
   

  

   

   
 

   

   

 

   

   Int. J. Web and Grid Services, Vol. X, No. Y, XXXX    
  

   Copyright © 200X Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Reusable garbled gates for new fully homomorphic 
encryption service 

Xu An Wang* 
School of Telecommunications Engineering, 
Xidian University,  
Xi’an, China 
and 
Key Laboratory of Information and Network Security,  
Engineering University of Chinese Armed Police Force, 
Xi’an, China 
Email: wangxazjd@163.com 
*Corresponding author 

Fatos Xhafa 
Department of Computer Science,  
Technical University of Catalonia,  
Barcelona, Spain 
Email: fatos@cs.upc.edu 

Jianfeng Ma 
School of Cyber Engineering, 
Xidian University, 
Shaanxi, China 
Email: jfma@mail.xidian.edu.cn 

Yunfei Cao and Dianhua Tang 
Science and Technology on Communication Security Laboratory, 
Chengdu, China 
Email: cao_426@126.com 
Email: 248848036@qq.com 

Abstract: In this paper, we propose a novel way to provide a fully 
homomorphic encryption service, namely by using garbled circuits. From a 
high level perspective, Garbled circuits and fully homomorphic encryption, 
both aim at implementing complex computation on ciphertexts. We define a 
new cryptographic primitive named reusable garbled gate, which comes from 
the area of garbled circuits, then based on this new primitive we show that it is 
very easy to construct a fully homomorphic encryption. However, the 
instantiation of reusable garbled gates is rather difficult, in fact, we can only 
instantiate this new primitive based on indistinguishable obfuscation. 
Furthermore, reusable garbled gates can be a core component for constructing 
the reusable garbled circuits, which can reduce the communication complexity 
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of them from O(n) to O(1). We believe that reusable garbled gates promise a 
new way to provide fully homomorphic encryption and reusable garbled 
circuits service fast. 

Keywords: fully homomorphic encryption service; reusable garbled gate; 
reusable garbled circuits service; indistinguishable obfuscation. 

Reference to this paper should be made as follows: Wang, X.A., Fatos, X., Ma, 
J., Cao, Y. and Tang, D. (xxxx) ‘Reusable garbled gates for fully homomorphic 
encryption service’, Int. J. Web and Grid Services, Vol. x, No. x, pp.xx–xx. 

Biographical notes: Xu An Wang is an Associate Professor in the Engineering 
University of Chinese Armed Police Force. His main research interests include 
public key cryptography and cloud security. 

Fatos Xhafa is a Professor at Technical University of Catalonia. His main 
research interests include cloud computation and big data analysis. He has 
widely published in the field of grid, internet, cloud and big data computation. 

Jianfeng Ma is a Professor in Xidian University. He is also a Yangtze River 
scholar in China. His main research interests include cyber engineering security 
and big data analysis. He has published widely in the field of public key 
cryptography and Cloud security. 

Yunfei Cao is a principle senior researcher in Science and Technology on 
Communication Security Laboratory. His main research interests are 
cryptography and information security. 

Dianhua Tang is a principle researcher in Science and Technology on 
Communication Security Laboratory. His main research interest is fully 
homomorphic encryption and cloud security. 

 

1 Introduction 

Nowadays Cloud computing platforms are offering computation services to individuals, 
institutions, organisation, enterprises, etc. widely. Cloud computation is a generalisation 
technique of grid computation, which has revolutionised the traditional distributed large 
scale computation paradigm. Traditionally, we heavily relied on the local computation  
equipments like personal computers and small clusters to implement computation tasks, 
but this paradigm has some limitations such as costly hardware management, poor 
scalability and only local accessibility, etc. Along with the rapid development of both 
Internet and hardware techniques, cluster and grid computation and later on cloud 
computing became a reality. Many computation devices can now be organised to support 
a very strong computation ability, many originally unimagined computation task can 
|now be completed by distributed or parallel grid/cloud computation techniques like 
searching life information from huge collected space signals. These years by utilising the  
advanced techniques such as virtual machines and fast/broad/anywhere/anytime internet 
accessibility, cloud computation has emerged. Cloud computation enables the traditional 
local storage/computation/accessibility now as a service; it can support various levels of 
service: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-
as-a-Service (IaaS), etc.  
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However, when data owners outsource their data to the cloud, they often worry about 
the privacy of their datum. Security is among the most concerned issues for cloud 
computation widely adoption (Chen et al., 2012; Chen et al., 2014; Dutu et al., 2014; Guo 
and Xu, 2015; Thabet et al., 2014; Wang et al., 2016; Zhu and Yang, 2015). A natural 
solution for the above issue is this: the data owners first encrypt their datum and then 
outsource them to the cloud. Although it solves the privacy issue, it poses another 
challenge to the cloud computation: in most cases data owners does not simply utilise the 
cloud to store their data but also utilise it to complete computation tasks, such as running 
data mining tasks on their data. However, when the outsourced data is in the form of 
encrypted ciphertext, how could the cloud run this data mining task efficiently? 
Fortunately we can solve this challenging issue by using several techniques developed 
from cryptography community. Fully homomorphic encryption (FHE) is the most 
promising one among them, it can enable arbitrary privacy preserving computation on the 
ciphertexts, just like directly running computation on the plaintexts but with the results 
also encrypted. To put is shortly, it can support blindly computation but getting the 
corrected encrypted result. An example of fully homomorphic encryption service for 
cloud computation can be seen in Figure 1. 

1 Data owner Alice first encrypts her file by using her own encryption key and then 
outsource the encrypted files EAlice(file) to the cloud, she also outsource the 
computation task to the cloud, that is, an arbitrary function F, which can be seen as 
the data mining function or algorithm. 

2 After obtaining the encrypted file and the data mining function F, the cloud runs the 
fully homomorphic encryption service on them and returns the encrypted result 
EAlice(F(file)) to Alice. Note here the computation task is implemented in a privacy 
preserving way, the cloud does not know Alice’s file or the finally computed result. 
Also note currently fully homomorphic encryption cannot be implemented in an 
efficient way, that is also why users prefer to utilise the cloud to implement this task. 

3 After obtaining the encrypted computed result, Alice can decrypt the encrypted 
result and obtain what she wanted to compute. 

However there are two main challenges for the fully homomorphic encryption service 
deployment. The first one is how to design fully homomorphic encryption efficiently as 
currently most of them rely on the public cryptographic techniques, which are not 
efficient for many of such operations. Is it possible to construct fully homomorphic 
encryption based on symmetric cryptographic primitive such as AES or SHA3? 

The second one is how to design various kinds of fully homomorphic encryption 
schemes, currently most of them rely on the cryptographic lattice tools. Is it possible to 
construct fully homomorphic encryption based on classic computation problems such as 
RSA or DL problem? In this paper, we approach the solution of these two problems. 

Our key observation is that Yao’s garbled circuits techniques can be utilised to 
construct fully homomorphic encryption. Garbled circuits enable (very fast) secure multi-
party computation; fully homomorphic encryption is also the most promising technique 
to implement secure computation on ciphertexts. Roughly speaking, these two techniques 
are both aimed at implementing complex computation on ciphertexts. Somehow 
surprisingly until now little effort has been made on bridging the gap between these two  
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techniques. We give a first such attempt, namely, we define a new cryptographic 
primitive called reusable garbled gate, then based on this new primitive we show that it is 
very easy to construct fully homomorphic encryption. However, the instantiation of 
reusable garbled gates seems to be very difficult, we can only instantiate this new 
primitive based on indistinguishable obfuscation (iO), which until now has no efficient 
realisation. Below we first review Yao’s garbled circuits and analysis the difficulty of 
construct fully homomorphic encryption based on Yao’s garbled circuits, then we give 
our contribution and the detailed related work. 

Figure 1 An example of fully homormorphic encryption service for cloud computation (see 
online version for colours) 

 

1.1 Yao’s garbled circuits 

The technique of garbled circuit was first proposed by Yao in 1980s (Yao, 1982; Yao, 
1986) to implement the secure two-party computation mechanisms. The core idea of this 
technique is the following: in the first phase, the sender (or the generator) first 
simultaneously garbled the inputs and the computed function’s circuit, and then send 
them to the receiver (or the evaluator), while the receiver runs the oblivious transfer 
protocol with the sender to get the garbled results corresponding to his inputs; in the 
second phase, the receiver evaluates the circuit on the received garbled inputs and gets 
the output garbled results; in the third phase, the sender recovers the final function’s 
output from the garbled results. In this process, the receiver can correctly compute the 
function on both parties’ inputs while he knows nothing about the sender’s inputs, and 
the sender can ensure the receiver has computed the desired function correctly without 
knowing the receiver’s inputs. Furthermore, the receiver cannot know the concrete  
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function he computed, thus achieving privacy preserving for the sender. This technique 
has some very interesting properties such as supporting arbitrary complex functions, 
being privacy preserving for the sender, being implementing very fast (garbled circuits 
can only use symmetric cryptographic primitives like hash functions and block ciphers), 
being very flexible. Thus it is among the most promising techniques to implement secure 
computation on large data sets like secure data mining, secure outsourcing computation 
task for mobile equipments, secure signal processing and even secure handling of big 
data. 

Figure 2 A simple example of Yao’s garbled circuit 

 

Example 1.1: A concrete construction of Yao’s garbled circuit can be seen in Figure 2. In 
the first phase, the sender garbles the input bits of {0,1}n to random keys (like DES’s 
keys), and then constructs a table consisting of four ciphertexts for every gate in the 
circuits (consisting of AND, OR and XOR gates). These four ciphertexts are the 
encryption of the gate’s output key under the input keys (by using double DES 
encryption). For there are four inputs (00,01,10,11) for every gate, there are four 
ciphertexts for one table (or one gate). In the second phase, the receiver evaluates the 
circuits from bottom to top as following: he first decrypts the four ciphertexts at the 
bottom level to obtain the correct output key, and then uses these evaluated output keys 
to continuously decrypt the up level gates’ four ciphertexts to again obtain the correct 
output key, thus finally gets the output keys of the output gates. In the third phase, the 
receiver returns these output keys to the sender, and the sender recovers the 
corresponding bits by using the bits-keys map he set up in the first phase. 

Yao’s garbled circuit has important applications in cryptography: on one hand, it is 
one of the foundational techniques for secure two-party or multi-party computation; on 
the other hand, by using only symmetric primitives like DES or AES block cipher, it can 
achieve very high efficiency, furthermore by using various optimisation techniques, its 
efficiency can be very impressive, thus it is a very popular basic tool for privacy-
preserving computation on large data sets and secure outsourcing computation for 
resource-constrained devices such as mobile phones. 
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But Yao’s garbled circuit has its own restrictions, for instance, it is not reusable. The 
sender needs to garble again the circuit and the inputs when the inputs are changed. The 
main reasons are the followings: if the receiver obtains the same two same in two 
different evaluations but for the same circuit, the receiver can easily decide the bits 
corresponding to these two evaluations are the same. Thus it is very important to realise 
reusable garbled circuits. Goldwasser et al. (2013) were the first to make a step forward 
in this direction, they constructed the first reusable garbled circuits based on functional 
encryption with fully homomorphic encryption, thus it is not efficient. Recently, Boneh 
et al. (2014) proposed a new cryptographic primitive named fully key homomorphic 
encryption and showed a concrete construction based on lattice, they also showed their 
primitive can be used to construct reusable garbled circuits with better size, but their 
result is also not efficient. Thus, an important research open problem is how to realise 
reusable garbled circuits efficiently. 

1.2 Toward basing fully homomorphic encryption on Yao’s garbled circuit 

Gentry (2009) first constructed a fully homomorphic encryption based on the ideal 
lattice, which is a breakthrough result in cryptography. Since then, many wonderful 
results have been achieved. To give a clear picture on how fully homomorphic 
encryption works, here we give a very high level view on this primitive. Roughly 
speaking, a fully homomorphic encryption has the following three requirements: first, 
anyone can generate the cipheretexts corresponding to any plaintext; second, anyone (the 
evaluator) can compute any function on the ciphertexts; third, the evaluator has no idea 
on the contents of the ciphertext and the evaluated results. 

It is a well-known fact that any computation function can be converted to a circuit. 
thus here we review some basic facts on circuits for computation of any function. 
Consider the computation of any function on bits 1 2( , , , ),nx x x…  that is, functions that 
can be described as 1 2( , , , ),nf x x x"  where f is any function. Now the big problem for 
FHE construction is the following: how to privately evaluate the circuits? Note that an 
essential difference between garbled circuit and FHE is that the former can only be 
implemented on one function one time, while the latter can support arbitrary function on 
the same ciphertexts. Thus the biggest issue we need to solve is how to extend Yao’s 
garbled circuit to handle any function. 

1.3 Our contribution 

1 For the first time we give a try to bridge the gap between fully homomorphic 
encryption technique and reusable garbled circuit technique. 

2 We first introduce the concept of reusable garbled gate, give its somewhat formal 
definition and properties. 

3 We show how to construct fully homomorphic encryption and reusable garbled 
circuits based on reusable garbled gate. 

4 We also give a concrete construction for reusable garbled gate AND, XOR and OR, 
and point out some interesting open problems which deserving further exploring. 
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1.4 Organisation 

We organise our paper as following. In Section 2, we review the related work on garbled 
circuits and fully homomorphic encryption in detail. In Section 3, we introduce a new 
cryptographic concept, the reusable garbled gate. We also give its somewhat formal 
definition and its security properties. In Section 4, we show how to construct reusable 
garbled circuit and fully homomorphic encryption based on reusable garbled gate, also 
point out some promising result which maybe can be achieved. In Section 5, we 
instantiate the new cryptographic concept- reusable garbled gate based on 
indistinguishable obfuscation (iO) and roughly analysis its security. We conclude our 
paper in Section 6 with some interesting open problems. 

2 Related work 

Research results on the security of garbled circuits. Although the technique of Yao’s 
garbled circuit has been put forward in 1980s, but its rigorous security proof only was 
given by Lindell and Pinkas (2009) a few years ago. In 2012, Bellare et al. gave a 
foundational work on garbled circuit, their formal analysis of the properties of garbled 
circuits need to satisfy, that is, authentication, secrecy and privacy. They pointed out, 
although there are existing some relation among these three properties, they are different. 
Furthermore, they proved Yao’s garbled circuits are all satisfying these three properties. 
Yao’s garbled circuit can be only proved secure in the semi-honest model, and not secure 
in the malicious model. By using “cut and choose” technique, Yao’s garbled circuit can 
be strengthened to be secure in the malicious model. For Yao’s garbled circuit is very 
efficient in practice, even using some optimised “cut and choose” technique, the 
strengthened Yao’s garbled circuits are still efficient for many applications (Lindell, 
2013). 

Research on the implementation of Yao’s garbled circuits. After Yao proposed the 
garbled circuit, many researchers thought they are impractical for many AND/OR/XOR 
gates in circuits, which mean many encryption/decryption times, although this technique 
gave a firm foundation for secure two-party or multi-party computation. But in 2004, 
Malkhi et al. gave a breakthrough result, namely, they implemented a very practical two-
party secure computation system called Fairplay. The high efficiency owns to the only 
using of block ciphers/hash functions in garbled circuit. After that, many optimised 
techniques have been proposed, such as the free-XOR technique (Kolesnikov and 
Schneider, 2008), the Garbled Row Reduction technique (Pinkas et al., 2009), the 
flexible free-XOR technique (Kolesnikov, 2014), etc. Huang et al. (2011) implemented a 
very impressive garbled circuit system by utilising the parallel technique when 
generating the garbled circuits. In 2013, Bellare et al. designed a new cipher tailored for 
implementing garbled circuits and thus greatly improved the efficiency. As of today, we 
can safely say garbled circuits are among the most practical techniques to implement 
complex and natural secure computation task, such as data mining, signal processing, etc. 

Research on the garbled circuits used for outsourcing computation. Gennaro et al. 
(2010) first explored how to use garbled circuits for verifiable outsourcing computation. 
A lot of work has been done after that, in recent years garbled circuits have been used for 
implementing secure outsourcing computation for mobile phones, practical secure multi-
party computation, privacy-preserving data mining etc. In 2013, Carter et al. 
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implemented a very practical secure outsourcing computation system on mobile phone 
based on garbled circuits, since then, they also improve their work in several aspects. 

Research on the reusable garbled circuits. Although the efficiency of Yao’s garbled 
circuits is very high, but it cannot be reusable, and this heavily restricts its application. 
Goldwasser et al. (2013) first solved the open problem of constructing reusable garbled 
circuits, which was left open for almost 30 years, they relied on fully homomorphic 
encryption and functional encryption to solve the problem. Boneh et al. (2014) proposed 
a new concept named fully key homomorphic encryption and constructed more efficient 
reusable garbled circuits with small size. However, these two works are more of 
theoretical interest than practical implementation. Mood et al. (2014) discussed how to 
reuse part of the garbled circuit generation result to improve the practical efficiency of 
garbled circuit, this work is very interesting from a practical point of view, but it is not 
fully reusable. 

Research on the fully homomorphic encryption. In 1978, Rivest proposed the concept 
of “private bank”, which can be seen as a dream about fully homomorphic encryption 
and its application. Gentry (2009) first constructed a concrete fully homomorphic 
encryption based on ideal lattice. In his proposal, Gentry proposed a new way called 
Gentry’s blueprint to construct FHE scheme: Bootstrapping + Squashing. Van Dijk et al. 
(2010) proposed a new fully homomorphic encryption scheme based on integers, 
establishing its hardness based on LWE problem and subset sum hard problem, this 
scheme is denoted as DGHV11, but this scheme has been proved to be insecure in 2014. 
Brakerski and Vaikuntanathan (2011) based on only LWE assumption constructed a FHE 
scheme called BV11, in this work he introduced two new techniques: the re-linearisation 
technique and the dimension-modulus reduction technique. Later, Brakerski et al. (2012) 
proposed the BGV scheme, in this scheme before every gate evaluation, they first use the 
modulus reduction technique, thus reduce the noise amplification from exponential to 
linear. Furthermore, this scheme uses many other optimisation techniques and establish 
its security on the ring LWE hard problem, thus it is a highly efficient scheme. Later 
Gentry et al. (2012) proposed a new scheme named GHS, which can have a relatively 
large plaintext space. But as the BGV scheme, GHS scheme also needs to setup a 
maximal depth of the computed circuits when running. Gentry et al. (2013) gave the first 
identity or attribute based fully homomorphic encryption. Halevi and Shoup (2014) 
developed a software library named Helib to implement FHE schemes based on NTL 
library. A notable work on connecting FHE and GC is Gentry’s i-hop homomorphic 
encryption (Gentry et al., 2010), but this work has no intention to construct FHE on GC. 

3 Reusable garbled gate 

3.1 Reusable garbled gate for AND 

By carefully observing the running of Yao’s garbled circuits, we find that the garbled 
gate play an important role for garbled circuit generation. Instead of aiming at reusing the 
garbled circuit, what results we can achieve if the garbled gates can be reused? 
Surprisingly, if we can construct reusable garbled gates, then many wonderful goals can 
be achieved, such as fully homomorphic encryption and reusable garbled circuits. 

Our idea on reusable garbled gate can be seen from Figures 3 and 4. Figure 3 
describes a garbled gate for AND. In Figure 2, {A, B} and {C, D} represent the random 
keys for the two input wires, {X, Y} represent the random keys for the output wire. {A, C, 
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X} is coloured with green, which can be seen as bit 0; {B, D, Y} is coloured with blue, 
which can be seen as bit 1. {A, B}, {C, D}, {X, Y} are all indistinguishable for the 
evaluators (receivers), in other words, the evaluators cannot deduce the underlying bit 
content from {A, B}, {C, D}, {X, Y}. The garbled table consists of four boxes, all the four 
boxes are locked by two lockers, and the contents in the boxes are the random keys for 
the output wire. In Figure 3, the boxes from up to down are locked by [blue locker (type-
1 locker), blue locker (type-1 locker) ], [green locker (type-0 locker), blue locker (type-1 
locker)], [blue locker (type-1 locker), green locker (type-0 locker) ], [green locker (type-
0 locker), green locker (type-0 locker)]. If and only if the colours of the random keys for 
the two input wires are the same with the colours of lockers, the lockers on the box can 
be simultaneously opened and output the correct random key for the output wire. Also if 
and only if the types of the random keys for the two input wires are the same with the 
types of lockers, the lockers on the box can be simultaneously opened and output the 
correct the random key for the output wire. 

Figure 3 Yao’s garbled gate for AND (see online version for colours) 

 

Figure 4 Reusable garbled gate for AND (see online version for colours) 
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Example 3.1: For example, when the input random keys are {A, D}, only boxes 2,3 can 
be opened, and the output random key is X. For another example, when the input random 
keys are {B, D}, only boxes 1 can be opened, and the output random key is Y. 

Figure 4 describes a reusable garbled gate for AND. The main difference between Figure 
4 and Figure 3 is the following. In Yao’s garbled gate, the random keys corresponding to 
the two input wires are {A, B}, {C, D}, and the random keys corresponding to the output 
wire are {X, Y}, the secrets locked in the boxs are {X, Y}. In our reusable garbled gate, 
the random keys corresponding to the two input wires are {X1, Y1}, {X2, Y2}, and the 
random keys corresponding to the output wire are {X3, Y3}, while the secrets locked in 
the boxs are {X, Y}. {X1, X2, X3} are the randomisation of X which correspond to bit 0, 
and {Y1, Y2, Y3} are the randomisation of Y which correspond to bit 1. Note here can 
{X1, X2, X3} act as X, and it can unlock the locker locked by X; also {Y1, Y2, Y3} can act 
as Y, and it can unlock the locker locked by Y. Also note here the output {X3, Y3} are 
generated freshly and differently every time run the reusable garbled gate, only in this 
way we can ensure the input random keys are fresh and leak no information about its 
underlying bits. As in the Yao’s garbled circuits, all the {X, X1, X2, X3, · · · , Y, Y1, Y2, 
Y3, · · · , } are indistinguishable to the evaluators. Also the garbled table consists of four 
boxes, all the four boxes are locked by two lockers, and the contents in the boxes are the 
source random keys for the output wire. In Figure 4, the boxes from up to down are 
locked by [blue locker (type-1 locker), blue locker (type-1 locker)], [green locker (type-0 
locker), blue locker (type-1 locker)], [blue locker (type-1 locker), green locker (type-0 
locker) ], [green locker (type-0 locker), green locker (type-0 locker)]. If and only if the 
colours of the random keys for the two input wires are the same with the colours of 
lockers, the lockers on the box can be simultaneously opened and output the 
randomisation of the correct key for the output wire. Also if and only if the types of the 
random keys for the two input wires are the same with the types of lockers, the lockers 
on the box can be simultaneously opened and output the randomisation of the correct key 
for the output wire. 

Example 3.2: For example, when the input random keys are {X2, Y1}, only boxes 2,3 can 
be opened, and the output is the randomisation of the correct key X, which is X3. For 
another example, when the input random keys are {Y2, Y1}, only boxes 1 can be opened, 
and the output is the randomisation of the correct key Y, which is Y3. Note here when 
{X3, Y3} is then used as the input random keys, only boxes 2,3 can be opened, and the 
output is a new randomisation of the correct key X, which can be denoted as X4. 

Figure 4 can be taken as reusable garbled AND gate, similarly there can exist 
reusable garbled OR gate and XOR gate, these three kinds of gate are enough to describe 
any function, for XOR/AND/OR can be combined to express any function. 

3.2 A somewhat formal definition of reusable garbled gate for AND 

Definition 3.3: We first define a Rand algorithm, which takes as inputs (inputbit, 
Trapdoor), and then maps the input bit to be a random key by using Trapdoor, it can be 
described as following: 0 → Rand(0) and 1 → Rand(1). Note every time we invoke the 
Rand algorithm, the output random key is afresh one, that is, the output random keys are 
all different. Then we give a somewhat formal definition of Reusable Garbled Gate 
(RGG) for AND, it consists of the following algorithms: 
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1 Generation (AND, Inputl, Input2, Trapdoor). This algorithm running by the sender 
(or data owner) generates the garbled table for AND gate and the garbled inputs for 
input wire 1 and input wire 2. Like Yao’s garbled gate, the sender (or data owner) 
first map the input bits {00,01,10,11} to be four random key pairs by using the 
Trapdoor. Then the sender constructs four locked boxes: each box is locked by two 
lockers and hides a secret key which is a source key for the output wire (this process 
can be seen as encrypting the secret output source key with two input random keys 
by the sender). And the order of them from up to down can be arbitrarily mixed (this 
process can be seen as mixing the ciphertexts). Finally the sender sends the garbled 
gate for AND and garbled inputs to the evaluator. 

2 Evaluation (AND, InputKey1, InputKey2). After obtaining the random key pairs and 
the table consists of four ciphertexts for garbled gate AND, the evaluator runs this 
algorithm to obtain the random output key for this gate. The running results can be 
seen in Table 1. Note in this algorithm the evaluation process can be decrypting and 
randomising the table consists of four ciphertexts. Finally this algorithm returns the 
OutputKey to the sender (or data owner). 

3. Recover (AND, OutputKey, Trapdoor). After obtaining the Outputkey, the sender 
recovers the output bit by using the Trapdoor. This process can be described as 
following: Rand(0) → 0 and Rand(1) → 1. 

Table 1 Reusable garbled gate for AND 

InputKey1 InputKey2 OutputKey 
Rand(1) Rand(1) Rand(1) 
Rand(1) Rand(0) Rand(0) 
Rand(0) Rand(1) Rand(0) 
Rand(0) Rand(0) Rand(0) 

Similarly, we can give a somewhat formal definition of Reusable Garbled Gate (RGG) 
for XOR and OR. 

Remark 3.4: Here we emphasise that this definition is just the “gold” goal we want to 
achieve, indicating no way on how to construct such “gold” reusable garbled gates. If 
such “gold” reusable garbled gates can be easily achieve, then it is also easy to construct 
fully homomorphic encryption, while we know this is not the fact until now. So such 
“gold” reusable garbled gates are difficult to be instantiated. But we also emphasis here 
that such concept of “gold” reusable garbled gates is already valuable, which can guide 
us to a new way on constructing fully homomorphic encryption. 

Remark 3.5: This table of four ciphertexts can be omitted if the data owners and 
evaluator can directly simulate the process of Generation, Evaluation and Recover. For 
example, proxy re-encryption maybe can be used to simulate the process of Evaluation 
without any operation of Decryption. In our point of view, searchable encryption with 
probabilistic tokens or ORAM techniques maybe can be used to construct such “gold” 
reusable garbled gates. Generally we can view these “gold” reusable garbled gates as the 
encoding-evaluating-decoding process. We also note here for supporting arbitrary 
computation, the outputs of the Rand algorithm must support AND, OR, XOR operation 
simultaneously. It is no use if this encoding process only support one type of operation, 
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and the key challenge is supporting AND, OR, XOR operation simultaneously for this 
encoding-evaluating-decoding process. 

Figure 5 An example of construction based on the idea of obfuscation 

 

Example 3.6: Here we try to give an example of construction based on the idea of 
obfuscation, which can be seen in the Figure 5. We describe a very simple evaluation of 
an AND gate by the evaluator. 

1 First the data owner constructs an obfuscated program of input encoding or input 
transformation (the left figure), and an obfuscated program of gate evaluation or 
decryption of reusable garbled gates (the right figure), which embedded a key K for 
pseudorandom function PRF. Then he publishes these obfuscated program as the 
public keys. For example, data owner’s input bits are 0 and 1, he can encode them as 

0[ , ( , )]i ir k PRF K r⊕  and 1[ , ( , )],j jr k PRF K r⊕  and outsource them to the evaluator. 

2 After obtaining the input keys, the evaluator can invoke the obfuscated program of 
gate evaluation to get the output key 0[ , ( , )]k kr k PRF K r⊕ . This output key then is 
returned to the data owner (Also note here the output key can be used as an input for 
next-gate-evaluation if the evaluated function is more complex than a simple AND 
gate). 

3 After obtaining the output key, the data owner can recover the output bit by first 
computing 0 0 ( , ) ( , )k kk k PRF K r PRFPRK K r= ⊕ ⊕  and then mapping this secret 
key k0 to bit 0. 

Remark 3.7: Roughly speaking, the security of this construction heavily relies on the 
security of obfuscation, that is, the evaluator can implement the evaluating without 
knowing the underlying secret key K, k0, k1 by just invoking the obfuscated program. 
Fortunately, now we can have some positive and concrete construction on 
indistinguishable obfuscation, such as in Miles et al. (2016). 

Definition 3.8: Here we give the properties which RGG should satisfy. Roughly speaking, 
a RGG for AND needs to satisfy the following properties: 
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1 First, keys representing 0 (we assume they are keys contain X in Figure 4) and keys 
representing 1 (we assume they are keys contain Y in Figure 4) should be 
indistinguishable for the evaluator; 

2 Second, keys representing 0 should be indistinguishable among themselves, keys 
representing 1 should also be indistinguishable among themselves; 

3 Third, keys representing 0 should be able to open the lock locked by keys 
representing 0, keys representing 1 should be able to open the lock locked by keys 
representing 1; 

4 Fourth, keys representing 1 should be unable to open the lock locked by keys 
representing 0, keys representing 0 should be unable to open the lock locked by keys 
representing 1; 

5 Fifth, the lock is circular-secure, if we think the locked box is a ciphertext, then the 
encryption scheme should be circular-secure; 

6 Sixth, the two locks should have no order. For example, a locked box which has been 
locked by 0 and 1, can be opened by two keys representing 0 and 1, also can be 
opened by two keys representing 1 and 0; 

7 Seventh, there should be existing many probabilistic keys all representing 0, also 
there should be many probabilistic keys all representing 1; 

8 Eighth, if we think the locked box is a ciphertext, then the decryption algorithm 
should be probabilistic, that is, any two successful decryption to keys representing 0 
should output two indistinguishable different keys representing 0, and the same 
holds for decryption results representing 1. 

Similarly, it is easy to derive the properties the RGG for OR, XOR should satisfy, here we 
omit it. 

4 FHE and RGC based on RGG 

4.1 FHE based on RGG 

Here we describe how to construct FHE based on RGG, which can be seen in Figure 6. 

1 First, the data owner constructs three kinds of reusable garbled gates: AND, OR and 
XOR and publish them as public parameters. 

2 Second, he transforms his plaintext bits 1 2( , , , )nx x x"  to be the keys corresponding 
to 1 2( , , , ),nx x x"  which is actually the ciphertexts. He also outsource the input 
ciphertexts to the evaluator (can be the cloud). 

3 Third, the evaluator chooses an arbitrary function f and then transform it to be a 
circuit. 

4 Fourth, the evaluator reconstruct the Yao-style circuit from reusable garbled gates. 
After obtaining the input bits’ corresponding input ciphertexts, it runs the reusable 
garbled gates and thus can get the final output. Finally it returns this output to the 
data owner. 
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5 Fifth, the final output are also keys representing 0 or 1, which are not known by the 
evaluator, but the data owner can recover the results by using trapdoor which maps 
the keys to 0 or 1. 

Figure 6 FHE based on RGG (see online version for colours) 

 

4.2 RGC based on RGG 

Here we describe how to construct RGC based on RGG, which can be seen in Figure 7. 

1 First, the data owner constructs three kinds of reusable garbled gates: AND, OR and 
XOR and publish them as public parameters. 

2 Second, he also transforms his plaintext bits 1 2( , , , )nx x x"  to be the keys 
corresponding to 1 2( , , , ),nx x x"  which is actually the ciphertexts. Assume the 
function corresponding to the reusable garbled circuits is f, he outsources the input 
ciphertexts and f to the evaluator (can be the cloud). 

3 Third, the evaluator transforms function f to be a circuit. 

4 Fourth, the evaluator reconstruct the Yao-style reusable garbled circuit from reusable 
garbled gates and the input ciphertexts, it runs the reusable garbled gates and thus 
can get the final output. Finally it returns this output to the data owner. 



   

 

   

   
 

   

   

 

   

    Reusable garbled gates for new fully homomorphic encryption service    
 

    
 
 

   

   
 

   

   

 

   

       
 

5 Fifth, the final output are also keys representing 0 or 1, which are not known by the 
evaluator, but the data owner can recover the results by using trapdoor which map 
the keys to 0 or 1. 

Figure 7 RGC based on RGG (see online version for colours) 

 

5 A concrete construction for CSPLE Based on iO 

5.1 Construction 

In this section we give a concrete construction for CSPLE based on indistinguishable 
obfuscation (iO) (Sahai and Waters, 2014). Let PRG be a pseudo-random generator that 
maps 2{0,1} {0,1} .λ λ→  Let PRF be a puncturable PRF that takes inputs of 2λ bits and 
outputs l bits. We describe our CSPLE schemes as following: 

1 Setup (1 ):λ  The setup algorithm first chooses a puncturable key K0 for PRF, a PRF 
key 0

1K  for PRF, a PRF key 1
1K  for PRF. Next, it creates the reusable garbled gates 

for AND, OR and XOR gates in Figure 10, it creates an obfuscation of the Program 
Input Transformation of Figure 8, it creates an obfuscation of the Program 
Decryption of Reusable Garbled Gates of Figure 9. Note here the size of Program 
Input Transformation of 8 is padded to the maximum of itself and Program Input 
Transformation* of Figure 12, and the size of Program Decryption of Reusable 
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Garbled Gates of Figure 9 is padded to the maximum of itself and Program 
Decryption of Reusable Garbled Gates* of Figure 13. The public key, PK, is the 
obfuscated programs in Figure 8, Figure 9 and the reusable garbled gates in Figure 
10. The secret key SK is K0, 0

1K , 1
1K . 

2 Input Transformation: On input message 1 2( , , , ),nM m m m= …  for every mi the user 
(including data owner and any others) runs the obfuscated program of Input 
Transformation in Figure 8 with every fresh r chosen randomly from {0,1}λ. Finally 
he outputs 1 2( , , , )nKeys X X X= …  which representing the ciphertexts for his 
messages. 

3 Decryption of Reusable Garbled Gates: On input ciphertext C and garbled keys  
1 2 1 2( , ), ( , ),X X X Y Y Y= =  the evaluator runs the obfuscated program of Decryption 

of Reusable Garbled Gates in Figure 9 with every fresh r chosen randomly from 
{0,1}λ. Finally he outputs Key = XOut as the output. 

4 Evaluation of Any Function: By repeated run Decryption of Reusable Garbled Gates 
algorithm with any two inputs for AND, OR, XOR gates, the evaluator can run 
arbitrary function on the ciphertexts and get the corrected result. 

5 Recover Result: By using trapdoors 0 1
0 1 1, , ,K K K  the user can map the keys (the 

ciphertexts) to the plaintext bits, thus he can recover the correct computation result. 

Remark 5.1: Note here we although simulate Yao-style garbled circuit, but our 
construction has an important difference with them, that is, our protocol can not achieve 
the authenticity property for computation result (Bellare et al., 2012). But we point out 
fully homomorphic encryption does not include authenticity property as its basic 
requirement, that is, Gentry’s FHE also do not guarantee authenticity property for 
computation result (Gentry, 2009). 

5.2 Correctness and security analysis 

Correctness. As an example, we derive the correctness for AND gate as Figure 11. 
Similarly we can verify the correctness for other gates OR, XOR, here we omit it. By 
iteratively invoking the gates for AND/OR/XOR corresponding to the structure of the 
needed computed function’s circuit, we can easily obtain the final correct computation 
result. 

Figure 8 Program input transformation 
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Figure 9 Program decryption of reusable garbled gates 

 

Figure 10 Reusable garbled gates 

 



   

 

   

   
 

   

   

 

   

    X.A. Wang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 An example of correctness for AND gate 

 

Figure 12 Program input transformation* 

 



   

 

   

   
 

   

   

 

   

    Reusable garbled gates for new fully homomorphic encryption service    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 13 Program decryption of reusable garbled gates* 

 

Security. Indistinguishable obfuscation has been proved to be secure if two obfuscated 
programs have the same functionality, while our design is satisfied. The puncturable 
pseudo random function is a key object for proving security for indistinguishable 
obfuscation, which we also use in our design. Concretely we describe the twin 
(functionally equivalent) obfuscated programs of Program Input Transformation and 
Program Decryption of Reusable Garbled Gates in Figures 12 and 13, which we denote 
as Program Input Transformation* and Program Decryption of Reusable Garbled Gates*. 
First we prove Program Input Transformation’s security, here we can regard this 
transformation as a public key encryption algorithm. 

Lemma 5.2: The Program Input Transformation is IND-CPA secure if our obfuscation 
scheme is indistinguishably secure, PRG is a secure pseudorandom generator, and PRF 
is a secure punctured PRF. 

Proof. We describe a proof as a sequence of hybrid experiments where the first hybrid 
corresponds to the original IND-CPA security game. We prove that the attacker’s 
advantage must be the negligibly close between each successive hybrid and that the 
attacker has zero advantage in the final experiment. 

• Hyb0 : In the first hybrid the following game is played. 

1 * {0,1}r ∈  is chosen at random and * *( ).t PRG r=   

2 K is chosen as a key for the puncturable PRF. 

3 The public key given out is an obfuscation of the Program Input Transformation. 

4 The attacker receives PK and then gives m0, 1 {0,1}m ∈  to the challenger. 

5 The challenge ciphertext (output garbled key) is 1 2 0,( , ) ( , ( )X X X t PRF K t= =  

1 )bK⊕  where {0,1}b∈  is chosen randomly. 

• Hyb1: Is the same as Hyb0 with the exception that t* is chosen randomly in {0,1}2λ. 
Note that r is no longer in the attacker’s view and does not need to be generated. 
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• Hyb2: Is the same as Hyb1 except that the public key is created as an obfuscation of 
the Program Input Transformation of Figure 12. Note that with all but negligible 
probability t* is not in the image of the PRG. 

• Hyb3: Is the same as Hyb2 except the challenge ciphertext is given as 
* *

1 2( , ) ( , )X X X t z= =  for random z* 

We first argue that the advantage of any poly-time attacker in guessing the bit b in Hyb1 
must be negligibly close to the attacker’s advantage in Hyb0. Otherwise, we can easily 
create a reduction algorithm B that breaks the security of the pseudorandom generator. 
This conclusion can be easily derived from observing the difference between Hyb1 and 
Hyb0, we omit the details here. 

Next, we argue that the advantage for any poly-time attacker in guessing the bit b 
must be negligibly close in hybrids Hyb2 and Hyb1. We first observe that with all but 
negligible probability that the input/output behaviour of Program Input Transformation 
and Program Input Transformation* are identical when t* is chosen at random. The 

reason is that with probability *11 ,
2

tλ−  is not in the image on the PRG. Thus, with high 

probability for all inputs neither program can call on PRF(K0, t*). Therefore, puncturing 
t* out from the key K will not effect input/output behaviour. Therefore, if there is a 
difference in advantage, we can create an algorithm B that breaks indistinguishability 
security for obfuscation. 

We now argue that the advantage for any poly-time attacker in guessing the bit b 
must be negligibly close in hybrids Hyb3 and Hyb2. Otherwise, we can create a reduction 
algorithm B that breaks the selective security of the constrained pseudorandom function 
at the punctured points. This conclusion can be easily derived from observing the 
difference between Hyb3 and Hyb2 and the property of punctured pseudorandom 
function, we omit the details here. 

Finally, we observe that any attacker’s advantage in Hyb3 must be 0, since it conveys 
no information about b. Since the advantage of all poly-time attacker’s are negligibly 
close in each successive hybrid, this proves IND-CPA security of Program Input 
Transformation. 

Next we prove Program Decryption of Reusable Garbled Gates’s security, here we 
can regard this transformation as a public key decryption-then-randomised-encryption 
algorithm. 

Lemma 5.3: The Program Decryption of Reusable Garbled Gates is IND-CPA secure if 
our obfuscation scheme is indistinguishably secure, PRG is a secure pseudorandom 
generator, and PRF is a secure punctured PRF. 

Proof. We describe a proof as a sequence of hybrid experiments where the first hybrid 
corresponds to the original IND-CPA security game. We prove that the attacker’s 
advantage must be the negligibly close between each successive hybrid and that the 
attacker has zero advantage in the final experiment. 

• Hyb0 : In the first hybrid the following game is played. 

1 * {0,1}r ∈  is chosen at random and * *( ).t PRG r=   

2 K is chosen as a key for the puncturable PRF. 
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3 The public key given out is an obfuscation of the Program Decryption of 
Reusable Garbled Gates. 

4 The attacker receives PK from the challenger. 

5 The challenge ciphertext (output garbled key) is 1 2( , ) ( ,Out Out OutX X X t PRF= =  

0 1( , ) )bK t K⊕  where {0,1}b∈  is chosen randomly. 

• Hyb1: Is the same as Hyb0 with the exception that t* is chosen randomly in {0,1}2λ. 
Note that r is no longer in the attacker’s view and does not need to be generated. 

• Hyb3: Is the same as Hyb2 except the challenge ciphertext is given as 1( ,X X=  
* *

2 ) ( , )X t z=  for random *z   

Similarly as the above lemma, we can obtain the following results: any attacker’s 
advantage in Hyb3 must be 0, since it conveys no information about b. Since the 
advantage of all poly-time attacker’s are negligibly close in each successive hybrid, thus 
Program Decryption of Reusable Garbled Gates is IND-CPA secure. 

Theorem 5.4: If the underlying indistinguishable obfuscation of “Program Input 
Transformation” and “Program Decryption of Reusable Garbled Gates” are secure and 
the puncturable pseudo random function is secure, then our construction of RGG for 
AND, OR, XOR is secure. 

Proof. Here we give a very roughly security proof. The idea of our construction is 
following. First we use the “Program Input Transformation” to transform the input bit to 
be a random InputKey, the data owner can directly implement this transformation 
without relying on indistinguishable obfuscation. However others besides the data owner 
can not complete this transformation, thus we use the indistinguishable obfuscation of 
“Program Input Transformation” to support anyone’s ability of encoding input bits. 
Second the data owner constructs three tables of four ciphertexts as the gate for 
AND/OR/XOR, just like the garbled tables in Yao’s garbled circuits. Third we use 
indistinguishable obfuscation of “Program Decryption of Reusable Garbled Gates” to 
complete the decrypt-then-randomise operation, which is the key feature for RGG. If we 
just use the decryption algorithm, then the output key cannot be random which does not 
satisfy the RGG’s properties. By combining the above two lemmas, we can conclude our 
design is secure if the underlying indistinguishable obfuscation of “Program Input 
Transformation” and “Program Decryption of Reusable Garbled Gates” are secure and 
the puncturable pseudo random function is secure. 

Remark 5.5: In Program Decryption of Reusable Garbled Gates, 1 1( ,Out XK PRF K=  

1 1 2 3) ( , )YC PRF K C C⊕ ⊕  or 1 1 2 1 1 3( , ) ( , ) .Out X YK PRF K C PRF K C C= ⊕ ⊕  These results 
maybe not always correct for the invalid input 1 2 1 2( , ) ( , ),X X X Y Y Y= =  but we can use 
other authentication techniques to ensure this output’s correctness. Note traditional fully 
homomorphic encryption schemes also has no this authentication property either. 

Remark 5.6: One may argue that the evaluator can know the intermediated computation 
result when running Program Decryption of Reusable Garbled Gates, such as 

1 0 1 2( , )XK PRF K K X= ⊕  and 1 0 1 2( , ) .YK PRF K Y Y= ⊕  But we emphasis here this is not 
possible for the indistinguishable obfuscation is as strong as the best possible obfuscation 
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(Goldwasser and Rothblum, 2007), which could hide the intermediate computation 
results. Otherwise it cannot hide the secret constant embedded in the obfuscated program 
either, while almost all concrete constructions of indistinguishable obfuscation having 
this property. 

6 Conclusion 

In this paper, for the first time we try to bridge the gap between fully homomorphic 
encryption and Yao’s garbled circuit. For this purpose, we propose an interesting new 
primitive: reusable garbled gate and show how to easily provide fully homomorphic 
encryption and reusable garbled circuit service based on it. However, the instantiation of 
this primitive is very difficult. We can only give an instantiation based on the recently 
new concept of indistinguishable obfuscation, which is not efficient until now. There are 
many interesting open problems deserved further exploring such as: 

1 The most important open problem is how to instantiate reusable garbled gate for 
AND, XOR, OR efficiently? Can it be efficient instantiated by symmetric primitives 
like DES or AES? 

2 Can the indistinguishable obfuscation just be used in the Setup phase instead of 
using in every running of reusable garbled gate? If we can achieve this, then the 
computation cost for running fully homomorphic encryption and reusable garbled 
circuit will be reduced greatly. 

3 Can we rely on some semi-trusted party like cloud to implement the primitive of 
reusable garbled gate for AND, XOR, OR with few rounds of interaction with data 
owners, while keeping this party not knowing the underlying bits? Or can FHE with 
any relaxation model be efficiently instantiated by using the primitive of reusable 
garbled gate, such as relying on two un-colluding servers for implementing the FHE 
operation? We think these are also deserved research topics. 

4 Can we instantiate the reusable garbled gate by leveraging the techniques such as 
proxy re-encryption, two-to- one encoding, searchable encryption with probabilistic 
tokens and ORAM? Any such instantiation will bring us the hope of construction of 
fully homomorphic encryption based on various mathematica tools besides lattice. 
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