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Abstract: In planetary exploration, wheeled mobile robots
(rovers) are popular for extending action range compared
to a lander. Despite their success, they continue to strug-
gle with soft grounds which shows in high sinkage and
can lead to an immobilization in the worst case. Rovers
usually are over-actuated due to individual wheel drives
and steering, which is rarely made use of in current mis-
sions. Some work optimizing the resulting degrees of free-
dom exists but often does not use all available model
knowledge. In this work, the rover is consequently mod-
eled with the subsystems rigid body dynamics, kinemat-
ics and wheel/ground dynamics. Feedback linearization is
used for the rigid body and the underlying wheel/ground
controllers on individual wheel level. The control alloca-
tion of the forces is done via the pseudo-inverse and a
base of the null-space to extract the available degrees of
freedom. A verification of the approach is shown in a co-
simulation with a high-fidelity model of the ExoMars rover.

Keywords: chassis control, mobile robots, planetary ex-
ploration rover, torque control, traction optimization, con-
trol allocation, feedback linearization, ExoMars, dynamic
extension

Zusammenfassung: Radgetriebene, mobile Roboter - so-
genannte Rover - sind in der planetaren Exploration ein
verbreitetes Mittel zur Erh6hung des Aktionsradiuses im
Vergleich zu stationdren Landesonden. Obwohl Rover in
vergangenen Missionen sehr erfolgreich waren, haben sie
nach wie vor Probleme mit dem Vorankommen auf Sand-
bdden, dies spiegelt sich in hoher Einsinkung wider und
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kann dazu fiihren, dass sich der Roboter festfdhrt. Auf-
grund einzeln angetriebener und gelenkter Rader sind Ro-
ver hdufig iiberaktuiert, allerdings wird von den dadurch
entstehenden Moglichkeiten in Missionen kaum Gebrauch
gemacht. Wahrend in der Forschung einige Arbeiten zur
Optimierung der entstehenden Freiheitsgrade existieren,
wird dabei oft nur partiell Modellwissen verwendet. In die-
ser Arbeit wird der Rover vollstandig mit seinen Subsys-
temen Starrkérperdynamik, Kinematik und Rad-/Boden-
kontaktdynamik modelliert. Die Modelle werden anschlie-
end modifiziert, sodass fiir die dynamischen Subsysteme
Regelgesetze mit der Methode der exakten Ein-/Ausgangs-
linearisierung entworfen werden kénnen, wahrend die Al-
lokation zu einem statischen Problem wird. Diese Kraftver-
teilung wird mithilfe der Pseudo-Inversen und einer Basis
des Nullraums der Allokationsmatrix realisiert. Der Ansatz
wird in einer Co-Simulation mit einem genauen Modell des
ExoMars Rovers verifiziert.

Schlagworter: Chassisregelung, Mobile Roboter, Plane-
tare Explorationsrover, Drehmomentregelung, Traktions-
optimierung, Allokation, Exakte Ein-/Ausgangslinearisie-
rung, dynamische Erweiterung, ExoMars

1 Introduction

Wheeled mobile robots significantly increase the action
range for scientific payloads compared to immobile lan-
ders. Due to the importance to scientists and the fact, that
rovers allow exploration and surveillance of hazardous ar-
eas without threatening astronauts [10, p. 4ff], rovers have
become popular in planetary exploration. Most promi-
nently, the NASA/JPL rovers Spirit, Opportunity and Cu-
riosity have been and are enormously successful in explor-
ing the Mars in the past 1.5 decades. Despite this success,
the mobility of these rovers in heterogeneous and espe-
cially soft and sandy terrain continues to pose problems.
The Spirit rover, for example, got stuck in 2009 due to ex-
cessive sinkage of one wheel and Curiosity was backed out
of a sand field in Hidden Valley in 2014 due to dangerously
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Figure 1: Overall controls hierarchy for a wheeled mobile robot; the
mid-layer chassis control is the subject of this work.

increasing sinkage [2, 3]. Because of scientific interest and
the mechanical threat of driving over spiky rocks instead
of sand, it is worth improving the driving capabilities in
soft sands. A model-based controller is designed, in this
work, to increase rover performance by software without
changing the rover design.

For a mobile robot, the control task can be divided
into three main layers, see figure 1. The first layer (‘high
level’) is responsible for creating a desired robot velocity
trajectory and can include tasks such as navigation, ob-
stacle avoidance, path optimization and path following.
Motor controllers, on the other hand, usually accept cur-
rent, velocity or position trajectories and control the mo-
tors accordingly. This work deals with the chassis control,
which is the control layer in between the high level and
the motor controllers. The chassis controller is hence in
charge of computing desired values for each actuator from
the desired robot velocities. There are more controllable
degrees of freedom than would be necessary due to mobile
robots mostly having individual wheel drive and some-
times steering to achieve a planar movement. Control allo-
cation is the controls domain that deals with the resulting
over-actuated system or, mathematically speaking, under-
determined system of equations; see the survey paper of
Johansen and Fossen [20] for a general overview.

Within the area of wheeled mobile robots, existing
approaches can be divided into (wheel) rate-based and
(wheel) torque-based controllers. Most often, a rate-based
approach, with simple geometric constraints to handle the
underdeterminacy of the system, is used as described in
[14, 25]. This control approach is often called geometric
control and can be thought of as an extension of the Ack-
ERMANN steering angles for vehicles with two-wheel steer-
ing. While slip is mostly assumed to be zero, Ishigami et
al. [18] add slippage considerations to the wheel rate cal-
culations and Helmick et al. [14] account for slip in the
higher level path following. Another approach for very
rough terrain is to account for the directions of movement
of the individual wheels and adjust the wheel rates such
that slip is minimized by preventing the so-called wheel-
fighting. This technique relies on an estimation or mea-
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surement of the individual wheel contact angles (see [16]),
was developed by Peynot and Lacroix [32] and recently
updated for and uploaded to JPL’s Curiosity rover [36]. A
switching controller, combining standard geometric con-
trol, slippage consideration and contact angles, was pro-
posed by Gonzalez and lagnemma [11]. Krenn et al. [24]
presented a model-predictive control (MPC) which con-
siders terramechanics properties within a rate-based ap-
proach.

The first torque controllers were built in the field of
mobile robots with non-holonomic constraints that as-
sume zero slippage. There are approaches to cope with
steered wheels [35], a four-wheeled skid-steer rover with
lateral but no longitudinal wheel slip [8, 22] and a two-
wheeled differential drive robot that is subjected to longi-
tudinal wheel slip [39]. Other approaches explicitly con-
trol a desired slip value [27], that is calculated through
an inversion of simple terramechanics models, or switch
between dedicated geometrically derived control strate-
gies for different terrains [37]. Most torque-based con-
trollers are, however, based on allocating the desired
wheel torques with an inversion of the robot kinematics. To
cope with the over-actuation, either the least squares solu-
tion [27] is used or an optimization is employed to find the
best distribution. A minimization of the power consump-
tion [17, 34], the ratio between traction force and the nor-
mal force [26, 16] or a stability measure to prevent tip-over
of the robot [28] was performed. While these works either
use PID-controllers to calculate the total forces needed
or do not mention that part of the controller at all, there
are approaches that use models to compute the wheel
forces needed for maintaining a static force-torque bal-
ance. Movement of the robot is then enabled by an ad-
ditional PID controller on the velocity error. These ap-
proaches were published by Michaud et al. [29] for the Exo-
Mars rover of the European Space Agency (ESA) and for a
research rover by Krebs et al. [23].

The field of research of road vehicles equipped with
individually driven and steered wheels has relevance in
this project as well because these vehicles have similari-
ties with mobile robots, cf. Krenn et al. [25] for a compar-
ison. Excessive work was published [31, 15, 30, 6] and the
same controls hierarchy as depicted in figure 1, can be ob-
served.

In the present work, a comprising model-based chas-
sis control system for the ESA ExoMars rover [29] is de-
veloped to control all six drive and six steering actuators,
such that the rover follows a desired velocity trajectory.
Therefore, synthesis models for a 3D rigid body dynam-
ics and full kinematics of the passive suspension system,
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Figure 2: One bogie with its two wheel units and quantities for the
sinkage calculation for a penetration based normal force model.

as well as for the wheel and ground dynamics are devel-
oped. Three controller modules are designed, see figure 3:
The 3D rigid body dynamics model is modified such that
it can be controlled with a feedback linearization con-
troller. The control allocation is done with the pseudo-
inverse of the partial force-torque balance equation, while
the available degrees of freedom are found with the null-
space and optimized in a separate lower frequency mod-
ule. The wheel-ground dynamics model is dynamically
extended to be used within another feedback lineariza-
tion for the synthesis of the underlying single wheel con-
trollers.

For this approach, one contact point with the ground
per wheel and a contact angle (see [16]) of zero is assumed,
which corresponds to the assumption of moderate terrain
roughness. Furthermore, the rover translational and rota-
tional velocities, as well as the orientation, bogie angles,
wheel rates and steering angles, are assumed to be ideally
measurable.

2 System model

The coordinate systems that are used for the model equa-
tions are defined according to the kinematics of the Exo-
Mars rover. The passive suspension system of the rover
consists of three so-called bogies, which are crossbeams
that hold two wheel assemblies each and are mounted
with a passive rotational degree of freedom to the rover
body. One of the bogies is depicted in figure 2, where the
inertial O-frame, the rover center of mass (CoM) frame (‘r’),
the bogie frame (‘b’), steering frame (‘s’) and contact frame
(‘c’) are shown. A right lower index r(')c,-lr’ in this work,
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means the ith contact frame with respect to the r-frame,
while the upper left index indicates the frame in which the
vector is resolved. For shorter notation, the upper left in-
dex is omitted, if the describing frame is equal to the orig-
inating one, ¢, = "1 -

The ExoMars rover, including its ground-interaction,
can be divided into three major components. Robot dy-
namics are considered as 3-dimensional rigid body dy-
namics to calculate the movements that are achieved by
total forces and torques, see section 2.1. For the static equa-
tion system to map these total forces and torques to the
wheel forces, the force-torque balance is derived through
the rover kinematics and differential kinematics in sec-
tion 2.2.

On single-wheel level, the steering and drive dynam-
ics, as well as a simple wheel-ground contact model, are
combined to one dynamic system in section 2.3.

2.1 Rigid body dynamics

A 3D dynamic model is developed due to the rover being
able to move on uneven terrain, including slopes of more
than 15°. The dynamics of the bogies are neglected and one
lumped mass matrix M, and one inertia matrix I, are as-
sumed for the whole rover, including its suspension and
wheels. The equations of motion can then be written as the
nonlinear state-space system

) 1

] [Sww+R®°8] [m 2],

@, | = 0 o f [Tr]- M
0 U 0w, 0 ol=—

X, frx) B

The state vector consists of the total CoM translational
(v,) and rotational (w,) velocities, expressed in the rover
frame, as well as the total Euler angles of the rover 0, fol-
lowing the Roll-Pitch-Yaw (RPY) sequence. The input to the
system is the force torque vector [F,, T,] T of size R*? with
the constant input matrix consisting of the inverted mass
and inertia matrices. S is the cross-product building ma-
trix (see [33, p. 107]), 'R, is the rotation matrix that trans-
forms a vector from the O-frame to the r-frame and °g =
[0,0,-9.81]" is the gravity vector expressed in the O-frame.
Given the definition of the RPY angles 0 = [¢, 9, ], their
dynamics need the matrix

1 cos(9) sin(¢p)sin(d)  cos(¢) sin(9)
1) 1o 0 cos(¢) cos(9) —sin(¢) cos(9)
cos(9) 0 sin(¢h) cos(¢)
)

Bereitgestellt von | Deutsches Zentrum fir Luft- und Raumfahrt - DLR

Angemeldet | stefan.barthelmes@dir.de Autorenexemplar
Heruntergeladen am | 02.03.20 13:52



DE GRUYTER OLDENBOURG

The nonlinear acceleration in equation (1) consists of the
gravitational acceleration and the cross-product of rota-
tional and translational velocity due to the describing
rover-frame (r-frame) not being fixed in space.

2.2 Rover (differential) kinematics

While a lumped mass in one rigid body was assumed for
the dynamics in section 2.1, this section deals with the ac-
tual passive suspension system of the ExoMars rover, its
kinematics and differential kinematics. The approach to
derive these is well known in robotics and can, e. g., be
found in the book of Siciliano et al. [33].

The rover has three passive bogies and six active steer-
ing joints, all of which are rotational degrees of freedom
(DoF), leading to a vector ¢ € R®*V of all DoF angles.
In [5], the homogeneous transformation matrices, includ-
ing the position vectors r"c,.|r from the rover CoM to the
contact points, were derived with the help of the Denavit-
Hartenberg (DH) convention. The relative velocity of the ith
contact frame can be computed by differentiation as

arc,—lr R .
Vel = g 4 =J; (@9 3

defining the linear velocity part of the relative geometric
Jacobian Ji e The linear velocity of the r-frame and the
cross-product of its angular velocity with the distance to
the contact frame must be added to the relative velocity
(3) due to the moving r-frame. Additionally, the total ve-
locity needs to be expressed in the contact frame which is
achieved with an additional rotation © R,,leading to theith
wheel total velocity

I
Vio
CiVC,-|O = CiBr(q) [! _§(rci|r) L.)rel(Q)] wr|0 . (4)
1@ q

The force and torque equilibrium equation that re-
lates contact forces to rover forces can now be established
through the kineto-static duality [33, p. 148] as

F, J.(@)
T, |=]"(@F. with J@=| : |.
Ta I (@

Therefore it is assumed that only forces and no torques can
be transferred in the contact points.
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2.3 Combined wheel and contact dynamics

On individual wheel level, n = 6 identical dynamic models
are developed. These contain the wheel dynamics with its
inertia as well as a quasi-static estimation of normal forces
and a simple wheel-ground contact model for the tangen-
tial forces.

Quasi-static estimation of normal forces

Normal force models for soft soil contact exist but rely on a
sinkage of the wheel, as well as many parameters that are
hard to identify. Due to the difficulties of modeling these
forces accurately [4], the lack of a sinkage measurement
and the slow movement of the robot — the maximum veloc-
ity is about 0.03 T - the normal forces are estimated with
a quasi-static force and torque balance.

Three force/torque balance equations are set up for
the calculation. A force equilibrium between the gravita-
tional force acting in the CoM and the force component in
the direction of gravity at each bogie reads

3
ZFg,b; -gm=0 6)
j=1

with the gravitational force gm and the force in the direc-
tion of the gravity at the jth bogie F, g, . Another force equi-
librium is stated for each of the three bogies as

Fyy, —F,c —F,. =0,

8,0; 8.Cj, 8.Cj,

j=1...3 (7)

where the wheels j; and j, are attached to the jth bogie.
Torque sums around the x- and y-axes of the 0-frame must
be zero due to the quasi-static assumption,

[(1) ] i(’bux ‘e, )Fgn, =0, (8

with the unit vector of the global z-axis (the gravity direc-
tion) expressed in the r-frame rezO. The torque around each
bogie’s joint axis must be zero for zero angular accelera-
tion because the bogies are ideal free rotating joints and
thus can not transfer torques,

e, F

20" 8,
)=0.

Equations (6) to (9) add up to nine linearly indepen-
dent scalar equations, which can be solved for the 6+3 = 9
unknown scalar forces at the bogies and contact points.
The scalars Fg,c,-’ i = 1...6 all act in the direction of the

b; r
[0 0 1]"R ("rep, x" o

r r
T by X eZOFg)C]_2
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gravity, leading to the vector of the gravitational force at
the ith contact point,

F F,.e

gl ~ gtz

(10)

Ultimately, only the component of F; in the ground
normal direction - i. e., the z-axis of the c-frame - is the
searched contact normal force,

F\,(6,.qy) = (e, , e, Mg (11)

Therein, (e, ,e, ) is the scalar product of the two unit vec-
tors and represents the projection of the ith gravitational
force onto the contact frame’s z-axis, see figure 2.

Tangential force

The wheel-ground interaction force is a combination of
wheel-sand friction and sand-internal behavior. Planetary
exploration rover wheels usually have grousers to achieve
form lock instead of pure friction between wheel and sand
in longitudinal wheel direction. Therefore, the maximum
longitudinal force is assumed analogously to the MOHR-
CouLOMB maximum shear stress,

Fyrtonr-couroms = Fy, tan(¢s_s), (12)

where the internal sand shear angle ¢_g is in a range be-
tween 25° to 45° [38, 1] for sandy soil and cohesion can be
neglected for the assumed dry sand [38].

This traction force acts opposed to the slip velocity
of the contact point, which is the difference between the
wheel rim velocity and the translational velocity of the
contact point. The latter is taken from the differential kine-
matics (4) by dividing the joint angles g into the bogie an-
gles gy, and the steering angles 8:

Wejo = R (6:) Ve, 10Xy Gy Gp)- (13)

With the unit vector e, = [1,0, 0], this leads to the slip
velocity of the ith wheel

VSl,i = wir — e;cil_asi((si)sivcim. (14)

For friction phenomena, it is common to model the force
direction opposing to the slip velocity direction with a
signum function. The contact forces for a rigid wheel with
loose sand, however, is much more complex and simpli-
fied models (see [38, 9]) depend on slip length and/or slip
velocity. For this work, the actual traction force is mod-
eled by a hyperbolic tangent with an appropriate param-
eter k,,,

F, x = Fy, tan(¢s_g) tanh(k,, vy ;). (15)
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For the lateral wheel direction, pure metal-sand fric-
tion with a friction angle of ¢y;_g = 15° and a slip velocity
parameter k,,, are assumed, yielding with e, = [0, 1, 0]’

F,, = -Fy, tan(¢y_s) tanh(kvyeyT C"I_Zsl_ (6:)%vcp0).  (16)

More complex dynamic models can be integrated, al-
though they might necessitate an adaption of the control
method that will be chosen in section 3. More research on
empirical terramechanics models, that are able to repre-
sent the dynamic behavior of the traction force and not
just the steady state potential, is currently being done at
the DLR Institute of System Dynamics and Control, cf. [4].

Wheel dynamics

The wheel assembly, in this work, consists of a drive and
a steering actuator, which are both assumed ideal, i.e.,
the torque is realized exactly. Drive and steering rotational
acceleration are thus computed with the respective input
torques T,,;, Ts; and the resistance force/torque from the
ground contact. The steering angle is introduced as an ad-
ditional state because it is needed for computation of the
wheel forces and their transformation into the non-steered
frame, see equations (14) to (16). These considerations re-
sult in the wheel dynamics equation

- r 1
@i Rl N R T,;
51' = 51' + 0 0 [ Tw’l}
Iy 1 1 6,
—6¢i—'« mTres,z 0 Iw-,z u -
Xuw; fWi Ew,» (17)
Fex] _sp [Fex
sF - =W F
CisY - Ciy
Yw; h,,

with the longitudinal F, , and lateral contact force F ,
from equations (15) and (16), the steering resistance torque
T\, and the wheel inertia about the drive and steering
axis I, , and I, ,, respectively. Note that the output y,,
contains the x- and y-force resolved in the non-steered s-
frame in order to comply with the contact forces that are
used in the force torque balance in equation (5) with

FC] SFci,x
F =|: and F = |°F, (18)
F Fy,

Ce

3 Controller synthesis

Corresponding to the modeling approach, the control sys-
tem consists of three sub-controllers: First, the force trajec-
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Figure 3: Layout of the proposed controller.

tory on full rover level is computed from the velocity trajec-
tory and rover states via feedback linearization of the rigid
body dynamics model from section 2.1. Second, the rover-
level forces are distributed to wheel forces via control al-
location based on the rover kinematics from section 2.2
and a nonlinear optimization. Lastly, an underlying single-
wheel controller is synthesized via feedback linearization
of the wheel and contact dynamics model from section 2.3.
The overall architecture, with its in- and outputs, can be
seen in figure 3.

3.1 The method of feedback linearization

The method of feedback linearization [19] is used for the

rigid body and ground contact dynamics from sections 2.1

and 2.3, because the method is well suited for trajectory

tracking problems of nonlinear systems [21]. This tech-

nique is briefly summarized here for a tidy controller syn-

thesis in the following sections; for details refer to [19].
For an input-affine MIMO system

x = f(x) +8(x)u
y = h(x),

(19)

the p;th derivative of each of the n, outputs is computed
such that it is a function of at least one of the n, inputs
and the (p; — 1)th derivative is not a function of any of the
inputs. The vector relative degree then results as

p=p ] (20)
if the matrix
Lp1 Moo . Ly L}’l hy(x)
V= 1)
L Lf hny(x) o Lg L h (x)
has full rank with the Lie-derivative
Leh(x) = ah(") EX ) 22)
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and the kth Lie-derivative

aL’;’lh(x)

o Fx).

Lih(x) = (23)

)
Asymptotic feedback tracking of a trajectory y*,y",...,¥"

is then achieved with the control law

)
Lg'hy y1

L;Jny h,, @1y)

ny

i, @D (24)
Zilzl kl,l1 <L hl_ Y1 )

Pry, iny_l (inyll)
Zinyzl kny,iny—l Lf hny_ V1

Therein k].T = [Kjg>--->kjp,1] with j = 1...n, are the con-
troller gains for the linearized and decoupled closed loop
dynamics.

The closed-loop system with equations (19) and (24)
results in chains of p; integrators for the ith output and
therefore a system with n = Z?:yl p; coordinates &. These
new coordinates consist of the outputs and their 1st to
(p; — 1)th derivatives. If the number of new coordinates is
lower than the order of the open loop system (19) i < n,
there are n — i1 hidden states 5. Finding these states is, in
general, not straightforward, see [19], and their stability
must be investigated with the zero dynamics by setting all
outputs and output derivatives (i. e., the closed-loop coor-
dinates &) to zero.

3.2 Rigid body dynamics feedback
linearization

Model modifications

The chassis control for mobile robots usually receives for-
ward, sideways and yaw velocity trajectories in the rover
frame (see figure 1),

x
v |- (25)

*
z

y; =

e = <

To proceed, the rover force and torque equilibrium
from equation (5) is considered and must be further di-
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vided into two parts:

-l L)
Tr Tr,N Tr,T

= l;N (qb)Fc,N (qn,Xq) +l;,T(qb)Fc,T~

(26)

The first part (index ‘N’) are the normal forces at the con-
tact patch and the associated columns of the transposed
force Jacobian, while the second part (index ‘T’) considers
only the tangential contact forces.

Since the ExoMars suspension is passive, the normal
contact forces cannot be actively controlled. Therefore the
first summand in equation (26) is added to the nonlinear
dynamics of equation (1), leading to the modified nonlin-
ear expression

f 6 @y) = £:06) + BJ (@) Fy(@n %), (27)
where the bogie angles are treated as a measurable dis-
turbance and the normal forces are estimated through the
quasi-stationary force-torque balance (11).

Due to the kinematics of the rover, the rover forces re-
sulting from tangential wheel forces [F, 1, T, 1] all act in
the rover’s x—y-plane in the nominal configuration (i. e.,
bogie angles g, = 0). Hence, the force in its z direction
and the torques around its x and y axes are not controllable
in the nominal configuration, which is reflected in a rank
deficiency of the transposed Jacobian J ;’T (qy, = 0) inequa-
tion (26). To guarantee a full rank of the allocation matrix
for all configurations with bogie angles smaller than 90°,
which is needed for the controller synthesis, the input vec-
tor

Fr,x
u = |F Ly (28)
Tr,z
is established. Bogie angles of 90° or higher are to be pre-
vented anyways, since the rover would loose its stability.
In comparison to the original input vector u, from equa-
tion (1), the forces in vertical direction and the roll and
pitch torque are not considered in i1, and are treated as dis-
turbance for the synthesis

Y

.z

- (29)

Ly

P\]

ZF:

Ds]

Even though these disturbance force and torques are
known through equation (26), they are neglected in the
controller synthesis. Since they have a higher differential
order than the inputs, they do not show in the feedback
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linearization. A disturbance rejection could be considered
in future work, but is expected to have little effect.
Ultimately, the rigid body dynamic model for synthe-
sis of the feedback linearization controller results as
Xr = fr(xr’zb) + Erﬂr + ErzF’

(30)
Y = grxr’

with B, and E, the respective columns of B,, f,, i, and z
from equations (27) to (29) and

10 0 00 0 0 O O
C=/01 0 0 0 OO0 OO (31
0 00 0 01 0 0O

Control law
For the rigid body dynamics system (30), the vector relative
degree from equation (20) yields

T

p=01 1 1] (32)

and the linear input dependency and linear output equa-
tion lead to a constant matrix

V,=CB, 33)
with full rank. The coordinates are
.
& =[v vy w,] (34)

and the control law for asymptotic tracking of the desired
y; follows as

i =V, (- Cf+vi - Koo (- ¥7)

(35)
- I_(r,l J (yr _y:)dt)
An additional integrator is used for compensation of un-
known disturbances with the integrator gain matrix K .

Stability of the zero dynamics

The order of the closed-loop system (30) with (35) is
Z?:yl p; = 3 compared to the open loop system order of
equation (30), n = 9. As described in section 3.1, this leads
to six hidden states

(36)

nr:[vz W, wy, ¢ 9 ll)]T’

that are, in this case, easy to find since the outputs and
therewith the transformed coordinates &, are a subset of
the states. For the analysis of the zero dynamics, the nor-
mal force must be modeled dependent on the rover posi-
tion and orientation instead of being estimated through
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the quasi-stationary force-torque balance, as it was used
in equation (27). A simple and accurate enough model is a
penetration-based spring-damper model, which uses the
sinkage s; of the ith wheel (see figure 2)
0

Si=2g;—[0 0 1] ("r|o + Br(o)rcilr(qb)) (37)
and its derivative $;. The unknown disturbance z; is the
soil height at the ith wheel expressed in the global O-frame
and Zg ;, its derivative. The rover position ry, is expressed
in the O-frame as well and r(qy) is the vector from the
rover frame (r) to the ith contact frame (c).

It can be seen in equation (37), that only the vertical
z-component of the rover position ry , is needed for the
sinkage calculation. With the spring and damper constant,
c and d, respectively, the ith wheel normal force results in

FNi(Xr,rr|0z,qb,zg,Zg) = CSi + dS, (38)

The derivative of the rover’s vertical position is calcu-

lated through the rover velocity with
oz =[0 0 1]°Rx,, (39)
hence the z-position is added to n, as additional state. For

the zero dynamics analysis, the outputs, and thereby the
transformed states, are set to zero &, = 0, which results in

ﬁr = |:'lr :| = g(ilr’ qb>zg’2g) (40)

rr|0

Since a Lyapunov function for the nonlinear system
(40) could not be found, it is linearized around its equi-
librium in the origin f7, = 0, yielding

ﬁr = Alin(ilr7 zb)ﬁr' (41)
Note that an origin in 7, = 0 can only be achieved with a
specific value of the disturbances. For this work the bogie
angles are chosen zero and the soil height z, is found by
solving the equilibrium condition #7,(f, = 0) = 0 with 2, =
0 for z,.

In an eigenvalue (EV) analysis, one of the seven EVs of
the linearization matrix A;, shows a zero real part, which,
according to Lyapunov’s indirect method, does not yield a
conclusion about the stability of the origin. However, fur-
ther analysis of A;;, has shown that the row and column
associated with the yaw angle of the rover are zero. This
means that the zero dynamics of the yaw angle is equal to
zero, 1 = 0, and the value of it does not have an influence
on any of the other states’ dynamics. By removing the yaw
angle dynamics from the linearized equation (41), the zero
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Figure 4: Real parts of the zero dynamics’ eigenvalues for variation
of one angle at a time. Each line represents one of the seven EVs.
The axes labels and the scaling are identical for all subplots.

row and column vanish from A;;, and only EVs in the neg-
ative complex half plane result, which yields stability of
the origin according to Lyapunov’s indirect method. The
found zero EV of the yaw angle can be explained figura-
tively by a lack of an angle-based yaw torque as opposed
to the other angles and the vertical rover position, which
are affected by the position-based spring normal forces. In
other words, while the yaw velocity is one of the stabilized
¢ -states, the yaw angle can be arbitrary, which, however,
does not influence the stability of the origin for any of the
other states.

A variation of the zero dynamics states 17, and bogie
angles was performed, where only one state or bogie an-
gle was varied at a time while keeping all others at zero.
Figure 4 shows the results, where each line corresponds to
one EV. The vertical, pitch and roll velocities do not influ-
ence the real parts of the EVs and are therefore not shown.
It can be seen that the absolute pitch and roll angles must
stay below 45° while requirements on all other angles are
less restrictive — +90° poses no problem. For a simultane-
ous variation of multiple angles at a time, there are combi-
nations within the implied ranges that lead to instabilities.
A full variation has shown that the EVs — besides the one
zero EV, see above — of the linearized zero dynamics are
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in the left complex half-plane for arbitrary state and bogie
angle combinations in the ranges

-34° < ¢, 9,y < 34°

(42)
—45° < zp,; < 45°

The angle ranges are within the expected stability range
due to the height of the center of gravity with respect to
the chassis width and length.

Although these consideration are not a rigorous proof
of stability of the nonlinear zero dynamics, the findings
from the linear analysis correspond well to physical rea-
soning and thus stability of the zero dynamics is con-
cluded.

3.3 Wheel force allocation

Purpose of the force allocation is the computation of tra-

jectories for the individual contact point tangential forces
S *

F ¢, T

*Fip= : (43)

Fer

from the rover force trajectory i1, (see equation (28)),

where each tangential force consists of x- and y-direction

°F,
SFC,-,T = [sFCi)X] =Y, (44)
¢

and is the output of the ith wheel ground system from
equation (17). These contact forces are expressed in their
respective non-steered s;-frame since the steering and
drive actuators are to be considered only in the underlying
wheel-ground-dynamics controller, see section 3.4. Note
that only the tangential contact forces are considered here,
since the non-controllable normal forces were added to the
rigid body dynamics in equation (27).

The considerations in sections 2.2 and 3.2 led to the
partitioned force-torque balance equation (26). Extracting
the rows of interest, the allocation matrix G can be de-
fined,

S = O
o O O

0
0
0

o © O

1 0
u =10 0 |J71(an) *Fer(@y Xg).  (45)
0 1

=G

For six contact points, G has three rows and 12 columns,
which means that the system of equations (45) is underde-
termined, i. e., there are infinitely many solutions for the
contact force trajectory °F; 1, assuming that G has full row
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rank. A common solution (see [15]) to handle such under-
determined allocation problems is to compute the pseudo-
inverse G* and a basis of the null-space G* of the alloca-
tion matrix, yielding

For=G'i; +Gp’ (46)
Since, by definition of a null-space basis,
GG'p=0 V peR, (47)

the degrees of freedom p* in equation (46) can be cho-
sen arbitrarily without changing the resulting rover force-
torque vector i, in equation (45). While choosing p* = 0
in equation (46) yields the least-squares solution for the
contact forces, p* can be varied for different solutions.

In this work, the degrees of freedom are adjusted by
the nonlinear optimization

6 SF* 2
nin$ < I°FZ ()l )

(48)
i=1 Fy;

which minimizes the quadratic sum of the relation be-
tween tangential and normal contact force. This sum of
fractions yields a minimization of the traction potential us-
age. For soft sand, contact force models are known to have
high uncertainty, especially for changing soil conditions,
but they always depend on the normal force. Therefore,
this objective function aims at staying away as far as pos-
sible from the maximum assumed contact force. Reaching
or exceeding this maximum force leads to soil failure and
extended, potentially dangerous, sinkage of the associated
wheel. The optimization is solved with the fmincon solver
in MATLAB which uses the interior-point algorithm.

Due to the nonlinear optimization setup, other objec-
tives, e.g., energy optimal driving, are possible without
any changes to the algorithm. To ensure computational ef-
ficiency, the optimization is not performed within the main
control loop but outside with a much lower update fre-
quency. The previous optimal set of DoFs p* is used until
a new one has been computed, which was found to be not
critical, since the DoFs change slowly for slowly changing
terrain and slope properties.

3.4 Wheel dynamics feedback linearization

To control the underlying single wheel systems, consisting
of one drive and one steering actuator each, feedback lin-
earization is applied again. The first input of the system
(17), the drive torque, appears in the first derivative of both
outputs, while the second input, the steering torque, only
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appears in the second output derivatives. This yields a zero
column in the 2 x 2 V,, -matrix according to equation (21),
i.e., it is singular and thus a feedback linearization is not
possible.

To solve that problem, the wheel-ground system is
modified with a dynamic extension[19, p.249ff], which is
performed on the drive torque input in this work. The in-
put of the dynamically extended system reads

Ta) i] |:i‘w- 1]
ug = = Pl
Wi [ T&,i uw,»,Z
To distinguish the dynamically extended wheel-ground
dynamics from the original one, a tilded w-index (-) is

used. By adding the original first input T,,; as a state of
the system, the modified state equation is

(49)

. rFCiQ‘ Tw,z’

‘f)i - Iwi,y + IWT 0 0

5, 5, 0 0

o | = + 1 |ug, (50)

1 —_— Wi

.6i _Iw,,z Tres,z 0 Lz
Ty 0 1 0

X fa By,

while the output equation remains unchanged from equa-
tion (17). Note that the dynamics equation f, not only de-
pends on the wheel states x but through the wheel forces
and the normal force estimation on the absolute velocity of
the steering system from equation (13). Hereafter, this ve-
locity is written as

Ve, = SiVCiIO (51)
for better readability. Both, the velocity v, and the normal
force FNi, depend on the rigid body states x,, the bogie an-
gles qy, and their derivatives g, according to equations (4)
and (11).

While the normal forces Fy, can be assumed piecewise
constant, the velocity of the contact points v, needs to
be considered as a general time-dependent quantity. This
yields the first derivative of the output

ohy ok
YV'vi - aXWi XW,« + avc,« Ve,
ohy, (52)
= wai hwi + ng hwi uwi + T‘"ci,
[ S— [

-0

with the Lie-derivative from equation (22). Since there is
no input dependency in either of the output derivatives,
the second derivative is computed as

Yy,

Yo = ox,
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In both outputs’ second derivative, both inputs appear and
equation (53) can be resorted to

Ywi zwwi(xv"vi’Vci’vci’vci’FNi) (54)
+ Zwi (Xwi, FNi)uV'Vi .

The V -matrix and wy, -vector are the elements that are
needed for the feedback linearization according to sec-
tion 3.1. The Zwi-matrix is regular, which means that the
dynamically extended wheel-ground system has a vector
relative degree of

rv'vl_ = [2 2] . (55)
With a system order of n = 4, this yields no zero dynamics
and the input trajectory for asymptotic tracking reads

s G
- Ky (Ve - yWi) ~Kyo (Ve - yWi)) :

The gain matrices K., o, K, ; ensure asymptotic tracking
with the feedback of the output error and its first deriva-
tive, respectively. Ultimately, equation (49) is used to com-
pute the trajectory of the original inputs by integration as

g [Tw,i] _ [ ug,
Y Ty, .

.
Uy, 2

(57)

4 Results

Figure 5: Screenshot of the ExoMars Rover, driving the presented
scenario onto an inclined plane and performing a crab- and turn mo-
tion. The DLR Visualization Library [12] is attached to the multi-body
simulation and the DLR Soil Contact Model [7] is used as soft soil
contact model to create this 3D visualization. This is the disturbed
case with non-nominal contact model and uneven ground, the plots
of this drive are shown in figure 8.
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For an evaluation of the presented approach, a co-
simulation between the controller and a high-fidelity rover
model is introduced. The rover model is built with the
DLR Rover Simulation Toolkit [13] that is implemented in
the multi-physics modeling language Modelica. Different
fidelity models of the individual rover components can
be selected which can include mechanical, electrical or
even thermal model aspects. A sampled signal bus en-
sures realistic data exchange including sample and hold
blocks that act in the set controller sampling interval. The
proposed controller is implemented in MATLAB/Simulink
with the use of the Symbolic Toolbox. Communication be-
tween Simulink and Modelica is set up with a blocking
UDP connection which ensures that each model waits for
execution of the other one.

In the test scenario, see figure 5, the ExoMars starts
on a flat plane and is commanded to drive forward onto
a 5° inclination. Once it is fully on the inclined plane, it is
commanded forward, sideways and yaw velocities subse-
quently until it has turned 90° and continues purely for-
ward. Note that the visualization in figure 5 shows the
robustness test, see below, i.e., ground roughness and
a non-nominal contact model with soil deformation are
shown in contrast to this first, nominal, case. The overall
geometry with its 0° and 5° parts, as well as the driven ve-
locity trajectories are, however, the same in the nominal
and the robustness test. Looking at the velocity trajectory
(dashed bright lines in figure 6), the scenario is divided
into 5 phases which are indicated in the figure:

— Rover starts to drive purely forward on 0° plane with
v; =0032,

— Rover hits the 5° slope with front, middle, rear wheel
pair consecutively.

- Rover is fully on 5° slope and continues purely for-
ward.

— Rover is commanded to first drive sideways with
vy, = 0.027 and then additionally rotate with w; =
-0.03 24,

— Rover drives purely forward, round about orthogonal
to the inclination.

On rover level, tracking of the trajectory by the
rigid body dynamics feedback linearization controller is
achieved as shown in figure 6, top plot. The solid lines, rep-
resenting the measured rover velocities, match the dashed
trajectories nicely in forward (blue), sideways (red) and
yaw (yellow) velocity. In part (b), however, the rover hits
the 5° slope with the front and middle wheel pair one after
the other. The contact angles are non-zero during this pe-
riod, leading to additional resistance. This is an unknown
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Figure 6: Rover velocity (top) and forces (bottom). Dashed, bright
colored lines are the trajectory and normal, dark colored lines are
the measured values. Unit and scaling of the x-axes are identical.

disturbance to the system because the contact angles were
assumed zero for the controller synthesis and the downhill
force is only slowly reflected in the orientation measure-
ment. At (c) the rear wheel pair finally hits the slope and
the full rover has an inclination of 5° which is measured by
the attitude sensor. Due to no roughness of the ground, the
contact angles, i. e., the disturbances, are back to zero. The
integrator in equation (35), ensures a decent performance
in part (b), despite the disturbance. Note that the yaw ve-
locity shows some deterioration in (b) due to the rover not
being perfectly aligned with the start of the slope, i. e., one
wheel of the respective wheel pairs hits the slope a bit ear-
lier than the other side.

In the bottom plot of figure 6, the trajectory (dashed)
and actual (solid) total rover forces are shown. It can be
seen that the gravitational forces from (b) on are much
higher than the acceleration force that is needed in the be-
ginning of (a) to start driving. Observe that in (e) almost
pure y-force is needed to drive, although the rover is com-
manded to drive in its x-direction. This is again due to the
gravitational force that is acting mostly in lateral rover di-
rection in (e). The allocation and underlying wheel con-
trollers achieve a good match of the measured total rover
forces with the trajectory, see figure 6.

To analyze the allocation and wheel controllers in
more detail, four of the six wheel forces are plotted in fig-
ure 7. The blue plots show the x- and the red plots the
y-direction of the wheels in the non-steered s-frame. Look-
ing at the bold lines — dashed is again the trajectory, solid
is the actual force — the underlying wheel-ground con-
trollers show no significant error in the whole scenario.
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Figure 7: Wheel forces of the corner wheels, blue is x-direction, red
is y in the non-steered s-frame. Bold dashed lines are the trajecto-
ries, thin dashed lines the trajectories without optimization (p* = 0)
and the solid lines represent the measured values. Axes units and
scaling is identical for all subplots.

The optimized allocation can be analyzed by comparing
the bold dashed lines (optimized allocation) with the thin
dashed lines (non-optimized allocation, i.e., p* = 0). Be-
fore hitting the inclination, the least-squares solution is
optimal but with more and more inclination of the rover,
the normal contact forces shift to the downhill wheels. In
(c), these are the rear wheels, thus the optimization algo-
rithm computes non-zero values for p* that cause higher
traction forces at the rear wheels. Within part (d), the rover
turns right, the right wheels are more and more downhill
and thus get allocated more traction force than the left
ones.

In conclusion, a good share of the rover force trajec-
tory is handled by the model-based feedback lineariza-
tion controller, e. g., based on the compensation of grav-
itational forces, instead of fully relying on the integrator
part of a PID controller. The optimization-based control al-
location allows a better utilization of the traction force po-
tential for varying normal forces, than would be achieved
with a purely velocity-based kinematic controller.

A first robustness test uses the non-nominal DLR
soil contact model (SCM) [7], which is based on a
2-dimensional mesh of the ground and includes algo-
rithms for soil deformation and soil flow underneath the
wheels, see figure 5. Additionally, as can be seen in the
same figure, the ground is not flat, but has a noise-based
geometric unevenness. These two non-nominal conditions
lead to considerable disturbance in the zero contact angle
assumption and the wheel-ground force model. The result-
ing rover velocity trajectories for this robustness test are
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Figure 8: Rover velocity trajectory following for the large distur-
bances of a high-fidelity contact model with soil deformation and
geometrically uneven soil. Bright, dashed lines are the trajecto-
ries and dark solid lines the actually achieved velocities. This result
corresponds to the shown 3D animation from figure 5.

shown in figure 8, were the impact of the disturbances can
clearly be seen. High-frequency deviations from the trajec-
tory can be observed, which stem from the contact force
computation of SCM, more specifically from the effects of
the grousers entering and exiting the soil as well as the soil
discretization. The lower frequency oscillations in the lat-
eral and yaw velocity v, and w, can be explained with a
combination of differences in the force computation, dis-
cretization effects and, on the controller side, the lacking
knowledge of the steering actuator torque limits.

More analysis of the performance in comparison
to state of the art controllers and robustness tests are
planned, including hardware tests with the ExoMars BB2
rover in our DLR-laboratory.

5 Conclusion

This contribution started with placing the chassis control
system within the overall controls hierarchy for a wheeled
mobile robot and the presentation of existing work in this
field. The modular modeling approach of the mobile robot,
consisting of a rigid body dynamics model, a (differen-
tial) kinematics model and a combined wheel and ground
contact model, was presented. Model modifications were
made to ensure controllability of the subsystems and feasi-
bility of the allocation. A feedback linearization controller
was designed for the rigid body dynamics and the under-
lying wheel-ground dynamics, while the control allocation
was done with an approach based on the pseudo-inverse
and a base of the null-space. For the optimization of the de-
grees of freedom, a simple objective function was chosen
that keeps a maximum distance from soil failure. The per-
formance of the overall control system and each of its com-
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ponents was investigated in a software-in-the-loop simula-
tion with a high fidelity model of the ExoMars rover.

Future work should be dedicated to an extension of

the used ground contact model, testing the controller on
the ExoMars BB2 rover and the implementation of con-
tact angles into the approach for very rough terrain. It is
also planned to investigate the performance for different
ground types to ultimately get to an adaptive control sys-
tem for heterogeneous ground.
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