

 Int. J. Web and Grid Services, Vol. 3, No. 3, 2007 239

 Copyright © 2007 Inderscience Enterprises Ltd.

The many faces of the integration of instruments and
the grid

F. Lelli*, E. Frizziero, M. Gulmini, G. Maron,
S. Orlando, A. Petrucci and S. Squizzato
Italian National Institute of Nuclear Physics (INFN)
Viale dell’Universita, 2 35020 Legnaro, Padova, Italy

Dipartimento di Informatica
Universita Ca Foscari di Venezia
Via Torino, 155 30172 Venezia Mestre, Italy
E-mail: francesco.lelli@lnl.infn.it
E-mail: frizziero@lnl.infn.it
E-mail: gulmini@lnl.infn.it
E-mail: maron@lnl.infn.it
E-mail: orlando@dsi.unive.it
E-mail: petrucci@lnl.infn.it
E-mail: squizzato@lnl.infn.it
*Corresponding author

Abstract: Current grid technologies offer unlimited computational power and
storage capacity for scientific research and business activities in heterogeneous
areas all over the world. Thanks to the grid, different virtual organisations
can operate together in order to achieve common goals. However, concrete
use cases demand a closer interaction between various types of instruments
accessible from the grid on the one hand and the classical grid infrastructure,
typically composed of Computing and Storage Elements, on the other.
We cope with this open problem by proposing and realising the first release
of the Instrument Element (IE), a new grid component that provides the
computational/data grid with an abstraction of real instruments, and grid users
with a more interactive interface to control them. In this paper we discuss in
detail the implemented software architecture for this new component and we
present concrete use cases where the IE has been successfully integrated.

Keywords: grid; instrument; Instrument Element; IE.

Reference to this paper should be made as follows: Lelli, F., Frizziero, E.,
Gulmini, M., Maron, G., Orlando, S., Petrucci, A. and Squizzato, S. (2007)
‘The many faces of the integration of instruments and the grid’, Int. J. Web and
Grid Services, Vol. 3, No. 3, pp.239–266.

Biographical notes: Francesco Lelli is a taking postdoctorate studies, at the
INFN. In the past three years he has been taking PhD studies in Computer
Science at the University of Venice in parallel with an Associate Research
position at INFN. He has published over 20 papers in international journals and
conferences on subjects such as high performance computing, grid, web
service, peer to peer, and artificial intelligence. He received a Master’s degree
in Computer Engineering from the University of Pisa in 2003 and is qualified
to practise the profession of engineer. At that time he was Instructor of the

 240 F. Lelli et al.

Cisco Networking Academy. He is currently involved in high-energy and
nuclear physics experiments such as CMS at CERN and Advanced GAmma
Tracking Array (AGaTA) and in the European project GridCC.

Eric Frizziero is a Software Engineer at the Italian National Institute of Nuclear
Physics (INFN) – National Laboratories of Legnaro, Italy. He obtained his
Master’s in Computing Engineering in 2000 from the University of Padua
and is qualified to practise the profession of engineer. After some years of
experience in the IT industry, he is currently involved in the software designing
and development of the Grid Enabled Remote Instrumentation with Distributed
Control and Computation (GRIDCC) Project. He is also collaborating with the
CERN CMS team to develop the software to control and monitor the CMS data
acquisition system.

Michele Gulmini is a Technologist at the National Laboratories of Legnaro
– INFN, Italy. He obtained his Master’s in Computer Science from the
University of Bologna, Italy, in 1996. He joined the Information and
Electronics Service in Legnaro in 1996. Since 2002 he has been a full-time
Project Associate in the CMS Data Acquisition team at CERN. He has
extensive experience in the development of data acquisition, systems for
nuclear and high-energy physics experiments. He is currently working in the
design and development of the Run Control and Monitor System of the CMS
experiment, and in the EU-funded GRIDCC project.

Gaetano Maron is a Senior Technologist at the National Laboratories of
Legnaro – INFN. He graduated in Physics from the Padova University in 1980.
He joined INFN in 1984 after four years’ experience as a Software Developer
at a leading Italian industrial automation company. He has been a Visiting
Scientist at CERN since 1986. He is currently a team leader of the ‘Information
and Electronics Technologies Service’ at the National Laboratory of Legnaro
and Project Manager of the GRIDCC project, an FP6-funded EU project. He
has extensive experience in designing and implementing data acquisition and
online systems in physics experiments.

Salvatore Orlando is an Associate Professor at the Department of Computer
Science, Ca' Foscari University of Venice. In 1985 he received a Laurea degree
in Computer Science, cum laude, from the University of Pisa, and a PhD
in Computer Science from the same university in 1991. Then he became a
Postdoctorate Fellow of the HP Laboratories and the University of Pisa. In
1994 he joined the Ca' Foscari University of Venice as an Assistant Professor,
and became an Associate Professor in 2000. He has published over 70 papers in
international journals and conferences on several subjects particularly on
parallel processing and data and web mining, and he has been on the program
committees of many international conferences.

Andrea Petrucci is a Software Design Engineer at the National Laboratories
of Legnaro – INFN, Italy. He received the Italian Laurea degree (MS) in
Computer Science from the University of Bologna, Italy, in 2001. From 2002
to 2004 he undertook a research fellowship at the Department of Computer
Science, University of Bologna. He joined the INFN in 2004 for the GRIDCC,
a research project supported by EU funds. Since 2004 he has been an unpaid
associate at CERN, and collaborates with the CMS Data Acquisition team. His
main research interests are distributed and real-time systems applied to the
control and monitoring of high-energy physics experiments.

Silvano Squizzato is a Software Engineer at the National Laboratories of
Legnaro – INFN, Italy. He obtained his Master of Science in Electronic
Engineering in 1998 and is also qualified to practise the profession of engineer.

 The many faces of the integration of instruments and the grid 241

Currently, he is involved in the software design and development for the
GRIDCC, a research project supported by EU funds. He is also collaborating
with the people realising the CMS Data Acquisition System at CERN.
Previously, he worked as Solution Architect in the web designing and
consulting area and in the telecommunications sector as well.

1 Introduction

Grid computing refers to the coordinated and secured sharing of computing resources
among dynamic collections of individuals, institutions and resources (Cittolin et al.,
2002; Irving et al., 2004).1 It involves the distribution of computing resources among
geographically separated sites (creating a ‘grid’ of resources), all of which are configured
with specialised software for routing jobs, authenticating users, monitoring resources,
and so on.

The operative core of the standard computational grid is mainly composed of two
important elements: the Computing Element (CE) and the Storage Element (SE). The
first one provides the final user with an abstraction of the back-end of the computational
system. In other words it is where the execution of an application is performed. This
is a very general element that allows different computational nodes, like a single
processor or a complex computing cluster, to be seen as a homogeneous set of interfaces.
The second one, the SE, provides a storage facility for the input and output of the
applications that are executed on a CE. The storage can be as simple as a standard
file-system, or a set of databases organised into a more complex structure. While remote
control and data collection are part of the initial grid concept, most recent grid
developments have been concentrated on the sharing of distributed computational and
storage resources.

In this scenario applications that need computational power only have to use these
grid elements in order to access an unlimited amount of computational power and disk
storage. Unfortunately, as explained later in this section, concrete use cases require a
strong interaction between the instrumentation and the computational grid; in addition,
they need to be accessed directly from a remote site in the world. For instance, in
the Compact Muon Solenoid (CMS) Data Acquisition (DAQ) (Cittolin et al., 2002)
system, where the data-taking phase of an experiment occurs, physicists need a single
entry point to operate the experiment and to monitor detector status and data quality.
In Electrical Utility Networks (or power grids (Irving et al., 2004)), the introduction of
very large numbers of ‘embedded’ power generators, often using renewable energy
sources, creates a severe challenge for utility companies. In Geo-Hazards Systems a set
of heterogeneous, geographically distributed sensors needs to be remotely accessed and
monitored, while the combined instruments’ outputs should be automatically analysed
using the computational grid.

The Grid Enabled Remote Instrumentation with Distributed Control and Computation
(GridCC) project (Maron et al., 2005),2–3 launched in September 2004 by the European
Union, addresses these issues. The goal of GridCC is to exploit grid opportunities for the
secure and collaborative work of distributed teams, in order to remotely operate and
monitor scientific equipment using the grid’s massive memory and computing resources
for storing and processing data generated by this kind of equipment.

 242 F. Lelli et al.

Our idea is to implement a software component that can satisfy all the
above-mentioned requirements as a new grid component: the Instrument Element (IE). It
consists of a coherent collection of services that provides all the functionalities to
configure and control the physical instrument behind the IE and the interactions with the
rest of the grid. Figure 1 gives an idea of the relationship between the IE and its users and
between the IE and other grid components.

Figure 1 Interaction between the IE and other grid components

In order to achieve a fast and high level of interaction with the IE component, users can
directly access the controlled instrument using a remote control room or Virtual Control
Room (VCR) (Pugliese et al., 2005). Or, as a second possibility, an instrument operation
can be part of a complex work flow managed by a grid execution service (Alamri et al.,
2006) that allows the IE to access and converse with the computational grid. These ways
to control the instruments are not mutually exclusive and can be performed in parallel
where needed.

Inside the IE a set of web service interfaces called Virtual Instrument Grid
Service (VIGS) allows the user to remotely access the real instrument, thus plugging
the system itself into the grid. The IE can provide facilities for interactive cooperation
between computing grid resources and applications that have real-time requirements
or need fast interaction with CEs and SEs. Finally, the IE can also be linked to
existing instrumentation in order to provide grid interaction and remote control to
stand-alone resources.

The term ‘instrument’ describes a very heterogeneous category of devices. A set of
use cases (Cittolin et al., 2002; Irving et al., 2004; Siaterlis et al., 2005; Tham and
Buyya, 2005; McMullen et al., 2005)1, 3–9 have been extensively analysed in order to
collect the functional and nonfunctional requirements of this new grid component. From
an intuitive point of view the IE should:

 The many faces of the integration of instruments and the grid 243

• provide uniform access to the physical devices

• allow standard grid access to the instruments

• allow cooperation between different instruments that belong to different Virtual
Organisations(VOs).

We need to point out that IE users do not need to be human beings. Other software
components must be able to control the instruments.

Figure 2 shows a use case diagram of the system. A user of the IE can have one of
three roles:

1 Observer – one that has the right to monitor the operation of the instrument.

2 Operator – one that can instantiate an instrument configuration, and control and
monitor the instrument.

3 Administrator – one that can create an instrument configuration that can be accessed
by the observer user and/or the operator user.

The monitoring operation is intended as the possibility to retrieve all information that
can be used to determine the operational status and to track the operation of an
Instrument System.

Figure 2 IE use cases

The control operation is intended as the possibility to act on one or more instruments and
move acquired data to and from the computational grid.

The configure operation is intended as the possibility to create instruments
orchestration (i.e., configuration or partition) that can be used by other actors.

 244 F. Lelli et al.

The instantiation operation (which is considered a control extension) is intended as
the possibility to create instruments, if the physical instruments provide this functionality,
or to link to them otherwise.

At any moment there can be multiple observers, multiple administrators, but at
most one operator that utilises a particular instrument. A second operator user that
tries to control an instrument already controlled by another operator should be treated by
the system as an observer user. If the real instrument can be partitioned into subsystems,
multiple operators should be able to access different instrument partitions via the
same IE.

Close to these functional requirements, a grid of instruments introduces a set of
nonfunctional requirements, as summarised in Table 1. Take, for example, the possibility
of controlling about 104 instruments simultaneously in an interactive way. This
introduces the need to provide a scalable system (marked as Scalability requirement)
equipped with a certain Quality of Service (QoS) guarantee, as will be explained in
further sections.

Table 1 Nonfunctional requirements

Nonfunctional requirements Type

O(104)nodes/instruments must be controlled and monitored Scalability

The nodes/instrument should be accessed through the web. Remote access

The nodes/instrument should be accessed in a homogeneous way. Standardisation

Round-trip time to reach all the nodes must be in the order of
human reaction time.

Quality of Service

Online diagnostics and possible error recovery Autonomic

In a grid of instruments, like the computational one, interoperability (marked as
Standardisation in Table 1) is a mandatory requirement. Therefore the only possible
communication between Grid subcomponents is via Web Services (WS).

For complex systems, in addition, online diagnostics, error recovery and device
organisation robustness (marked as Autonomic) should be provided. Finally, we need
to consider that different instruments use different technologies and protocols in order to
be accessed.

The above-mentioned functional and nonfunctional requirements represent the basic
building block of this new grid component. In particular we can observe that the control
of instruments demands both deep interaction between users and devices, and the
adoption of highly interoperable solutions that only SOA-based web/grid services
can offer.

The rest of this paper is organised as follows. In Section 2 we present a classification
of instruments and a uniform model for the control of each type of instrument. In
Section 3 we present the IE system as the way to integrate instruments and the grid. In
Section 4 the technological choices for the implementation of the first release of the
proposed IE model are discussed. In addition, Section 5 shows some performance tests on
the current implementation, while Section 6 we give an overview of the applications that
already use the current implementation.

 The many faces of the integration of instruments and the grid 245

2 Instrument classification

In grid terminology the words ‘instrument’, ‘sensor’ and ‘device’ are used to identify a
piece of equipment that needs to be initialised, configured, operated (start, stop, standby,
resume, application-specific commands), monitored or reset. Remotely accessed
resources play a key role in the grid paradigm. Our classification includes only those
devices that can be plugged into a network. In addition, the instruments must be
controlled and monitored remotely in order to enable cooperation with other Grid
components, such as the CE, SE and other instruments. Normally, such functionalities are
not part of simple devices, simply because they request too many resources in terms of
computational and/or electrical power.

To summarise, from a grid perspective, a device can belong to one of the
following categories:

• dummy instrument

• smart instrument

• smart instrument in an ad hoc network.

The first type comprises very simple hardware. The instrument in this category uses Data
Acquisition (DAQ) for remote operation; the data is collected with a set of devices that
are physically linked together. The devices enable remote network organisation and
provide higher-level functionalities. These instruments are typically deployed in remote
sites far from the base station. In addition, only the remote (local from a sensor point of
view) DAQ collector can be accessed in a remote way, thus acting as a proxy for the
sensors that are physically connected to it. Nonpolarisable Petiau electrodes8 used in the
IMAA network are examples of dummy sensors.

‘Smart instruments’ make up a large category comprising devices that provide all
the functionalities needed to be remotely accessed and controlled. High-energy physics
and particle physics experiments use these kinds of sensors (Cittolin et al., 2002).4, 9
For instance, a smart instrument can be an electronic card that acquires data from
the concrete detector and dispatches it to one or more machines that perform data
aggregation. Typically, these devices are close together and physically connected via a
fast communication channel, like a 1 GB Ethernet or an optic fibre. Performances
and scalability are an issue and key requirements of these instruments as part of a
distributed system. An additional requirement imposed on these devices is autonomicity.
The electronic front-end and the information collector (event builder or EVB) of a
high-energy experiment is composed of thousands of nodes (usually powerful PCs),
thus, basic fault tolerance and dynamic instrument reconfiguration must be part of the
device’s functionalities.

The smart instrument in an ad hoc network can be seen as a specialisation of the
previous category. Such devices need not be in close physical proximity, but rather they
can remotely communicate through specialised wireless connections. In general, batteries
fuel these devices and mobile sensors are part of this category. The challenge is to
minimise the energy consumption of the communication channel. Then, we should keep
battery consumption uniform between different devices to minimise human interaction
with them.

 246 F. Lelli et al.

A uniform instrument model

Since the instruments are heterogeneous in nature, one current shortcoming is that the
applications that use them (e.g., DAQ codes) must have a complete operational model
of the instruments and sensors they work with. This makes maintaining investments in
these codes difficult and expensive when the underlying instrument hardware is changed
and/or improved. A primary design goal for this section is to externalise the instrument
description so that applications can build an operational model ‘on the fly’. This approach
makes it possible to preserve investments in DAQ codes as instrument hardware evolves
and to allow the same code to be used with several similar types of instruments.

The presented instrumentation model is used in order to meet the functional
requirements. It can be used for each device independent of the category to which it
belongs. In the following sections, we will better understand why the implementation of
this model is really dependent on the instrument types.

Figure 3 shows our instrument abstraction model.

Figure 3 Abstraction model of a generic instrument

We can consider a generic device as a collection of parameters, attributes and a control
model, plus an optional description language. The more detailed parameters are variables
on which the instrument depends, like range or precision values of a measure, while
attributes refer to the effective object that the instrument is measuring.

The main difference between parameters and attributes is that typically the first are
accessed in a polling mode, while for certain types of attributes, like a cam streaming, a
publish/subscribe or a stream access method is more appropriate. Therefore, both push
and pull access ways must be supported for attributes.

The control model represents the list of commands that the instrument can support.
This list can be expressed using a state machine model, a Petri Net, etc. We have to note
that in this abstraction, the term ‘command’ refers to both the actions that change the

 The many faces of the integration of instruments and the grid 247

instrument status and those that do not. Parameters, attributes and the control model can
give the possibility of controlling every possible instrument or sensor, but what is still
lacking is the possibility to allow the device to describe itself, giving the user the
possibility to understand what exactly it can do with this instrument. In order to achieve
this goal, an XML-based description language is also part of our instrument abstraction.
Languages like the SensorML1 or OWL-DL (Smith et al., 2003) can be use to describe
the semantics of the particular instrument.

The presented abstraction provides a uniform layer across different devices and
can be used as a building block for the control of complex systems such as the CMS
experiment (Cittolin et al., 2002), which is composed of about 2* 107 hardware
components and about 104 machines dedicated to online event processing. In order to
simplify the control of these systems, instruments can be logically (or physically)
grouped into hierarchies, from which data can be aggregated or for which control
commands affect multiple sensors or actuators. What is needed in this case is an
instrument aggregation model, like the one that we will present in the next section, which
is capable of controlling all these devices in a congruent way.

3 Instrument aggregation model

The integration of a single instrument into the grid is a relatively simple task. Problems
arise when millions of different instruments need to interoperate with each other in order
to achieve common goals, giving the external users a well-defined entry point. In order to
simplify this task, some services could be created around the instrument to allow a
uniform interaction, by giving the illusion of controlling a single device.

We define the term ‘Instrument Element’ (IE) as a set of services that provides the
needed interface and implementation that enables the remote control and monitoring of
physical instruments. The IE needs to be really flexible; in the simplest scenario this
abstraction can represent a simple geospatial sensor or an FPGA card that performs a
specific function, while in a more complex network of sensors it can be used as a bridge
between the sensors and the computational grid. Finally, the IE can be part of the device
instrumentation, permitting the organisation of the instrument into a network that allows
grid interaction.

Unlike the CE and the SE, this grid component is accessed using interactive
computational job execution and requires a close interaction with the users sitting in the
VCR (Pugliese et al., 2005).

If we see the IE as a black box that allows the interaction of instruments in a uniform
way, we can identify three different communication channels: firstly, a uniform interface
that allows the control of the different system devices in a uniform and coherent way;
secondly, an output channel that allows a fast instrument cooperation that permits the
reception of asynchronous data and monitors information that came from the instrument
attributes; and finally, a set of services that allows the interaction between the instrument
and the standard grid system.

Many similarities can be seen in the black box model presented in Figure 4 and in the
one discussed in Section 2.1. The main difference is that the IE represents a collection of
instruments that can work together or simply belong to the same organisation, so an index
service that addresses them is mandatory. Finally, we can note that the IE itself is
consistent with the model presented in Section 2.1; therefore an IE can be part of other

 248 F. Lelli et al.

IEs. In addition, the IE also acts as a protocol adapter, providing a uniform way to control
heterogeneous devices. We believe that web services are an excellent choice when there
is a need to provide a common language to the cross-domain collaboration and to hide the
internal implementation details of accessing specific instruments. Standards like SWE,1
JMX (McManus and Sun Microsystems, Inc., 2003), or IVI6 and P2P Systems like JINI10
and Freenet (Clarke et al., 2002),11 have been analysed in order to ensure that the
front-end (the Virtual Instrument Grid Services or VIGS) final methods are really capable
of providing a generic instrument virtualisation.

Figure 4 The IE abstraction

A final remark: as already introduced at the beginning of this paper, the control of
instruments demands deep interaction between users and devices. Consider that when the
access is performed via internet using WS, the remote invocation time becomes critical in
order to understand if a service can be controlled properly or the delays introduced by the
wire are unacceptable.

To summarise the mentioned requirements, we can define two different types of
access with different QoS:

1 Strict (hard) guarantees – the response to a requested service is reliable; in this case
the availability of an Agreement Service (Maron et al., 2005) that performs advanced
reservation and can negotiate ‘interaction times’ with a component is necessary.

2 Loose (soft) guarantees – the response to a requested service is unreliable. Therefore
QoS is provided on top in a best-effort infrastructure. In this case a prediction
method based on a statistical approach must be provided.

Techniques that allow interactive web service improvement and prediction of a remote
method execution time that can be used in this particular context have been presented in
Lelli et al. (2006a) and Lelli et al. (2006b).

What follows is a description of the main building blocks and a detailed description
of the most important ones.

 The many faces of the integration of instruments and the grid 249

3.1 Instrument aggregation building blocks

This section describes the main IE building blocks, presenting the set of additional
services that can simplify the access and the control of instruments. We present the
mentioned services as centralised components and in Section 3.5 we discuss where these
services should be implemented in a centralised or in a distributed way.

Figure 5 represents the detailed IE architecture. What follows is a short description of
each subsystem component.

• Instrument Managers (IM) – the instrument managers are the parts of the IE that
perform the actual communication with the instruments. They act as protocol
adapters that implement the instrument-specific protocols for accessing the IE’s
functions. One IM can control more than one single device and it is coherent with
the model presented in Section 2.1. In other words, it can be seen by other IMs as
an instrument, allowing a hierarchic partition of the controlled devices where the
complexity of the system requires such a control structure.

• Resource Service (RS) – this service organises in groups all the resources that belong
to the system, in order to facilitate the access. In this context a resource can be any
hardware or software component that can be managed directly or indirectly through
the network.

• Information and Monitor Service (IMS) – this service disseminates monitoring data
to the interested partners, giving a single access point to all the information produced
by the instruments.

• Problem Solver (PS) – it has the main task of collecting alarms, errors, warnings
and messages, which in our models are instrument attributes and parameters, in
order to identify error conditions (Kalganova et al., 2006). We have to note that
an error recovery can be part of the IM control logic, but while this component is
mainly involved in the online recovery, the PS can act offline to try to discover
unknown rules.

• Access Control Manager (ACM) – it is responsible for checking user credentials
and deciding whether an external request should be processed by the IE
(Maron et al., 2005).

• Data Mover (DM) – since we cannot assume that instruments are complex devices,
they need an external service in order to deal with the classical computational grid.
This component provides this functionality in a centralised way. In a fully distributed
scenario like Sensor Network, a decentralised approach could be more appropriate;
therefore part of this functionality could be part of the IM component. This service
provides the SRM12–13 interface to any external storage (SE) or processing elements
(CE). It finds the ‘best’ mechanism, such as GridFTP (Allcock et al., 2005; Silva,
2003) or other transport protocols, to move a file from one storage resource to
another. For more demanding applications, grid standards could be inappropriate due
to the high bandwidth requested, and a streaming output and/or an MPI interface that
allows push subscription capability of the instrument attributes might be needed.

 250 F. Lelli et al.

Figure 5 The IE architecture

3.2 The Instrument Manager (IM) abstraction

As already mentioned, the IM is the component that deals with the instrument or the
instrumentation of the physical device. Each IM is responsible for performing the actual
communication with the controlled set of instruments. It acts as a protocol adapter that
implements the instrument-specific protocols for accessing their functions. Considering
that instruments are heterogeneous in nature, this component is also equipped with a
plug-in/driver-based system, which allows an easy reuse of code by changing just the
communication library that implements the device-dependent communication protocols.
For simple devices that require a minimal control structure, no additional code must be
written; at the same time, in multiple and complex control devices this component
provides all the basic building blocks that allow the customisation of the control system.
Finally, the IM conforms to the model presented in Section 2.1; therefore it can be seen
by other devices as an instrument itself, allowing instrument aggregation and hierarchic
organisation, thus achieving the goal of breaking down the complexity of the system or
organising the instrument in groups.

In addition, the IM can allow the cooperation with other devices; this is a key feature
when working in a grid of instruments. Instruments in the ‘smart sensor’ category need to
exchange data without loss, as fast as they are being generated. The data collector
devices, or some other dedicated set of instruments, process the data (filter and aggregate
it) and move it to a final location. Afterwards the data, via the data mover, is stored in a
repository or in a SE for future offline analysis.

 The many faces of the integration of instruments and the grid 251

The main components of each IM are as follows:

• The Communication Tools can be used by every single subcomponent in order
to publish/receive information such as logs, errors, states, configuration, etc., and to
receive messages coming from other components. This service also acts as a proxy
for the higher-level Data Mover service. If data produced by the set of controlled
instruments arrives at a large rate, this low-level service makes the movement of
such data more manageable. Finally, these tools represent the instrument front-end of
the Information and Monitoring System.

• The Control Manager is the component that actually controls the instrument and/or
the instrumentation. The typical use case of this subsystem is to receive inputs
from the users that are controlling the devices. It can also receive inputs like states
or errors that come from the physical controlled instrument. So it can react in an
autonomous way to unexpected behaviour of the controlled resources by allowing
automatic recovering procedures to be started. This autonomic action becomes
critical if the IM controls a large set of instruments, while for simpler devices such
functionality becomes less important compared to the need to have a plug-in system
that integrates the device drivers.

• The Input Manager waits for an external input and presents it to the Event Processor.
Inputs can come from users, other instrument managers, or from the devices
themselves in the case of smart instruments. In this last case, considering that each
instrument has a different way of communicating, a driver component must be
provided and loaded inside the particular IM.

• The Resource Proxy represents the IM instrument front-end. The control library used
in order to exchange messages with the physical device must be plugged inside; this
is the minimal customisation action that must be performed in order to plug a generic
device into the grid.

• In the Event Processor component, the command will be elaborated in order to
control the instrument properly. By default, events just trigger the proper action
in the proper resource proxy. At the same time, using the plug-in system, this
component can be used in order to provide an aggregate and more complex control
that allows the possibility to plug inside every possible algorithm: expert systems,
fuzzy logic, custom if-then-else, Neural Networks, etc. As a final remark, this
component represents the basic infrastructure of the Problem Solver, allowing
recovery action and/or fault-tolerant procedure, in case of subsystem failure.

• The Finite State Machine Engine is specifically designed to simplify the Event
Processor algorithms, providing simple call-back mechanisms when writing the
action that must be performed according to a particular triggered transition. It also
provides the possibility to perform introspection by external users that want to
control the particular IM.

Figure 6 shows in detail the interactions occurring in the IM subcomponent. The dotted
lines are optional actions that can be performed or not on the basis of the particular
received input, while the other lines are mandatory. In addition, the first two lines are
actions triggered by the users in the VCR. From the temporal point of view, events
coming from user commands or instrument messages are received from the input
manager and the information is processed in the Event Processor submodule. Such

 252 F. Lelli et al.

a submodule, on the basis of the received input, can decide to perform a state transition
according to its Finite State Machine (FSM), and/or control the real instruments via the
Resource Proxy module. Once the action is successfully or unsuccessfully performed, a
notification is sent back to the users.

Figure 6 VCR-IE interactions

3.3 Resource Service (RS)

The complexity of the information managed by the RS is really instrument dependent
and ranges from a practically fixed configuration to a configuration and orchestration of
thousands of nodes (Cittolin et al., 2002; Irving et al., 2004).1, 9 In any case, it provides a
uniform way and a single point of access to the information related to a particular
instrument from external users.

If a system, like a sensor network, allows the possible use of a subset of devices, it
also manages this partitioning. In addition, this service can act as a super peer in dynamic
instrument networks, where simple devices can appear and disappear. Finally, this service
can permit a reservation of the system, allowing authorised users the possibility to
bookmark resources.

Figure 7 classifies the information that has to be retrieved from the Resource Service
for every instrument.

From a semantic point of view, we can divide the information into three different
categories:

1 Information such as physical locations of configuration file or driver type, etc.,
which is only internal to the IE and is needed in order to ensure the correct
instrument instantiation.

 The many faces of the integration of instruments and the grid 253

2 Information that can be modified at runtime by the users and that could change the
global behaviour. The numbers and types of instruments that should be used to
perform particular aggregate actions are typical of the information that belongs
to this category.

3 Information that identifies the instrument topology, i.e., both potential and actually
performed intra-instrument connections.

The same information could be categorised from the dynamicity point of view: (a) Static
information refers to data that will be defined at deployment time and will never change
in the future. As its opposite, (b) Dynamic information consists of data that can change in
an automatic way, without user intervention. In the middle, we have (c) Low Dynamic
information, which corresponds, for example, to adjustments performed by the users
at runtime.

Figure 7 Classification of the information contained in the resource service

We can note that most of the information is close to the instrument, and belongs
to a particular instance. In addition, considering a set of instruments as one single
device, static information introduces rigidity to the system while low dynamic
information introduces complexity in the global system usage. As we will point out
later in Section 3.5, complex static systems configuration, which typically are simpler
to implement, could be the solution in use cases, where all instruments need to be
in a consistent state in order to produce a coherent output (Cittolin et al., 2002).9
Unfortunately, this solution remarkably increases the configuration problem, providing a
fixed structure that, in the case of a subsystems fault, must be manually reconfigured by
the users. In highly dynamic systems like the one described in Irving et al. (2004) and
Note 1, this solution is simply unusable because the introduction of a new node in the
system triggers a total reconfiguration.

3.4 Information and Monitor Service (IMS)

Instruments and Instrument Managers dispatch data and information that can be
monitored via the IMS. We have to point out that more demanding applications (Cittolin
et al., 2002) request that this service handle about 105 messages per second. Therefore
this system cannot be implemented in a centralised way. In addition, standard message
formats like SOAP cannot be used in these components due to the overhead

 254 F. Lelli et al.

that this serialisation introduces (Lelli et al., 2006b). Finally, taking into account that
instruments are independent and weakly coupled with each other, an information and
monitor system should preserve the mentioned properties.

As a result, architectures such as the one presented in Note 14, Byro et al. (2004) and
Brookshier et al. (2002) appear to be the most appropriate for this task. In these systems,
peers publish information on a given topic for subscribers that have previously indicated
their interest (see Figure 8).

Figure 8 Publish/Subscribe architecture

Using this particular approach, we allow peers in the network to appear and disappear
dynamically, preserving a certain robustness with respect to system faults (Eugster
et al., 2003).

Once the connection to the particular information channel has been established,
publishers can start sending data. Considering that high throughput is a must in these
cases, a bridged/relay (Brookshier et al., 2002)15 solution appears to be the only way to
preserve this characteristic.

Figure 9 tries to explain what was mentioned before in a simplified scenario, where
one publisher, which belongs to a particular private network, tries to send information to
peers disseminated throughout the world. Using a smart protocol, the publisher can reach
peers located in the same LAN and/or communicate to the bridge component that is
connected with other bridges via standard communication protocols, like TCP and HTTP.
Bridges, once they have received the messages, firstly convert them into a more suitable
format, and secondly send them to peers that are in the same LAN domain. Multicast
protocols can be used to reduce the number of messages that publishers need in order to
continuously improve the performance of the system (Carmeli et al., 2004).

3.5 Static versus dynamic aggregation models

The term ‘Instrument’ describes a very heterogeneous category of devices. Refer to
Cittolin et al. (2002), Irving et al. (2004), Siaterlis et al. (2005), Tham and Buyya (2005),
McMullen et al. (2005) and Notes 1, 3–9 as a large set of examples. Even if we believe
that a uniform and coherent set of services can facilitate their aggregation and the
interoperability across different organisations, the approach to the implementation could
be really different. In Cittolin et al. (2002), for instance, the CMS data acquisition phase
can start only if all the instruments of the system are of the same status, while in Irving
et al. (2004), McMullen et al. (2005) and Note 1, instruments can dynamically join

 The many faces of the integration of instruments and the grid 255

the system. In the previously mentioned cases we cannot assume that the index of all
instruments, which is the base abstraction of the Resource Service, is static. The IM
behaviour needs to dynamically adapt itself to the dynamic, existing instrument structure.
This particular functionality is typical of P2P (Taylor, 2004) systems, wherein the
network can dynamically adapt to peer changes. Incidentally, a single and relayable entry
point of this information is mandatory if we want to provide a set of instruments as a
service for the computational grid.

Figure 9 IMS architecture

Considering the categorisation of the information that we defined in Section 3.3, we can
note that static information and some of the low dynamics belong to a particular
instrument instance, while instrument topology information must be a sheered attribute
between devices in order to avoid collisions, thus organising the instruments in the proper
way. In a typical discovery based on P2P, a peer announces itself to the network, giving
other peers the possibility to perform query and exchange of data.

In this scenario, instruments can dynamically engage other existing instruments,
performing a system lookup and allowing the dynamic determination of the peers’
topology.

This approach distributes the information to the instruments, thus breaking the global
configuration into several parts that dynamically change during the system usage.

Figure 10 explains the dynamic joining of an instrument into the system. After a
bootstrap, the instrument sends a discovery request to other peers and Relays forward this
request to unreachable devices. Instruments reply to this request by announcing their
presence in the network and then the new instrument enquires of the others in order to
discover what type of device they are. Once the instrument finds the needed resources, it
engages and uses them.

If an instrument disappears from the system, other devices can repeat the
discovery/information enquiry phases in order to try and find the needed resources. In
addition, this operation can also be repeated in case of failure in order to detect the
recovery of the needed subcomponent, allowing an autonomic behaviour.

 256 F. Lelli et al.

Figure 10 Instrument discovery interaction diagram

In this P2P scenario, the information is no longer centralised but is distributed in the
system. Therefore this approach complicates monitor functionalities that also need a
discovery system in order to detect the actual instrument topology. In other words, the
Resource Service end point must periodically repeat the instrument discovery and
information enquiry phases, as with all the system devices, in order to detect the status
of the entire system. Alternately (or in parallel), instruments can periodically send an
advertise message in order to inform interested peers of their status.

3.6 Embedded devices

In this context we refer to an embedded device as one with limited computational and
network capacity. In order to reduce the system requirements, IM with very limited
functionality can be directly installed into the electronic front-end. This enables other
IMs to remotely contact this device using a low-level communication channel, allowing a
bridged communication that can enable a more elaborate interaction.

For complex systems such as in Cittolin et al. (2002),9 embedded applications that
run in ad hoc electronic cards can also use the communication tools to dispatch the data
just acquired to the thousands of nodes that constitute the event builder layer. Each Event
Builder (EVB) machine, which can be seen as an instrument, operates as a subscriber to
the messages (data) sent by the publishers – the devices on the cards. The selection of the
required devices is enabled by associating a topic with a device. The incoming data
messages are then sampled using the publish/subscribe selector capabilities (Brookshier
et al., 2002).14 The data is further processed and an event is generated and sent to a subset
of machines that perform an additional intermediate step of ‘collection and aggregation’.
Finally, this data is sent to the last layer of machines, which save the data via instrument
managers directly connected to the data mover.

 The many faces of the integration of instruments and the grid 257

Figure 11 Embedded devices

4 Current implementation

Several technologies have been used in order to implement the first Java-based
IE release, such as tomcat + axis as a web service engine, which provides a WS-I
compliant16 software end point. The usage of a quite mature open source software has
driven our choices in this field.

The Resource Service uses JDBC17 connections to MySQL and Oracle DB in order to
retrieve the instruments configuration information, while the IE-embedded GUI is based
on JSP18 and AJAX (Mahemoff, 2006) technologies.

Finally, the standard Apache Logging System,19 such as log4j, has been adopted in
order to acquire runtime information of each single software subcomponent.

To ensure the high throughput needed by the IMS component presented in
Section 3.4, we have also used a JMS14 implementation on top of a high-performance
Reliable Multicast Messaging (RMM) layer (Carmeli et al., 2004). RMM allows hosts to
reliably exchange data messages over the standard IP multicast network. It exploits the IP
multicast infrastructure to ensure scalable resource conservation and timely information
distribution, with reliability and traffic control added on top of the standard multicast
networking. The RMM-JMS extension is a very efficient Java implementation of the JMS
standard using RMM services.

RMM-JMS supports:

• multicast transport for pub/sub messaging – supporting the JMS topic-based
messaging and API, with matching done at the IP multicast level. The transport is a
Nack-based reliable multicast protocol.

• Direct (brokerless) unicast for point-to-point messaging – supporting the JMS
Queue-based messaging and API. The transport is the TCP protocol.

• Bridged/Brokered unicast transport for pub/sub messaging.

Section 5 shows some performance tests on the current implementation while Section 6
provides an overview of the current applications that are using the proposed architecture
and the related implementation.

 258 F. Lelli et al.

5 A benchmark on the current IE implementation

In this section we present some IE benchmark tests. The goal is to figure out the
scalability and flexibility of the first release of the IE.

5.1 Command reception performances

The following section describes tests related to the receiving capability of the IE’s
Control Manager component.

Figure 12 shows which components of the Control Manager are involved in these
tests. Two tests have been performed:

• Test 1 stresses the capability of the control manager to answer the clients’ requests.
Typical clients in this case are the VCR and Execution Services, and also generic
clients. Figure 13 reports the results. Around 50 invocations per second have been
achieved, each invocation triggering a state transition in the FSM engine.

• Test 2 stresses the capability of the control manager to react to asynchronous
messages, as happens when an instrument has to send error and information
messages, and even state changes. Figure 14 reports the results obtained by
varying the number of instruments sending messages to the Input Manager and
then to the Event Processor.

Figure 12 IE invocation benchmark test description

 The many faces of the integration of instruments and the grid 259

Figure 13 Test 1 results: VCR invocation capability

Figure 14 Test 2 results: IE message-handling capability

5.2 Command distribution performances

These tests aim to measure the distribution capability inside an IE when a tree Instrument
Manager structure is used to reach the controlled instruments. Figures 15–17 depict the
hierarchy that was used.

In Figure 15 a single Instrument Manager was controlling from 10 to 120 instruments
exchanging SOAP messages over HTTP. Figure 16 shows a similar case, but with three
Instrument Managers running in the same machine and controlling the same number of
resources. Finally, in Figure 17, three Instrument Managers are instantiated in three
different machines.

 260 F. Lelli et al.

Figure 15 Instrument manager hierarchy performance tests: one IM

Figure 16 Instrument manager hierarchy performance tests: three IMs

 The many faces of the integration of instruments and the grid 261

Figure 17 Instrument manager hierarchy performance tests: three IMs in three machines

The graph in Figure 18 shows the time spent to distribute a command by varying the
number of controlled instruments for all the three above-mentioned cases using a parallel
and a sequential command distribution.

This shows that a distributed configuration of the Instrument Managers can ensure
better performance where it is needed.

Figure 18 IE command distribution benchmark test results

 262 F. Lelli et al.

6 Applications that are using the current release of the IE

The first IE released is currently used to manage the following use cases.

6.1 The Compact Muon Solenoid experiment

In the Compact Muon Solenoid (CMS) (Cittolin et al., 2002) Data Acquisition (DAQ),
the IE is the master controller when the experiment is acquiring data. Approximately
2 * 107 electronic devices need to be accessed and controlled by about 104 different
machines scattered over a high-bandwidth network. The IE instructs the subpart of this
experiment to act according to the specific needs of a data collection session. The main
functions of the IE in this case are:

• to control and monitor the entire instrument, ensuring the correct and proper
operation of the CMS experiment

• to control and monitor the DAQ system

• to provide user interfaces and allow users to access the system from anywhere in
the world.

6.2 The Intrusion Detection System

One of the main challenges in the security management of large high-speed networks is
the detection of suspicious anomalies in network traffic patterns due to Distributed Denial
of Service (DDoS) attacks or worm propagation (Siaterlis et al., 2005). In the Intrusion
Detection System (Siaterlis et al., 2005), anomaly sensors measure various network
elements linked to grid-controlled Instrument Managers within a real-time domain.
The IE problem solver provides algorithms aimed at fusing the collected knowledge
to analyse individual domain-state reports, originated from heterogeneous sensors, to
deduce a global view of security incidents and so detect Distributed Denial of Service.

6.3 The power grid

In electrical utility networks (or power grids; Irving et al., 2004), the introduction of a
very large number of ‘embedded’ power generators, often using renewable energy
sources, creates a severe challenge for utility companies. In addition, power systems
involve many geographically distributed participants: generator owners, transmission
network operators, load managers, energy-market makers, supply companies, and so on.
GridCC technology allows the generators to participate in a virtual organisation, and
consequently to be monitored and scheduled in a cost-effective manner.

6.4 The Synchrotron Radiation Storage Ring

In the Elettra4 Synchrotron Radiation Storage Ring, the IEs control and monitor many
instruments (mainly sensors). The rate of incoming control and monitoring data is
different from the previous use cases; it is smaller than the data rate in the CMS scenario,
yet, since it resides at a critical point of alerting against major catastrophes, it imposes
high requirements on response times for alerts at the human-machine level interface.

 The many faces of the integration of instruments and the grid 263

6.5 The IMAA sensor networks

Operating since 2003, the Institute of Methodologies for Environmental Analysis
(IMAA) has installed a network of sensors devoted to providing real-time information
on several meteorology and physical-chemical parameters of soil and subsoil, useful
for describing landslide dynamics, and possibly to detect warning conditions in a
timely fashion (Perrone et al., 2004; Perrone et al., 2005). Monitoring is done with a
multichannel data-logger7 on the monitored side to collect/aggregate information
coming from different sensors, both passive and active.8 Different sensors are wired to a
data-logger while this device is remotely controlled via a wireless network. The IE
virtualises the access to the sensors controlling multiple DAQ devices, allowing grid
access to the instruments.

6.6 The Advanced Gamma Tracking Array experiment

AGATA,9 the Advanced Gamma Tracking Array, is a 4π array of segmented coaxial
detectors. The design consists of a geodesic tiling of a sphere with 12 regular pentagons
and 180 hexagons. Sensors, which are front-end electronic devices, are linked to the
detector to dispatch the just-read information to the event-building farm that will merge it
into physical events. The IE controls every single subcomponent such as PSA farms,
event builders, tracking farms and data servers of this complex distributed application.

6.7 The device farm

A set of telecommunications measurement instruments of various categories (signal
generators, signal analysers, channel emulators), interconnected via programmable
switching matrices, are accessed and remotely controlled as WS, and they are integrated
in the IE architectural framework. The concept of ‘virtual instrument’ allows the remote
control and visualisation of the results of the measurements carried out by an instrument
(Vollono and Zinicola, 2005). In most cases, it also allows the execution of the functions
of more instruments found in the laboratory.

6.8 Meteorology systems

The meteorological application of GridCC architecture consists of the Skiron/Eta weather
forecasting system (Kallos, 1997). It aims to predict and analyse hazardous weather
events. A HELLASGRID cluster at IASA is currently used as a test-bed for the model
configuration and execution under the GridCC environment. Further developments of
the model algorithms and operation scripts have been prepared in order to optimise the
model utilisation through the IE components. The system operates daily in deterministic
mode. The stochastic mode is under development, although a beta version is currently
being tested.

The normal operation of the computational model runs in a deterministic fashion,
covering the entire Mediterranean region. An emergency condition is assumed if a
hazardous weather event is detected in the computational domain from the current
operational cycle. In this case, the system can be switched to the stochastic mode instead
of the normal deterministic execution.

 264 F. Lelli et al.

7 Conclusion

The GridCC project integrates instrumentation into traditional computational/storage
grids. We cope with this open problem by proposing and realising the first release of the
IE, a new grid component that provides the computational/data grid with an abstraction of
real instruments, and grid users with a more interactive interface to control them. The
main benefits of the proposed solution are:

• A highly modular and flexible solution:

a The middleware deployment is organised into pluggable independent
components.

b The IE architecture is not tied to specific technologies or third-party software.

c Multiple and independent I/O interfaces: Commands and Controls directed at
Instruments, Fast Data Publishing, Data Movement to/from the grid.

• High scalability:

a IE is portable to different platforms.

b The target environment ranges from large farms to embedded devices.

• IE middleware aims to be used in production environments:

Mature middleware has been used, whenever possible, to assure robustness
and stability.

• Fine customisation of the IE:

The IE is easily adaptable to diverse scenarios and needs.

• High level of abstraction in the IE interfaces:

a Service Oriented Architecture

b Adherence to standards: WS-I-compliant web services.

• EGEE (gLite) compatibility:

Many grid facilities and tools can be reused, for instance GridFTP or SRM
interface for data movement.

Acknowledgement

The GridCC project is supported under EU FP6 contract 511382.

References

Alamri, A., Eid, M. and El Saddik, A. (2006) ‘Classification of the state-of-the-art dynamic web
services composition techniques’, Int. J. Web and Grid Services.

Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L. and Tuecke, S. (2005) ‘GridFTP:
protocol extensions to FTP for the grid’, http://www-fp.globus.org/datagrid/gridftp.html
(updated January 2002).

Brookshier, D., Govoni, D., Krishnan, N. and Soto, J.C. (2002) Published JXTA: Java P2P
Programming, Sams Publishing.

 The many faces of the integration of instruments and the grid 265

Byro, R., Coghlan, B., Cooke, A., Cordenonsi, R., Cornwall, L., Craig, M., Djaoui, A., et al. (2004)
‘R-GMA: production services for information and monitoring in the grid’, AHM2004.

Carmeli, B., Gershinsky, G., Harpaz, A., Naaman, N., Nelken, H., Satran, J. and Vortman, P.
(2004) ‘High throughput reliable message dissemination’, SAC ’04: Proceedings of the 2004
ACM Symposium on Applied Computing, New York, NY: ACM Press, pp.322–327.

Cittolin, S., Varella, W.S.J., Racz, A., Della Negra, M. and Herve, A. (2002) CMS TDR 6.2 The
TriDAS Data Acquisition Project and High-level Trigger CERN/LHCC, December.

Clarke, I., Miller, S., Hong, T., Sandberg, O. and Wiley, B. (2002) Protecting Free Expression
Online with Freenet.

Eugster, P.Th., Felber, P.A., Guerraoui, R. and Kermarrec, A. (2003) ‘The many faces of
publish/subscribe’, ACM Comput. Surv., Vol. 35, No. 2, pp.114–131.

Irving, M., Taylor, G. and Hobson, P. (2004) ‘Plug into grid computing’, IEEE Power & Energy
Magazine, March–April, pp.40–44.

Kalganova, T., Suppharangsan, S., Taylor, R., Alsaif, M. and Lelli, F. (2006) ‘Towards
development of problem solver in the grid environment with monitoring and control of
instrumentation’, International Conference on Intelligent Engineering Systems (INES),
London, UK, June.

Kallos, G. (1997) ‘The regional weather forecasting system SKIRON’, Proceedings of the
Symposium on Regional Weather Prediction on Parallel Computer Environments, October.

Lelli, F., Maron, G. and Orlando, S. (2006a) Enabling the Web Service Quality of Service, Istituto
Nazionale di Fisica Nucleare Pre-Printing ID:INFN-LNL-212(2006), September.

Lelli, F., Maron, G. and Orlando, S. (2006b) ‘Improving the performance of XML based
technologies by caching and reusing information’, Proc. of International Conference of Web
Services (ICWS06), IEEE Computer Society, Vol. 1, September, pp.689–700.

Mahemoff, M. (2006) Ajax Design Patterns, O’Reilly Media, 1st ed., 1 June.

Maron, G., Lenis, A., Moralis, S., Grammatikou, M., Karounos, T., Papavassiliou, S., Maglaris, V.,
et al. (2005) ‘GridCC architecture design’, GridCC Project deliverable www.gridcc.org, May.

McManus, E. and Sun Microsystems, Inc. (2003) JSR 160: JavaTM Management Extensions (JMX)
Remote API 1.0, October.

McMullen, D.F., Devadithya, T. and Chiu, K. (2005) ‘Integrating instruments and sensors into the
grid with CIMA web services’, Proceedings of the Third APAC Conference on Advanced
Computing, Grid Applications and e-Research (APAC05), September.

Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E. and Sdao, F. (2004)
‘High-resolution electrical imaging of the Varco d’Izzo earthflow (Southern Italy)’, Journal of
Applied Geophysics, Vol. 56, No. 1, pp.17–29.

Perrone, A., Zeni, G., Piscitelli, S., Pepe, A., Loperte, A., Lapenna, V. and Lanari, R. (2005) ‘On
the joint analysis of SAR interferometry and electrical resistivity tomography surveys for
investigating ground deformations: the case-study of Satriano di Lucania (Potenza, Italy).
Remote sensing of environment’, Journal of Applied Geophysics, Vol. 1, pp.486–504.

Pugliese, R., Asnicar, F., Del Cano, L., Chittaro, L., Ranon, R., De Marco, L. and Senerchia, A.
(2005) ‘Collaborative environments for the GRID: the GRIDCC multipurpose collaborative
environment’, Tyrrhenian Workshop, Sorrento, July, Vol. 1, pp.252–260.

Siaterlis, C., Lenis, A., Moralis, A., Roris, P., Koutepas, G., Androulidakis, G.,
Chatzigiannakis, V., et al. (2005) ‘Distributed network monitoring and anomaly detection
as a grid application’, HP Openview University Association Plenary Workshop (HP-OVUA)
Porto, July.

Silva, V. (2003) ‘Transferring files with GridFTP’, April, http://www.128.ibm.com/
developerworks/grid/library/gr-ftp/?ca=dgr-lnxw03GridFTP.

Smith, M.K., Welty, C. and McGuinness, D.L. (2003) ‘OWL web ontology language guide, W3C’,
http://www.w3.org/TR/owl-guide/.

 266 F. Lelli et al.

Taylor, J. (2004) From P2P to Web Services and Grids, Peers in a Client/Server World,
Springer, October.

Tham, C.K. and Buyya, R. (2005) ‘SensorGrid: integrating sensor networks and grid computing’,
Invited Paper in CSI Communications, Special Issue on Grid Computing, Computer Society of
India, July.

Vollono, A. and Zinicola, A. (2005) ‘A new prospective in instrumentation interfaces as web
services’, Proc. of Tyrrhenian Workshop, Sorrento, Italy, July.

Notes

1 OGC Sensor Web Enablement, www.opengeospatial.org/functional/page=swe, last visit
1 January 2007.

2 GridCC Project, http://www.gridcc.org/, last visit 1 January 2007.

3 Grid Enabled Remote Instrumentation with Distributed Control and Computation (GridCC)
Project Annex I, http://www.gridcc.org/getfile.php?id=1436e, 2005.

4 Synchrotron Radiation Storage Ring Elettra, http://www.elettra.trieste.it/index.php, last visit
1 January 2007.

5 GridCC Use Cases, https://ulisse.elettra.trieste.it/tutos.

6 Interchangeable Virtual Instrument Foundation, http://www.ivifoundation.org/, last visit
1 January 2007.

7 Data acquisition system (Keithley instruments model 2701, with plug-in switching modules
model 7702).

8 Non-polarisable petiau electrodes (SDEC electrodes, pb/pbcl2-nacl) soil probes made by
http://www.campbellsci.com/sensors: Time Domain Reflectometer (TDR) and a thermometer;
atmospheric probes made by http://www.campbellsci.com/sensors: Pluviometer and
thermometer.

9 AGATA Advanced Gamma Tracking Array design specification, http://agata.pd.infn.it/
Agata-proposal.pdf.

10 Jini Project, http://www.jini.org/, last visit 1 January 2007.

11 The Freenet Project, http://freenet.sourceforge.net/, last visit 1 January 2007.

12 EGEE Middleware Architecture and planning, EGEE Project Deliverable, EGEE-DJRA1.1
-594698-v1.0, Chapter 9. Also available at https://edms.cern.ch/document/594698/, July 2005.

13 SRM: Storage Management Working Group, http://sdm.lbl.gov/srm-wg/, last visit
1 January 2007.

14 JMS Standard API, http://java.sun.com/products/jms/, last visit 1 January 2007.

15 Mantaray Project, http://www.mantamq.org, last visit 1 January 2007.

16 Web Service Interoperability Organization, http://www.ws-i.org/, last visit 1 January 2007.

17 JDBC Standard API, http://java.sun.com/javase/technologies/database.jsp, last visit
1 January 2007.

18 JSP Standard API, http://java.sun.com/products/jsp/, last visit 1 January 2007.

19 Apache Logging Project, http://logging.apache.org/, last visit 1 January 2007.

