assembly the Web

Requester Provider

discover

invocation

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Service Service

ontology

requires provides

& match

composition &
process assembly the Web

Requester Provider

discover

invocation

Figure 1. Semantic Web Services Development and Deployment.

3 A Conceptual Architecture for Semantic Web Services

The conceptual architecture that we have developed shall be introduced in this
section. The architectural is based on an empirical analysis of current research in this
area that we have carried out to identify commonly addressed issues and also areas
where still work has to be done.

3.1 Development and Deployment of Service-based Software Systems – some
Observations

 Title

Services for the WSF are coherent collections of operations described in an
interface and provided to a user. Often a service is seen as an abstract notion that
must be implemented by a concrete agent [1]. There are consequently two aspects of
services:
� Internal View. Services provide functionality through operations. These

operations might encapsulate an internal state; their behaviour needs to be
coherent in terms of the service they provide.

� External View. Two different roles – those of requesters and providers – are
immediately apparent, see Fig. 1. The interaction between these – either humans
or software agents acting on their behalf – is a central aspect. For instance,
agreement on the service semantics and the mechanisms of message exchange are
vital.

Both the internal and the external view need to be looked at in the context of service
development and deployment:
� Models and Languages. These provide the foundations necessary to model

services as coherent sets of operations. All service aspects relevant for a potential
user need to be captured in abstract descriptions. In open environments,
representing and sharing knowledge is central.

� Infrastructure and Activities. Specific interactions are required between requester
and provider – activities such as discovery, composition, and invocation of
services. These have to be supported by an adequate infrastructure consisting of
protocols and tools.

Service-based platforms such as the WSF are based on remote procedure call
mechanisms, adding a publication and discovery infrastructure, see Fig. 1. We
suggest an extension of these platforms towards a service-oriented development and
deployment architecture by adding further development infrastructure, e.g. semantics
and composition. We will introduce our conceptual architecture, which provides an
abstract model of the development and deployment context, in Section 3.2. This
architecture integrates the various aspects involved, including underlying conceptual
models, languages, development and deployment infrastructure, and activities of the
stakeholders.

3.2 The Conceptual Architecture Definition

In the first-generation WSF, there is no support for semantical descriptions or the
composition of services. For instance, business processes cannot be modelled. Some
attempts have already been made to rectify this. Web service composition languages
such as WS-BPEL allow Web services to be composed through choreography and
orchestration [18,19]; OWL-S (formerly known as DAML-S) [2] is a Semantic Web-
compliant ontology for Web service description, and the Web Service Modelling
Ontology WSMO [16], which is based on the Web Service Modelling Framework
WSMF [3], is another ontology-based modelling approach.

 Author

communication
transport
messages

Activities

Infrastructure

Language

Model

external

internal

abstract infrastructure-oriented

transition interaction processQoS

goals &
behaviour

interaction
patterns

QoS interaction
& invocation

life-
cycle

composition
support

marketplace
support

invocation
support

composition &
development

activity

publication,
discovery & matching

activity

invocation &
interaction

activity

reasoning
semantics/sharing
interoperability

ontology transport
communication
transport
messages

Activities

Infrastructure

Language

Model

external

internal

abstract infrastructure-oriented

transition interaction processQoS

goals &
behaviour

interaction
patterns

QoS interaction
& invocation

life-
cycle

composition
support

marketplace
support

invocation
support

composition &
development

activity

publication,
discovery & matching

activity

invocation &
interaction

activity

reasoning
semantics/sharing
interoperability

ontology transport

Figure 2. A Layered Conceptual Architecture for Semantic Web Services.

For our conceptual architecture, we propose to follow the route taken by OWL-
S and WSMO/WSMF towards an extended WSF and base our architecture on
ontology technology as a central element. Moreover, we add a new aspect.
Component technology [6] aims at modular composition of software systems from
self-contained, reusable components described by contract-based interfaces and
explicit context dependencies. The principle of composition in the WSF is process
assembly. Looking at component technology explains our motivation. WSDL
descriptions do not make dependencies on other services explicit; they do not state
their infrastructure requirements – which would, however, be a prerequisite for reuse
and independent composition. The Web services platform focuses on messages, i.e.
sees the description of message formats and their exchange at the core, rather than
the effects that are caused by message exchange. We focus on service semantics in
the context of service composition through choreography and orchestration where
dependencies have to be made explicit.

The service development and deployment aspects (model, language,
infrastructure, and activity) form the different layers of our conceptual architecture –
see Fig. 2. We will discuss the central architecture aspects – model and language,
infrastructure and activities – in Sections 4 and 5, respectively.

Fig. 2 indicates that the link layer between internal and external layers is an
essential component of the architecture. The two lower layers cover aspects that have

 Title

already been addressed by the community. The upper two layers are based on the
philosophy of the WSF as a software engineering platform. Consequently, the two
link components of the architecture aim to integrate the layers:
� The ontology component provides semantics and a notation for models and

languages and is the basis for infrastructure elements and activities. The Web
standards XML, RDF, and OWL form the platform for interoperability,
semantics, and reasoning. This component is more development oriented. We
will focus in the remainder on the ontology component.

� The transport component provides distribution technology. It is based on the core
protocols for the Web services platform, consisting of the Internet protocols,
Web-specific protocols such as HTTP and XML Protocol, and Web service-
specific choreography and orchestration standards. The transport component
addresses the technical side of composition and acts as support infrastructure for
other activities. This component is more deployment oriented.

The WSF as the deployment platform determines to some extent the development
part of this architecture.

3.3 Towards a Semantic Web Services Development and Deployment
Methodology

The conceptual architecture provides an architecture (in a technical sense) for a
semantic services development and deployment methodology, identifying the overall
task of the methodology, its core components, and how these work together.
Automation of stakeholder activities in a shared and distributed environment, such as
the discovery and selection of suitable services for a requester, requires a new
distributed type of development and deployment methodology in the Web services
environment based on joint activities, shared knowledge and artefacts, and reuse –
supported by a distributed infrastructure geared towards this purpose.

A methodology for semantic Web services development and deployment is
needed to establish the WSF as a software platform. A software engineering
methodology consists of a collection of methods that address activities to solve
particular problems. Principles and theories determine these methods. Models and
languages based on the principles and theories together with infrastructure support
enable these (usually activity-specific) methods to be applied.

Our aim is to provide an architecture for this methodology by identifying the
major tasks of a software engineering approach for this context (see Fig. 1), by
identifying the central components of this methodology, and to capture how these
relate to each other. Defining and validating these methods based on this architecture
would be the next step towards a methodology.

The lower two layers of the conceptual architecture (see Fig. 2) are based on
existing research, e.g. [2,3,7,8,9,10], showing success in this direction in terms of
models and languages. The upper two layers are induced by the philosophy of the
WSF, as indicated in Fig. 1, and core standards and extensions as they are defined by
the W3C and other organisations. For a methodology to be established, these layers

 Author

need to be linked and integrated. We have identified ontology and transport
technologies are suitable links for the development and deployment aspects,
respectively.

3.4 An Illustration of the Conceptual Architecture

In Fig. 3, we have illustrated a sample service description – representing a provided
online bank account service. The service description lists a number of individual
operations. We have used pseudocode for signatures and pre-/postconditions based
on the ontology languages – a formulation in proper description logic, a foundation
for ontology languages, will be discussed later on. We have limited the specification
in terms of pre- and postconditions to two operations. The specification here is not
meant to be complete; it aims to illustrate the architecture concepts.

In the context of the WSF, a potential requester of a service can use a similar
specification as a requirements definition and search a repository or marketplace to
discover provided services that match. The requirements specification forms a query.
The ontology language is the query language. The ontology provides the vocabulary
for the query. A query should result ideally in the identification of a suitable (i.e.
matching) description of a provided service.

Service BankAccount
 Signatures and Pre-/Postconditions

login
 inSign no:int, user:string
 outSign void
balance
 inSign no:int
 outSign real
lodgement
 inSign no:int, sum:real
 outSign void
 preCond true
 postCond balance(no) = balance(no)@pre + sum
transfer
 inSign no:int, dest:int, sum:real
 outSign void
 preCond balance(no) >= sum
 postCond balance(no) = balance(no)@pre - sum
logout
 inSign no:int
 outSign v

 Service Process
oid

login;!(balance+lodgement+transfer);logout

Figure 3. A Provided Online Bank Account Service.

In the following sections, we will explain and illustrate the conceptual architecture
using the banking example introduced here. We will use concrete technologies to

 Title

demonstrate how the frame defined by the architecture can be filled. Section 4 will
look at the two lower layers (models and languages); Section 5 will focus on the
upper two layers (infrastructure and activities).

4 Models and Languages

The semantic description of a service in a shared knowledge representation format,
based on common domain and computation models, is a central element of our
conceptual architecture for services. These models need to be made available through
appropriate languages. Knowledge engineering becomes therefore a pivotal
technology.

4.1 Service Models

Taking the concepts of the various semantic Web services approaches on board, we
can identify essential aspects of Web services that should form core elements of Web
services modelling and specification:
� external descriptions of the service in terms of its goal or purpose (assumptions

and characterisation of the expected outcomes in terms of domain concepts), the
effect (how acceptable input is transformed into output), and interaction protocols
(ordering of operations) – these aspects often form the contractual information,

� internal descriptions of composed services including data and control flow that
coordinates interactions between subservices,

� interaction infrastructure descriptions for services consisting of input/output data
formats and ports and the protocol binding to handle the message exchange.

We have captured these aspects through the models and languages of our conceptual
architecture.

In particular computational aspects of service properties need to be based on
appropriate models that underlie semantical description and reasoning. We have
outlined the types of information needed to adequately represent service behaviour,
including input/output behaviour, interaction protocols, and service composition and
communication [20]. Three types of computational models can address these aspects:
� Transitional model: an abstract view on services and in particular on service

operations is the transitional input-output behaviour. These descriptions are often
called contractual information; pre- and postcondition-based techniques are
usually used [21]. A suitable model that covers the contractual aspects of the
service is a state-transition model defining operations as transitions in a state
space.

� Interaction model: an abstract view on a service’s interactions with a service
user. Often, only certain interaction patterns based on the offered operations are
possible. Constructors such as sequence, choice, and iteration can be used to
formulate these interaction protocols. Again, a state-transition model, here with

 Author

constructors to compose transitions, is suitable to model the interaction behaviour
of a single service or operation and to capture the service interaction patterns.

� Process model: a more detailed view on interactions between services, viewing
services as interacting processes. The interaction between a service and its user
and also between the internal subservices used to provide the overall service
needs to be addressed [11]. In both cases, the focus is on sending and receiving
messages, and on the synchronisation between processes. A classical process
model, as formulated in process algebras, can form the basis here to cover
process synchronisation aspects for service invocations.

Quality-of-Service models complement the range of models [15] – which can range
from software attributes such as maintainability, security, and efficiency to aspects
such as pricing. We will ignore quality-of-service attributes here and focus on
functional behaviour.

We can classify the conceptual models (and the corresponding languages) into
two categories: abstract and infrastructure-based. Only the process model falls into
the latter category since it refers to an abstraction of the WSF infrastructure; the
other models refer to abstract, infrastructure-unrelated service properties.

4.2 Abstract Service Description

We suggest an ontology language [2,3] to introduce a description notation for
abstract Web service properties. We use a description logic here [5], which underlies
an ontology language such as OWL. Description logics are based on the idea of
defining a concept in terms of its properties in relation to other concepts. The
language we use here is an extension of classical description logics to address the
semantical aspects identified in Section 2.3.

Describing Services as Processes.

Central to the modelling and composition aspect of the conceptual architecture
is to understand services as processes. Service processes and service-oriented
composition have not been addressed in the current WSF. A process view – which
we can capture in ontological terms – allows us to include process composition and
interaction. Moreover, it helps us to formalise (and eventually automate) stakeholder
activities. Consequently, ontologies describing service properties in their domain
context should support service composition and processes.

Description logic [5] knows two basic elements. Concepts are classes of
objects with the same properties. For instance, in a banking application, an Account
is a central concept. Roles are relations between concepts. Roles express properties
of concepts in relation to other concepts. An Account can be characterised by a
balance-property, which relates Account with a Numerical value concept.

Concept descriptions are constraints based on simple set-theoretic operators
and quantified expressions. Operators include ¬ , ∪ , ∩ , and → with their usual set-
theoretic meaning. For instance, CurrentAccount ∪ SavingsAcconut is the concept
that describes the union of both account classes. The value restriction ∀R.C for a

 Title

given concept C restricts the values of role R (as a relation) to elements that satisfy
C; the existential quantification ∃R.C requires the existence of a role value satisfying
C. For instance, an Account could be characterised by a numerical balance property
∃balance.Numerical.

Different ways to model services have been suggested. In [2,13], services are
represented as concepts, with properties associated through roles. In [10,11], services
are modelled as roles, interpreted by accessibility relations between states. Essential
for our conceptual architecture is to provide operators to compose services based on
the idea of services as interacting processes.

Goals and Behaviour.
We can associate pre-state and post-state descriptions with services and their
operations. Properties of these states (possibly in different formats) can be expressed
using roles.
� Goals are abstract specifications of service behaviour [3]. Assumptions are pre-

state properties that summarise domain concept definitions relevant to the
service, such as ‘account’ or ‘balance’. The goal itself is an expression of the
expected outcome of a service execution, usually involving the assumed
concepts. A banking example is the expectation that after lodging money into an
account, the balance will have increased.

� Contractual information about behaviour can be specified in terms of pre- and
postconditions [2]. These conditions are expressions relating to parameters of the
service operation signature, possibly involving domain concepts. For a lodgement
service, the sum transferred into an account plus the pre-state balance yields the
post-state balance. Contracts are refinements of goals [3].

Often, extensions of classical ontology languages are necessary to enable goal and in
particular contractual specifications. In [10,11], it is necessary to introduce names
into role expressions in order to express parameters. An example of a postcondition
specification is

∀ lodgement◦SumN ; postCond. equal(Bal; Bal@pre + Sum)

saying that a transitional role lodgement (which is a service operation) is applied to
parameter name SumN , and that after execution the balance Bal is increased by Sum
in the post-state (which is the postcondition).

Interaction Protocols.
Interaction protocols are pattern expressions constraining the order in which
operations of a service can be invoked. In order to facilitate these expressions, we
need introduce control flow operators – e.g. ; (sequence), + (choice), and ! (iteration)
– to support the interaction model [11]. For instance,

login; !(lodgement + transfer + balance); logout

 Author

expresses that after logging in to the online banking system, money can be repeatedly
lodged or transferred or the balance can be requested, before the user logs out.

4.3 Infrastructure-based Service Descriptions

Service Synchronisation and Invocation.
In order to deal with synchronisation and actual interactions described in the process
model, we need to take another view on service operations. So far only considered as
transitions in state-based systems, we need to consider both the requester and the
provider of these transitions. For instance, an automation of accesses to UDDI
repositories would require such a process communication view. A description
notation can build up on the ontology language for abstract service description by
adding process calculi elements.
� Ports. The service operation names define ports that, if synchronised with

another port from another service process, can form an interaction channel.
� Orientation. Each port carries additional information indicating whether it is used

for sending or receiving on the channel. We use op(a) for input (receiving) and
op〈a〉 for output (sending) following [17] instead of an abstract role expression
such as op◦a that we have introduced in Section 4.2.

The service process expression

getBalance(bal); setBalance〈bal + ldg〉

based on the abstract expression

getBalance◦balN ; setBalance◦(balN + ldgN)

expresses that the specified service receives input bal using port getBalance and then
sends the value of bal + ldg back to the remote service using port setBalance.

Service Lifecycle.
A notation to express service process interaction can be used to formalise an activity-
based lifecycle view on services [22] – which leads us into the infrastructure and
activity aspects of our conceptual architecture. Addressing the complete software
lifecycle is an essential aspect of software engineering methodologies. A service
lifecycle is determined by activities such as matching, composition, and execution,
and supported by infrastructure facilities such as repositories, brokers, and protocols.
The lifecycle can be expressed as a process where different ports represent the
infrastructure to support activities. A service port actually facilitates several
activities:
� Contract. Using contract ports, matching constraints guard the establishment of

an invocation infrastructure using different types of invocation ports.

 Title

� Invocation and Reply. Invocation ports allow a service to be invoked and
necessary parameters to be passed. Message type aspects constrain this
interaction. Often, a service reply is communicated on another channel.

A provider lifecycle based on these service port types could follow the pattern

servCTR(servINV); !(servINV (a, servREP); servREP〈f(a)〉)

with the activities contract matching servCTR(servINV), invocation servINV (a, servREP),
and replying servREP〈f(a)〉 for the contract, invocation, and reply ports servCTR,
servINV, and servREP, respectively [10]. The interaction pattern expresses that, after a
contract match, a service can be invoked and a reply can occur repeatedly. This
would formalise the UDDI-supported matching of WSDL descriptions of Web
services and their invocation using SOAP in the WSF [1].

5 Infrastructure and Activities

The core task of a services platform is to facilitate service invocation, but it also
needs to support other stakeholder activities such as composition or publication and
discovery, see Fig. 2. The activities are core elements of a development and
deployment methodology. The basic requirements for our conceptual architecture
arise already from the infrastructure required for discovery and invocation in the
WSF. Semantic description and composition services can be layered on top [23].

5.1 Infrastructure Tools and Facilities

Infrastructure tools and facilities aim to support the development and deployment
activities. They build up on distribution technology, i.e. the layered transport model,
and knowledge and semantics technology, i.e. the layered ontology model; see Fig. 2.
Central infrastructure components are:
� Marketplace – based on transport and ontology technology – to support

publication, discovery, and matching based on semantics-enabled UDDI and
WSDL.

� Composition based on transport and ontology technology – to support
composition through orchestration and choreography based on service semantics
and interaction.

� Invocation – based on transport technology – to support interaction for service
invocation based on Web protocols.

Infrastructure tools and facilities such as repositories, brokers, composition engines,
and protocols are usually provided through suitable APIs.

The central activities invocation and execution of Web services shall be based
on the layered transport model. Starting at the bottom, message types characterise
the payload of messages. Transport bindings, e.g. SOAP, define the message layout.
Exchange-related aspects – protocol properties such as resending rules – are also part

 Author

of the transport model. The essential elements are the interaction processes –
defining the sequencing of send and receive operations.

5.2 Development and Deployment Activities

A Web services platform needs to enable stakeholders (providers and requesters) to
carry out development and deployment activities. Building up on core technologies
(transport/distribution and ontologies), activities such as discovery, composition, and
invocation and interaction need to be facilitated. Distribution is a property of a Web
services architecture. Both development and deployment activities take place in this
distributed context. A simplified distributed development and deployment process
based on discovery, matching and invocation/interaction activities can be modelled
through a lifecycle protocol; see Section 4.3.

Publication, Discovery, and Matching.
Requesters need to find and compare service providers for the services they need.
The infrastructure that the WSF provides is the UDDI registry. Providers can publish
descriptions of their services in these registries which can then be searched.

The central difficulty is matching [24], i.e. to find the service(s) that most
closely match the requirements of the requester. In an automated setting, a software
agent will use requirements formulated by the requester in a shared ontology
language to search repositories for matching services. A notion of matching needs to
capture the idea of satisfaction or refinement. A provided service needs to be at least
as good as the requested one. In an ontology language, the subsumption concept – the
subclass relationship between concepts or roles – captures this. A service matching
notion needs to be composite, as services themselves and also their descriptions are
composite. For each of the individual aspects we need some kind of metric to decide
matching. Each of them is supported by an underlying conceptual model (Section
4.1).
� Goals and contractual information – based on a transitional model. For instance,

refinement-based notions of matching can be used; weakening the precondition
and strengthening the postcondition is a standard choice [21,24].

� Interaction protocols – based on an interaction model. A notion of simulation can
form the basis of matching [17].

� Processes – based on a process model. A notion of simulation can again form the
basis of matching here.

In all cases, the matching constructs can imply subsumption and can therefore be
integrated into an ontological framework, see [10,11]. Subsumption allows us to
capture widely used software development concepts such as refinement and
simulation. Service-based matching can be deployed if a provider service is to be
integrated into an existing process. For instance, a provided lodgement service
lodgement◦SumN characterised by the postcondition equal(Bal,Bal@pre+Sum) and
logged(lodgement) satisfies (or refines) the requirement equal(Bal; Bal@pre + Sum).

 Title

Description and reasoning using ontology technology is the central contributor
to discovery and matching activities. Reasoning can be facilitated through the use of
description logic-based inference tools [5] or through the use of transition system and
automata-based approaches for verification [25].

Composition and Development.
Composition can be both a development-time and a run-time activity. Services can
be composed to composite service processes. An expression like login; !(lodgement
+ transfer + balance); logout describes a composite service process. This process
might be assembled from service different providers. In that case, each individual
service has to fit into the context by matching the process requirements – the process
is here the client of the provided services.

We can distinguish client-side and provider-side composition of provider
services, and provider-side constraining of provider services followed by client-side
composition [6]. The variants can be characterised by the degree of cooperation and
the degree of automation that is enabled. Automation is important for run-time
composition.

Invocation and Interaction.
In an automated approach, activities of the provider and the requester have to be
synchronised. We can define inference rules based on the ontology language that
govern these synchronisations at runtime [22]. Important is here that different
communication channels are used for retrieval and matching on the one hand and
later service invocation interactions on the other – as expressed in the service
lifecycle example. An inference rule, such as the following connector rule

∀ servACTR(servAINV) . postCondA and ∀ servBCTR(servBINV). postCondB

∀ servACTR(servAINV)| servBCTR(servBINV). postCondA ∩ postCondB

define and constrain the execution behaviour. The rule describes the establishment
of an invocation connection INV between two services using contract channels CTR.
The two services in this situation could be a client-side process servA and a server-
side process servB, which might be executed in parallel and which might interact.

Internet protocols provide the basic transport infrastructure. On top of these,
service-specific protocols such as SOAP provide an RPC mechanism. Ontology-
based interaction patterns describe the interaction behaviour of services. The
inference techniques need to be implemented based on the existing interaction
infrastructure. Engines for SOAP-based service invocation and interaction can be
extended to deal with semantical checks.

6 Conclusions

 Author

Semantic Web services are an increasingly important topic. However, a coherent
conceptual architecture for semantic Web services that captures and integrates recent
developments is currently lacking. We have addressed the integration of the different
aspects models, language, infrastructure, and activities through our conceptual
architecture. Several directions – including ontological modelling and process
composition – are currently investigated. We have integrated these two central
aspects into our conceptual architecture.

The proposed conceptual architecture is the result of an empirical investigation
into various approaches in the Web services context. It aims to act as a taxonomy and
through its linkage of models, languages, infrastructure, and activities; it helps us to
better understand the problems of Web services development and deployment. It
aims to provide a foundation for a semantic Web service-oriented development
methodology. It captures current developments such as the Web service framework
WSF, OWL-S, WS-BPEL, and others, and places these in the wider development
context. We have demonstrated the suitability of the central architecture aspects and
how the architectural framework can be realised using concrete technologies
illustrated by an online banking example.

A high degree of automation is a requirement for the future of the Web services
framework – scalability and, therefore, the success of the framework depend on it.
Automation requires shared semantics in a distributed, heterogeneous environment
for development and deployment. Ontology technology is a solution to this problem.
(The technical aspects of the ontology framework we have presented here are only
indicative of what is needed on the language and model side.) Ontologies are
reflected in all facets of our conceptual architecture – models, languages,
infrastructure, and activities. Ontologies can capture the process-oriented view on
services and can provide the necessary features to support the corresponding
activities. One of the aspects that we neglected in our discussion are quality-of-
service issues. They include various aspects including performance and security.
Despite the importance of these aspects, we have restricted our focus here on
functional behaviour.

In addition to semantics and ontologies, services as processes is a notion that is
central to enhance the Web services framework – and that needs to be made explicit
in conceptual architectures and service infrastructures supporting the framework.
Service choreography and orchestration are two terms that capture the idea of
business and workflow process definition based on service process composition. We
have demonstrated that ontology technology can be used to capture services as
processes and also process composition.

Our analysis of a number of semantic Web services extensions and process
composition approaches indicates progress towards a new methodology for
composition-based semantic service development and deployment – to be supported
by a generic conceptual and architectural framework. The Web environment requires
suitable workflow processes in particular for service development. Our proposed
services-oriented development and deployment architecture is different in many
ways from the current Web services framework WSF. It exhibits characteristics of a

 Title

component framework. It supports a different style of development and deployment
embracing composition and workflow processes. It creates a space for composable,
Web service-enabled components. Our achievement is the introduction of an
architecture for these service components that connects the aspects model, language,
infrastructure, and activity based on coherent Web-based ontology and transport
technologies.

References

1. World Wide Web Consortium. Web Services Framework.

http://www.w3.org/2002/ws, 2003.

2. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.

In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342. pp. 279–291. Springer-Verlag, 2002.

3. D. Fensel and C. Bussler. The Web Services Modeling Framework WSMF.

Electronic Commerce Research and Applications. 2002.

4. W3C Semantic Web Activity. Semantic Web Activity Statement, 2002.

http://www.w3.org/sw.

5. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description

Logic Handbook. Cambridge University Press, 2003.

6. C. Szyperski. Component Software: Beyond Object-Oriented Programming – 2nd

Ed. Addison-Wesley, 2002.

7. S. McIlraith, T.C. Son, and H. Zheng. Semantic Web Services. IEEE Intelligent

Systems 16(2). March/April. 2001.

8. C. Pahl. A Conceptual Framework for Semantic Web Services Development and

Deployment. In L.-J. Zhang and M. Jeckle, editors: European Conference on
Web Services ECOWS 2004. Springer-Verlag. LNCS 3250. pp. 270-284. 2004.

9. E. Motta, J. Dominigue, L. Cabral, and M. Gaspari. IRSII: A Framework and

Infrastructure for Semantic Web Services. In D. Fensel, K.P. Sycara, and J.
Mylopoulos, editors, Proc. International Semantic Web Conference ISWC’2003.
pp. 306–318. Springer-Verlag, LNCS 2870, 2003.

10. C. Pahl. An Ontology for Software Component Matching. In Proc. Fundamental

Approaches to Software Engineering FASE’2003. Springer-Verlag, LNCS Series,
2003.

 Author

11. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc.

European Software Engineering Conference and Foundations of Software
Engineering ESEC/FSE’03. ACM Press, 2003.

12. R. Zhang, I.B. Arpinar, and B. Aleman-Meza. Automatic Composition of

Semantic Web Services. In Proc. International Conference in Web Services
ICWS’2003. 2003.

13. S. Narayanan and S.A. McIlraith. Simulation, Verification and Automated

Composition of Web Services. In Proc. World-Wide Web Conference
WWW’2002. 2002.

14. L. Chen, N. Shadbolt, C.A. Goble, F. Tao, S.J. Cox, C. Puleston, and P.R. Smart.

Towards a Knowledge-Based Approach to Semantic Service Composition. In D.
Fensel, K.P. Sycara, and J. Mylopoulos, editors, Proc. International Semantic
Web Conference ISWC’2003. Springer-Verlag, LNCS 2870, 2003.

15. C. Zhou, L. Chia, and B. Lee. DAML-QoS Ontology for Web Services. In

International Conference on Web Services ICWS 2004. IEEE Press. pp. 472-479.
2004.

16. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of

WSMO and OWL-S. In L.-J. Zhang and M. Jeckle, editors: European
Conference on Web Services ECOWS 2004. Springer-Verlag. LNCS 3250. pp.
254-269. 2004.

17. D. Sangiorgi and D. Walker. The π-calculus - A Theory of Mobile Processes.

Cambridge University Press, 2001.

18. N. Desai and M. Singh. Protocol-Based Business Process Modeling and

Enactment. In International Conference on Web Services ICWS 2004. IEEE
Press. pp. 124-133. 2004.

19. J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition:

From Service Description to Process Model. In International Conference on Web
Services ICWS 2004. IEEE Press. pp. 446-453. 2004.

20. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM

Transactions on Software Engineering, 28(11):1056–1075, 2002.

21. B. Meyer. Applying Design by Contract. Computer. pp. 40–51, October 1992.

 Title

22. C. Pahl. A Formal Composition and Interaction Model for a Web Component
Platform. ICALP’2002 Workshop on Formal Methods and Component
Interaction. Elsevier Electronic Notes on Computer Science ENTCS, Vol. 66,
No. 4. July 2002.

23. S. Dustdar and W. Schreiner. A Survey of Web Services Composition.

International Journal of Web and Grid Services, 1(1), 2005.

24. A. Moorman Zaremski and J.M. Wing. Specification Matching of Software

Components. ACM Transactions on Software Engineering and Methodology,
6(4):333–369, 1997.

25. D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Vol. B. pp. 789–840. Elsevier, 1990.

	1 Introduction
	2 Semantic Web Services – Background
	3 A Conceptual Architecture for Semantic Web Services
	Service BankAccount
	Signatures and Pre-/Postconditions

	4 Models and Languages
	5 Infrastructure and Activities
	6 Conclusions
	References

