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DISCONTINUOUS GALERKIN METHOD OF LINES
FOR SOLVING NONSTATIONARY SINGULARLY

PERTURBED LINEAR PROBLEMS ∗

Karel Švadlenka

1. Introduction

In the numerical solution of a number of complex problems from science and
technology it appears that classical finite difference, finite volume or standard fi-
nite element methods do not allow to realize numerical approximations of solutions
containing shock waves and contact discontinuities or steep gradients in internal or
boundary layers. An excellent candidate to overcome the mentioned difficulties is
the discontinuous Galerkin finite element method (DGFEM).

The DGFEM uses piecewise polynomial approximations of the sought solution
on a finite element mesh without any requirement on the continuity between neigh-
bouring elements. It allows to construct higher order schemes in a natural way and
is suitable for the approximation of discontinuous solutions of conservation laws or
solutions of singularly perturbed convection-diffusion problems.

Here we discuss some aspects of the DGFEM of lines applied to a linear scalar
convection-diffusion-reaction equation with possibly degenerating diffusion.

2. Continuous problem

Let Ω ⊂ IRd (d = 2 or 3) be a bounded polygonal (for d = 2) or polyhedral (for
d = 3) domain with a Lipschitz boundary ∂Ω and T > 0 (or ∞). We consider the
following initial-boundary value problem: Find u : QT = Ω× (0, T ) → IR such that

∂u

∂t
+ v · ∇u− ε4u + cu = g in QT , (1)

u = uD on ∂Ω− × (0, T ), (2)

ε
∂u

∂n
= uN on ∂Ω+ × (0, T ), (3)

u(x, 0) = u0(x), x ∈ Ω. (4)

Here we assume that ∂Ω = ∂Ω− ∪ ∂Ω+ and v(x, t) · n(x) < 0 on ∂Ω− (inflow) and
v(x, t) · n(x) ≥ 0 on ∂Ω+ (outflow), for all t ∈ (0, T ). By n(x) we denote the unit
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outer normal to the boundary of Ω. In the case ε = 0 we put uN = 0 and ignore the
Neumann condition (3). We assume that the data are sufficiently regular, ε ≥ 0 and
that c− 1

2
divv ≥ γ0 ≥ 0 in QT with a constant γ0.

3. Discretization of the problem

Let Th =
⋃

i∈I Ki (I ⊂ {0, 1, 2, ...} is a suitable index set) be a standard triangu-
lation of the closure of the domain Ω into a finite number of closed triangles (d = 2)
or tetrahedra (d = 3). We assume that for Ki, Kj ∈ Th either Ki∩Kj = ∅ or Ki∩Kj

is a common (d − 1)-dimensional face which we denote by Γij(= Γji) or a common
vertex (for d = 3 it can also be a common edge). In the case when Ki∩Kj = Γij, we
call Ki and Kj neighbours. For i ∈ I we set s(i) = {j ∈ I; Kj is a neighbour of Ki}.
For K ∈ Th, by hK and ρK we denote the diameter of K and the diameter of the
largest ball inscribed in K, respectively. We set h = maxK∈Th

hK . We assume that
the triangulation is shape-regular: there exists a constant CT independent of K ∈ Th

and h such that

hK/ρK ≤ CT ∀K ∈ Th. (5)

We introduce the so-called broken Sobolev space

Hk(Ω, Th) = {ϕ; ϕ|K ∈ Hk(K) ∀K ∈ Th} (6)

and define the seminorm |ϕ|2
Hk(Ω,Th)

=
∑

K∈Th

|ϕ|2
Hk(K)

, where |·|Hk(K) is the seminorm in

the Sobolev space Hk(K). For ϕ ∈ H1(Ω, Th), i ∈ I and j ∈ s(i) we shall use the fol-
lowing notation: ϕ|Γij

= the trace of ϕ|Ki
on Γij, ϕ|Γji

= the trace of ϕ|Kj
on Γji =

Γij, 〈ϕ〉Γij
= 1

2

(
ϕ|Γij

+ ϕ|Γji

)
, [ϕ]Γij

= ϕ|Γij
−ϕ|Γji

, nij = the unit outer normal to

∂Ki on the face Γij. Further, for i ∈ I we set ∂K−
i (t) = {x ∈ ∂Ki; v(x, t)·n(x) < 0}

and ∂K+
i (t) = {x ∈ ∂Ki; v(x, t) · n(x) ≥ 0}.

In the derivation of the discrete problem we start from equation (1), multiply
it by any ϕ ∈ H2(Ω, Th), integrate over each Ki, apply Green’s theorem in the
diffusion and convective terms, sum over all i ∈ I, add some terms to both sides of
the resulting identity or vanishing terms and use the boundary conditions. We find
that the exact solution u satisfies the following identity for a.e. t ∈ (0, T ) :

(
∂u(t)

∂t
, ϕ

)
+ ah(u(t), ϕ) + bh(u(t), ϕ) + ch(u(t), ϕ) + εJσ

h (u(t), ϕ) = lh(ϕ)(t). (7)

The forms in (7) are defined in the following way:

(u, ϕ) =

∫

Ω

uϕdx, (8)

ah(u, ϕ) = ε
∑
i∈I

∫

Ki

∇u · ∇ϕdx (9)
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−ε
∑
i∈I

∑

j∈s(i),j<i

∫

Γij

(〈∇u〉 · nij [ϕ]− 〈∇ϕ〉 · nij [u]) dS

−ε
∑
i∈I

∫

∂K−
i ∩∂Ω

((∇u · n)ϕ− (∇ϕ · n)u) dS,

bh(u, ϕ) =
∑
i∈I

∫

Ki

(v · ∇u)ϕdx−
∑
i∈I

∫

∂K−
i ∩∂Ω

(v · n)uϕdS (10)

−
∑
i∈I

∫

∂K−
i \∂Ω

(v · n)[u]ϕdS,

ch(u, ϕ) =

∫

Ω

cuϕ dx, (11)

Jσ
h (u, ϕ) =

∑
i∈I

∑

j∈s(i)

∫

Γij

σ [u] [ϕ] dS +
∑
i∈I

∫

∂K−
i ∩∂Ω

σuϕ dS, (12)

lh(ϕ)(t) =

∫

Ω

g(t)ϕdx +
∑
i∈I

∫

∂K+
i ∩∂Ω

uN(t)ϕdS (13)

+ε
∑
i∈I

∫

∂K−
i ∩∂Ω

σuD(t)ϕdS + ε
∑
i∈I

∫

∂K−
i ∩∂Ω

uD(t)(∇ϕ · n) dS

−
∑
i∈I

∫

∂K−
i ∩∂Ω

(v · n)uD(t)ϕdS,

where σ|Γij
= 1/ diam(Γij).

In the form ah(u, ϕ) representing the discretization of the diffusion term we use
the nonsymmetric formulation. In the discretization of the convective terms the idea
of upwinding is used. We apply Green’s theorem and get

∫

Ki

(v · ∇u)ϕdx =

∫

∂K−
i

(v · n)uϕdS +

∫

∂K+
i

(v · n)uϕ dS −
∫

Ki

u div(ϕv) dx. (14)

On the inflow part of the boundary of Ki (i.e., ∂K−
i ) we use the information from

outside the element Ki. Therefore, we write u− instead of u. Here u− is a simplified
notation for u|Γji

where j is the index of the corresponding neighbour Kj to Ki.
On Γij = Γji ⊂ ∂Ω− we set u− := uD. We further rearrange the resulting terms
and obtain the form bh. The form Jσ

h represents the interior and boundary penalty
replacing the continuity of conforming finite elements.

The approximate solution will be sought for each t ∈ (0, T ) in the FE space

Sh = Sp,−1(Ω, Th) =
{
ϕ ∈ L2(Ω); ϕ|K ∈ P p(K) ∀K ∈ Th

}
, (15)

where p ≥ 1 is an integer and P p(K) is the space of polynomials on K of degree at
most p. Now the DGFE discrete problem reads: Find an approximate solution uh of
problem (1)-(4) such that
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a) uh ∈ C1([0, T ); Sh), (16)

b)

(
∂uh(t)

∂t
, ϕh

)
+ ah(uh(t), ϕh) + bh(uh(t), ϕh) + ch(uh(t), ϕh) + εJσ

h (uh(t), ϕh)

= lh(ϕh)(t) ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) (uh(0), ϕh) = (u0, ϕh) ∀ϕh ∈ Sh.

If ε = 0, we can also choose p = 0. In this case we get the finite volume method.

4. Error estimates

In [2] we analyzed error estimates of the above method and obtained the following
result.

Theorem Let us assume that {Th}h∈(0,h0) is a system of triangulations of Ω with
property (5) and that conditions on the data are satisfied. Let the exact solution u of
problem (1)-(4) be regular enough and let uh be the approximate solution obtained by
the method of lines (16), a) - c). Then the error eh = uh − u satisfies the estimate

max
t∈(0,T )

‖eh(t)‖L2(Ω) +
√

ε

√√√√√
T∫

0

|eh(ϑ)|2H1(Ω,Th) dϑ +

T∫

0

Jσ
h (eh(ϑ), eh(ϑ)) dϑ

+
√

2γ0‖eh‖L2(QT ) +

√√√√√1

2

∑
i∈I

T∫

0

(
‖eh(t)‖2

v(t),∂Ki∩∂Ω + ‖[eh(t)]‖2
v(t),∂K−

i (t)\∂Ω

)
dt

≤ C(T )hp(
√

ε +
√

h). (17)

Comparing this estimate with results from [1] we see that our estimate is better due
to the linearity of our problem.

5. Numerical experiments

In order to test the theoretical error estimate we present numerical experiments
with the DGFEM of lines introduced in (16).We deal with the hyperbolic equation

∂u

∂t
+ v1

∂u

∂x1

+ v2
∂u

∂x2

+ cu = g in Ω× (0, T ), (18)

with Ω = (0, 1)2, v1 = 0.3, v2 = 0.4 and c = 0.5, equipped with initial condition (4)
and boundary condition (2), where uD is prescribed on the whole ∂Ω.

Let us define the function g and the initial and boundary conditions in such a way
that the exact solution has the form

u(x1, x2, t) =
(
1− e−t

) (
x1x

2
2 − x2

2e
2

x1−1
ν − x1e

3
x2−1

ν + e
2x1+3x2−5

ν

)
, (19)
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where ν > 0 is a given number. We seek the steady-state solutin of (19) by the time
stabilization method. The steady-state solution has the form

lim
t→∞

u(x1, x2, t) = ust(x1, x2) = x1x
2
2 − x2

2e
2

x1−1
ν − x1e

3
x2−1

ν + e
2x1+3x2−5

ν . (20)

Function (20) has two steep “boundary layers”, the steepness of which is given by
the parameter ν. The computation was performed for ν = 0.1 and 0.01, see Fig. 1.
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Fig. 1: The steady-state solution (20) for ν = 0.1 (left) and ν = 0.01 (right).
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Fig. 2: Numerical solution computed on Th7 for ν = 0.1 (left) and ν = 0.01 (right).

We solved the initial-boundary value problem by the presented numerical method (16)
with p = 1, i.e. piecewise linear elements. The resulting system of ODE’s was solved
by the forward Euler method with a small time step τ = 10−4, which guarantees
stability and sufficiently precise resolution with respect to time. The computational
error of the steady state solution is evaluated in L2(Ω)-norm eh ≡ ‖ust

h − ust‖L2(Ω).
We define the local experimental order of convergence by

αl =
log

(
ehl

/ehl−1

)

log (hl/hl−1)
, l = 2, . . . , 7. (21)
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Moreover, we compute the global experimental order of convergence ᾱ by the least
squares method. Table 1 shows the L2-error, the values of αl, l = 2, . . . , 7, and ᾱ.
Fig. 2 shows the computed numerical results on the mesh Th7 . We observe a contin-
uous numerical solution although the discontinuous approximation is used.

ν = 0.1 ν = 0.01
l #Thl

hl ehl
αl ehl

αl

1 125 0.173 0.0257 – 0.400 –
2 250 0.128 0.0158 1.61 0.272 1.28
3 500 0.090 0.0068 2.40 0.136 1.97
4 1000 0.064 0.0048 1.01 0.098 0.96
5 2000 0.045 0.0020 2.53 0.044 2.27
6 4000 0.032 0.0014 1.00 0.033 0.84
7 8000 0.023 0.0006 2.67 0.014 2.47
global order of accuracy ᾱ 1.85 1.66

Tab. 1: Errors in L2-norm, αl, l = 2, . . . , 7 and ᾱ for ν = 0.1 and ν = 0.01.

From Fig. 2 we see that for ν = 0.01 the approximate solution suffers from spuri-
ous overshoots and undershoots manifesting the so-called Gibbs phenomenon. They
can be avoided by a suitable limiting of the order of accuracy of the space discretiza-
tion in the vicinity of a steep gradient. Nevertheless, from numerical experiments we
see that the Gibbs phenomenon does not effect the theoretical order of convergence
in a negative way.

6. Conclusion

We derived L∞(L2), L2(L2) and
√

εL2(H1) estimates for the error of the approx-
imate solution which are of order hp(

√
h +

√
ε). This is the optimal estimate. We

cannot get reasonable estimates when upwinding is not used in the scheme. The
estimates hold true even if ε = 0 and are of order hp+1/2.
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