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Abstract: Current grid technologies offer unlimited computational power and 
storage capacity for scientific research and business activities in heterogeneous 
areas all over the world. Thanks to the grid, different virtual organisations  
can operate together in order to achieve common goals. However, concrete  
use cases demand a closer interaction between various types of instruments 
accessible from the grid on the one hand and the classical grid infrastructure, 
typically composed of Computing and Storage Elements, on the other.  
We cope with this open problem by proposing and realising the first release  
of the Instrument Element (IE), a new grid component that provides the 
computational/data grid with an abstraction of real instruments, and grid users 
with a more interactive interface to control them. In this paper we discuss in 
detail the implemented software architecture for this new component and we 
present concrete use cases where the IE has been successfully integrated. 
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1 Introduction 

Grid computing refers to the coordinated and secured sharing of computing resources 
among dynamic collections of individuals, institutions and resources (Cittolin et al., 
2002; Irving et al., 2004).1 It involves the distribution of computing resources among 
geographically separated sites (creating a ‘grid’ of resources), all of which are configured 
with specialised software for routing jobs, authenticating users, monitoring resources,  
and so on. 

The operative core of the standard computational grid is mainly composed of two 
important elements: the Computing Element (CE) and the Storage Element (SE). The 
first one provides the final user with an abstraction of the back-end of the computational 
system. In other words it is where the execution of an application is performed. This  
is a very general element that allows different computational nodes, like a single 
processor or a complex computing cluster, to be seen as a homogeneous set of interfaces. 
The second one, the SE, provides a storage facility for the input and output of the 
applications that are executed on a CE. The storage can be as simple as a standard  
file-system, or a set of databases organised into a more complex structure. While remote 
control and data collection are part of the initial grid concept, most recent grid 
developments have been concentrated on the sharing of distributed computational and 
storage resources. 

In this scenario applications that need computational power only have to use these 
grid elements in order to access an unlimited amount of computational power and disk 
storage. Unfortunately, as explained later in this section, concrete use cases require a 
strong interaction between the instrumentation and the computational grid; in addition, 
they need to be accessed directly from a remote site in the world. For instance, in  
the Compact Muon Solenoid (CMS) Data Acquisition (DAQ) (Cittolin et al., 2002) 
system, where the data-taking phase of an experiment occurs, physicists need a single 
entry point to operate the experiment and to monitor detector status and data quality.  
In Electrical Utility Networks (or power grids (Irving et al., 2004)), the introduction of 
very large numbers of ‘embedded’ power generators, often using renewable energy 
sources, creates a severe challenge for utility companies. In Geo-Hazards Systems a set 
of heterogeneous, geographically distributed sensors needs to be remotely accessed and 
monitored, while the combined instruments’ outputs should be automatically analysed 
using the computational grid. 

The Grid Enabled Remote Instrumentation with Distributed Control and Computation 
(GridCC) project (Maron et al., 2005),2–3 launched in September 2004 by the European 
Union, addresses these issues. The goal of GridCC is to exploit grid opportunities for the 
secure and collaborative work of distributed teams, in order to remotely operate and 
monitor scientific equipment using the grid’s massive memory and computing resources 
for storing and processing data generated by this kind of equipment. 
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Our idea is to implement a software component that can satisfy all the  
above-mentioned requirements as a new grid component: the Instrument Element (IE). It 
consists of a coherent collection of services that provides all the functionalities to 
configure and control the physical instrument behind the IE and the interactions with the 
rest of the grid. Figure 1 gives an idea of the relationship between the IE and its users and 
between the IE and other grid components. 

Figure 1 Interaction between the IE and other grid components 

 

In order to achieve a fast and high level of interaction with the IE component, users can 
directly access the controlled instrument using a remote control room or Virtual Control 
Room (VCR) (Pugliese et al., 2005). Or, as a second possibility, an instrument operation 
can be part of a complex work flow managed by a grid execution service (Alamri et al., 
2006) that allows the IE to access and converse with the computational grid. These ways 
to control the instruments are not mutually exclusive and can be performed in parallel 
where needed. 

Inside the IE a set of web service interfaces called Virtual Instrument Grid  
Service (VIGS) allows the user to remotely access the real instrument, thus plugging  
the system itself into the grid. The IE can provide facilities for interactive cooperation 
between computing grid resources and applications that have real-time requirements  
or need fast interaction with CEs and SEs. Finally, the IE can also be linked to  
existing instrumentation in order to provide grid interaction and remote control to  
stand-alone resources. 

The term ‘instrument’ describes a very heterogeneous category of devices. A set of 
use cases (Cittolin et al., 2002; Irving et al., 2004; Siaterlis et al., 2005; Tham and 
Buyya, 2005; McMullen et al., 2005)1, 3–9 have been extensively analysed in order to 
collect the functional and nonfunctional requirements of this new grid component. From 
an intuitive point of view the IE should: 
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• provide uniform access to the physical devices 

• allow standard grid access to the instruments 

• allow cooperation between different instruments that belong to different Virtual 
Organisations(VOs). 

We need to point out that IE users do not need to be human beings. Other software 
components must be able to control the instruments. 

Figure 2 shows a use case diagram of the system. A user of the IE can have one of 
three roles: 

1 Observer – one that has the right to monitor the operation of the instrument. 

2 Operator – one that can instantiate an instrument configuration, and control and 
monitor the instrument. 

3 Administrator – one that can create an instrument configuration that can be accessed 
by the observer user and/or the operator user. 

The monitoring operation is intended as the possibility to retrieve all information that  
can be used to determine the operational status and to track the operation of an 
Instrument System. 

Figure 2 IE use cases 

 

The control operation is intended as the possibility to act on one or more instruments and 
move acquired data to and from the computational grid. 

The configure operation is intended as the possibility to create instruments 
orchestration (i.e., configuration or partition) that can be used by other actors. 
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The instantiation operation (which is considered a control extension) is intended as 
the possibility to create instruments, if the physical instruments provide this functionality, 
or to link to them otherwise. 

At any moment there can be multiple observers, multiple administrators, but at  
most one operator that utilises a particular instrument. A second operator user that  
tries to control an instrument already controlled by another operator should be treated by 
the system as an observer user. If the real instrument can be partitioned into subsystems, 
multiple operators should be able to access different instrument partitions via the  
same IE. 

Close to these functional requirements, a grid of instruments introduces a set of 
nonfunctional requirements, as summarised in Table 1. Take, for example, the possibility 
of controlling about 104 instruments simultaneously in an interactive way. This 
introduces the need to provide a scalable system (marked as Scalability requirement) 
equipped with a certain Quality of Service (QoS) guarantee, as will be explained in 
further sections. 

Table 1 Nonfunctional requirements 

Nonfunctional requirements Type 

O(104)nodes/instruments must be controlled and monitored Scalability  

The nodes/instrument should be accessed through the web. Remote access  

The nodes/instrument should be accessed in a homogeneous way. Standardisation 

Round-trip time to reach all the nodes must be in the order of 
human reaction time. 

Quality of Service  

Online diagnostics and possible error recovery Autonomic  

In a grid of instruments, like the computational one, interoperability (marked as 
Standardisation in Table 1) is a mandatory requirement. Therefore the only possible 
communication between Grid subcomponents is via Web Services (WS). 

For complex systems, in addition, online diagnostics, error recovery and device 
organisation robustness (marked as Autonomic) should be provided. Finally, we need  
to consider that different instruments use different technologies and protocols in order to 
be accessed. 

The above-mentioned functional and nonfunctional requirements represent the basic 
building block of this new grid component. In particular we can observe that the control 
of instruments demands both deep interaction between users and devices, and the 
adoption of highly interoperable solutions that only SOA-based web/grid services  
can offer. 

The rest of this paper is organised as follows. In Section 2 we present a classification 
of instruments and a uniform model for the control of each type of instrument. In  
Section 3 we present the IE system as the way to integrate instruments and the grid. In 
Section 4 the technological choices for the implementation of the first release of the 
proposed IE model are discussed. In addition, Section 5 shows some performance tests on 
the current implementation, while Section 6 we give an overview of the applications that 
already use the current implementation. 
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2 Instrument classification 

In grid terminology the words ‘instrument’, ‘sensor’ and ‘device’ are used to identify a 
piece of equipment that needs to be initialised, configured, operated (start, stop, standby, 
resume, application-specific commands), monitored or reset. Remotely accessed 
resources play a key role in the grid paradigm. Our classification includes only those 
devices that can be plugged into a network. In addition, the instruments must be 
controlled and monitored remotely in order to enable cooperation with other Grid 
components, such as the CE, SE and other instruments. Normally, such functionalities are 
not part of simple devices, simply because they request too many resources in terms of 
computational and/or electrical power. 

To summarise, from a grid perspective, a device can belong to one of the  
following categories: 

• dummy instrument 

• smart instrument 

• smart instrument in an ad hoc network. 

The first type comprises very simple hardware. The instrument in this category uses Data 
Acquisition (DAQ) for remote operation; the data is collected with a set of devices that 
are physically linked together. The devices enable remote network organisation and 
provide higher-level functionalities. These instruments are typically deployed in remote 
sites far from the base station. In addition, only the remote (local from a sensor point of 
view) DAQ collector can be accessed in a remote way, thus acting as a proxy for the 
sensors that are physically connected to it. Nonpolarisable Petiau electrodes8 used in the 
IMAA network are examples of dummy sensors. 

‘Smart instruments’ make up a large category comprising devices that provide all  
the functionalities needed to be remotely accessed and controlled. High-energy physics  
and particle physics experiments use these kinds of sensors (Cittolin et al., 2002).4, 9  
For instance, a smart instrument can be an electronic card that acquires data from  
the concrete detector and dispatches it to one or more machines that perform data 
aggregation. Typically, these devices are close together and physically connected via a 
fast communication channel, like a 1 GB Ethernet or an optic fibre. Performances  
and scalability are an issue and key requirements of these instruments as part of a 
distributed system. An additional requirement imposed on these devices is autonomicity.  
The electronic front-end and the information collector (event builder or EVB) of a  
high-energy experiment is composed of thousands of nodes (usually powerful PCs),  
thus, basic fault tolerance and dynamic instrument reconfiguration must be part of the 
device’s functionalities. 

The smart instrument in an ad hoc network can be seen as a specialisation of the 
previous category. Such devices need not be in close physical proximity, but rather they 
can remotely communicate through specialised wireless connections. In general, batteries  
fuel these devices and mobile sensors are part of this category. The challenge is to 
minimise the energy consumption of the communication channel. Then, we should keep 
battery consumption uniform between different devices to minimise human interaction 
with them. 
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A uniform instrument model 

Since the instruments are heterogeneous in nature, one current shortcoming is that the 
applications that use them (e.g., DAQ codes) must have a complete operational model  
of the instruments and sensors they work with. This makes maintaining investments in 
these codes difficult and expensive when the underlying instrument hardware is changed 
and/or improved. A primary design goal for this section is to externalise the instrument 
description so that applications can build an operational model ‘on the fly’. This approach 
makes it possible to preserve investments in DAQ codes as instrument hardware evolves 
and to allow the same code to be used with several similar types of instruments. 

The presented instrumentation model is used in order to meet the functional 
requirements. It can be used for each device independent of the category to which it 
belongs. In the following sections, we will better understand why the implementation of 
this model is really dependent on the instrument types. 

Figure 3 shows our instrument abstraction model. 

Figure 3 Abstraction model of a generic instrument 

We can consider a generic device as a collection of parameters, attributes and a control 
model, plus an optional description language. The more detailed parameters are variables 
on which the instrument depends, like range or precision values of a measure, while 
attributes refer to the effective object that the instrument is measuring. 

The main difference between parameters and attributes is that typically the first are 
accessed in a polling mode, while for certain types of attributes, like a cam streaming, a 
publish/subscribe or a stream access method is more appropriate. Therefore, both push 
and pull access ways must be supported for attributes. 

The control model represents the list of commands that the instrument can support. 
This list can be expressed using a state machine model, a Petri Net, etc. We have to note 
that in this abstraction, the term ‘command’ refers to both the actions that change the 
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instrument status and those that do not. Parameters, attributes and the control model can 
give the possibility of controlling every possible instrument or sensor, but what is still 
lacking is the possibility to allow the device to describe itself, giving the user the 
possibility to understand what exactly it can do with this instrument. In order to achieve 
this goal, an XML-based description language is also part of our instrument abstraction. 
Languages like the SensorML1 or OWL-DL (Smith et al., 2003) can be use to describe 
the semantics of the particular instrument. 

The presented abstraction provides a uniform layer across different devices and  
can be used as a building block for the control of complex systems such as the CMS 
experiment (Cittolin et al., 2002), which is composed of about 2* 107 hardware 
components and about 104 machines dedicated to online event processing. In order to 
simplify the control of these systems, instruments can be logically (or physically) 
grouped into hierarchies, from which data can be aggregated or for which control 
commands affect multiple sensors or actuators. What is needed in this case is an 
instrument aggregation model, like the one that we will present in the next section, which 
is capable of controlling all these devices in a congruent way. 

3 Instrument aggregation model 

The integration of a single instrument into the grid is a relatively simple task. Problems 
arise when millions of different instruments need to interoperate with each other in order 
to achieve common goals, giving the external users a well-defined entry point. In order to 
simplify this task, some services could be created around the instrument to allow a 
uniform interaction, by giving the illusion of controlling a single device. 

We define the term ‘Instrument Element’ (IE) as a set of services that provides the 
needed interface and implementation that enables the remote control and monitoring of 
physical instruments. The IE needs to be really flexible; in the simplest scenario this 
abstraction can represent a simple geospatial sensor or an FPGA card that performs a 
specific function, while in a more complex network of sensors it can be used as a bridge 
between the sensors and the computational grid. Finally, the IE can be part of the device 
instrumentation, permitting the organisation of the instrument into a network that allows 
grid interaction. 

Unlike the CE and the SE, this grid component is accessed using interactive 
computational job execution and requires a close interaction with the users sitting in the 
VCR (Pugliese et al., 2005). 

If we see the IE as a black box that allows the interaction of instruments in a uniform 
way, we can identify three different communication channels: firstly, a uniform interface 
that allows the control of the different system devices in a uniform and coherent way; 
secondly, an output channel that allows a fast instrument cooperation that permits the 
reception of asynchronous data and monitors information that came from the instrument 
attributes; and finally, a set of services that allows the interaction between the instrument 
and the standard grid system. 

Many similarities can be seen in the black box model presented in Figure 4 and in the 
one discussed in Section 2.1. The main difference is that the IE represents a collection of 
instruments that can work together or simply belong to the same organisation, so an index 
service that addresses them is mandatory. Finally, we can note that the IE itself is 
consistent with the model presented in Section 2.1; therefore an IE can be part of other 
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IEs. In addition, the IE also acts as a protocol adapter, providing a uniform way to control 
heterogeneous devices. We believe that web services are an excellent choice when there 
is a need to provide a common language to the cross-domain collaboration and to hide the 
internal implementation details of accessing specific instruments. Standards like SWE,1 
JMX (McManus and Sun Microsystems, Inc., 2003), or IVI6 and P2P Systems like JINI10 
and Freenet (Clarke et al., 2002),11 have been analysed in order to ensure that the  
front-end (the Virtual Instrument Grid Services or VIGS) final methods are really capable 
of providing a generic instrument virtualisation. 

Figure 4 The IE abstraction 

 

A final remark: as already introduced at the beginning of this paper, the control of 
instruments demands deep interaction between users and devices. Consider that when the 
access is performed via internet using WS, the remote invocation time becomes critical in 
order to understand if a service can be controlled properly or the delays introduced by the 
wire are unacceptable. 

To summarise the mentioned requirements, we can define two different types of 
access with different QoS: 

1 Strict (hard) guarantees – the response to a requested service is reliable; in this case 
the availability of an Agreement Service (Maron et al., 2005) that performs advanced 
reservation and can negotiate ‘interaction times’ with a component is necessary. 

2 Loose (soft) guarantees – the response to a requested service is unreliable. Therefore 
QoS is provided on top in a best-effort infrastructure. In this case a prediction 
method based on a statistical approach must be provided. 

Techniques that allow interactive web service improvement and prediction of a remote 
method execution time that can be used in this particular context have been presented in 
Lelli et al. (2006a) and Lelli et al. (2006b). 

What follows is a description of the main building blocks and a detailed description 
of the most important ones. 
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3.1 Instrument aggregation building blocks 

This section describes the main IE building blocks, presenting the set of additional 
services that can simplify the access and the control of instruments. We present the 
mentioned services as centralised components and in Section 3.5 we discuss where these 
services should be implemented in a centralised or in a distributed way. 

Figure 5 represents the detailed IE architecture. What follows is a short description of 
each subsystem component. 

• Instrument Managers (IM) – the instrument managers are the parts of the IE that 
perform the actual communication with the instruments. They act as protocol 
adapters that implement the instrument-specific protocols for accessing the IE’s 
functions. One IM can control more than one single device and it is coherent with  
the model presented in Section 2.1. In other words, it can be seen by other IMs as  
an instrument, allowing a hierarchic partition of the controlled devices where the 
complexity of the system requires such a control structure. 

• Resource Service (RS) – this service organises in groups all the resources that belong 
to the system, in order to facilitate the access. In this context a resource can be any 
hardware or software component that can be managed directly or indirectly through 
the network. 

• Information and Monitor Service (IMS) – this service disseminates monitoring data 
to the interested partners, giving a single access point to all the information produced 
by the instruments. 

• Problem Solver (PS) – it has the main task of collecting alarms, errors, warnings  
and messages, which in our models are instrument attributes and parameters, in  
order to identify error conditions (Kalganova et al., 2006). We have to note that  
an error recovery can be part of the IM control logic, but while this component is 
mainly involved in the online recovery, the PS can act offline to try to discover 
unknown rules. 

• Access Control Manager (ACM) – it is responsible for checking user credentials  
and deciding whether an external request should be processed by the IE  
(Maron et al., 2005). 

• Data Mover (DM) – since we cannot assume that instruments are complex devices, 
they need an external service in order to deal with the classical computational grid. 
This component provides this functionality in a centralised way. In a fully distributed 
scenario like Sensor Network, a decentralised approach could be more appropriate; 
therefore part of this functionality could be part of the IM component. This service 
provides the SRM12–13 interface to any external storage (SE) or processing elements 
(CE). It finds the ‘best’ mechanism, such as GridFTP (Allcock et al., 2005; Silva, 
2003) or other transport protocols, to move a file from one storage resource to 
another. For more demanding applications, grid standards could be inappropriate due 
to the high bandwidth requested, and a streaming output and/or an MPI interface that 
allows push subscription capability of the instrument attributes might be needed. 
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Figure 5 The IE architecture 

 

3.2 The Instrument Manager (IM) abstraction 

As already mentioned, the IM is the component that deals with the instrument or the 
instrumentation of the physical device. Each IM is responsible for performing the actual 
communication with the controlled set of instruments. It acts as a protocol adapter that 
implements the instrument-specific protocols for accessing their functions. Considering 
that instruments are heterogeneous in nature, this component is also equipped with a 
plug-in/driver-based system, which allows an easy reuse of code by changing just the 
communication library that implements the device-dependent communication protocols. 
For simple devices that require a minimal control structure, no additional code must be 
written; at the same time, in multiple and complex control devices this component 
provides all the basic building blocks that allow the customisation of the control system. 
Finally, the IM conforms to the model presented in Section 2.1; therefore it can be seen 
by other devices as an instrument itself, allowing instrument aggregation and hierarchic 
organisation, thus achieving the goal of breaking down the complexity of the system or 
organising the instrument in groups. 

In addition, the IM can allow the cooperation with other devices; this is a key feature 
when working in a grid of instruments. Instruments in the ‘smart sensor’ category need to 
exchange data without loss, as fast as they are being generated. The data collector 
devices, or some other dedicated set of instruments, process the data (filter and aggregate 
it) and move it to a final location. Afterwards the data, via the data mover, is stored in a 
repository or in a SE for future offline analysis. 
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The main components of each IM are as follows: 

• The Communication Tools can be used by every single subcomponent in order  
to publish/receive information such as logs, errors, states, configuration, etc., and to 
receive messages coming from other components. This service also acts as a proxy 
for the higher-level Data Mover service. If data produced by the set of controlled 
instruments arrives at a large rate, this low-level service makes the movement of 
such data more manageable. Finally, these tools represent the instrument front-end of 
the Information and Monitoring System. 

• The Control Manager is the component that actually controls the instrument and/or 
the instrumentation. The typical use case of this subsystem is to receive inputs  
from the users that are controlling the devices. It can also receive inputs like states  
or errors that come from the physical controlled instrument. So it can react in an 
autonomous way to unexpected behaviour of the controlled resources by allowing 
automatic recovering procedures to be started. This autonomic action becomes 
critical if the IM controls a large set of instruments, while for simpler devices such 
functionality becomes less important compared to the need to have a plug-in system 
that integrates the device drivers. 

• The Input Manager waits for an external input and presents it to the Event Processor. 
Inputs can come from users, other instrument managers, or from the devices 
themselves in the case of smart instruments. In this last case, considering that each 
instrument has a different way of communicating, a driver component must be 
provided and loaded inside the particular IM. 

• The Resource Proxy represents the IM instrument front-end. The control library used 
in order to exchange messages with the physical device must be plugged inside; this 
is the minimal customisation action that must be performed in order to plug a generic 
device into the grid. 

• In the Event Processor component, the command will be elaborated in order to 
control the instrument properly. By default, events just trigger the proper action  
in the proper resource proxy. At the same time, using the plug-in system, this 
component can be used in order to provide an aggregate and more complex control 
that allows the possibility to plug inside every possible algorithm: expert systems, 
fuzzy logic, custom if-then-else, Neural Networks, etc. As a final remark, this 
component represents the basic infrastructure of the Problem Solver, allowing 
recovery action and/or fault-tolerant procedure, in case of subsystem failure. 

• The Finite State Machine Engine is specifically designed to simplify the Event 
Processor algorithms, providing simple call-back mechanisms when writing the 
action that must be performed according to a particular triggered transition. It also 
provides the possibility to perform introspection by external users that want to 
control the particular IM. 

Figure 6 shows in detail the interactions occurring in the IM subcomponent. The dotted 
lines are optional actions that can be performed or not on the basis of the particular 
received input, while the other lines are mandatory. In addition, the first two lines are 
actions triggered by the users in the VCR. From the temporal point of view, events 
coming from user commands or instrument messages are received from the input 
manager and the information is processed in the Event Processor submodule. Such  



   

 

   

   
 

   

   

 

   

   252 F. Lelli et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

a submodule, on the basis of the received input, can decide to perform a state transition 
according to its Finite State Machine (FSM), and/or control the real instruments via the 
Resource Proxy module. Once the action is successfully or unsuccessfully performed, a 
notification is sent back to the users. 

Figure 6 VCR-IE interactions 

 

3.3 Resource Service (RS) 

The complexity of the information managed by the RS is really instrument dependent  
and ranges from a practically fixed configuration to a configuration and orchestration of 
thousands of nodes (Cittolin et al., 2002; Irving et al., 2004).1, 9 In any case, it provides a 
uniform way and a single point of access to the information related to a particular 
instrument from external users. 

If a system, like a sensor network, allows the possible use of a subset of devices, it 
also manages this partitioning. In addition, this service can act as a super peer in dynamic 
instrument networks, where simple devices can appear and disappear. Finally, this service 
can permit a reservation of the system, allowing authorised users the possibility to 
bookmark resources. 

Figure 7 classifies the information that has to be retrieved from the Resource Service 
for every instrument. 

From a semantic point of view, we can divide the information into three different 
categories: 

1 Information such as physical locations of configuration file or driver type, etc.,  
which is only internal to the IE and is needed in order to ensure the correct 
instrument instantiation. 
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2 Information that can be modified at runtime by the users and that could change the  
global behaviour. The numbers and types of instruments that should be used to 
perform particular aggregate actions are typical of the information that belongs  
to this category.  

3 Information that identifies the instrument topology, i.e., both potential and actually 
performed intra-instrument connections. 

The same information could be categorised from the dynamicity point of view: (a) Static 
information refers to data that will be defined at deployment time and will never change 
in the future. As its opposite, (b) Dynamic information consists of data that can change in 
an automatic way, without user intervention. In the middle, we have (c) Low Dynamic 
information, which corresponds, for example, to adjustments performed by the users  
at runtime. 

Figure 7 Classification of the information contained in the resource service 

 

We can note that most of the information is close to the instrument, and belongs  
to a particular instance. In addition, considering a set of instruments as one single  
device, static information introduces rigidity to the system while low dynamic 
information introduces complexity in the global system usage. As we will point out  
later in Section 3.5, complex static systems configuration, which typically are simpler  
to implement, could be the solution in use cases, where all instruments need to be  
in a consistent state in order to produce a coherent output (Cittolin et al., 2002).9 
Unfortunately, this solution remarkably increases the configuration problem, providing a 
fixed structure that, in the case of a subsystems fault, must be manually reconfigured by 
the users. In highly dynamic systems like the one described in Irving et al. (2004) and 
Note 1, this solution is simply unusable because the introduction of a new node in the 
system triggers a total reconfiguration. 

3.4 Information and Monitor Service (IMS) 

Instruments and Instrument Managers dispatch data and information that can be 
monitored via the IMS. We have to point out that more demanding applications (Cittolin 
et al., 2002) request that this service handle about 105 messages per second. Therefore 
this system cannot be implemented in a centralised way. In addition, standard message 
formats like SOAP cannot be used in these components due to the overhead  
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that this serialisation introduces (Lelli et al., 2006b). Finally, taking into account that 
instruments are independent and weakly coupled with each other, an information and 
monitor system should preserve the mentioned properties. 

As a result, architectures such as the one presented in Note 14, Byro et al. (2004) and 
Brookshier et al. (2002) appear to be the most appropriate for this task. In these systems, 
peers publish information on a given topic for subscribers that have previously indicated 
their interest (see Figure 8). 

Figure 8 Publish/Subscribe architecture 

 

Using this particular approach, we allow peers in the network to appear and disappear 
dynamically, preserving a certain robustness with respect to system faults (Eugster  
et al., 2003). 

Once the connection to the particular information channel has been established, 
publishers can start sending data. Considering that high throughput is a must in these 
cases, a bridged/relay (Brookshier et al., 2002)15 solution appears to be the only way to 
preserve this characteristic. 

Figure 9 tries to explain what was mentioned before in a simplified scenario, where 
one publisher, which belongs to a particular private network, tries to send information to 
peers disseminated throughout the world. Using a smart protocol, the publisher can reach 
peers located in the same LAN and/or communicate to the bridge component that is 
connected with other bridges via standard communication protocols, like TCP and HTTP. 
Bridges, once they have received the messages, firstly convert them into a more suitable 
format, and secondly send them to peers that are in the same LAN domain. Multicast 
protocols can be used to reduce the number of messages that publishers need in order to 
continuously improve the performance of the system (Carmeli et al., 2004). 

3.5 Static versus dynamic aggregation models 

The term ‘Instrument’ describes a very heterogeneous category of devices. Refer to 
Cittolin et al. (2002), Irving et al. (2004), Siaterlis et al. (2005), Tham and Buyya (2005), 
McMullen et al. (2005) and Notes 1, 3–9 as a large set of examples. Even if we believe 
that a uniform and coherent set of services can facilitate their aggregation and the 
interoperability across different organisations, the approach to the implementation could 
be really different. In Cittolin et al. (2002), for instance, the CMS data acquisition phase 
can start only if all the instruments of the system are of the same status, while in Irving  
et al. (2004), McMullen et al. (2005) and Note 1, instruments can dynamically join  
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the system. In the previously mentioned cases we cannot assume that the index of all 
instruments, which is the base abstraction of the Resource Service, is static. The IM 
behaviour needs to dynamically adapt itself to the dynamic, existing instrument structure. 
This particular functionality is typical of P2P (Taylor, 2004) systems, wherein the 
network can dynamically adapt to peer changes. Incidentally, a single and relayable entry 
point of this information is mandatory if we want to provide a set of instruments as a 
service for the computational grid. 

Figure 9 IMS architecture 

 

Considering the categorisation of the information that we defined in Section 3.3, we can 
note that static information and some of the low dynamics belong to a particular 
instrument instance, while instrument topology information must be a sheered attribute 
between devices in order to avoid collisions, thus organising the instruments in the proper 
way. In a typical discovery based on P2P, a peer announces itself to the network, giving 
other peers the possibility to perform query and exchange of data. 

In this scenario, instruments can dynamically engage other existing instruments, 
performing a system lookup and allowing the dynamic determination of the peers’ 
topology. 

This approach distributes the information to the instruments, thus breaking the global 
configuration into several parts that dynamically change during the system usage. 

Figure 10 explains the dynamic joining of an instrument into the system. After a 
bootstrap, the instrument sends a discovery request to other peers and Relays forward this 
request to unreachable devices. Instruments reply to this request by announcing their 
presence in the network and then the new instrument enquires of the others in order to 
discover what type of device they are. Once the instrument finds the needed resources, it 
engages and uses them. 

If an instrument disappears from the system, other devices can repeat the 
discovery/information enquiry phases in order to try and find the needed resources. In 
addition, this operation can also be repeated in case of failure in order to detect the 
recovery of the needed subcomponent, allowing an autonomic behaviour. 
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Figure 10 Instrument discovery interaction diagram 

 

In this P2P scenario, the information is no longer centralised but is distributed in the 
system. Therefore this approach complicates monitor functionalities that also need a 
discovery system in order to detect the actual instrument topology. In other words, the 
Resource Service end point must periodically repeat the instrument discovery and 
information enquiry phases, as with all the system devices, in order to detect the status  
of the entire system. Alternately (or in parallel), instruments can periodically send an 
advertise message in order to inform interested peers of their status. 

3.6 Embedded devices 

In this context we refer to an embedded device as one with limited computational and 
network capacity. In order to reduce the system requirements, IM with very limited 
functionality can be directly installed into the electronic front-end. This enables other 
IMs to remotely contact this device using a low-level communication channel, allowing a 
bridged communication that can enable a more elaborate interaction. 

For complex systems such as in Cittolin et al. (2002),9 embedded applications that 
run in ad hoc electronic cards can also use the communication tools to dispatch the data 
just acquired to the thousands of nodes that constitute the event builder layer. Each Event 
Builder (EVB) machine, which can be seen as an instrument, operates as a subscriber to 
the messages (data) sent by the publishers – the devices on the cards. The selection of the 
required devices is enabled by associating a topic with a device. The incoming data 
messages are then sampled using the publish/subscribe selector capabilities (Brookshier 
et al., 2002).14 The data is further processed and an event is generated and sent to a subset 
of machines that perform an additional intermediate step of ‘collection and aggregation’. 
Finally, this data is sent to the last layer of machines, which save the data via instrument 
managers directly connected to the data mover. 
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Figure 11 Embedded devices 

 

4 Current implementation 

Several technologies have been used in order to implement the first Java-based  
IE release, such as tomcat + axis as a web service engine, which provides a WS-I 
compliant16 software end point. The usage of a quite mature open source software has 
driven our choices in this field. 

The Resource Service uses JDBC17 connections to MySQL and Oracle DB in order to 
retrieve the instruments configuration information, while the IE-embedded GUI is based 
on JSP18 and AJAX (Mahemoff, 2006) technologies. 

Finally, the standard Apache Logging System,19 such as log4j, has been adopted in 
order to acquire runtime information of each single software subcomponent. 

To ensure the high throughput needed by the IMS component presented in  
Section 3.4, we have also used a JMS14 implementation on top of a high-performance 
Reliable Multicast Messaging (RMM) layer (Carmeli et al., 2004). RMM allows hosts to 
reliably exchange data messages over the standard IP multicast network. It exploits the IP 
multicast infrastructure to ensure scalable resource conservation and timely information 
distribution, with reliability and traffic control added on top of the standard multicast 
networking. The RMM-JMS extension is a very efficient Java implementation of the JMS 
standard using RMM services. 

RMM-JMS supports: 

• multicast transport for pub/sub messaging – supporting the JMS topic-based 
messaging and API, with matching done at the IP multicast level. The transport is a 
Nack-based reliable multicast protocol. 

• Direct (brokerless) unicast for point-to-point messaging – supporting the JMS 
Queue-based messaging and API. The transport is the TCP protocol. 

• Bridged/Brokered unicast transport for pub/sub messaging. 

Section 5 shows some performance tests on the current implementation while Section 6 
provides an overview of the current applications that are using the proposed architecture 
and the related implementation. 
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5 A benchmark on the current IE implementation 

In this section we present some IE benchmark tests. The goal is to figure out the 
scalability and flexibility of the first release of the IE. 

5.1 Command reception performances 

The following section describes tests related to the receiving capability of the IE’s 
Control Manager component. 

Figure 12 shows which components of the Control Manager are involved in these 
tests. Two tests have been performed: 

• Test 1 stresses the capability of the control manager to answer the clients’ requests. 
Typical clients in this case are the VCR and Execution Services, and also generic 
clients. Figure 13 reports the results. Around 50 invocations per second have been 
achieved, each invocation triggering a state transition in the FSM engine. 

• Test 2 stresses the capability of the control manager to react to asynchronous 
messages, as happens when an instrument has to send error and information 
messages, and even state changes. Figure 14 reports the results obtained by  
varying the number of instruments sending messages to the Input Manager and  
then to the Event Processor. 

Figure 12 IE invocation benchmark test description 
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Figure 13 Test 1 results: VCR invocation capability 

 

Figure 14 Test 2 results: IE message-handling capability 

 

5.2 Command distribution performances 

These tests aim to measure the distribution capability inside an IE when a tree Instrument 
Manager structure is used to reach the controlled instruments. Figures 15–17 depict the 
hierarchy that was used. 

In Figure 15 a single Instrument Manager was controlling from 10 to 120 instruments 
exchanging SOAP messages over HTTP. Figure 16 shows a similar case, but with three 
Instrument Managers running in the same machine and controlling the same number of 
resources. Finally, in Figure 17, three Instrument Managers are instantiated in three 
different machines. 
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Figure 15 Instrument manager hierarchy performance tests: one IM 

 

Figure 16 Instrument manager hierarchy performance tests: three IMs 

 



   

 

   

   
 

   

   

 

   

    The many faces of the integration of instruments and the grid 261    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 17 Instrument manager hierarchy performance tests: three IMs in three machines 

 

The graph in Figure 18 shows the time spent to distribute a command by varying the 
number of controlled instruments for all the three above-mentioned cases using a parallel 
and a sequential command distribution. 

This shows that a distributed configuration of the Instrument Managers can ensure 
better performance where it is needed. 

Figure 18 IE command distribution benchmark test results 
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6 Applications that are using the current release of the IE 

The first IE released is currently used to manage the following use cases. 

6.1 The Compact Muon Solenoid experiment 

In the Compact Muon Solenoid (CMS) (Cittolin et al., 2002) Data Acquisition (DAQ), 
the IE is the master controller when the experiment is acquiring data. Approximately  
2 * 107 electronic devices need to be accessed and controlled by about 104 different 
machines scattered over a high-bandwidth network. The IE instructs the subpart of this 
experiment to act according to the specific needs of a data collection session. The main 
functions of the IE in this case are: 

• to control and monitor the entire instrument, ensuring the correct and proper 
operation of the CMS experiment 

• to control and monitor the DAQ system 

• to provide user interfaces and allow users to access the system from anywhere in  
the world. 

6.2 The Intrusion Detection System 

One of the main challenges in the security management of large high-speed networks is 
the detection of suspicious anomalies in network traffic patterns due to Distributed Denial 
of Service (DDoS) attacks or worm propagation (Siaterlis et al., 2005). In the Intrusion 
Detection System (Siaterlis et al., 2005), anomaly sensors measure various network 
elements linked to grid-controlled Instrument Managers within a real-time domain.  
The IE problem solver provides algorithms aimed at fusing the collected knowledge  
to analyse individual domain-state reports, originated from heterogeneous sensors, to 
deduce a global view of security incidents and so detect Distributed Denial of Service. 

6.3 The power grid 

In electrical utility networks (or power grids; Irving et al., 2004), the introduction of a 
very large number of ‘embedded’ power generators, often using renewable energy 
sources, creates a severe challenge for utility companies. In addition, power systems 
involve many geographically distributed participants: generator owners, transmission 
network operators, load managers, energy-market makers, supply companies, and so on. 
GridCC technology allows the generators to participate in a virtual organisation, and 
consequently to be monitored and scheduled in a cost-effective manner. 

6.4 The Synchrotron Radiation Storage Ring 

In the Elettra4 Synchrotron Radiation Storage Ring, the IEs control and monitor many 
instruments (mainly sensors). The rate of incoming control and monitoring data is 
different from the previous use cases; it is smaller than the data rate in the CMS scenario, 
yet, since it resides at a critical point of alerting against major catastrophes, it imposes 
high requirements on response times for alerts at the human-machine level interface. 
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6.5 The IMAA sensor networks 

Operating since 2003, the Institute of Methodologies for Environmental Analysis 
(IMAA) has installed a network of sensors devoted to providing real-time information  
on several meteorology and physical-chemical parameters of soil and subsoil, useful  
for describing landslide dynamics, and possibly to detect warning conditions in a  
timely fashion (Perrone et al., 2004; Perrone et al., 2005). Monitoring is done with a 
multichannel data-logger7 on the monitored side to collect/aggregate information  
coming from different sensors, both passive and active.8 Different sensors are wired to a 
data-logger while this device is remotely controlled via a wireless network. The IE 
virtualises the access to the sensors controlling multiple DAQ devices, allowing grid 
access to the instruments. 

6.6 The Advanced Gamma Tracking Array experiment 

AGATA,9 the Advanced Gamma Tracking Array, is a 4π array of segmented coaxial 
detectors. The design consists of a geodesic tiling of a sphere with 12 regular pentagons 
and 180 hexagons. Sensors, which are front-end electronic devices, are linked to the 
detector to dispatch the just-read information to the event-building farm that will merge it 
into physical events. The IE controls every single subcomponent such as PSA farms, 
event builders, tracking farms and data servers of this complex distributed application. 

6.7 The device farm 

A set of telecommunications measurement instruments of various categories (signal 
generators, signal analysers, channel emulators), interconnected via programmable 
switching matrices, are accessed and remotely controlled as WS, and they are integrated 
in the IE architectural framework. The concept of ‘virtual instrument’ allows the remote 
control and visualisation of the results of the measurements carried out by an instrument 
(Vollono and Zinicola, 2005). In most cases, it also allows the execution of the functions 
of more instruments found in the laboratory. 

6.8 Meteorology systems 

The meteorological application of GridCC architecture consists of the Skiron/Eta weather 
forecasting system (Kallos, 1997). It aims to predict and analyse hazardous weather 
events. A HELLASGRID cluster at IASA is currently used as a test-bed for the model 
configuration and execution under the GridCC environment. Further developments of  
the model algorithms and operation scripts have been prepared in order to optimise the 
model utilisation through the IE components. The system operates daily in deterministic 
mode. The stochastic mode is under development, although a beta version is currently 
being tested. 

The normal operation of the computational model runs in a deterministic fashion, 
covering the entire Mediterranean region. An emergency condition is assumed if a 
hazardous weather event is detected in the computational domain from the current 
operational cycle. In this case, the system can be switched to the stochastic mode instead 
of the normal deterministic execution. 
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7 Conclusion 

The GridCC project integrates instrumentation into traditional computational/storage 
grids. We cope with this open problem by proposing and realising the first release of the 
IE, a new grid component that provides the computational/data grid with an abstraction of 
real instruments, and grid users with a more interactive interface to control them. The 
main benefits of the proposed solution are: 

• A highly modular and flexible solution: 

a The middleware deployment is organised into pluggable independent 
components. 

b The IE architecture is not tied to specific technologies or third-party software. 

c Multiple and independent I/O interfaces: Commands and Controls directed at 
Instruments, Fast Data Publishing, Data Movement to/from the grid. 

• High scalability: 

a IE is portable to different platforms. 

b The target environment ranges from large farms to embedded devices. 

• IE middleware aims to be used in production environments: 

Mature middleware has been used, whenever possible, to assure robustness  
and stability. 

• Fine customisation of the IE: 

The IE is easily adaptable to diverse scenarios and needs. 

• High level of abstraction in the IE interfaces: 

a Service Oriented Architecture 

b Adherence to standards: WS-I-compliant web services. 

• EGEE (gLite) compatibility: 

Many grid facilities and tools can be reused, for instance GridFTP or SRM 
interface for data movement. 
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Notes 

1 OGC Sensor Web Enablement, www.opengeospatial.org/functional/page=swe, last visit  
1 January 2007. 

2 GridCC Project, http://www.gridcc.org/, last visit 1 January 2007. 

3 Grid Enabled Remote Instrumentation with Distributed Control and Computation (GridCC) 
Project Annex I, http://www.gridcc.org/getfile.php?id=1436e, 2005. 

4 Synchrotron Radiation Storage Ring Elettra, http://www.elettra.trieste.it/index.php, last visit  
1 January 2007. 

5 GridCC Use Cases, https://ulisse.elettra.trieste.it/tutos. 

6 Interchangeable Virtual Instrument Foundation, http://www.ivifoundation.org/, last visit  
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