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Methoden

Markus Giftthaler*, Thomas Wolf, Heiko K. F. Panzer, and Boris Lohmann

Parametric Model Order Reduction of
Port-Hamiltonian Systems by Matrix Interpolation
Parametrische Modellordnungsreduktion von Port-Hamilton Systemen mittels
Matrixinterpolation

Abstract: In this paper, parametric model order reduc-
tion of linear time-invariant systems by matrix interpola-
tion is adapted to large-scale systems in port-Hamiltonian
form. A new weighted matrix interpolation of locally re-
duced models is introduced in order to preserve the port-
Hamiltonian structure, which guarantees the passivity
and stability of the interpolated system. The performance
of the newmethod is demonstrated by technical examples.

Keywords: Parametric model order reduction, matrix in-
terpolation, port-Hamiltonian systems.

Zusammenfassung: In diesem Beitrag wird eine Metho-
de zur parametrischen Modellordnungsreduktion linea-
rer, zeitinvarianter Systeme mittels Matrixinterpolation
auf Originalsysteme in Port-Hamilton Form angepasst.
Ein Vorgehen zur Matrixinterpolation, welches die Port-
Hamilton Struktur im interpolierten System erhält, wird
vorgestellt. Dies garantiert Passivität und Stabilität bei der
parametrischen Modellordnungsreduktion. Zwei techni-
scheBeispiele zeigendieLeistungsfähigkeit der neuenMe-
thode.
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1 Introduction
The precise mathematical modeling of complex dynam-
ical systems may result in systems of differential equa-
tions of such a high order that their processing canbecome
very time-consuming or even unfeasible due to shortage
of RAM, which is therefore neither reasonable nor prof-
itable.Model Order Reduction (MOR) addresses that prob-
lem and seeks to approximate the original data of a large-
scale model to a much smaller, reduced system. Paramet-
ricModel Order Reduction (pMOR) additionally tries to pre-
serve the system’s dependency on one or more parameters
– for example geometric variables or material properties –
within the reduced model.

One approach to describe dynamical systems, along-
side the well-knownfirst-order state-space representation,
Equation (1), is the port-Hamiltonian representation. This
is an energy-oriented form of system descriptionwith high
physical interpretability, which additionally ensures pas-
sivity. In recent years, theport-Hamiltonian representation
has gradually advanced and gained importance for auto-
matic control purposes [1]. Likewise, efforts for developing
passivity-preserving model reduction techniques for port-
Hamiltonian systems have been undertaken. For exam-
ple, structure-preserving MOR approaches using moment
matching were presented in [2, 3]. An H

2
-optimal tech-

nique including tangential interpolation was suggested
in [4].

In this paper, the framework for parametric model
order reduction of linear time-invariant systems as pre-
sented by Panzer et al. in [5] is extended to linear time-
invariant (LTI) systems that are originally modeled in port-
Hamiltonian form. Merging pMOR by matrix interpolation
withport-Hamiltonian representation results in theadvan-
tage that stability is preserved in the interpolated system.

In Section 2, moment matching and parametricmodel
order reduction by matrix interpolation are reviewed. The
port-Hamiltonian representation is summarized in Sec-
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tion 3 and the employed structure-preserving MOR tech-
nique is presented. In Section 4, methods for structure-
preserving pMOR for two different representations of port-
Hamiltonian systems are introduced and discussed. Two
simulation examples follow in Section 5.

2 Review of Projection-based MOR
and pMOR

In this section, we briefly review projection-based model
order reduction and parametric model order reduction by
matrix interpolation.

2.1 Order Reduction by Moment Matching
and Krylov Subspaces

Consider a linear time-invariantMulti-Input/Multi-Output
(MIMO) state-space system in the form

Eẋ(𝑡) = Ax(𝑡) + Bu(𝑡)

y(𝑡) = Cx(𝑡) (1)

with the state vector x ∈ ℝ𝑛, the input vector u ∈ ℝ𝑚 and
the output vector y ∈ ℝ

𝑙. We haveE,A ∈ ℝ
𝑛×𝑛 and assume

that det E ≠ 0 and that E−1A is Hurwitz. Furthermore we
haveB ∈ ℝ

𝑛×𝑚 andC ∈ ℝ
𝑙×𝑛. It is assumed that system (1)

is both controllable and observable. The order 𝑛 is consid-
ered to be large. Let the reduced system be

Erẋr(𝑡) = Arxr(𝑡) + Bru(𝑡)

yr(𝑡) = Crxr(𝑡) (2)

withmodel order 𝑞 ≪ 𝑛, xr ∈ ℝ
𝑞,Er,Ar ∈ ℝ

𝑞×𝑞,Br ∈ ℝ
𝑞×𝑚

andCr ∈ ℝ𝑙×𝑞.
The main idea of moment matching is to expand the

frequency-domain transfer functions of the original- and
the reduced system in Taylor series about an expansion
point 𝑠

0
∈ ℂ andmatch the first 𝑞 coefficients by means of

a suitable projection: the original state vector x is approxi-
mated by x ≈ Vxr withV ∈ ℝ𝑛×𝑞 and the state equation is
multiplied with a suitably chosen matrixW⊤ ∈ ℝ

𝑞×𝑛 from
the left.

A blockKrylov subspace of order𝑝with respect toma-
tricesA ∈ ℝ𝑛×𝑛 andR ∈ ℝ𝑛×𝑚 is defined as

K
𝑝
(A,R) = colspan {R,AR,A

2
R, . . . ,A

𝑝−1
R} (3)

Remark: For the ease of presentation it is assumed that all
directions defining a blockKrylov subspace (3) are linearly

independent. This implies that all block Krylov subspaces
whichwill be employed in this work have full column rank
𝑝 ⋅ 𝑚. If the assumption does not hold, deflated block
Krylov subspaces should be employed [7], which can be
incorporated into the presented framework in a straight-
forward way.

Lemma 1. [8]: IfV is chosen as a set of basis vectors of the
block Krylov subspace

K
𝑠
0

𝑝
:= K
𝑝
((A − 𝑠

0
E)
−1
E, (A − 𝑠

0
E)
−1
B) (4)

and W is arbitrary but such that Ar and Er are non-
singular, the first 𝑞 block moments of the reduced system
with

Er =W
⊤
EV

Br =W
⊤
B

Ar =W
⊤
AV

Cr = CV
(5)

match.

In this work, we calculate an orthogonal basis V of the
union of different Krylov subspaces

⋃
𝑖 ∈{1,2,...,𝑘}

K
𝑠
𝑖

𝑝
𝑖

, with
𝑘

∑
𝑖=1

𝑝
𝑖
⋅ 𝑚 = 𝑞 (6)

by an Arnoldi-like approach, [9]. Krylov subspace meth-
ods for model order reduction are computationally fast,
as the main effort is an LU-decomposition during the
Arnoldi-procedure. Furthermore, a figurative interpreta-
tion of the reduction process is available:we can think of it
as a projection from the original state space to the particu-
lar subspace which is spanned by EV, using the projector
EV(W

⊤
EV)
−1
W
⊤. We will denote the tall and skinny ma-

trices V andW as projection matrices in the remainder of
this paper. Drawbacks of the method are that no general
error bound is known and that stability might not be pre-
served in the reduced model.

2.2 Parametric Model Order Reduction by
Weighted Matrix Interpolation

If the large-scale system’s behavior additionally depends
on a parameter vector p ∈ 𝛱 ⊆ ℝ

𝑑, the system matrices
becomeE → E(p),A→ A(p),B→ B(p) andC → C(p).
An exact computation of the reduced system at numerous
points in the parameter space may be inefficient. The gen-
eral idea of parametric model order reduction by matrix
interpolation is therefore the following: given a large-scale
system at 𝑘 sampling points p

1
, p
2
. . . p
𝑘
in the parameter
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space, first reduce each system to desired order 𝑞. Then, in
order to approximate the parameter-dependency, the idea
is to interpolate between the resulting low-order systems
by

Er,int =

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Er,𝑖 Ar,int =

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Ar,𝑖

Br,int =

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Br,𝑖 Cr,int =

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Cr,𝑖 (7)

with weighting factors 𝜔(p
𝑖
) ∈ ℝ and ∑𝑘

𝑖=1
𝜔(p
𝑖
) = 1. The

interpolation could also take place in nonlinear form, but
for simplicity, we restrict ourselves to linear interpolation
in this work.

However, a direct interpolation of reducedmatrices (5)
according to (7) is not meaningful since the subspaces are
themselves parameter-dependent (see e. g. Equation (4)).
Two state vectors xr,1 and xr,2 from different reduced sys-
tems are not comparable to each other as they are located
in different subspaces – except for the improbable case of
matching projection matricesV

1
= V
2
.

The direct interpolation (7) of systems that are not
comparable to each other can yield e. g. singular Er,int or
other unwanted effects. Therefore, it ismandatory tomake
the reduced systemmatrices compatible in some sense. As
shown in [5], this can be achieved by embedding the lo-
cally reduced systems into the original coordinates of the

Figure 1: The process of making two pairs of basis vectors of locally
reduced systems {𝑥r,1, 𝑦r,1} and {𝑥r,2, 𝑦r,2} compatible with respect to
a common subspaceU

𝑞
. The subspaceU

𝑞
unites the dominant

directions of V
1
and V

2
. The matrices T

𝑖
are chosen such that the

images of corresponding pairs of basis vectors coincide after
embedding them into the coordinates of the large-scale systems
and a subsequent orthogonal projection into U

𝑞
. In this example,

𝑥r,1 and 𝑥r,2 are rotated such that 𝑥∗r is located in in the intersection
of V

1
and V

2
. Accordingly, the images of 𝑦∗r,1 and 𝑦

∗

r,2 coincide after
orthogonal projection into U

𝑞
.

large-scale system and subsequently orthogonally repro-
jecting them into a common subspace U

𝑞
. We review this

approach in the remainder of this section.
The subspace U

𝑞
is found using a Singular Value De-

composition (SVD)Vall =USN
⊤withVall := [V

1
V
2
. . .V
𝑘
]

being the total of all 𝑘 projection matrices and every V
𝑖

being orthogonal. By choosing the first 𝑞 columns ofU as
basis for U

𝑞
, the new combined subspace unites the most

dominant directions of all involved reduced systems’ sub-
spaces. In this work, we assume that the SVD is solvable
in a large-scale setting, given that the number of sampling
points in the parameter space is small enough.

A regular state transformation

xr,𝑖 = T
−1

𝑖
x
∗

r,𝑖 (8)

is applied to each of the 𝑘 reduced systems (where x∗r,𝑖 de-
notes a state vector in reduced and re-adjusted representa-
tion) and each of these 𝑘 systems ismultiplied with a regu-
lar matrixM

𝑖
∈ ℝ
𝑞×𝑞 from the left, which leaves the input-

output behavior unchanged:

E
∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M
𝑖
Er,𝑖T
−1

𝑖
ẋ
∗

r,𝑖 =

A
∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M
𝑖
Ar,𝑖T
−1

𝑖
x
∗

r,𝑖 +

B
∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M
𝑖
Br,𝑖 u

yr,𝑖 = Cr,𝑖T
−1

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
C
∗

r,𝑖

x
∗

r,𝑖 . (9)

In the following, we review how the matrices M
𝑖
and T

𝑖

are chosen in [5] such that a weighted interpolation of the
locally reduced systems becomes meaningful.

The reasoning for choosingT
𝑖
is as follows: consider𝑘

locally reduced systems with state vectors x∗r,𝑖. First, reap-
ply the transformation (8). Second, write every xr,𝑖 in coor-
dinates of the large-scale system by multiplying it with V

𝑖

from the left:
x̂
𝑖
= V
𝑖
T
−1

𝑖
x
∗

r,𝑖 (10)

In the following, we will refer to this as ‘embedding’-step.
Third, every system is orthogonally projected into the sub-
space spanned by the columns of U

𝑞
, which we will sub-

sequently call ‘reprojection’-step:

U
⊤

𝑞
x̂
𝑖
= U
⊤

𝑞
V
𝑖
T
−1

𝑖
x
∗

r,𝑖 . (11)

Definition 1 [5]. The coordinate systems of the state vectors
x
∗

r,𝑖 are called compatible w. r. t. a matrix U
𝑞
, if the images

of their basis vectors under a transformation T
𝑖
, embedding

using the matrices V
𝑖
and reprojection into the subspace

spanned by the columns ofU
𝑞
are identical.

Figure 1 illustrates the process of making two different, lo-
cally reduced systems compatible. From Definition 1, it is
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clear that T
𝑖
in (11) has to be chosen as

T
𝑖
= U
⊤

𝑞
V
𝑖

(12)

in order to make the coordinate systems of all x∗r,𝑖, 𝑖 =

1, 2, . . . , 𝑘 compatible w. r. t. a subspace spanned by U
𝑞
.

In [5],M
𝑖
is chosen asM

𝑖
= (W
⊤

𝑖
U
𝑞
)
−1 in order to represent

the state equations of all reduced models with respect to
the same basis. Subsequently, the re-adjusted system ma-
trices E∗r,𝑖,A

∗

r,𝑖, B
∗

r,𝑖 andC
∗

r,𝑖 from Equation (9) can be inter-
polated according to (7).

This approach to parametric model order reduc-
tion exhibits several advantageous properties. An eval-
uation of the reduced system for any parameter vector
p
∗

̸∈ {p
1
, p
2
. . . p
𝑘
} is possible by weighted interpolation

without having to repeat the computationally more expen-
sive reduction steps, which is especially useful for large-
scale systems. Therefore, the original system has to be
evaluated and reduced at 𝑘 sampling points only. At the
same time, the reduced system order is independent of 𝑘.
Furthermore, no analytic dependency of the original sys-
tem on parameter-vector p is necessary – an advantage if
the large-scale systems are to be obtained by system iden-
tification techniques.

3 Review of the Port-Hamiltonian
Representation

3.1 (Linear) Time-Invariant Port-Hamiltonian
Systems

A time-invariant port-Hamiltonian system is defined as

ẋ(𝑡) = (J − R)∇𝐻(x(𝑡)) + Bu(𝑡)

y(𝑡) = B
⊤
∇𝐻(x(𝑡)) . (13)

J ∈ ℝ𝑛×𝑛 is the skew-symmetric interconnection matrix. It
captures the interconnection structure and is responsible
for a proceeding, dynamical redistribution of energy be-
tween connected parts of the system.R ∈ ℝ

𝑛×𝑛 is the sym-
metric, positive semi-definite dissipation matrix. 𝐻(x(𝑡))

is the Hamiltonian, the energy function. By deriving the
Hamiltonian with respect to time, it can be shown that
port-Hamiltonian systems are passive, 𝐻̇(x) ≤ y

⊤
u, which

ensures stability according to Lyapunov’s secondmethod.
For a linear system, the energy function is quadratic,

𝐻(x(𝑡)) = 1

2
x
⊤
Qx. Then, withQ ∈ ℝ𝑛×𝑛 being symmetric

and positive-definite, system (13) becomes

ẋ(𝑡) = (J − R)Qx(𝑡) + Bu(𝑡)

y(𝑡) = B
⊤
Qx(𝑡) (14)

with constant system matrices, which we call a standard
port-Hamiltonian system in the following.

Depending on the modeling process, a port-
Hamiltonian systemmay either arise in standard form (14)
or as

Q
−1
ė(𝑡) = (J − R)e(𝑡) + Bu(𝑡)

y(𝑡) = B
⊤
e(𝑡) (15)

which is called co-energy representation [6]. Both are con-
nected through a regular state transformationQx(𝑡) = e(𝑡)

with e(𝑡) being called the effort vector. However, a numer-
ical inversion of Q, which would be required in order to
transform a port-Hamiltonian system from one represen-
tation into the other, may be unfeasible due to large model
order or bad numerical conditioning. For mechanical sys-
tems, for instance, Q often contains the mass and the
stiffness matrices on its diagonal, which typically leads to
a numerically ill-conditioned problem. Consequently, it is
important to distinguish between two cases where the sys-
tem arises either in explicit form (14) or implicit form (15).
Therefore, two different methods for the pMOR of port-
Hamiltonian systems – one for each representation – are
required.

In the following, Q−1 in system (15) is assumed to be
obtained directly from a modeling process that results in
co-energy representation, not by inversion of a large-scale
matrix. However, in order to emphasize its character as in-
verse of the system’s energy matrix, wemaintain the nota-
tionQ−1.

3.2 Structure-Preserving Model Reduction
of Port-Hamiltonian Systems using
Krylov Subspaces

In order to benefit from the port-Hamiltonian representa-
tion’s advantages for reduced-ordermodels, the symmetry
anddefiniteness properties of the systemmatrices J,R and
Qmust be preserved for the reducedmodels. In the follow-
ing, structure- and stability-preserving MOR is reviewed
for standard port-Hamiltonian systems and systems in co-
energy representation.

3.2.1 Systems in Co-Energy Representation

Consider a large-scale system given in co-energy represen-
tation (15). It is emphasized again that Q−1 is assumed to
be directly obtained from the modeling process and not
by inversion of a large-scale matrix. For order reduction,
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we follow Section 2 and approximate e ≈ Ver withV being
computed as a basis of the input Krylov subspace accord-
ing to (4) withA = J−R andE = Q

−1. By choosingW = V,
the preservation of definiteness and symmetry properties
is guaranteed for the reduced system

Q
−1

r
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
V
⊤
Q
−1
V ėr =

Jr−Rr
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
V
⊤
(J − R)V er +

Br
⏞⏞⏞⏞⏞⏞⏞
V
⊤
Bu

y = B
⊤
V⏟⏟⏟⏟⏟⏟⏟
B
⊤

r

er . (16)

V
⊤
Q
−1
V is symmetric and positive definite. As (K

⊤
JK)
⊤

=

−K⊤JK for every skew-symmetric matrix J and arbitrary
matrix K, the matrix J

r
= V
⊤
JV is skew-symmetric again.

Moreover, R
r

= V⊤RV is at least positive semidefinite.
Thus, passivity is preserved.

3.2.2 Systems in Standard Port-Hamiltonian Form

Now consider an identical large-scale system, but given in
standard port-Hamiltonian representation (14). The tech-
niques from Section 2.1 are not directly applicable with-
out losing structural properties and possibly passivity.
A structure-preserving model order reduction approach
for LTI port-Hamiltonian systems using Krylov-subspaces
was presented in [2] and is briefly summarized in the fol-
lowing:

An approximation x ≈ Ṽe
r
of the original state vector

is introduced; Ṽ is chosenas thebasis of aKrylov subspace
according to Equation (4) with E = I and A = (J − R)Q.
The state equations are multiplied with a matrix W̃⊤ from
the left. W̃ is a degree of freedom which may be chosen in
any suitablewayas long asdet(W̃

⊤
Ṽ) ≠ 0 anddet(W̃

⊤
(J−

R)QṼ) ≠ 0. Now, consider the particular choice W̃ = QṼ,
which leads to

Q
−1

r
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤
QṼ ėr =

Jr−Rr
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤
Q(J − R)QṼ er +

Br
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤
QBu

y = B
⊤
QṼ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
B⊤r

er . (17)

We therefore obtain the reduced system in co-energy rep-
resentation.

Note that evaluating the Krylov subspace in (4) for
standard port-Hamiltonian form and co-energy represen-
tation shows that

span{V} = span{QṼ} (18)

where span{V} denotes the subspace spanned by the
columns of V. As the transfer behavior of the reduced

model only depends on the subspace (18), we can substi-
tute V in (16) byQṼ, which shows that both reduced sys-
tems (16) and (17) are in fact identical w. r. t. input-output
behavior.

4 Parametric Model Order
Reduction of Port-Hamiltonian
Systems

By applying the steps from Section 2.2 directly to a port-
Hamiltonian system, it becomes obvious that the stan-
dard pMOR procedure destroys the system’s definiteness
and symmetry properties. For example, consider two
port-Hamiltonian systems to be interpolated linearly with
a weighting factor𝜔 = 0.5. Recombining the systemmatri-
ces to (J

𝑖
− R
𝑖
)Q
𝑖
= A
𝑖
and interpolating A

𝑖
shows that:

1

2
A
1

+
1

2
A
2

=
1

2
(J
1

− R
1
)Q
1

+
1

2
(J
2

− R
2
)Q
2

≠ ((
1

2
J
1

+
1

2
J
2
) − (
1

2
R
1

+
1

2
R
2
)) (
1

2
Q
1

+
1

2
Q
2
) .

An implicit assumption for this interpolation is that the
system and output equation are linear in the interpola-
tion variables. This is obviously not true for standard port-
Hamiltonian systems, but for systems in co-energy repre-
sentation.

In the following, parametric model order reduction
by matrix interpolation is extended to port-Hamiltonian
systems. These systems may be available to the user in
either of the representations given in Section 3, there-
fore two different methods are required. In Section 4.1,
we adapt the pMOR from Section 2.2 to port-Hamiltonian
systems being modeled in co-energy representation (15).
In Section 4.2, we do the same for systems in standard
port-Hamiltonian representation (14). In Section 4.3, it is
shown that both methods result in interpolated systems
with identical input-output behavior.

4.1 Systems in Co-Energy Representation

Consider 𝑘 large-scale systems given in co-energy rep-
resentation (15) at different sampling points pi, 𝑖 =

1, 2, . . . , 𝑘, in the parameter space. For order reduction,we
follow Section 3.2.1 and obtain 𝑘 reduced systems

V
⊤

𝑖
Q
−1

𝑖
V
𝑖
ėr,𝑖 = V

⊤

𝑖
(J
𝑖
− R
𝑖
)V
𝑖
er,𝑖 + V

⊤

𝑖
B
𝑖
u

y
𝑖
= B
⊤

𝑖
V
𝑖
er,𝑖 . (19)

We note that a port-Hamiltonian system in co-energy rep-
resentation strongly resembles a standard state-space sys-
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tem in implicit form (Equation (1)). Therefore, in this par-
ticular case, all steps from Section 2.2 can analogously
be applied to Equation (19). It is clear that an analysis of
the required transformation, embedding and reprojection
steps for the reduced systems in order to make them com-
patible w. r. t. a subspace U

𝑞
also yields a transformation

matrixT
𝑖
=U
⊤

𝑞
V
𝑖
. Thus, in analogy toEquation (9),weget:

M
𝑖
V
⊤

𝑖
Q
−1

𝑖
V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1
ė
∗

r,𝑖

= M
𝑖
V
⊤

𝑖
(J
𝑖
− R
𝑖
)V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1
e
∗

r,𝑖 +M𝑖V
⊤

𝑖
B
𝑖
u

yr,𝑖 = B
⊤

𝑖
V(U
⊤

𝑞
V
𝑖
)
−1
e
∗

r,𝑖 .

where U
𝑞
is chosen as the first 𝑞 columns of U from the

SVDVall = USN
⊤ with

Vall := [V
1
V
2
. . .V
𝑘
] (20)

and every V
𝑖
being orthogonal.

The choice

M
𝑖
:= T
−⊤

𝑖
= (U
⊤

𝑞
V
𝑖
)
−⊤

= (V
⊤

𝑖
U
𝑞
)
−1 (21)

preserves symmetry and definiteness properties. The re-
duced systemmatrices in co-energy-representation for ev-
ery sampling point 𝑖 then result as

Q
−1∗

r,𝑖 := (V
⊤

𝑖
U
𝑞
)
−1
V
⊤

𝑖
Q
−1

𝑖
V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1

J
∗

r,𝑖 := (V
⊤

𝑖
U
𝑞
)
−1
V
⊤

𝑖
J
𝑖
V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1

R
∗

r,𝑖 := (V
⊤

𝑖
U
𝑞
)
−1
V
⊤

𝑖
R
𝑖
V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1

B
∗

r,𝑖 := (V
⊤

𝑖
U
𝑞
)
−1
V
⊤

𝑖
B
𝑖

(22)

which are ready for interpolation by

Q
−1

r,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Q
−1∗

r,𝑖 Jr,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)J
∗

r,𝑖

Rr,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)R
∗

r,𝑖 Br,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)B
∗

r,𝑖 . (23)

If desired, the interpolated system can afterwards be trans-
formed into standard port-Hamiltonian form by a state
transformation er,int = Qr,int ⋅ xr,int.

Remark: Note thatM
𝑖
= (V
⊤

𝑖
U
𝑞
)
−1 andT

𝑖
= U
⊤

𝑞
V
𝑖
are

the same as in Section 2.2, ifW
𝑖
=V
𝑖
. Therefore, the pMOR

approach presented in [5] includes port-Hamiltonian sys-
tems in co-energy representation as special case, which
was already highlighted in [10].

4.2 Systems in Standard Port-Hamiltonian
Representation

Now, assume that 𝑘 large-scale models in standard port-
Hamiltonian form

ẋ
𝑖
= (J
𝑖
− R
𝑖
)Q
𝑖
x
𝑖
+ B
𝑖
u

y
𝑖
= B
⊤

𝑖
Q
𝑖
x
𝑖

(24)

are given at sampling points pi, 𝑖 = 1, 2, . . . , 𝑘, in the pa-
rameter space. An inversion of Q

𝑖
, which would be re-

quired to bring the system into co-energy representation,
might be a tedious or unfeasible task if the order 𝑛 of
the original system is large, thus the procedure from Sec-
tion 4.1 is not applicable. For order reduction, we follow
Section 3.2.2 instead. We approximate

x
𝑖
≈ Ṽ
𝑖
er,𝑖, (25)

and eventually get 𝑘 locally reduced systems

Q
−1

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤

𝑖
Q
𝑖
Ṽ
𝑖
ėr,𝑖 =

Jr,𝑖−Rr,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤

𝑖
Q
𝑖
(J
𝑖
− R
𝑖
)Q
𝑖
Ṽ
𝑖
er,𝑖 +

Br,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Ṽ
⊤

𝑖
Q
𝑖
B
𝑖
u

yr,𝑖 = B
⊤

𝑖
Q
𝑖
Ṽ
𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B
⊤

r,𝑖

er,𝑖 (26)

in co-energy representation. Since matrix interpolation
must take place in co-energy representation, a conflict
with the pMORprocedure for standard state-space systems
as in Section 2.2 is encountered: not the reduced state vec-
tors in the sense of xr,𝑖 = Q

−1

r,𝑖 er,𝑖, but the reduced effort-
vectors er,i have to be rewritten in coordinates of the origi-
nal systems and then be reprojected into a combined sub-
space Ũ

𝑞
as follows: Tomake an interpolationmeaningful,

we readjust the locally reduced systemsby applying a state
transformation

er,𝑖 = T̃
−1

𝑖
e
∗

r,𝑖 (27)

to (26) and bymultiplying the state equations with regular
matrices M̃

𝑖
from the left, which leads to

Q̃
−1∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M̃
𝑖
Q
−1

r,𝑖 T̃
−1

𝑖
ė
∗

r,𝑖 =

J̃
∗

r,𝑖−R̃
∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M̃
𝑖
(Jr,𝑖 − Rr,𝑖)T̃

−1

𝑖
e
∗

r,𝑖 +

B̃
∗

r,𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
M̃
𝑖
Br,𝑖 u

yr,𝑖 = B
⊤

r,𝑖T̃
−1

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B̃
⊤∗

r,𝑖

e
∗

r,𝑖 . (28)

Appropriate matrices M̃
𝑖
and T̃

𝑖
are found as follows:

1. A locally reduced system can be expressed in coordi-
nates of the original systems by writing x̂

𝑖
= Ṽ
𝑖
er,𝑖, cf.

Equation (25).
2. The state vector x̂

𝑖
is linked to its corresponding effort

vector in large-scale coordinates ê
𝑖
by ê
𝑖
= Q
𝑖
x̂
𝑖
. Thus,

ê
𝑖
= Q
𝑖
Ṽ
𝑖
er,𝑖. (29)
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3. To find the dominant directions of all involved sub-
spaces, the matrix 0Vall must be chosen as the total of
the following 𝑘 orthogonal matrices

P̃
𝑖
= orth(Q

𝑖
Ṽ
𝑖
) (30)

where every matrix P̃
𝑖
contains a set of mutually or-

thonormal basis vectors for the subspace spanned by
Q
𝑖
Ṽ
𝑖
. Hence, we define

0Vall := [P̃
1
P̃
2

. . . P̃
𝑘
]. (31)

4. Inserting (27) in (29) results in

ê
𝑖
= Q
𝑖
Ṽ
𝑖
T̃
−1

𝑖
e
∗

r,𝑖 . (32)

5. Subsequently, every system written in coordinates of
the large-scale co-energy representation is projected
orthogonally into a common subspace Ũ

𝑞
.

Ũ
⊤

𝑞
ê
𝑖
= Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
T̃
−1

𝑖
e
∗

r,𝑖 . (33)

The basis of Ũ
𝑞
is chosen as the first 𝑞 columns of Ũ

from the SVD Ṽall = ŨS̃Ñ
⊤. Recalling (30) and (31), we

see that Ũ
𝑞
captures the most dominant directions of

the subspaces of all involved reduced systems in co-
energy representation.

6. The coordinate systems of the reduced and adjusted
effort vectors e∗r,𝑖 are compatible w. r. t. the matrix Ũ

𝑞

if the images of their basis vectors under the transfor-
mation T̃

𝑖
, embeddingusing thematricesQ

𝑖
Ṽ
𝑖
and re-

projection into the subspace spanned by the columns
of Ũ
𝑞
are identical. Therefore, choose

T̃
𝑖
= Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
. (34)

7. M̃
𝑖
is chosen such that definiteness and symmetry

properties of the reduced and re-adjusted matrices are
preserved:

M̃
𝑖
= T̃
−⊤

𝑖
= (Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1 . (35)

Finally, the interpolation-ready matrices read as

Q̃
−1∗

r,𝑖 := (Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Q
−1

r,𝑖 (Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
)
−1

J̃
∗

r,𝑖 := (Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Jr,𝑖(Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
)
−1

R̃
∗

r,𝑖 := (Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Rr,𝑖(Ũ

⊤

𝑞
Q
𝑖
Ṽ
𝑖
)
−1

B̃
∗

r,𝑖 := (Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Br,𝑖 , (36)

they can now be interpolated according to

Q̃
−1

r,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)Q̃
−1∗

r,𝑖 J̃r,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)̃J
∗

r,𝑖

R̃r,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)R
∗

r,𝑖 B̃r,int :=

𝑘

∑
𝑖=1

𝜔(p
𝑖
)B̃
∗

r,𝑖 . (37)

It should be noted that identical results can be
achieved in the following way: By interpreting the left-
hand side of Equation (17) as

Ṽ
⊤

𝑖
Q
𝑖
Ṽ
𝑖
ėr,𝑖 = Ṽ

⊤

𝑖
Q
𝑖
(Q
−1

𝑖
Q
𝑖
) Ṽ
𝑖
ėr,𝑖

= (Q
𝑖
Ṽ
𝑖
)
⊤

Q
−1

𝑖
(Q
𝑖
Ṽ
𝑖
) ėr,𝑖 , (38)

it can be seen that (17) can be considered as projection
of (15) using theprojectionmatrixQ

𝑖
Ṽ
𝑖
(with Ṽ

𝑖
being cho-

sen as basis of the block Krylov subspace (4) with E
𝑖
= I

and A
𝑖
= (J
𝑖
− R
𝑖
)Q
𝑖
). Since the resulting system is in co-

energy representation, the theory from Section 2.2 can be
applied analogously to Section 4.1, which also leads to the
result (35) for systems that are originally modeled in stan-
dard port-Hamiltonian form (14).

4.3 Comparison

With above presentedmethods, stability-preserving pMOR
by matrix interpolation is possible for systems modeled in
co-energy representation and standard port-Hamiltonian
form without inversion of a large-scale matrix. In the fol-
lowing, it is shown that both methods result in interpo-
lated systems with identical input-output behavior.

Theorem 1. The interpolation (23) of the reduced sys-
tems (22), whichwere originally given in co-energy represen-
tation, results in a systemwith the same input-output behav-
ior as the interpolation of reduced systems (36), which were
originally modeled in standard port-Hamiltonian form.

Proof. Given two systems in standard port-Hamiltonian
form and co-energy representation at a sampling point
p ∈ 𝛱, we showed in Section 3.2 that the locally reduced
systems are identical for both presented MOR methods.
From (18) it is known that span{V

𝑖
} = span{Q

𝑖
Ṽ
𝑖
} and we

can state that both matrices are linked by

V
𝑖
= Q
𝑖
Ṽ
𝑖
S
𝑖
. (39)

with a regular matrix S
𝑖
∈ ℝ𝑞×𝑞. It follows from (20) and

(31) that span{U
𝑞
} = span{Ũ

𝑞
} and

U
𝑞

= Ũ
𝑞
L (40)

with L ∈ ℝ𝑞×𝑞 andLL⊤ = I, becauseU
𝑞
and Ũ

𝑞
are orthog-

onal. By substituting (39) and (40) in (22) and using J∗r,𝑖 as
an example it follows that

J
∗

r,𝑖 = (V
⊤

𝑖
U
𝑞
)
−1
V
⊤

𝑖
J
𝑖
V
𝑖
(U
⊤

𝑞
V
𝑖
)
−1

= L
⊤
(Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Ṽ
⊤

𝑖
Q
𝑖
J
𝑖
Q
𝑖
Ṽ
𝑖
(Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
)
−1
L

= L
⊤
(Ṽ
⊤

𝑖
Q
𝑖
Ũ
𝑞
)
−1
Jr,𝑖(Ũ
⊤

𝑞
Q
𝑖
Ṽ
𝑖
)
−1
L (by (26))

= L
⊤
J̃
∗

r,𝑖L (by (36)),
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where allS
𝑖
cancel themselves. The same steps hold analo-

gously forQ−1∗r,𝑖 ,R
∗

r,𝑖 and b
∗

r,𝑖. Referring to the interpolation
steps in (23) and (37), it results that

Q
−1

r,int = L
⊤
Q̃
−1

r,intL Jr,int = L
⊤
J̃r,intL

Rr,int = L
⊤
R̃r,intL Br,int = L

⊤
B̃r,int . (41)

Therefore, the interpolated systems result in different rep-
resentationswhichare linkedbyanorthogonal state trans-
formation ẽr,𝑖 = Ler,𝑖. Consequently, for both presented
methods, the resulting interpolated systemshave the same
input-output behavior.

4.4 Remarks

It is emphasized that the presented methods are suit-
able for models where no analytic dependency of the sys-
tem matrices w. r. t. the parameters is given. Both meth-
ods are independent of the parameter space. Addition-
ally, as no symbolic computations are necessary and only
matrix-vector products (and LU decompositions during
the Arnoldi procedure, if using Krylov subspace methods)
must be executed, pMORwithmatrix interpolation is well-
suited for large-scale systems.

Note that a broad class of second order systems can
be transformed into both co-energy and standard port-
Hamiltonian representation, which makes it interesting
for applications arising from classic modeling techniques
such as FEM.

5 Simulation Results
In this section, we give two numerical examples for the
presented parametric order reduction methods for port-
Hamiltonian systems. The first is an example from struc-
tural dynamics: a clamped plate modeled in co-energy
representation. The second is a large electrical network,
which is modeled in standard port-Hamiltonian form.

5.1 Plate

Figure 2 shows a clamped steel plate with given dimen-
sions which is excited by a point force 𝐹(𝑡) [5]. The plate
is 0.2 mm thick. The system output is the displacement of
the point where 𝐹(𝑡) attacks. The plate length 𝐿 is a free
variable. The model was derived in [5] using a parametric
Ansys model with 225 shell elements and 1452 degrees of
freedom. After evaluating it for a desired length 𝐿, it can
be written as port-Hamiltonian system in co-energy repre-

Figure 2: A steel plate, being excited by a force 𝐹(𝑡) in normal
direction. The plate is assumed to be clamped at the edges.

sentation. We consider two plates with 𝐿 = 450 mm and
𝐿 = 550 mm which are to be interpolated with 𝜔 = 0.5.
A third model has been generated for 𝑥 = 500 mm and
serves as reference. We chose the reduced model order
𝑞 = 12 and expansion point 𝑠

0
= 0.

Figure 3 shows the magnitude plots of the three di-
rectly reduced systems and the interpolated system. It can
be seen that the linear interpolation approximates the ref-
erence system well.

Note that matrix interpolation can handle eigenvalue
crossing: due to its quadratic shape, the reference sys-
tem with 𝐿 = 500 mm has a double eigenvalue at a reso-
nance frequency close to 102 rad/sec. In contrast, the non-
quadratic plates with𝐿

1
= 450mmand𝐿

2
= 550mmboth

have two distinct eigenvalues at this frequency range. The
interpolation method captures this behavior and approxi-
mates the square plate system correctly.

Figure 3: Amplitude of test point displacement for the reduced plate
models with 𝐿 = 0.45m and 𝐿 = 0.55m as well as the interpolated
system and the reference model with 𝐿 = 0.5m.
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Figure 4: Structure of the ladder network as presented in [11]. The
input is the current 𝐼

1
(𝑡), the output is the voltage 𝑈

𝐶1
(𝑡) across the

first capacitor.

5.2 Electric Circuit Network

A ladder network is a system consisting of an arbitrary
number of coupled RLC-circuits as shown in Figure 4.
In [11], Matlab code for the generation of an electrical lad-
der network model in standard port-Hamiltonian form is
provided. The free parameters are resistance 𝑅

1
= 𝑅
2

=

. . . = 𝑅, inductance 𝐿
1

= 𝐿
2

= . . . = 𝐿 and capacity𝐶
1

=

𝐶
2

= . . . = 𝐶. The input is the current 𝐼
1
(𝑡) from an exter-

nal current source, the output is the voltage 𝑈
𝐶
1

(𝑡) across
the first capacitor. In this example, we show a linear inter-
polation of two network models in three parameters, with
𝜔 = 0.5.

System 1 has the parameters 𝑅 = 0.01 𝛺, 𝐿 = 1 mH
and 𝐶 = 1 𝜇F. System 2 has the parameters 𝑅 = 0.012 𝛺,
𝐿 = 3 mH and 𝐶 = 2 𝜇F. Both were modeled with 250 cir-
cuits, resulting in 𝑛 = 1000. Additionally, a reference sys-
tem for linearly interpolated parameters was generated.
The RK-ICOP-algorithm [12] was used to find a single ex-
pansion point at 𝑠

(1)

0
= 33565 rad/sec for system 1 and

𝑠
(2)

0
= 13681 rad/sec for system 2.
Figure 5 shows the magnitude plots of reduced (𝑞 =

10) and interpolated ladder network systems aswell as the
reference system with 𝑅 = 0.011 𝛺𝛺, 𝐿 = 2 mH and 𝐶 =

Figure 5:Magnitude plots of two ladder networks of order 𝑛 = 1000
which differ in three parameters, their linear interpolation and a
corresponding, separately reduced reference system.

1.5 𝜇F. The interpolation fits the reference system well. In
fact, the new pMOR method for port-Hamiltonian systems
in standard form shows goodperformance in interpolating
three independent parameters, using models at only two
sampling points in the parameter space.

6 Conclusion
This paper demonstrates that the advantages of port-
Hamiltonian systems and their structure-preserving order
reduction can be combined with parametric order reduc-
tion. A procedure for parametric model order reduction
by matrix interpolation was suggested for both co-energy
representation and standard port-Hamiltonian form. The
method which is to be used is determined by in which rep-
resentation the system is given. For each option, there is
a method which does not require the inversion of a large-
scale matrix.

It was shown that an interpolation of the port-
Hamiltonian system matrices has to take place in co-
energy representation in order to preserve the port-
Hamiltonian structure. Adjustments to the locally reduced
systems were outlined, which make matrix interpolation
meaningful. Both presentedmethods preserve the symme-
try and definiteness properties, stability, and result in in-
terpolated systems with identical input-output behavior.
For a parametric system which is defined by a finite num-
ber of sampling points, stability is obtained for all inter-
adjacent, reduced systems. Simulation examples were
given for both methods, for a one- and three-dimensional
parameter space.

Acknowledgement: We would like to thank Dr. Jan
Mohring for making the plate model available to us.
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