

RADAR

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r

Oxford Brookes University – Research Archive and
Digital Asset Repository (RADAR)

Directorate of Learning Resources

Mostefaoui, S K and Younas, M

Context‐oriented and transaction‐based service provisioning.

Mostefaoui, S K and Younas, M (2007) Context‐oriented and transaction‐based service
provisioning. International Journal of Web and Grid Services, 3 (2). pp. 194‐218.
Doi: 10.1504/IJWGS.2007.014074

This version is available: http://radar.brookes.ac.uk/radar/items/c330fbe2‐26dc‐a142‐5d54‐83e7deb5c194/1/

Available in the RADAR: October 2010
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be
downloaded for personal non‐commercial research or study, without prior permission or charge. This item cannot
be reproduced or quoted extensively from without first obtaining permission in writing from the copyright
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the
formal permission of the copyright holders.

This document is the postprint of the journal article. Some differences between the published version and this
version may remain and you are advised to consult the published version if you wish to cite from it.

http://radar.brookes.ac.uk/radar/items/c330fbe2-26dc-a142-5d54-83e7deb5c194/1/

Context-oriented and Transaction-based Service
Provisioning

Soraya Kouadri Mostéfaoui and Muhammad Younas

Department of Computing
Oxford Brookes University

United Kingdom
kouadris@brookes.ac.uk, m.younas@brookes.ac.uk

Abstract. This paper presents our approach for service provisioning in
pervasive computing environments. The presented approach is based on
the usage of context-aware features and transactions during the discovery
and the deployment of composite services. Context ensures that the best
service offers are selected to participate in a service composition. Trans-
actions help in improving the reliability and efficiency of the composite
services.
Keywords: service, context, service discovery, WSDL, transactions.

1 Background

The issues discussed in this paper are framed by the CAT1 (Context-Aware
Transaction for service deployment) conceptual framework developed at the
Department of Computing, Oxford Brookes University. This project aims at
developing a generic framework that combines service-oriented, context-aware
computing using transactions in order to provide users with more adaptive and
tailored services in highly pervasive environments.

In this paper we present the CWSDL2 language which constitute our proposal
for the enhancement of the actual W3C standard for service description, with
context information. The processing of the proposed CWSDL as demonstrated in
this paper takes place during the service discovery process which carries out the
tasks of identifying suitable services and selecting the best offers on the current
context. In [10], a multitude of context variables building up a context history
were identified, from the user context (role, preferences, location, etc.), over
the computing context (network connectivity, server load, etc.), to the temporal
context. Thus in order to be specified, the CWSDL language needs to fulfill the
following requirements:

– Define which part of the context, and which metrics to be used for services
rating;

1 The presented work is based on previous researches made by the two authors.
2 CWSDL stands for Context-Based Web Service Description Langauge.

– Define how to compare the values obtained by service metrics and how to
select the best services.

We will show how we choose to notate these information while doing this, we
will remain completely compatible with the established W3C standard for service
description (WSDL3). This will enable ordinary clients to take advantage of the
service description without having to be aware of the additional information.

We also exploit the use of context in order to manage transactions in service
compositions. Transactions help to increase the reliability and efficiency of the
composed services, and to maintain consistency of the data sources during the
concurrent execution of multiple requests and the failure of component systems
or network communication [3].

In the remaining of this section we present basic definitions and highlight the
main contributions of our approach.

1.1 Preliminaries

Web and mobile services : a Web service is an accessible application that
other applications and humans can discover and invoke. Benatallah et al. sug-
gest the following properties for a Web service [1]: (i) independent as much as
possible from specific platforms and computing paradigms; (ii) mainly developed
for inter-organizational situations; and (iii) easily composable so that develop-
ing complex adapters for the needs of composition is not required [8]. A mobile
service is a Web service that can be executed in or triggered from a mobile
platform.

Composite services : a composition approach connects Web/mobile services
together in order to devise composite services. The connection of Web services
implements a business logic, which depends on the application domain and con-
trol flow of the business case for which the composite service is being devised.
Examples of business cases are various such as travel planning and journal-paper
review. It is accepted the efficiency and reliability of a composite service strongly
depend on the commitments, performance, and delivery capabilities of each of
the component services.

Context : composed of con (with) and text, context refers to the meaning that
can be inferred from an adjacent text. Dey defines context as any information
that is relevant to the interactions between a user and an environment [6]. This
information can be about the circumstances, objects, or conditions by which the
user is surrounded. Many researchers have attempted defining context among
them Schilit et al. who propose three categories of context [18]: (i) comput-
ing category such as network connectivity, communication cost, communication
bandwidth, and nearby resources; (ii) user category such as profile, location,

3 Web Service Definition Language, http://w3c.org/TR/wsdl.

nearby people, and even sometimes social situation; and (iii) physical category
such as lighting, noise levels, traffic conditions, and temperature.

From a service-centric point of view context might be classified into internal
and external categories. Internal context refers to all contextual information di-
rectly related to the service, such as for example, the number of instances of the
services and its context function4. The external context defines all other infor-
mation that might affect the provisioning of services, without explicitly being
part of the service context, such as the user’s location or preferences. Figure 1 il-
lustrates this principle: in (a) a client requests a service and receives its response
without being subject to any adaptation, in (b) the service is subject to adap-
tation using internal service context, and in (c) using external service context.
External context, also called explicit context, is in general explicitly provided.
The internal context, also called implicit context, is in general implicitly included
during the provisioning of services [8].

Client
Client

Client

(a) (b)

(c)

Service

Request

Response

Request

Response

Request

Response

Service

Service

Fig. 1. Internal v.s external contexts

Transactions : a transaction is a unit of interaction that is treated in a coherent
and reliable way independent of other transactions that must be either entirely
completed or aborted. A transaction can be terminated in two ways: commit-
ted or aborted (cancelled). When a transaction is committed, all changes made
within it are made durable. When a transaction is aborted, all changes made
during the lifetime of the transaction are undone. Traditional transaction sys-
tems are typically referred to as ACID transactions. An ACID transaction has
the following properties [7]:

4 Context functions are presented in Section 3.1.

– Atomicity: the transaction completes successfully (commits), or if it fails
(aborts), all of its effects are undone;

– Consistency: Transactions produce consistent results and preserve
application-specific invariants;

– Isolation: Intermediate states produced while a transaction is executing are
not visible to other transactions. Furthermore transactions appear to execute
serially, even if they are actually executed concurrently. This is typically
achieved by locking resources for the duration of the transaction so that
they cannot be acquired in a conflicting manner by another transaction;

– Durability: The effects of a committed transaction are never lost (except by
a catastrophic failure).

There exist various limitations of the ACID transactions within Web services,
specially the atomicity and the isolation properties are very restricted. In order
to deal with these issues various Extended Transaction Models (ETM) have
been defined [7]. ETM relaxes the atomicity and isolation properties of ACID
transactions and are therefore more appropriate for Web services. Our proposed
model uses the ETM model for managing transactions.

1.2 Main Contributions of our Approach

The main contributions of the proposed approach are as follows:

– Ensures that the requirements and constraints on the services to participate
in a composition process are taken into account;

– Enhance the service discovery process with context information this allows
the discovery and selection of the best services (and/instances) in the current
environment of the user;

– To maintain reliability of services and consistency of the data sources during
the concurrent execution of multiple requests and the failure of component
systems or network communication;

– To improve reliability (i.e., increase the success rate of composite services
transactions).

In Section 2 we present the pervasive computing challenges and the mo-
tivations of the approach and a simple yet realistic usage scenario, aiming at
motivating the role of context and transactions in real life pervasive example.
Our model for the enhancement of the current services description standard and
how transactions are used to support context-aware service provisioning are pre-
sented in Sections 3 and 4. Section 5 is dedicated to the presentations of the
experimental evaluations conducted to validate the presented concepts. Section
6 presents some of the existing related work. Finally Section 7 concludes this
paper and highlights future directions.

2 Pervasive Computing Challenges and Motivations of
the Approach

The general pervasive computing model in a mobile configuration comprises
two distinct sets of entities: users with their pervasive devices and fixed hosts. A
fixed host can communicate with pervasive devices within its radio coverage area
called wireless cell. A mobile client can communicate with a fixed host/server
via a fixed host over a wireless channel. From an operation perspective, users
expect to be provided with services through pervasive communication networks.
Services are to be made available while considering the following aspects: devices,
propagation techniques and security. Some of the requirements that the pervasive
computing model has to satisfy are summarized below:

– Service availability requirement: it illustrates the need for a user to have an
uninterrupted and secure access to services on the pervasive network;

– Network survivability requirement: it illustrates the need to maintain the
pervasive communication network ”alive” despite the potential failures;

– Information security requirement: it illustrates the importance of providing
reliable and unaltered information;

– Additional requirements exist. The increasing reliance and growth in per-
vasive services impose three requirements (availability, scalability, and cost
efficiency) on the offered services.

Despite the multiple opportunities that pervasive computing offers especially
to those who are on the move, different obstacles still hinder the expansion of this
model. For instance, pervasive devices are still limited by their battery power,
and current technologies are meant to be used for situations with permanent and
reliable communication infrastructure. In order to optimize service provisioning
in pervasive environments, several important issues need to be dealt with [13] [8]:

– Handling disconnections during service execution: in a pervasive scenario,
disconnections may be frequent due to the lack of coverage areas or devices
changing location. As a result, device disconnection is critical to service
execution success;

– Context-sensitive service deployment: in addition to criteria such as mone-
tary cost and time of response, service deployment should consider locations
of users and capabilities of computing resources on which services will oper-
ate. Locations and capabilities need to be assessed before service deployment.

Traditional usage of pervasive computing devices has revolved around merely
using these devices to make and answer phone calls and short text messages.
The increasing power and versatility of these devices are starting to enable im-
plementing complex workflow-like scenarios comprising service composition [14].
In the following, a simple yet realistic usage scenario related to trip planning is
presented aiming at motivating the role of using context and transactions during
service5 provisioning.
5 In the rest of this paper the terms service will be used in place of Web/Mobile service.

2.1 Running Scenario

A composite service may aggregate multiple services to allow a user to watch
sporting events for the upcoming London Olympic Games 2012. The user may
wish to book a flight to its location, reserve overnight accommodation and buy
tickets for the sporting events. These services need to be discovered, selected
and connected to each other. Furthermore, there may exist various alternatives
for each of these services, such as services for different hotels, bed and breakfast,
etc. Using context might help in offering the best services and the best service
combinations (compositions).

This simple scenario yields insight into the multiple challenges that con-
textual service discovery and composition in a pervasive environment face, in-
cluding: how is context related to services? How to manage non-deterministic
transactions which may span the boundaries of autonomous services? While an-
swering these questions constitute the actual challenge of the research in adaptive
services. In the following we present our contributions, which represent a step
towards a full realization of the context-aware services vision using transactions.

3 Enhancing Service Discovery with Context-Aware
Features

In this section, we describe the main steps of our context-aware service discovery
approach. It is in the shed of the above cited pervasive computing challenges that
we have developed our context-aware service discovery based on an enhanced
Web Service description language.

3.1 CWSDL- Adding Context to the Web Service Description
Language

In our approach, and in order to introduce context in the service descriptions,
we have provided a two layer-based description. Each service published in a
service registry is defined by its profile description and its proper description.
The service profile is viewed as an abstract entity in the provisioning system and
refers to a category of services. We have decided to follow a WSDL-like syntax
in order to describe our services6. This choice was driven by the motivation of
facilitating future integrations with other Web Services standards, like SOAP
and UDDI.

Service profile description Used by service registries in order to classify
and regroup services by categories, a profile description contains all information
useful to describe the functional characteristics of its services. A service can have
6 This explains the abbreviation CWSDL, the prefix C stands for context.

Fig. 2. Service profile description

one or many profile descriptions, for example an SMS service can have the profile
of a mobile-display service, as well as wake-up service.

As depicted in Figure 2, the service profile description contains the following
elements:

– name: refers to the name of the category of services described by this profile;
– description: gives general information on the service profile;
– definition: gives a description of input and output parameters common to all

services that can be classified under this profile;
– operation: describes how the service operates;
– selection: according to the context sensitivity of the corresponding category

of services, the selection element defines a set of context functions that are
used in order to select the best service offer, along with a set of elector
elements that define how to rate the corresponding context functions.

Service description The service description is an instantiation of the profile
description. When advertising a service, the provider first defines what the profile
of the offered service is, and then attaches its different constraints, and defines
the bindings. Different providers might publish the same services with different
constraints and different bindings. This is expressed in the service definition and
bindings elements (as shown in Figure 3). Constraints might be set on inputs as
well as on outputs, and on the number of allowed instances of the service.

An illustrative example is given in Figure 4 in order to illustrate the concepts
of service profiles, descriptions and instances, we take two simple types of ser-
vices, SMS and Wake-up. Before publishing its services a provider should know
in advance under which profile to classify it7.

Fig. 3. Adding context to the Web Service description

In this example there are three services provided by three different providers
P1, P2 and P3. The SMS service provided by P3 can be classified both under SMS
and wake-up service profile. P1 offers two implementations of its SMS service
attaching different constraints on each one. The first implementation limits the
number of input characters to 150, while the other one limits the maximum
number of input characters to only 50 characters.

Context functions The context function represents the sensitivity of the cate-
gory of services to contextual information. Unlike the other parts of the descrip-
tion, the value of this function is not known in advance, it is calculated at run
time when the service is instantiated, in order to help with better service selec-
tion. The value of the context function changes over time. A context function
can be an aggregation of two or more other context functions, simple examples
of such a context function may be:

7 While automatic classification of services, might be performed using semantic de-
scriptions, this falls out of the scope of this paper. However in the conclusions we
present how we envision a simple attempt towards this goal.

– For a weather forecast service, a context function may determine which ser-
vice has the best response time in the current context;

– For a student cafeteria service inside a campus, a context function based on
the available number of seats, determines which cafeteria is least loaded;

– For a restaurant service, a composite context function based on user’s lo-
cation and the number of people in the restaurant, determines which is the
nearest least loaded restaurant;

– For a printer service, a composite context function might determine first
what is the set of active printers in the time the service is requested, then
which printers are least loaded (i.e. better printer service in terms of response
time in the current context) [10] [9], and finally the nearest one among those
selected;

– etc.

Fig. 4. Illustrative example

An indicator attached to a context function indicates if the function is critical
or not. For example a critical context function called ”activity” might check the
activity of a given device. In case this latter is out of use it is useless to pass it
through the other context functions such as for instance, context functions that
check the quality of display of the device. As soon as a service fails to satisfy one
of the critical context functions, it is removed from the list of candidate services.

For the same service, one or more critical context functions can be associated.
From a user centric point of view a critical function can be seen as required and a
non-critical function as optional; this feature is used only to augment the quality
of the offered services.

Along with each context function, metrics are associated in order to express
how to rate the result of the function after evaluations, and how to rank the
services. This is expressed inside an elect element integrated with the context
function argument. For example, for a certain type of service an elect element
might operate by selecting the maximum of the calculated values and for another
type of services another rating based on the minimum might be used, depending
on the semantics and the operations to be performed by the service.

Also depending on the type of the service and its duties, different weights
might be assigned to the context functions. This is expressed by the use of
a service Table of Priorities (S-ToP) attached to the context function in the
service profile description. For example, for a movie preview service, it might be
more important to check first if the service has a good response time and then
test its resolution. While for a printer service it might be worth to check the
nearest printer, and then perform a check on its speed or resolution.

Furthermore, depending on the users’ interests and the type of services, so
called User’s Tables of Priorities (U-ToP) are also used. This allows expressing
the importance users would like to put on the quality of their services. For
example a user might put more importance on the quality of the displayed movie
and less on the response time.

In our proposed system we have placed a higher priority on users’ priorities
that service’s priorities. This means that if for the same service we have different
S-ToP and U-ToP, it is the U-ToP which is taken into account while discovering
and selecting services, and the S-ToP is ignored.

Moreover, the same user might have different U-ToP tables according to
the domain in which services will be deployed. For example while in an urgent
situation in a health care environment, it is more important to place the concern
on response time of the services. And once at home for the same service the user
might place different weights on the U-ToP putting less concern on the response
time and more on the quality or other services’ attributes.

(U-ToP) (S-ToP)

f1 f2 f3* f4

0.5 x 1x

f1 f2 f3 f4 f1 f2 f3* f4

f4 f2f1f3*

x x 0.30.6

f3 is a critical context function

Fig. 5. Example of context functions ranking

Figure 5 shows how to rank the context functions according to their types
(critical, non-critical) and the U-ToP and S-ToP tables. In this example a user

and the service provider express different weights for the same service. The user
indicates in its U-ToP table that f4 is the most important function to evaluate
when discovering the service, f1 is less important, and finally, she does not
express any wishes concerning the remaining context functions. The provider of
the service expresses its weights as follows: f3 is more important than f4, and
does not express priorities concerning f1 and f2.

response time = 0.09 Sec

Service

Service
Service

Service

response time = 0.05 Sec

 response time = 0.18 Sec

unavailable

pingping

p
in

g

p
in

g

se
le

ct
io

n

Client

low quality

high quality

low quality

high quality

response time = 0.09 Sec

Service

Service
Service

Service

response time = 0.05 Sec

 response time = 0.18 Sec

unavailable

pingping

p
in

g

p
in

g

Client selection

(a) simple context function, response time
(b) composite context function response time and display quality
(with a high priority on the display quality)

Fig. 6. Illustration of the service selection principle

According to this service type it is indicated that f3 is a critical function
(annotated with an asterisk ”*”). This means that, this function should be eval-
uated before the others. If none of the candidate services passes this function the
discovery process is then aborted (there exist no services that satisfy the user’s
query in the current context). The order of context functions will be then, f3
(it is the critical context function of this types of services), f4 and f1 as per the
user’s weights and f2 is the remaining function.

In Figure 6 illustrations of the selection of the best services after evaluation
of the context functions are shown. In case (a), the requested service is sensitive
to only one context function ”response time”. Thus the best service in terms of
response time is chosen (0.05 Sec is the best response time in the actual context).
In (b) the requested service is sensitive to two context functions. Namely, the
”response time” and the ”quality of display”. Additionally, the user expresses
a higher priority on the ”quality of display” function. Thus the best service in
terms of quality of display is selected even if it has not the best response time.

In Figure 7 we illustrate roughly, how to map the context function principle,
into the standard WSDL syntax. As shown CWSDL follows the same principle

as WSDL. CWSDL adds in the Definitions part the definitions of the context
functions and the elect elements respectively. In the Operations part it introduces
the operation of the context functions. Finally it binds to the standard WSDL
Bindings.

Furthermore Figure 9 shows how the proposed context function integrates to
the actual Web Services standards.

Definitions Operations Service Bindings

Data type definitions
Message definitions

Data type definitions
Message definitions

Data type definitions
Message definitions

Bindings

Operation

Operation

Operation

Port type Port and network address

Operation
cwsdl:contextfuntion

WSDL

Context
for WSDL

context function
elect

Fig. 7. Integration of the context function into the WSDL standard

4 Deploying Service Composition Using Transactions

In this section we describe the process of transaction-based service composition.
We start first by presenting the STM (Service Transaction Model) and then
present the operation of the discovery and composition of services using CWSDL
and STM concepts.

4.1 The Service Transaction Model

The proposed model is referred to as the Service Transaction Model (STM).
In STM a transaction is defined as the execution of a composite service which
can be divided into well defined units (or component service transactions) that
provide correctness and data consistency of services.

An STM service transaction is hierarchical and is based on the Extended
Transaction Model (to be described later). In STM, a transaction corresponding
to the composite service is called root transaction. A root transaction can be

decomposed into a set of sub-transactions corresponding to the participating
(basic) component services of a composite service, (for instance, a composite
service for the London Olympic Games can be represented as a root transaction,
while its component services such as flight and hotel can be represented as sub-
transactions). It is worth noticing here that a sub-transaction can also contain
other sub-transactions. In Figure. 8 we show a generalised structure of the root
transaction together with its sub-transactions.

Legend:

Composite service transaction

Basic service transaction

Non-vital transaction

ST

ST1 ST2

ST1.1 ST1.2

ST1.3.1 ST1.3.2

ST1.3

ST2.1
ST2.2

ST2.2.1 ST2.2.2

ST: Service Transaction

Fig. 8. Tree-based model of service transactions

Each of the sub-transactions of the root transaction can either represent basic
service transaction or an other composite service transaction. The basic8 service
transaction corresponds to a transaction which can not be decomposed into other
sub-transactions. A basic transaction is represented by a leaf on the transaction
tree. A composite service transaction is a transaction that can recursively be
decomposed into sub-transactions and correspond to non-leaf transaction on the
tree. The root transaction correspond to the combination of its sub-transactions
using one or more of the following execution modes:

– Sequential execution of the component sub-transactions;
– Parallel execution of the component sub-transactions;
– Dynamic creation of sub-transactions;
– Definition and usage of a set of alternative sub-transactions according to the

composite service and the current context.

In STM a transaction may have different types, such as compensatable, vital
and non-vital.
8 The words basic service transaction and component service transaction will be used

interchangeably in the remaining of the paper.

Compensatable and replaceable transactions : a transaction is compen-
satable if its effects can be semantically undone by executing a compensating
service transaction. It is replaceable if there is an associated alternative service
transaction. In our approach alternative services correspond to the services found
during the discovery process but that have not been selected (i.e services that
do not have the best context function).

Vital service transaction vs. non-vital service transaction : a vital ser-
vice transaction corresponds to the compulsory participation of all the compo-
nent services to the execution process. Because it is expected that the component
services will be spread across the network, the reliability of the execution process
of each component service affects the whole reliability of the composite service. A
non-vital service transaction does not necessarily involve all the component ser-
vices. Some component services can be skipped during execution due to various
reasons such as possibility of substitution or non-availability.

The failure of a vital service transaction determines immediately the failure
of the parent transaction. The failure of a non-vital transaction does not have a
direct effect on the execution of the parent transaction. If a non-vital transaction
has aborted it is replaced by an alternative transaction (the service which has
failed is replaced by an alternative service).

In our proposed model a transaction is characterized by Extended Transac-
tion Model properties. These are described as follows:

Semantic atomicity : is a weaker requirement than the classical atomicity.
Whereas an atomic transaction is guaranteed to complete successfully or not at
all. Semantic atomicity allows the unilateral commit of component transactions
irrespective of the commitment of their (parent) services transaction, with the
constraint that information sources must remain consistent after the execution
of transaction;

Consistency : means that the data should be consistent during the execution
of the service transaction. Such consistency can be insured using the services
semantics;

Durability : requires that effects of a committed transaction must be made
permanent in the respective data sources, even in the case of failures.

Contingency : is the ability to commit in spite of failures or service unavailabil-
ity. Contingency is achieved by associating alternative service transactions with
the basic service transactions of a composite one. As described earlier, composite
service can be composed of various component services which are associated with
many alternative services. For instance, various alternative services are available
for flight and accommodation.

4.2 Operation of the Discovery and Composition

In this section we describe how we perform service discovery and selection taking
into account context information using services described in CWSDL.

We have adopted a two-tier service discovery approach, in which the discovery
of services might be performed into two distinct domains, respectively local or
global. The local domain corresponds to the domain in which the user issues
the request and the global domain corresponds to the wide-area domain such
as Internet. Service registries might be hosted on dedicated servers or on users’
devices. The adoption of a two-tier service discovery aims at reducing: i) the
number of interactions and ii) the number of remote data exchanges between
domains. This will speed up the response rate for the users and lessen the burden
on the services. The local domain services are closest to the user, this means that
when a user issues a request, they are more probable to be discovered. When a
user changes its location it might switch to other domains.

Service Discovery: when a user requests a service it might be necessary to
compose complex services out of the registered basic services. The problem of
splitting the request into sub-services is complex and belongs to the domain of
planning in Artificial Intelligence, which is outside the scope of our present work.
The current design of our system uses UCM’s social laws9 [20] to decompose
complex service requests into basic services and to determine the process model
of execution.

After identifying the primitive services to be used for the composite service,
a discovery process is launched for each of these primitives. For this purpose
we have developed a two-phase algorithm. In the first phase the algorithm tries
to discover the basic services against the ones registered on the user’s vicinity
(using the location attribute of the user). It first matches the user’s query as well
as the user’s device capabilities into the nearby service registry and progressively
increases its search radius [10] [9] [5] to discover all the different services necessary
for the query solving.

Then, it has to figure out other end requirements, i.e., device capabilities
anticipated by service implementations. The first step of the algorithm produces
a set of candidate services. In the second phase, the algorithm iterates through
the resulting set, evaluates the context functions and finally picks up the best
offers according to the current context and constraints. In other words, services
are incrementally filtered [10] [9] according to the evaluation of the context
functions.

The adopted algorithm is shown below. This algorithm is first applied into
the user’s local domain. In case no services are found into the local domain, a
switch is made to the global domain and a global service discovery is performed
following the same steps (starting from step:4).

1. Retrieve the user’s location;

9 UCM stands from Ubiquitous Coordination Model.

Service Requestor

Service Registry

Service Provider
Bind

Fi
nd

Publish

CWSDL, UDDI CWSDL, UDDI

Service

Profile

Fig. 9. Integration of CWSDL to the Web Services standards

2. According to the user’s location, determine the user’s local domain;
3. Find the nearest services registries in the local domain with a search radius;
4. Perform a keyword-based search on the semantic service descriptions within

the nearest service registries;
5. If no services are found, increase the search radius and goto step:4;
6. According to the service profile, determine the critical functions;
7. Evaluate the critical functions;
8. Filter the services according to the resulting evaluations;
9. If the user issues a U-ToP table along with its request;

10. Then, according to U-ToP and for each type of the context functions evaluate
the function, elect the best service offers and cache the remaining services
(alternative services);

11. Else, according to S-ToP and for each type of the context functions evaluate
the function and elect the best service offers and cache the remaining services
(alternative services);

Deployment of the Composite Services Using Transactions: once the
component services are identified and their alternative services cached, the Ser-
vice Transaction Coordinator (STC) is launched. The STC consists of several
Component Transaction Coordinators (CTC). STC is deployed at a fixed node
whereas CTCs can be deployed at fixed as well as mobile nodes. CTCs are
lightweight such that they can be deployed at the resource scarce pervasive de-
vices. The STC and each CTC maintain log files in order to record the required
information about the execution of services transaction.

When the required component services are identified, the application starts
invoking a Service Transaction (ST) through the STC. STC coordinates the
execution of service transactions. It communicates various messages with CTCs
during the execution of the ST. The UML statechart diagram in Figure. 10

describes the working mechanism of the proposed protocol. For the sake of sim-
plicity, STC is shown to communicate with one CTC. Transaction execution is
accomplished through the following steps:

yes
yes

g-commit
g-abort

g-abort

g-commit

no
yes

no

a-vote

c-vote

abort commit

Start Initial

Starting

Started

Send msg

Commit

L-committed

Abort

L-aborted

Wait

All votes recv

G-Commit

Send msg

a-vote

Alt service

G-abort

Send msg

Wait

Check msg

Cancel

Cancel serv

STC CTC

Fig. 10. Statechart of the proposed transactional model

1. A new service transaction, ST , is assigned to a STC, which records the start
of ST in a log file, and sends a ”start” message to CTCi to initiate com-
ponent service transaction, csti. ST then enters into a wait state, awaiting
messages from CTCs concerning completion of csti;

2. CTCi records the beginning of a csti in the log file. After processing csti,
CTC sends a commit or abort vote to STC. If the latter, CTC records
the abort of csti, sends an abort vote to ST , and declares csti to be local-
aborted (L-aborted). Otherwise, CTC forcibly writes a commit decision,
sends a commit vote to ST and awaits ST ′s decision;

3. ST receives CTCs′ votes. If all votes register a commit decision, ST globally
commits (G-commit), by forcibly writing the commit decision and sending

global commit messages to all CTCc. It then terminates and starts the
processing of a new transaction;

4. If any aborted csti is replaceable (having alternative services cached dur-
ing the discovery process), STC initiates the alternative component service
transaction and awaits the CTC ′s decision regarding commit or abort of the
alternative component service. If csti is not replaceable (no cached alterna-
tive services) STC globally aborts, by forcibly writing the abort decision,
sending global abort messages to all CTCs and terminating the ST ;

5. After receiving a global commit decision (G-commit), CTC simply writes the
global commit of csti and changes csti′s status from locally-committed to
globally-committed. If csti is locally-committed and CTC receives an abort
message, then CTC must execute the compensating transaction for csti (can-
celling service). This is logged by CTC by simply writing the ”cancel” de-
cision and then marking the end of csti.

5 Proof-of-Concept

This section describes the evaluation of the proposed approach in terms of ser-
vice transaction reliability, in other words how the use of alternative services
(determined by the use of the context functions defined in the CWSDL) in-
creases the commit chances of a composite service transaction. First we devise
an evaluation criterion which is based on probability theory. We then present
experimental results which are based on this criterion. We define the following
types of probabilities for the service transaction, ST, and its component services
transactions:

– Actual commit probability (ACP): this refers to the commit probability of
ST where no alternative service transactions are involved, i.e., ST commit
is based on the commit of actual basic service transactions;

– Actual abort probability (AAP): this refers to the abort probability of ST
where no alternative service transactions are involved, i.e., ST aborts based
on the abort of actual component service transactions;

– Total commit probability (TCP): this refers to the commit probability of
ST where alternative service transactions are involved;

– Total abort probability (TAP): this refers to the abort probability of ST
where alternative service transactions are involved;

– Existential probability P (AST): this refers to the probability of the existence
of one or more context functions with a service transaction;

– CP (AST) represents the commit probability of alternative service transac-
tions;

– AP (AST) represents the abort probability of alternative service transac-
tions.

Based on the above, we devise a set of expressions to calculate the total com-
mit probability of a ST by taking into account different existential probabilities
of service transactions. We consider multiple alternative service transactions.

That is, service transactions can have multiple alternative transactions AST1
and AST2. For example, if the accommodation is not available in the hotel,
then it can be booked at bed-and-breakfast. The commit probabilities (CP) and
abort probabilities (AP) of alternative service transaction, AST1, is calculated
as follows (as shown in Figure 11):

CP (AST1) = CP ∗ AP ∗ P (AST) −−− > (1)
AP (AST1) = AP ∗ AP ∗ P (AST) −−− > (2)
Based on (1) and (2), the commit and abort probabilities of AST2 is calcu-

lated as:
CP (AST2) = AP (AST1) ∗ CP −−− > (3)
AP (AST2) = AP (AST1) ∗ AP −−− > (4)

1.0

0.1

0.9

0.9

0.8

0.2

0.9

0.1

commit

abort

commit

abort

context functions exist

context functions not exist

0.072

0.008

0.02

0.08

Fig. 11. Calculation of the Total Commit Probability

After calculating the commit and abort probabilities of AST1 and AST2, we
are in a position to calculate the total abort probability, TAP , and total commit
probability, TCP , of MST . The total commit and abort probabilities of MST
with respect to AST1 are calculated as follows:

TAP1 = 1 − CP + CP (AST1) −−− > (5)
TCP1 = 1 − TAP1 −−− > (6)
The total commit and abort probabilities of the composite service transac-

tions with respect to AST2 are calculated as follows:
TAP2 = 1 − CP + CP (AST1) + CP (AST2) −−− > (7)
TCP2 = 1 − TAP2 −−− > (8)

5.1 Experimental Results

Using the above expressions (1) − (8), we conduct various experiments to eval-
uate the reliability of the proposed approach, using existential probability of

0.4 - showing that there exist 40 percent of services with context functions (i.e,
potential alternative services transactions) in ST. In each case, different values
of the actual commit/abort probabilities are also used in conjunction with an
existential probability. Various situations are considered. For example, the worst
case scenario where the abort probability of ST is very high, and also the best-
case scenario where the commit chances of ST are high. To model the best-case
scenario, the actual commit probability is kept high showing that abort chances
of ST are low. The commit probability is then changed to different levels. Table 1
shows the total commit/abort probabilities of ST. The total commit probabili-
ties calculated in Table 1 are graphically represented in Figure 1210. The graph
clearly indicates that in the proposed approach if there exist multiple alternative
service transactions (such as AST2) then the commit probability of ST is further
increased. However the selection of alternative services is not trivial. In our pro-
posal context functions are used to greatly facilitate the selection of alternative
service transactions. To the best of our knowledge non of the existing research
works have used context and transactions in order to support the provisioning
of services.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

STM with 1 AST
STM with 2 AST
STM with 3 AST

Fig. 12. Evaluation of the Proposed Approach

10 In the graph we use three alternative services. The X axis represents the total commit
rate and the Y axis represents the total abort rate.

Table 1. Commit and Abort Probabilities (Equations 1-8)

ACP AAP P(AST) CP(AST1) AP(AST1) CP(AST2) AP(AST2) TAP1 TAP2 TCP1 TCP2

1.0 0.0 0.4 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000

0.9 0.1 0.4 0.036 0.004 0.032 0.003 0.064 0.031 0.936 0.968

0.6 0.4 0.4 0.096 0.064 0.057 0.038 0.304 0.246 0.696 0.753

0.5 0.5 0.4 0.100 0.100 0.050 0.050 0.400 0.350 0.600 0.650

0.8 0.2 0.4 0.064 0.016 0.051 0.012 0.136 0.084 0.864 0.915

0.7 0.3 0.4 0.084 0.036 0.058 0.025 0.216 0.157 0.784 0.842

0.3 0.7 0.4 0.084 0.196 0.025 0.058 0.616 0.590 0.384 0.409

0.2 0.8 0.4 0.064 0.256 0.012 0.051 0.736 0.723 0.264 0.276

0.4 0.6 0.4 0.096 0.144 0.038 0.057 0.504 0.465 0.496 0.534

0.1 0.9 0.4 0.036 0.324 0.003 0.032 0.864 0.860 0.136 0.139

0.0 1.0 0.4 0.000 0.400 0.000 0.000 1.000 1.000 0.000 0.000

6 Related Work

There are several research initiatives in the field of services composition [17].
However, to our knowledge, none of these initiatives have attempted including
context in the composition process of services, or to use transactions in order to
improve the reliability of the composed services. Besides the traditional selection
criteria that are used in a similar process (e.g., execution cost and execution
time), we have shown that the use of context functions has a major effect on the
services in general and their composition in particular. For example launching
a new discovery process when a service fails instead of using an alternative
service definitely delays the development of a composite service. In the rest of
this section, we highlight some of the works that have supported our thoughts
and inspired us shape our context-oriented and transactions-based approach for
services composition.

The first attempts towards a composition language were the IBM Web Ser-
vices Flow Language (WSFL) [11] and the BEA Systems Web service Choreog-
raphy Interface (WSCI). Later on comes the Business Process Execution Lan-
guage (BPEL) [22] as an attempt to combine these languages using the Mi-
crosofts XLANG [21]. In the following, we briefly present the most significant
proposals of service composition models. eFlow is one the systems that adopts
workflows [4]. In eFlow composite services are represented as process schemas
consisting of basic services and are modeled by an execution graph. In [19], a
UML-based composition approach was suggested. It aims at forming UML mod-
els to be automatically converted into specifications of compositions. In [23],
a Web component-based approach towards service composition, which includes
composition planning, specification, implementation, and execution, was pro-
posed. The use of Web components was backed by the concepts of reuse, special-
ization, and extension. Indeed, a Web component packages together elementary
or complex services and presents their interfaces and operations in a consistent
and uniform manner in the form of class definitions.

Work on transaction management in web services generally follows ACID
and extended transaction models. M. Papazoglou [16] reports on web services
transactions and proposes a Business Transaction Framework (BTF) for web ser-
vices. This work outlines the requirements and characteristics of business trans-
actions. It also analyzes other transaction related initiatives such as the Business
Process Execution Language (BPEL) for Web services, Web Services Transac-
tions (WS-Transactions), Web Services Coordination (WS-Coordination), etc.
WS-Transactions [3] and WS-Coordination [2] have been developed by software
vendors such as IBM, Microsoft, and BEA Systems. These approaches aim to
define frameworks for providing transactional coordination for clients of services
offered by multiple autonomous businesses that are based on Web services tech-
nologies. They also provide support for long-running business activities in addi-
tion to the short-lived (atomic) transactions. M. Little et al. [12] give a compar-
ative analysis of web services transaction protocols [24]. The analysis pertains to
the OASIS Business Transaction Protocol (BTP) and WS-Transactions. It iden-
tifies the similarities, differences, strengths and weaknesses of these protocols.
However, this analysis does not cover the performance aspects of web services
protocols, nor does it considers composite web services transactions. T. Mikalsen
et al. [15] describes a framework called WSTx (Web Services Transactions) for
web services, and introduces the concept of transactional attitudes. This ap-
proach requires web service clients to declare their transactional requirements
and web service providers to declare their individual transactional capabilities
and semantics.

7 Conclusion and Future Directions

The use of context in the provisioning of services ensures that the requirements of
and constraints on the services to participate in a composition process are taken
into account. While current services composition approaches rely on different
selection criteria such as execution cost, execution time and reliability [25], it is
deemed appropriate to include context of services in the discovery and compo-
sition, particularly when a reactive composition of services is adopted.

In this paper we have first presented our approach for the enhancement of
the current Web Services standard for service description, with context-aware
features. CWSDL is generic in the sense that it is a quasi standard for the actual
model of Web Services and complementary to the existing standards. The use of
CWSDL allows to use dynamic and run-time related information to be included
in the selection of the best offers of services. Moreover, the use of context is
suitable for tracing the execution of services during exception handling. With
our approach it is possible to know at any time what happened and what is
happening with a service and all its respective instances.

In the second part of the paper we have shown how to deploy the service
compositions using a transactional model. Our transactional model is based on
the ETM which relaxes the atomicity and isolation properties of the classical
ACID transactions. The use of transactions to deploy composite services helps

to improve the reliability and efficiency of the composite services. Indeed, as
shown in the evaluations presented in Section 5 the use of transactions together
with context increases the success rate of the composite services.

Our future work covers three research thrusts. First the integration of a stan-
dardized ontology for CWSDL. Indeed, in the presented CWSDL model, context
functions are associated to a class of services, and system knows in advance how
to classify the services. However due to the the wide variety of available services
in the future pervasive computing environments, it is of top priority that all the
system components agree on a common understanding about the used context
functions. This will ensure that the context functions will operate on seman-
tically conformant values. Adaptability to new context functions needs also to
be explored. The model should be able to take into account unknown classes of
services, and thus unknown context functions. It should discover the new classes
of services and new functions, and finally incorporate them into the model in a
completely transparent way. This may be possible by the the integration of an
ontology into the model. Indeed, as a next step in the development of CWSDL,
we are investigating how context functions might be expressed by means of an
OWL ontology, and to which extent this might enhance the adaptability of the
deployed composite services. It is also important to deal with false rating in
CWSDL. Then trust mechanisms should be added to the model in order to
insure that the results of the elect functions are not erroneous

Second the adaptation of the context function’s priorities. In the actual
CWSDL design, we have proposed two types of weight tables, in order to ex-
press the weights users and services’ providers put on the context functions.
Namely, U-ToP (User Table of Priorities) and S-ToP (Service Table of Priori-
ties). As a matter of fact, our discovery method puts more importance on the
users priorities, and thus follows the priorities expressed in the U-ToP tables,
before processing S-ToP priorities. However, we foresee situations in which it
may be more interesting to take into account the service providers’ priorities. In
order to reflect this in the CWSDL design, introduction of learning algorithms,
or other adaptation techniques might enhance the adaptability of services. In-
deed, depending on the contextual situation the model would be able to choose
between taking into account users’ or provider’s priorities, or combining both.

Finally, the application of the proposed model into real life pervasive scenar-
ios is under development.

References

1. B. Benatallah, Q.Z. Sheng, and M. Dumas. The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing, 7(1), January-February 2003.

2. F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte.
Web Services Coordination (WS-coordination), 2002.

3. F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey,
and S. Thatte. Web Services Transaction (ws-transaction), http://www-
106.ibm.com/developerworks/library/ws-transpec/, 2002.

4. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and
Dynamic Service Composition in eFlow. In Proceedings of the Twelfth Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’2000),
Stockholm, Sweden, June 2000.

5. D. Chakraborty, F. Perich, A. Joshi, T.W. Finin, and Y. Yesha. A Reactive Service
Composition Architecture for Pervasive Computing Environments. In Proceedings
of the IFIP TC6/WG6.8 Working Conference on Personal Wireless Communica-
tions (PWC’2002), Singapore, October 2002.

6. A. K. Dey, G. D. Abowd, and D. Salber. A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction, Special Issue on Context-Aware Computing, 16(4), 2001.

7. A.K Elmagarmid. Database Transaction Models for Advanced Applications. Mor-
gan Kaufman, 1992.

8. S. Kouadri. Supporting Context-Aware Services in Pervasive Environments. Ph.D
Thesis Number 1495, Department of Informatics, University of Fribourg, Fribourg,
Switzerland, November 2005.

9. S. Kouadri and B. Hirsbrunner. A Context-Based Services Discovery and Compo-
sition Framework for Wireless Environments. In Proceedings of the 2003 IASTED
International Conference on Wireless and Optical Networks (WOC’2003), Banff,
Alberta, Canada, July 2003.

10. S. Kouadri and B. Hirsbrunner. Towards a Context-Based Service Composi-
tion Framework. In Proceedings of the International Conference on Web Services
(ICWS’2003), CSREA Press, Las Vegas, Nevada, USA, June 2003.

11. F. Leymann. Web Services Flow Language (WSFL 1.0). Technical report, IBM
Software Group, May 2001.

12. Little. M and Freund. A. A Comparison of Web Services Transaction Proto-
cols: A Comparative Analysis of WS-C/WS-Tx and OASIS BTP, http://www-
128.ibm.com/developerworks/webservices/library/ws-comproto, 2002.

13. Z. Maamar, Q. Z. Sheng, and B. Benatallah. On Composite Web Services Provi-
sioning in an Environment of Fixed and Mobile Computing Resources. Information
Technology and Management Journal, Special Issue on Workflow and E-Business,
Kluwer Academic Publishers, 5(3-4), July-October 2004.

14. Q. H. Mahmoud and Z. Maamar. Challenges and Possible Solutions in Wireless
Application Design. Cutter IT Journal, June 2005.

15. T. Mikalsen, S. Tai, and I. Rouvellou. Transactional Attitudes: Reliable Composi-
tion of Autonomous Web Services. In Proceedings of the Workshop on Dependable
Middleware-Based Systems (WDMS’2002) at the Dependable Systems and Network
Conference (DSN’2002), Bethesda, MD, USA, 2002.

16. M. Papazoglou. Web Services and Business Transactions. World Wide Web, 6(1),
2003.

17. M. Papazoglou and D. Georgakopoulos. Introduction to the Special Issue on
Service-Oriented Computing . Communications of the ACM, 46(10), 2003.

18. B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’2004), Santa Cruz, California, USA, December 1994.

19. D. Skogan, R. Gronom, and I. Solheim. Web Service Composition in UML. In
Proceedings of the IEEE International Conference on Enterprise Distributed Object
Computing, (EDOC’2004), Monterey, California, USA, September 2004.

20. A. Tafat-Bouzid, M. Courant, and B. Hirsbrunner. Implicit Environment-based
Coordination in Pervasive Computing. In Proceedings of the ACM Symposium on
Applied Computing, (SAC’2005), Santa Fe, New Mexico, USA, March 2005.

21. S. Thatte. XLANG: Web Services for Business Process Design,
http://www.xml.com/pub/r/1153, June 2001.

22. P. Wohed, W. Van-der Aalst, M. Dumas, and A. Ter-Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS, Web Application Mod-
eling and Development. LNCS 2813, Springer-Verlag Berlin Heidelberg, 2003.

23. J. Yang and M.P. Papazoglou. Service Components for Managing the Life-Cycle
of Service Compositions. Information Systems, Elsevier, 29(2), April 2004.

24. M. Younas and K.M. Chao. A Tentative Commit Protocol for Composite Web Ser-
vices. International Journal of Computer and System Sciences, Elsevier Science,
26(5), May Forthcoming.

25. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality
Driven Web Services Composition. In Proceedings of the Twelfth International
World Wide Web Conference (WWW’2003), Budapest, Hungary, May 2003.

