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Abstract: Economic model predictive control is applied to
a simplified linear microgrid model. Monetary costs and
thermal comfort are simultaneously optimized by using
Pareto optimal solutions in every time step. The effects of
different metrics and normalization schemes for selecting
knee points from the Pareto front are investigated. For Ger-
man industry pricing with nonlinear peak costs, a linear
programming trick is applied to reformulate the optimiza-
tion problem. Thus, together with an efficient weight de-
termination scheme, the Pareto front for a horizon of 48
steps is determined in less than 4 s.

Keywords: Pareto, MOO, MPC, optimization, weight tun-
ing, linear programming reformulation, smart grid

Zusammenfassung:Ökonomische modellprädiktive Rege-
lung wird auf ein vereinfachtes lineares Modell eines Mi-
krogrids angewandt. Dazu wird in jedem Zeitschritt die
Pareto-Front zu den beiden Gütekriterien monetäre Kosten
und thermischer Komfort erzeugt. Von den Pareto-Fronten
werden für verschiedene Metriken und Normalisierungen
Kniepunkte ausgewählt und deren Effekte auf die Rege-
lung analysiert. Das Optimierungsproblem mit nichtlinea-
ren Peak-Kosten bei der Bepreisung für deutschen Indus-
triestrom wird durch eine Relaxation in ein quadratisches
Programm umformuliert. Zusammen mit einem effizien-
ten Algorithmus zur Adaptierung der Gewichte kann die
Pareto-Front für einen Horizont von 48 Zeitschritten damit
in weniger als 4 s erzeugt werden.
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1 Introduction
Decentralization of the public electricity grid is becoming
more and more relevant. While macroscopic solutions will
take time, single units, so-called microgrids, already have
an interest in self-control of their energy management,
e. g. due to rising electricity costs. Model predictive con-
trol (MPC) is a fitting control scheme due to its capability
of including forecasts of demand, weather conditions and
renewable energy production. Economic MPC allows for
direct optimization of incentives such as monetary costs,
thermal comfort, CO2 emissions or others. However, these
objectives often are contradicting. Thus, a systematic ap-
proach to the multi-objective optimization (MOO) problem
is necessary.

This paper is structured as follows. First, in the re-
mainder of this section, MOO is introduced and a litera-
ture review about its connection with MPC and its use in
microgrid control is presented. In Section 2, the modeling
of a medium-sized company building as a microgrid and
its formulation as an optimization problem are discussed.
In Section 3, preliminaries of how MOO problems can be
solved are given. In Section 4, we present different nor-
malization schemes and metrics to choose solutions of the
MOO problem. In Section 5, we analyze the effects of the
different selections with long term simulations of the mi-
crogrid model with real-world data. Last, we finish with a
conclusion in Section 6.
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1.1 Multi-objective optimization
Consider a MOO problem of the form

PMOO : min J(x) = (J1(x) J2(x) ... Jq(x)) (1)
s. t. gj(x) ≤ 0, j = 1, 2, . . . , nineq (2)

hl(x) = 0, l = 1, 2, . . . , neq, (3)

with x ∈ X being the decision variable vector, q the num-
ber of objectives and nineq and neq the numbers of inequal-
ity and equality constraints, respectively. In general, there
is no unique solution toPMOO. Instead, a hyperplane inℝq

of non-dominated solution exists. A solution x∗ is not dom-
inatedby anyother (feasible) solution x, if andonly if there
is no x such that J(x) ≤ J(x∗), where ≤ is understood ele-
mentwise, and Ji(x) < Ji(x∗) for at least one i ∈ {1, . . . , q}.
Such a x∗ is also called Pareto optimal and the set X∗ of
all Pareto optimal solutions is called Pareto front. Further-
more, a solution x† is only weakly Pareto optimal if there
exists no other solution x such that J(x) < J(x†).

Many MOO methods further include the Utopia point
which is defined by

Jutopia = (Jutopia1 , . . . , Jutopiaq ) , (4)

Jutopiai = min
x∈X∗ Ji(x) (5)

and in general not attainable. Similar, the Nadir point is
the combination of all worst Pareto solutions, i. e.

Jnadir = (Jnadir1 , . . . , J
nadir
q ) , (6)

Jnadiri = sup
x∈X∗ Ji(x). (7)

1.2 MOO in MPC
The interest in MPC has been rising significantly through-
out the last decades. However, despite its optimization na-
ture, no unifying framework for MOO in MPC is available
so far. Considering regular MPC with its quadratic objec-
tive function, i. e.

min
Np−1

∑
k=0

x(k)⊺Qx(k) + u(k)⊺Ru(k) + Vf (x(Np)), (8)

the challenge of weight tuning Q and R could be consid-
ered an optimization of two competing objectives, i. e. be-
tween state control (with Q as its ‘weights’) and actuator
energy (with R as its ‘weights’). Literature about this gen-
eral problem of weight tuning is rich (see [11] and the ref-
erences therein). However, in most auto-tuning methods,
only the system’s step or impulse responses are used and
evaluated by a different metric. Thus, we do not consider

weight tuning for regular MPC itself as an answer to the
MOO problem PMOO.

A step towardsMOOhas beenmadewith the introduc-
tion of economic MPC, where the quadratic terms in (8)
may be replaced by stage costs of arbitrary form. Thus,
multiple (competing) objectives such as in (1)may be used.
The final cost term Vf (x(Np)) is neglected in many cases.
Furthermore, frequently multiple objectives are only con-
sidered in form of a (weighted) sum without any trade-off
consideration.

In [9], a MOO MPC scheme for general nonlinear sys-
tems is defined. They consider a finite number of objec-
tives and show that, given some mild assumptions in ad-
dition to the usual, the max of all objectives as costs can
be used as a Lyapunov function to guarantee stability. In
[4], a weighted sum is used. However, the weights are up-
dated in every time step, thus choosing different Pareto so-
lutions. It is shown that, under some conditions on the ob-
jectives such as joint convexity, closed-loop stability can
be guaranteed. However, for the updating of the weights,
a linear programming problemwhich is not jointly convex
in general has to be solved in every time step. An economic
MPC scheme with a compromise solution is formulated in
[40]. Namely, the authors directlyminimize the distance to
the Utopia point as in (42) (but without weights). However,
they only consider steady-state control and show that, if
the objectives satisfy a Lipschitz continuity property and
strong duality, stability can be guaranteed.

In [14, 15], nonlinear time-discrete systems with an
arbitrary number of (contradicting) objectives and with-
out disturbances are considered. Given some assumptions
on the system (e. g. an equilibrium point) and terminal
costs and a local feedback in the terminal region, the au-
thors propose a stabilizing MPC algorithm for which they
show that the infinite-horizon closed loop performance
has anupper bounddefinedbyaPareto optimal control se-
quence chosen at the beginning of the algorithm. For eco-
nomic stage costs and similar assumptions, they show that
the average closed-loop performance is upperly bounded.
While they are able to give statements on the performance
of Pareto optimal sequences, the trade-off between the
multiple objectives seems to rely on the choice in their
algorithms’ initialization. Thus, changing conditions over
time cannot be respected.

Evolutionary algorithms are used as optimization
methods for an economic MPC scheme with a weighted
sum of a finite number of objectives in [3]. Furthermore,
Smith dynamics are used to dynamically tune the weights
such that the solution lies in a pre-defined region of the
Pareto front. This so-called management region is defined
by the objectives’ ratio in a normalized space.
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1.3 Energy management for microgrids

The control of microgrids, in a broader sense also de-
termined as an energy management system, has experi-
enced huge attention in the research community. Thus, it
is impossible to cover all approaches in this work. Sev-
eral reviews exist focussing on different aspects, see e. g.
[18, 41] and the references to other reviews therein. Thus,
we restrict ourselves to a short survey of the different ap-
proaches for both modeling and the (optimal) dispatch
control problem of centralized microgrids.

For the modeling of a microgrid, mainly two basic
approaches exist. First, ordinary differential or difference
equations (ODEs) are determined for all storage systems.
Actuators and constraints are incorporated into these
ODEs. Depending on themodeling complexity, this results
in either linear or non-linear systems, often including bi-
nary variables to cover start-up/shut-down decisions. The
second approach is to use higher modeling languages or
software such as Simulink, Modelica, EnergyPlus or other
building performance software (BPS) tools. This way, com-
plex dependencies and rules can be modeled with low ef-
fort. However, this comes at the cost of lower insight into
the model itself and a generally harder to solve optimiza-
tion problem. A review of various BPS tools can be found
in [26].

While MPC is a popular approach to generate control
actions for a microgrid due to the possibility of respect-
ing constraints on states and inputs and forecasts of de-
mands and disturbances, several other methods exist. Not
all of them are equally applicable to the two modeling
approaches. Despite some heuristic approaches and ar-
tificial intelligence methods, an optimization problem in
some form is formulated inmost cases. Then, the twomain
options are deterministic or meta-heuristic optimization
methods. Deterministic optimizationmethods include lin-
ear, quadratic,mixed integer andnonlinear programming.
They might fail in case of harsh nonlinearities modeled
in complex BPS models. In this case, meta-heuristic op-
timization methods including evolutionary strategies, ge-
netic algorithms (GA), Particle Swarm Optimization and
others are preferable. These are also the usual combina-
tions: ODE modeling + deterministic optimizers or BPS-
based modeling + meta-heuristic optimizers, which can
also be described as simulation-based optimization. The
MPC framework can be used in both cases.

Examples for a modeling based on ODEs and MPC us-
ing deterministic optimization are [16, 27, 33, 39]. The au-
thors of [16] model a simple linear microgrid model with
a stationary battery as the only state. As objective, they

minimize the unweighted sum of monetary costs and bat-
tery lifetimedegradation.A timehorizonof 12 hwith a time
step Δt = 20min is chosen. However, the battery lifetime
is a nonlinear function and it is not clear how the resulting
optimization problemhas been solved (other thanwith the
Matlab optimization toolbox). In [39], a simplified build-
ing model with 4 ODEs including an air-handling unit is
used. Energy consumption and thermal comfort are con-
sidered as objectives. Thedistance to theUtopia point is di-
rectlyminimized,which leads to anonlinear programming
problem. However, only one optimization problem per day
with Δt = 1 h is solved. In [33], a microgrid in island mode
with diesel generators and shiftable loads is considered.
The prediction horizon is 24 h. However, to reduce compu-
tational expenses, the sampling time varies, i. e. increases
from 5min in the first half hour to 1 h for the last 22 h of
the horizon. Fuel and emission costs are minimized. The
authors compare different strategies for this MOO, thereby
once taking a (fixed) weighted sum and once directly min-
imize the distance to the Utopia point, which results in a
mixed integer nonlinear programming (MINLP) problem,
which is solved in reasonable time. However, the results of
the one day simulation for the scenario without demand
response show that the compromise solution is outper-
formed by theweighted sum solution. Thismight be due to
non-global optima found for the MINLP. In [27], stochastic
MPC with chance constraints and uncertain weather fore-
casts is used. Namely, constraints for the building temper-
ature are not violated with a likelihood of 1−α. Samples of
the Pareto front (energy use vs. number of constraint vio-
lations) are derived by varying α. However, no systematic
choice of a trade-off is proceeded.

Examples for complex models based on a BPS and
meta-heuristic optimization are [1, 19, 30], which all con-
sider monetary costs and thermal comfort as objectives.
The authors of [19] use a combination of GenOpt [36]
and EnergyPlus to optimize temperature setpoints of three
building models in an MPC scheme over a time period of
5 days. However, they sample only five Pareto solutions by
running their simulation with five different weights on the
monetary costs. In [1], a three-room building is modeled
with EnergyPlus. Matlab is used to derive optimal control
sequences with GA in an MPC framework. Optimization is
repeated only every 24 h with Δt = 1 h, possibly due to
the long optimization time required (> 1 h), which makes
this approachnot applicable in real-time. In [30], again the
combination of EnergyPlus and GA is used to control the
model of a residential building with 6 temperature zones.
As decision variables, hourly set points are used. Artificial
neural networks are used both to determine a population’s
fitness as well as to approximate solutions from the GA
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to reduce optimization time, which allows for online op-
timization with Δt = 1 h. However, thermal comfort is only
defined by being in a certain temperature range in occu-
pied times. If this is violated, a penalty function in the GA
algorithm is applied. Thus, no trade-offs in formof anMOO
are considered.

Concluding, it is in general a challenging problem to
apply sophisticated MOO methods within an MPC frame-
work tomicrogridmodels with increasing complexity. Fur-
thermore, there is a lack in research of how compromises
between contradicting objectives are selected best.

Note that this paper extends the work in [32]. It’s con-
tributions are as follows. As in [32], we use a fairly sim-
ple model of a medium-sized company building based on
ODEs with real-world data. Here, we show how industry
pricing with peak costs and different costs for buying/sell-
ing can be modeled as a convex linear programming op-
timization problem without the need of binary variables;
thus allowing online control with determination of the
Pareto front in every time step. In addition to [32], we sys-
tematically analyze the effects of three differentmetrics for
automated selections from the Pareto fronts in long term
simulations (instead of using only one). Furthermore, we
propose a fixed normalization scheme to overcome the is-
sue of highly different objective values due to changing
conditions and again analyze its effects. Next to the indus-
try pricing scenario, we also consider participation in the
intraday market with time varying costs.

2 Microgrid control

Note that in the following, sequences of scalars or vectors
are typed inbold, e. g.u(k) = [u(k), u(k+1), . . . , u(k+Np−1)].
Furthermore, as is usual in the context of control theory, x
denotes the state vector and u the input vector, i. e. (part
of) the decision variables for the following optimization
problems. The microgrid model presented next has first
been introduced in [32].

2.1 Modeling

If only one temperature zone is considered, a building’s
temperature ϑb can be modeled by an ODE such as

ϑ̇b(t) =
1
Cth
(Hair(ϑair(t) − ϑb(t)) +∑

i
Q̇i(t)) , (9)

where ∑i Q̇i stands for all thermal powers acting on the
building [28]. For the company building considered in this

study, these are the heating powers Q̇chp from a combined
heat and power plant (CHP) and Q̇rad from a gas heating,
cooling power Q̇cool from an air conditioning system, and
heat losses to the ground Q̇other. Cth denotes the building’s
thermal capacity and Hair the heat transfer coefficient to
the outside air temperature ϑair.

If (self-discharging) losses are neglected, the change
of a battery’s energy level E(t) is simply given by

Ė(t) =∑
j
Pj(t), (10)

where ∑j Pj(t) stands for all electrical powers fed into or
drawn from the battery. Here, these are the produced elec-
trical powerPchp from theCHP, thepowerPgrid bought from
or sold to the grid, the (uncontrollable) renewable energy
Pren from thePVsystemand the (uncontrollable) powerde-
mand Pdem, e. g. consumption from offices, which must be
met at all times. Remark that the CHP can only produce
electrical power Pchp and thermal power Q̇chp at the same
time (see Table 1).

Using E(t) and ϑb(t) as states, a linear state space
model of the microgrid is derived,

[
Ė(t)
ϑ̇b(t)
] = [

0 0
0 −Hair

Cth
] ⋅ [

E(t)
ϑb(t)
] . . .

+ [
1 1 − 1

ηrad
1
εc

0 1
cCHP ⋅Cth

1
Cth

1
Cth
] ⋅
[[[[

[

Pgrid(t)
Pchp(t)
Q̇rad(t)
Q̇cool(t)

]]]]

]

. . .

+ [
1 1 0 0
0 0 Hair

Cth
1
Cth
] ⋅
[[[[

[

Pren(t)
Pdem(t)
ϑair(t)
Q̇other(t)

]]]]

]

. (11)

Note that for the gas heating an efficiency ηrad and for the
air condition and energy efficiency ratio εc are considered.

By discretizing system (11) with a sampling rate Ts, a
discrete model in the form of

x(k + 1) = Ax(k) + Bu(k) + Sd(k) (12)

is derived, i. e.

[
E(k + 1)
ϑb(k + 1)

] = [
1 0

0 − e
−Hair
Cth
] ⋅ [

E(k)
ϑb(k)
] . . .

+ [
Ts Ts 0 Ts

εc
0 μ

cCHP
μ μ
] ⋅
[[[[

[

Pgrid(k)
Pchp(k)
Q̇rad(k)
Q̇cool(k)

]]]]

]

. . .

+ [
Ts Ts 0 0
0 0 Hair ⋅ μ μ

] ⋅
[[[[

[

Pren(k)
Pdem(k)
ϑair(k)
Q̇other(k)

]]]]

]

, (13)
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where μ = 1−e
− HairCth

Ts

Hair
. Constraints x ∈ X ⊆ ℝn on the states,

u ∈ U ⊂ ℝm on the inputs, d ∈ D ⊂ ℝq on the disturbances
and as well on the rate of change of the states, (x(k + 1) −
x(k)) ∈ ΔX ⊆ ℝn, apply. U and D are compact. Remark
that all uncontrollable influences have been modeled as
disturbances d. For this study, perfect predictions of d are
assumed. Note that input constraints are chosen gener-
ously such that all disturbances can be compensated, e. g.
Pgrid ∈ [−1000 kW, 1000 kW]whereasPdem ∈ [−650 kW,0].
Thus, feasibility can be ensured for any x0 ∈ X. Table 1
gives an overview of the model parameters.

Table 1: Building model parameters for System (13).

Parameter Description Value

Ts Sample time (step width) in h 0.5
Cth Thermal capacity of the building in kWh/K 1792.06
Hair Heat transfer coefficient to outside air in kW/K 341.94
εc Energy efficiency ratio cooling machine 2.5
cCHP Current constant CHP, Pchp = cCHP ⋅ Q̇chp 0.667

2.2 Optimization costs

The optimization costs are formulated in an MPC-manner
as usual, i. e.

argmin
u

Np−1

∑
k=0
ℓ(x(k), u(k)) + Vf (x(Np)), (14)

whereby Np is the length of the prediction horizon, the fi-
nal cost term Vf (x(Np)) = 0 is omitted and ℓ(x, u) are the
stage costs, which are described in detail in the following.

Please note that, considering the system matrix A
in (12), the autonomous system x(k+1) = Ax(k) is Lyapunov
stable. Thus, together with the assumption that all dis-
turbances are known, stability guarantees are not further
considered in the design of the cost functions. Further-
more, two pricing scenarios are considered in this study,
1) participation in the intraday market with time-varying
electricity prices and 2) German industry pricing.

2.2.1 Scenario 1: Intraday market

The stage costs represent our two objectives and thus con-
sist of weighted monetary and comfort costs,

ℓ(x(k), u(k)) = wmon(k) ⋅ ℓmon(x(k), u(k)) . . .
+ wcomf(k) ⋅ ℓcomf(x(k), u(k)). (15)

The comfort costs are given by the quadratic devia-
tion of the building temperature from a desired setpoint
of ϑset = 21 °C,

ℓcomf(k) = (ϑb(k) − ϑset)
2 . (16)

In this first scenario, participation in the electricity
intraday market is assumed. Thus, ℓmon consists of three
parts,

ℓmarket
mon (k) = ℓ

market
mon,grid(k)+ℓmon,chp(k)+ℓmon,heat(k). (17)

The grid costs depend on the current market price,

ℓmarket
mon,grid(k) = c

market
grid (k) ⋅ Ts ⋅ Pgrid(k). (18)

The costs for using the CHPor the gas heating are fixed and
not time-dependent,

ℓmon,chp(k) = 0.12
e

kWh
⋅ Ts ⋅ Pchp(k), (19)

ℓmon,heat(k) = 0.0464
e

kWh
⋅ Ts ⋅ Q̇rad(k). (20)

Summarizing, for t = 0 in the intraday scenario, the
optimization problem can then be formulated as

Pintraday : u = argmin
u

Np−1

∑
k=0

wmon(k) ⋅ ℓ
market
mon (x, u) . . .

+ wcomf(k) ⋅ ℓcomf(x, u) (21)

s. t. (12),
u(k) ∈ U, x(k) ∈ X, (22a)
(x(k + 1) − x(k)) ∈ ΔX ∈ ℝn ∀k. (22b)

Note that due to the quadratic comfort costs, Pintraday is a
quadratic programming problem.

2.2.2 Scenario 2: Industry pricing

In the second scenario, German industry pricing is as-
sumed. Then, the monetary costs are given by

ℓindustrymon (k) = ℓ
industry
mon,grid(k) + ℓmon,peak(k) . . .
+ ℓmon,chp(k) + ℓmon,heat(k). (23)

The costs for the CHP and gas heating are the same
as in (19) and (20). However, grid costs are not time-
dependent, but distinguish between buying from and sell-
ing to the grid,

ℓindustrymon,grid(k) = (cgrid,buy ⋅ P
+
grid(k) . . . (24)

+ cgrid,sell ⋅ P
−
grid(k)) ⋅ Ts,
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where P+grid(k) = Pgrid(k) if Pgrid(k) > 0, i. e. if energy is
bought from the grid, and P+grid(k) = 0 if Pgrid(k) < 0.
P−grid(k) is definedaccordingly for selling energy to the grid.
Energy is bought for cgrid,buy = 0.13 e/kWh and sold for
cgrid,sell = 0.07 e/kWh.

To describe ℓmon,grid in dependence of our input and
decision variable Pgrid, (24) is formulated as

ℓindustrymon,grid(k) = (cgrid,buy ⋅max (0,Pgrid(k)) . . . (25)

− cgrid,sell ⋅max (0,−Pgrid(k)) ) ⋅ Ts.

In addition to the different pricing for buying and selling,
the industry pricing scenario includes peak costs,

ℓmon,peak(k) =
cgrid,peak ⋅max (0,Pgrid(k) − Pgrid,peak(k)) . (26)

The peak costs refer to the maximum peak within one cal-
endar year which is priced with cgrid,peak = 87.38 e/kW.
However, since our prediction horizon Np is significantly
smaller than one year, we punish every new peak accord-
ing to the difference to the maximum peak Pgrid,peak(k)
which has occurred until time step k. Furthermore,
Pgrid,peak may change within Np, e. g. if the predicted
Pgrid(k+2) > Pgrid,peak(k), then Pgrid,peak(k+3) = Pgrid(k+2)
and for t ≥ k + 3, new peak costs only occur for Pgrid(t) >
Pgrid,peak(k + 2). A solution to this problem is presented in
Section 2.3

Summarizing, for t = 0 in the industry scenario, the
optimization problem can then be formulated as

Pindustry : u = argmin
u

Np−1

∑
k=0

wmon(k) ⋅ ℓ
industry
mon (x, u) . . .

+ wcomf(k) ⋅ ℓcomf(x, u) (27)
s. t. (12), (22a), (22b).

Note that, due to the discontinuities in (25) and (26),
Pindustry is a nonlinear programming problem, which is in
general hard to solve.

2.3 Problem reformulation

However, using an epigraph reformulation [6, 21], it is pos-
sible to reformulate this part of the cost function to a re-
laxed version which still leads to the same optimum. Sim-
ilar linear programming tricks can e. g. be found in [5].

In (25), the max-term is replaced by an additional de-
cision variable,

Ppos(k)
!= max (0,Pgrid(k)) . (28)

This is achieved by respecting two addtional constraints,

Ppos(k) ≥ 0, (29a)
Ppos(k) ≥ Pgrid(k). (29b)

Note that the two sides of (28) are not equivalent, but by
replacing the right hand side of (28) in (25) with Ppos(k),
the new problem formulation is a relaxed version of the
old one. Figure 1 illustrates this behaviour.

Figure 1: Comparison of max (0, Pgrid(k)) and its relaxed replace-
ment Ppos.

Consequently, if (28) holds, the second max-term
in (25) can be expressed as

−max (0,−Pgrid(k))
∧= Pgrid(k) − Ppos(k). (30)

Together, the grid costs can then be expressed as

ℓindustrymon,grid(k) = (cgrid,buy ⋅ Ppos(k) . . . (31)

+ cgrid,sell ⋅ (Pgrid(k) − Ppos(k))) ⋅ Ts.

Considering (31) as part of the cost function, it becomes
clear that Ppos will be minimized to fulfill (28) as long as
cgrid,buy > cgrid,sell, which is true. Note that with this refor-
mulation, Np additional decision variables and 2Np addi-
tional constraints are incorporated into the optimization
problem.

The same trick can be used to replace the max-term(s)
in (26). Namely, it is computationally advantageous to cal-
culate ℓmon,peak not for every time step k, but over thewhole
prediction horizon k, . . . , k + Np, since Pgrid,peak(k + i) de-
pends on Pgrid,peak(k + i − 1) and only the maximum value
of Pgrid matters. Thus, the peak costs in each optimization
step are given by

ℓNp
mon,peak(k) =

cgrid,peak ⋅max(0, max
i=k,...,k+Np

(Pgrid(i))−Pgrid,peak(k)).

(32)
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Considering (32), our trick has to be applied twice. Namely,
first the inner max-term is replaced by an additional deci-
sion variable v,

v(k) != max
i=k,...,k+Np

(Pgrid(i)), (33)

which is s. t. Np constraints

v(k) ≥ Pgrid(i) ∀i = k, . . . , k + Np. (34)

Please note that, in contrast to Ppos, only one decision
variable and Np constraints are added to the optimization
problem. Again, (33) will be fulfilled in the optimization
due to the minimization of costs.

Considering (33) in (32), the peak costs can be de-
scribed as

ℓNp
mon,peak(k) = cgrid,peak ⋅max(0, v(k)−Pgrid,peak(k)). (35)

Again, the max-term in (35) is replaced by

q(k) != max (0, v(k) − Pgrid,peak(k)), (36)

and constrained to

q(k) ≥ 0, (37a)
q(k) ≥ v(k) − Pgrid,peak(k). (37b)

For replacement (36), one additional decision variable
with only two constraints is needed for the entire predic-
tionhorizon. Furthermore, (36)will againbe fulfilledwhen
minimizing the peak costs, which can nowbe expressed as

ℓNp
mon,peak(k) = cgrid,peak ⋅ q(k) (38)

and is thus reformulated into a linear programming prob-
lem.

For ease of presentation, let

̃ℓindustrymon (k) = ℓ
industry
mon,grid(k)+ℓmon,chp(k)+ℓmon,heat(k), (39)

i. e. all monetary costs except the peak costs. Then, for t =
0 in the industry scenario, the reformulated optimization
problem can then be stated as

Preform
industry : min

u,Ppos ,v,q
wmon(k) ⋅ ℓ

Np
mon,peak(k) + . . .

Np−1

∑
k=0

wmon(k) ⋅ ̃ℓ
industry
mon (x, u) + wcomf(k) ⋅ℓcomf(x, u) (40)

s. t. (12), (22a), (22b),
(29a), (34), (37a).

Remark that the nonlinear parts of the cost function have
been replaced by linear ones, but due to the comfort costs,
Preform
industry is still a quadratic programming problem.

3 Preliminaries of MOO
In this section, we summarize how solutions of a MOO
problem and how the Pareto front can efficiently be deter-
mined.

3.1 Choosing solutions

Since forMOOproblemsnounique solutions exist, usually
preferences are used to derive a suitable solution. Thereby,
three cases can be distinguished on how to incorporate
these, i. e. if they are 1) known a priori, 2) chosen a pos-
teriori or 3) if there are none.

3.1.1 Preferences known a priori

In case of 1), the aim is usually to directly obtain only a
single Pareto optimal solution x∗ instead of the complete
set X∗. Most common, this is achieved by translating the
preferences into weights wi for all objectives. Then, differ-
ent utility functions U can be used and minimized.

Most popular is the weighted sum (WS) method

U =
q
∑
i=1

wiJi(x). (41)

It is important to note that, if wi > 0 ∀ i, minimizing (41)
is sufficient (but not necessary) for Pareto optimality [22,
38]. If wi ≥ 0 ∀ i, the solution may only be weakly Pareto
optimal.

A different approach is to penalize the distance to the
Utopia point [37],

U = (
q
∑
i=1

wp
i (Ji(x) − J

utopia
i )

p
)

1
p

. (42)

The resulting trade-off is called a compromise solution.
Various different methods to include a priori prefer-

ence in form of weights [2, 12, 25, 34] but also in other,
e. g. verbal forms [17], exist. For amore detailed survey, the
reader is referred to [22].

3.1.2 Preferences chosen a posteriori

In case of 2), the general idea is to determine the complete
Pareto front andmanually pick a solution afterwards. This
would be done by a human decisionmaker. Two problems
arise. First, visualization of the Pareto front for q > 3 is
hard to realize. Second, a dense sampling of the Pareto
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front has to be determined. This is usually done by re-
peatingly solving the optimization problemwith amethod
deriving a single Pareto solution such as the WS method.
However, major drawbacks of the WS method for this pur-
pose are its incapability of obtaining non-convex parts of
the Pareto front and that an even spread of weight sets
does not necessarily lead to an even spread of points on
the Pareto front [7].

Thus, different methods exist to overcome these is-
sues. Examples are the normal boundary intersection [8]
and the normal constraint [24] method. A more recent ap-
proachwhich is used in thiswork is theadaptiveweight de-
termination scheme described inmore detail in Section 3.2.

Note that especially for more complex models, meta-
heuristic optimization methods such as genetic or evo-
lutionary algorithms are often used to approximate the
Pareto front. Since for this work only deterministic opti-
mization methods are used, the reader is referred to [13]
for a further survey.

3.1.3 No preferences known

In case of 3), i. e. no preferences about the competing ob-
jectives are known, basically two options exist.

First, a single solution can directly be obtained with-
out formulating preference such as weights. For exam-
ple, (41) or (42) can be minimized with wi = 1 ∀ i. Alter-
natively, game theory approaches can be used [22, 35].

The secondoption is the approachweuse in this study.
Namely, we choose a solution from the Pareto front based
on its form, i. e. so-called knee points. More descriptively,
a compromise is sought from which an improvement in
one objective would lead to a ‘bigger’ deterioration in the
other objective(s). For two objectives, most common the
knee point would be defined as the point where the Pareto
front has its biggest curvature (see also [10] for an overview
of possible interpretations). However, since usually only
samples of thePareto set are known, choosing akneepoint
is not trivial. Thus, some metric is necessary to evaluate
which solution is considered a knee point. Themetrics an-
alyzed in this work are described in detail in Section 4.

Furthermore, before any metric is calculated, the ob-
jectives may be transformed, e. g. by

̃Ji(x) =
Ji(x) − J

utopia
i

Jnadiri − J
utopia
i

. (43)

which is also called upper-lower bound approach [23] or
normalization [29] and a robust transformation. Using (43),
all objective values are scaled to [0, 1], whichmight lead to

undesired behaviour in long term control. Thus, we pro-
pose an alternative in Section 4.

3.2 Determining the Pareto front

The adaptive weight determination scheme (AWDS) [31]
uses a geometric interpretation to obtain awell-distributed
sampling of the Pareto front. The optimiziation problem is
solvedmultiple times as aweighted sum. However, the dif-
ferent sets of weights are determined iteratively.

After q samples of the Pareto front are found, they are
used to determinenewweightswi.With q = 2, this is equiv-
alent to drawing a straight line through both points and in-
terpreting its gradientm as the ratio betweenbothweights.
In the following, J1 = ℓmon and J2 = ℓcomf is assumed. Hav-
ing found two solutions (ℓAmon, ℓ

A
comf) and (ℓ

B
mon, ℓ

B
comf), new

weights wC
mon and w

C
comf are determined by solving

[
ℓAmon ℓ

A
comf

ℓBmon ℓ
B
comf
] [

wC
mon

wC
comf
] = [

1
1
] . (44)

Then, the optimization is redone with the new weights
wC
mon,w

C
comf. This can be interpreted as shifting the straight

linewith the gradientm to the origin until it is tangential to
the Pareto front, as is illustrated in Figure 2. As a result, we
obtain a new Pareto optimal solution (ℓCmon, ℓ

C
comf) which

lies between (ℓAmon, ℓ
A
comf) and (ℓ

B
mon, ℓ

B
comf). Moreover, the

Figure 2: Illustration of the AWDS in the first step. The gradient of
the connection between Pareto front extreme points is used to de-
termine new weights, with which the ‘new point’ is determined next.
The tangent of the Pareto front in the new point is parallel to the line
connecting the extreme points.
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new solution C is more or less in the middle between A
and B – for a circular Pareto front, it would be exactly in
the middle. Next, A ↔ C and B ↔ C are used to de-
rive new pairs of weights, respectively, in the same fash-
ion by solving equations such as (44). This is repeated
until the distance between two solutions is below a cho-
sen threshold Δdawds. As starting points, the Pareto front’s
extreme points are used, which are easily determined by
solving the optimization problemwithwA

mon = 1,w
A
comf = 0

and wB
mon = 0,wB

comf = 1, respectively. An extension to
non-convex problems by using a weighted global crite-
rion method instead of a (linearly) weighted sum is pos-
sible [31].

Concluding, the main advantage of AWDS is the effi-
cient determination of the Pareto frontwith approximately
equidistant steps of a desired size without the necessity
of reformulating the optimization problem other than as
a weighted sum.

4 Pareto optimization

The optimal control problem described in Section 2 is
solved in every time step and the Pareto fronts are deter-
mined with the AWDS method described above. In this
section, we describe different normalization schemes and
metrics to choose solutions (knee points) from them. Fur-
thermore, we illustrate with simulation examples how the
different combinations lead to different knee point selec-
tions.

4.1 Normalizations

We analyze two transformations. 1) we describe the upper-
lower bound approach (43) as a dynamic normalization ad-
justed in every time step; 2) we propose a fixed normaliza-
tion as an adaptation by values chosen a priori.

Dynamic normalization
Let (ℓimon(k), ℓ

i
comf(k)) be the i-th of a total of nsamp samples

of the Pareto front at time step k. Furthermore, all samples
shall be ordered with an increasing ℓmon, i. e. ℓi+1mon > ℓ

i
mon.

Then, the dynamic normalization is given by

̂ℓimon(k) =
ℓimon(k) − ℓ

Utopia
mon (k)

ℓNadirmon (k) − ℓ
Utopia
mon (k)

, (45)

̂ℓicomf(k) =
ℓicomf(k) − ℓ

Utopia
comf (k)

ℓNadircomf (k) − ℓ
Utopia
comf (k)

. (46)

Namely, the distances from the Utopia to the Nadir point
in every dimension, i. e. the width and height of the Pareto
front, are scaled to 1. Note that this dynamic normalization
respects that both the Utopia and Nadir point change over
time due to different initial conditions and forecasted dis-
turbances.

Fixed normalization
Former experiments [32] showed that in the microgrid set-
ting considered here, the differences from the Nadir to the
Utopia point especially for ℓmon can vary extremely over
time. Thus, automated decisions based onmetricsmay not
be result in the solutions anticipated before. To overcome
this issue, we propose an alternative to the regular upper-
lower bound approach as in Eqs. (45), (46). In the so-called
fixed normalization, the transformed values are given by

̂ℓimon(k) =
ℓimon(k) − ℓ

Utopia
mon (k)

Δℓfixmon
, (47)

̂ℓicomf(k) =
ℓicomf(k) − ℓ

Utopia
comf (k)

Δℓfixcomf
, (48)

where Δℓfixmon and Δℓfixcomf are constant values for every
time step. Please note that while different transformation
schemes have been analyzed before [23], the authors could
not find any reference for the proposed transformation.
Usually, only estimates of the maximum possible value of
an objective are used.

However, choosing appropriate values is not trivial.
Figures 3 and 4 show the proportions of the Pareto fronts’

Figure 3: Distribution of Δℓmon in a one year simulation (intraday
scenario, dynamic normalization, CUP metric).
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Figure 4: Distribution of Δℓcomf in a one year simulation (intraday
scenario, dynamic normalization, CUP metric).

widths, i. e.

Δℓmon(k) = ℓ
Nadir
mon (k) − ℓ

Utopia
mon (k), (49)

Δℓcomf(k) = ℓ
Nadir
comf (k) − ℓ

Utopia
comf (k), (50)

at time step k, for a one year simulation of the intraday
scenario. Note that this distribution depends on the solu-
tions which are chosen in the simulation itself. Here, dy-
namic normalization together with the CUP metric have
been used. However, the resulting distributions are sim-
ilar for all combinations. For the intraday scenario, the
mean values are taken, which cover 38.13% of all Δℓmon
and 46.32% of all Δℓcomf.

The resulting distributions for the industry scenario
are presented in Figures 5 and 6. Figure 5 shows that the

Figure 5: Distribution of Δℓmon in a one year simulation (industry
scenario, dynamic normalization, CUP metric). The maximum of
Δℓmon is at ≈ 22,000.

Figure 6: Distribution of Δℓcomf in a one year simulation (industry
scenario, dynamic normalization, CUP metric).

mean value of all Δℓmon is, in comparison to the mean of
all Δℓcomf in Figure 6, highly shifted to the right. This is
due to the occuring peak costs. Thus, taking the means
as Δℓfixmon and Δℓfixcomf is not appropriate. Instead, we make
use of the bend in the distribution of Figure 5. This corre-
sponds to Δℓfixmon = 272 and lies above 91.80% of all occur-
ing Δℓmon. Accordingly, we choose Δℓfixcomf = 153.5, which
covers 91.82% of all Δℓcomf.

Table 2 summarizes the constant scaling values for the
fixed normalization.

Table 2: Scaling values for fixed normalization.

Intraday Scenario Industry Scenario

Δℓfixmon 189.82 272
Δℓfixcomf 93.90 153.5

4.2 Metrics

We investigate three different metrics for the selection of a
knee point: 1) the Euclidean distance to the Utopia point,
i. e. the closest to Utopia point(CUP) solution is chosen;
2) the minimum angle to neighbor points (ATN) and 3) the
minimum angle to the extreme points (AEP) of the Pareto
front is considered best. Note that all metrics are deter-
mined after normalization.

CUP
The Euclidean distance to the Utopia point is given by

"""""(
̂ℓimon, ̂ℓ

i
comf)
""""" = √(
̂ℓimon)2 + ( ̂ℓ

i
comf)

2. (51)
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Note that in the simulations done for this study, the area
around the first determined CUP has been sampled again
with a smaller distance ratio Δdawds to increase precision.

ATN
The angle αATN between a (normalized) solution ̂ℓi and its
neighbours ̂ℓi−1, ̂ℓi+1 can be calculated by

rATN = (
̂ℓimon
̂ℓicomf
) − (
̂ℓi−1mon
̂ℓi−1comf
) , (52)

pATN = (
̂ℓimon
̂ℓicomf
) − (
̂ℓi+1mon
̂ℓi+1comf
) , (53)

αATN =
r⊺ATN ⋅ pATN
‖rATN‖ ⋅ ‖pATN‖

. (54)

Note that 1) αATN is defined only for i = 2, . . . , nsamp − 1,
i. e. not for the extreme points; and 2) this calculation
is sensitive to the (Euclidean) distance Δd between the
samples. Namely, on a continuously differentiable curve,
lim
Δd→0

αATN = 180°. Thus, a denser sampling in the neigh-
bourhood of the ATN-knee as for the CUPmetric could not
be used.

AEP
Similar to the ATN, the angle of a solution ̂ℓi to the extreme
points is calculated by

rAEP = (
̂ℓimon
̂ℓicomf
) − (
̂ℓ1mon
̂ℓ1comf
) , (55)

pAEP = (
̂ℓimon
̂ℓicomf
) − (
̂ℓnsamp
mon
̂ℓnsamp
comf
) , (56)

αAEP =
r⊺AEP ⋅ pAEP
‖rAEP‖ ⋅ ‖pAEP‖

. (57)

Again, αAEP is only defined for i = 2, . . . , nsamp − 1. How-
ever, in contrast to the ATN, it is not sensitive to the dis-
tance Δd between the samples. Thus, a denser sampling in
the neighbourhood of the solution with the smallest αAEP
is conducted as for the CUP metric.

4.3 Comparison on real Pareto fronts

To gain insights on the different selections with each nor-
malization andmetric, three typical Pareto fronts in the in-
dustry scenario are examined. Figure 7 shows a setting in
winter when heating is necessary. Due to the low Δℓcomf,
the fixed normalization shifts all selections to the left.
However, the ATN solution is in general the least sensitive

Figure 7: Pareto front in the industry scenario with ϑair ≈ 8.59 °C <
21 °C, i. e. heating is necessary. Since Δℓcomf

Δℓfixcomf
< Δℓmon

Δℓfixmon
, all knee selec-

tions are shifted to the left when fixed normalization is used.

to this behaviour, as can be seen in the size of its shift in
comparison to CUP and AEP.

Figure 8 shows the selections for a cooling scenario in
summer without possible peak costs. Here, Δℓmon is scaled

Figure 8: Pareto front in the industry scenario and ϑair > 21 °C, i. e.
cooling is necessary. Since Δℓcomf ≈ Δℓfixcomf and Δℓmon < Δℓ

fix
mon, the

CUP and AEP selection are shifted to the right when fixed normaliza-
tion is used.
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Figure 9: Pareto front in the industry scenario with ϑair > 21 °C and
high demand, i. e. cooling is necessary and (high) peak costs are
possible. Thus, Δℓmon >> Δℓfixmon and the selections for all metrics
are shifted to the left.

stronger than Δℓcomf for the fixed normalization. Thus, the
CUP and AEP solutions are shifted to the right. While the
AEP knee is shifted the most, the ATN metric is not sensi-
tive enough to be shifted.

In Figure 9, a Pareto front with high peak costs is
shown. Here, a clear knee point can be deducted. How-
ever, only for the dynamic normalization all metrics find
it. For the fixed normalization, all selections are shifted to
the left due to Δℓmon >> Δℓfixmon. This results in trajectories
with higher ℓcomf.

Despite the last setting with peak costs, the Pareto
fronts and the knee selections for the intraday scenario
look similar. The examples show that metrics based on an
angle, i. e. ATNor AEP, aremore sensitive to the front’s cur-
vature than using the CUP. The fixed normalizationmainly
shifts the solutions to one side, depending on the rela-
tion of Δℓcomf

Δℓfixcomf
to Δℓmon

Δℓfixmon
, i. e. whether it is greater or smaller.

However, Figure 8 shows an example where the ATN does
not follow this logic and illustrates one possible drawback
of it, i. e. its sensitivity to the distance between sample
points. In summary, the CUP metric seems to be the most
robust one. However, long time simulations are necessary
to evaluate the resulting trajectories andwhether the shift-
ing from the fixed normalization is beneficial or not.

5 Simulation results
All simulations have been done in Matlab® with use of
the YALMIP toolbox [20]. We use CPLEX as solver in its
demo version, which has a limit of maximum 1000 de-
cision variables and constraints each. With the reformu-
lations from Section 2.3, a prediction horizon of 24 h ∧=
48 steps results in 291 decision variables and 915 con-
straints for the industry scenario. The creation of the
Pareto front in a single step takes less than 4 s, leading to a
simulation time of ≈ 2.5min for one day and ≈ 15 h for one
year on a regular desktop PC with an Intel i5.

5.1 Intraday scenario

Figure 10 illustrates the results for the intraday scenario
and simulation with data from 2018. Note that, to sup-
port interpretation, the model has been simulated with
wmon = 1, wcomf ≈ 0, i. e. with a focus only on monetary
costs to obtain a lower limit on how much money has to
be spent only on fulfilling Pdem (while making use of the
stationary battery). This value of 98341e has been sub-

Figure 10: 2018 results, intraday scenario, substracted minimum
Jmon.
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stracted from all other simulation results for Figure 10. All
numerical values without this adaption can be found in
the Appendix in Table 3. Note that, due to numerical rea-
sons and to ensure Pareto optimality (and not only weak
Pareto optimality), wcomf has actually been set to a very
small value (10−5). However, the effect on Jmon is negligi-
ble.

In addition to the three metrics for both dynamic and
fixed normalization presented in Section 4, we also simu-
lated the entire yearwith fixedweights (i. e. without Pareto
front construction and knee point selection). First,wmon =
wcomf = 0.5 is the setting for no weighting between the ob-
jectives and can be considered as a baseline result. Sec-
ond, the mean weights from the CUP (dynamic) simula-
tion have been used as fixed weights, i. e. wmon = 0.14,
wcomf = 0.86. Note that this setting can also be considered
as a comparison baseline. However, this (sophisticated)
weighting could not have been done a priori. Last, only fo-
cus on comfort has been put, i. e. wmon ≈ 0, wcomf = 1.
Again, due to the reasons described before, wmon = 10−5

for this setting.
In comparison to the unweighted setting (wmon =

wcomf = 0.5), all settings with knee point selection signif-
icantly reduce Jcomf (≈ 60 to 80%) with only a slight in-
crease of Jmon (≈ 4 to 8%). The same is true for the fixed
weighting withwmon = 0.14,wcomf = 0.86, which results in
an even lower Jcomf but higher Jmon than anykneepoint set-
ting. However, as has been stated before, this setting could
not have been chosen a priori. Surprisingly, when the CUP
is chosen as metric, the fixed normalization outperforms
the dynamic normalization.

If the knee point is chosen by an angle metric (either
ATN or AEP), the fixed normalization leads to a stronger
focus on costs, i. e. a lower Jmon and higher Jcomf. Note that
this behavior might change with different normalization
scales, which have been derived from a one-year simula-
tion with CUP (dynamic) as described in Section 4.1.

5.2 Industry scenario

The results for the industry scenario are illustrated in Fig-
ure 11. Again, for ease of interpretation, the minimum
monetary costs have been subtracted and all numerical re-
sults are given in the Appendix, Table 4.

Note that (unadapted) Jmon is overall higher due to the
higher grid (and peak) costs. Furthermore, if no focus is set
on comfort (wmon = 1, wcomf ≈ 0), Jcomf is less than half as
high as for the intraday scenario. This is due to the stronger
use of the CHP, whose electricity is cheaper than buying
from grid in the intraday scenario. However, for the other

Figure 11: 2018 results, industry scenario, substracted minimum
Jmon.

settings, the comfort costs are in general higher, since a
stronger focus on minimizing the monetary costs is put
due to the higher grid costs. In contrast to the intraday sce-
nario, here the fixed normalization always leads to a lower
Jmon and higher Jcomf. This ismore severe if an anglemetric
is used (both ATN and AEP).

Note that the CUP (dynamic) setting is the only one
(besides wmon = 1, wcomf ≈ 0) which ‘voluntarily’ accepts
new peak costs. Namely, in all other settings, the maxi-
mum peak is 384.6 kW and dictated by a high Pdem(k =
1081) = −630.55 kW at the 23rd of January. However, the
CUP in the dynamic normalized space is associated with
new peak costs twice within three time steps on the 23rd
of June and goes up to 394.62 kW. This results in 875.347e
higher peak costs and leads to the CUP (dynamic) setting
being slightly outperformed by the AEP (dynamic) solu-
tions.

In summary, the results suggest that using the CUP is
the most robust metric. For the angle based metrics, the
fixed normalization shifts the focus further on reducing
monetary costs at the expense of a lower thermal comfort.
This effect is more severe for the industry than for the in-



700 | T. Schmitt et al., Multi-objective model predictive control for microgrids

traday scenario. The most promising combination seems
to be the CUPmetric togetherwith the fixednormalization,
since in the intraday scenario it even outperforms the CUP
with dynamic normalization and in the industry scenario
it avoids unnecessary peak costs (in comparison to the dy-
namic normalization). Alternatively, mean weights result-
ing from the knee point selections can be used a posteriori.

6 Conclusion
In this study, economic MPC has been applied to a sim-
plified linear microgrid model of a medium-sized com-
pany building with real-world disturbance data. Thereby,
two objectives (monetary costs and temperature comfort)
have simultaneously been optimized by exploitation of the
Pareto front in every time step. The effects of different met-
rics and normalizations for knee point selection have been
investigated for two realistic electricity pricing scenarios,
i. e. participation in the intraday market and German in-
dustry pricing with peak costs.

The usual obstacle against construction of the whole
Pareto set for control purposes, i. e. high computational
costs, have been solved by 1) an efficient Pareto front cal-
culation and 2) the reformulation of the originally highly
nonlinear peak costs into a linear programming problem.
Results showed advantages from choosing the Pareto so-
lution closest to the Utopia point with a proposed fixed
normalization scheme. Alternatively,meanweights can be
obtained from long time simulationswith Pareto optimiza-
tion. However, further investigations are necessary to as-
sess whether these fixed weights are still appropriate for
new data sets. Furthermore, a more sophisticated build-
ing model with more temperature zones will be analyzed
in the future.

Funding: Thomas Schmitt acknowledges the financial
support from Honda Research Institute Europe.

Appendix
Numerical results for all simulation settings. Jmon and Jcomf
describe the (unweighted) monetary and comfort costs for
the entire year, respectively.

Table 3: 2018 results for the intraday scenario.

Jmon in e Jcomf

wmon = 1, wcomf ≈ 0 98341.66 2211587.11
wmon = wmon = 0.5 209709.19 4932.82
wmon = 0.14, wcomf = 0.86 216148.36 438.71
CUP (dynamic) 215593.36 1281.63
CUP (fixed) 214209.20 1110.64
ATN (dynamic) 215480.22 1678.42
ATN (fixed) 213606.31 1869.77
AEP (dynamic) 217274.28 881.78
AEP (fixed) 213570.40 1741.81
wmon ≈ 0, wcomf = 1 226940.76 35.16

Table 4: 2018 results for the industry scenario.

Jmon in e Jcomf

wmon = 1, wcomf ≈ 0 297114.09 1031189.72
wmon = wmon = 0.5 347226.94 5028.78
wmon = 0.26, wcomf = 0.74 351185.20 1153.58
CUP (dynamic) 354854.43 975.78
CUP (fixed) 350899.90 1325.99
ATN (dynamic) 353513.58 1667.77
ATN (fixed) 349152.45 3463.39
AEP (dynamic) 354785.96 948.41
AEP (fixed) 349662.53 4175.14
wmon ≈ 0, wcomf = 1 377954.87 35.24
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