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Abstract: System identification with finite impulse

response (FIR) models has been recently revised

by introducing specific forms of regularization in

the estimation. By utilizing prior knowledge of the

dynamic process under investigation different kernels for

regularization can be derived. However, the dynamical

processes considered are mainly restricted to time-delay

free systems. Therefore, in this paper we propose two

novel methods to handle the time-delay case. Both

methods incorporate the time-delay estimation in the

hyperparameter optimization of the regularized FIR

models. The first method is built on a single kernel (SK)

and the second utilizes a multiple kernel (MK) approach.

Simulations on different dynamical systems show the

superior behavior of both methods in comparison to

standard regularization methods, whereupon the MK

outperforms the SK approach.

Keywords: hyperparameter optimization; regularized FIR

models; system identification; time-delay systems

Zusammenfassung: Systemidentifikation mit FIR-

Modellen hat durch die Einführung von neuen Formen

von Regularisierung kürzlich deutlich an Aufmerksamkeit

gewonnen. Mit dieser Methodik lässt sich der hohe

Varianzfehler, der typischerweise den Einsatz von

FIR-Modellen beschränkt, signifikant reduzieren. Anhand

von Vorwissen über den zu untersuchenden dynamischen

Prozess können verschiedene Regularisierungskernel
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abgeleitet werden. Bisher beschränkt sich die Betrachtung

allerdings auf totzeitfreie Systeme. Daher werden zwei

neue Methoden entwickelt, welche auch Totzeitprozesse

berücksichtigen. Beide Methoden integrieren die

Totzeitschätzung in die Hyperparameteroptimierung

der regularisierten FIR-Modelle. Die erste Methode

basiert auf einem Single-Kernel (SK), während die

zweite Methode einen Multiple-Kernel (MK) Ansatz

verwendet. Simulationen an verschiedenen dynamischen

Totzeitsystemen zeigen das Potential beider Methoden im

Vergleich zu Standard-Regularisierungsmethoden.

Schlagwörter: Totzeitsysteme; regularisierte FIR-Modelle;

Systemidentifikation; Hyperparameteroptimierung

1 Introduction

Linear system identification solves the problem of generat-

ing dynamic models from measured input/output data [1].

One approach to address this problem is the utilization of

finite impulse response (FIR) models and the identification

of their parameters by least squares (LS) [2]. In recent publi-

cations specific forms of regularizationwere discovered as a

possibility to overcome themain drawback of high variance

errors that FIR models suffer from [3, 4].

Regularization in general offers the possibility to

reduce the flexibility of the parameter estimation. So called

kernels allow for the adaption of the regularization to

problem specific requirements. This is utilized in the field of

regularized FIR (RFIR) models to incorporate prior knowl-

edge of the process properties into the estimation. Several

regularization matrices have been developed implying dif-

ferent assumptions on the FIR model parameters. Popular

methods to apply regularization use the stable-spline (SS)

kernel [5], tuned-correlated (TC) kernel [6], or the impulse

response preserving (IRP) [7] matrix.

These regularizationmatrices incorporate prior knowl-

edge of the impulse response of dynamical systems such

as exponential decay (TC, SS) or information on poles of

the process (IRP). Using these properties allows to derive
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differently structured kernels. The parameterization of the

kernels which is dependent on kernel-specific hyperparam-

eters, however, depends on the process and the available

data for the estimation. The tuning of the best set of hyper-

parameters is called hyperparameter optimization [3]. Dif-

ferent optimization goals have been studied [8, 9]. They can

either be applied to directly optimize the hyperparameters

the kernel is parameterized with [7, 10] or can be used to

optimize the regularization strength of preliminary param-

eterized multiple kernels [11, 12]. Compared to single ker-

nels, multiple kernels can capture complicated dynamics in

a better way or can be used for structure detection.

By using regularization it has been shown that the

estimation of a wide range of dynamic processes can be

improved, even for only partially true assumptions [3, 7].

However, this is not true for time-delay processes [12].

The main reason for this is that time-delay processes

violate the fundamental assumption of smooth impulse

responses all mentioned kernels have in common. Time-

delay systems possess a finite time interval before the

impulse response of the dynamic part starts. The behavior

of parameters corresponding to this time interval follows

different rules than the parameters of the remainder of the

dynamic impulse response that follows and therefore need

to be treated differently.

In the literature different approaches to deal with time

delays are distinguished [13]. In general, two-step and single-

step procedures are differentiated. Two-step procedures

identify the time delay first and subsequently perform a

standard dynamic system identification on the time-delay

compensated signals. Single-step methods, however, esti-

mate the dynamic parameters along with the time delay.

Cross-correlation analysis of the input-output signals,

as presented in [14, 15], belong to the two-step procedures.

Another form of two-step procedures are called time-delay

approximation methods, or area and moment methods

[13], which analyze an estimated impulse or step response,

respectively.

The Padé approximation is a famous single-step pro-

cedure [16]. Here, the time delay is approximated by a

non-minimal phase transfer function. The drawback of

this method is the possible poor performance for large

time delays and the increased number of parameters [17].

Explicit time-delay parameter estimations also follow a

single-step procedure by estimating the time delay along

with the dynamic parameters. In [18, 19] the problem of

identifying the time delay is transformed in a way, that the

regression vector of the dynamic parameters is extended

to simultaneously estimating the time delay along with the

dynamic parameters. The resulting problem is solved by

an iterative or recursive application of the LS algorithm.

Another common approach is to assume high-order autore-

gressive models with exogenous inputs (ARX) and vary-

ing the time delay to generate a set of candidate models.

With a brute-force approach the appropriate model and

its corresponding time delay can be found by selecting the

best performing model from this set [13]. Here, an a priori

order selection of the ARX models is needed to estimate the

dynamic part of the model.

The motivation of this contribution is to overcome the

drawback of an explicit order selection while preserving a

single step method. RFIR models structurally can cope with

any process order (order of differential equation) [3]. There-

fore, no explicit model order selection is required and they

are perfectly suited to solve the given problem. However,

their issues to deal with time-delay systems are only rarely

addressed yet. For example [12] approaches it by assuming

that the parameters of the FIR model can be split into two

parts, whereas each part follows an exponential decay. The

calculation of this splitting point, however, is excluded from

the main estimation, resulting in a two-step procedure.

Our approach is to avoid the two step procedure by

including the time-delay estimation into the hyperparam-

eter optimization of the kernel. To do so, we propose two

novel methods. One is based on a single kernel by overlap-

ping two different kernels smoothly. The second approach

utilizes the multiple kernel approach to find the best fitting

kernel for the given data.

The paper is structured as follows. Section 2 explains

the special properties of time-delay systems. Thereupon,

Section 3 introduces FIRmodels and the regularized estima-

tion along with the hyperparameter optimization. Section 4

shows the incorporation of the time delay into the ker-

nel. Subsequently, the results of the proposed methods are

demonstrated on various example processes of different

orders in Section 5. Finally we conclude our findings in

Section 6.

2 Time delay systems

Time-delay systems (TDS), also called dead time systems,

are a special class of dynamic systems. Their representation

differs from the typical rational transfer function in the

continuous-time case. For the discrete-time case, however,

a rational description is possible, if the time delay corre-

sponds to an integer multiple of the sampling time T0:

Td = d ⋅ T0 d ∈ ℕ. (1)

This case is the subject of the following investiga-

tion. Furthermore, we focus on linear causal discrete-time
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Figure 1: Impulse response g̃(k) of time-delay system distinguished in

time delay part and dynamic remainder up to the 40th time step.

systems without direct feedthrough such that the output y

can be described by the convolution sum of the input u and

the impulse response of the process g

y(k) =
∞∑
i=1

g(i)u(k − i). (2)

For time-delay systems the impulse response is

extended with a zero part ( ) in front of the remainder

dynamic impulse response ( ), see Figure 1. Exemplary, the

time delay is set to d = 10.

For the following, the impulse response of such a sys-

tem is referred to as g̃ which is defined by its two parts

g̃(k) =
{
0 1 ≤ k ≤ d

g(k − d) k > d
, (3)

where g(k) is the impulse response of a dynamic system

without time delay.

The handling of fractional time delays is not explicitly

considered in this contribution. However, in the discrete

time they can be approximated by an integer multiple of

the sampling time and a slightly deviating dynamic impulse

response. The maximum error of the time delay estimation

resulting from this approximation is one sampling inter-

val. By taking the deviating impulse response into account,

such systems can also be treated in the methods presented

below.

3 FIR models

As explained in Section 2 the output of a linear process y(k)

without direct feedthrough can be calculated by

y(k) =
∞∑
i=1

g̃(i)u(k − i)+ 𝑣(k), (4)

where 𝑣(k) accounts for possibly existing measurement

noise. With the assumption that the process is stable and

𝑣(k) is white Gaussian noise, an nth-order FIR model can

be used to approximate this linear process by the linear

combination of past inputs

ŷ(k) =
n∑
i=1

𝜃(i)u(k − i) = x(k)T 𝜃, (5)

where x(k) =
[
u(k − 1) u(k − 2) … u(k − n)

]T
with

u(k) = 0, for k ≤ 0 and 𝜃 denoting the n-dimensional

parameter vector. Here, the parameter vector represents

the approximated finite impulse response coefficients of

the infinite process impulse response including the time

delay.

As can be seen in (5), the model is linear in its parame-

ters and therefore can be estimatedwith LS [1]. The squared

estimation error of the FIR model

J =
N∑
k=1

(
y(k)− ŷ(k)

)2 = ‖y − X 𝜃‖2
2

(6)

is minimized with respect to the model parameters 𝜃 .

Here, X denotes the (N × n)-dimensional regressor matrix,

y denotes the N-dimensional measured output vector with

N being the number of data samples and ‖ ⋅ ‖2 denotes
the Euclidean norm [2]. This property in combination with

the output error configuration are main advantages of FIR

models [2]. Because of the output error configuration the

parameter estimation is unbiased (strictly speaking for n→

∞) w.r.t. the noise assumption, which does not hold for e.g.

ARX models. Additionally, a major benefit is that the FIR

model estimation has a low sensitivity w.r.t. themodel order

n or preliminary unknown time delays d. Additionally, FIR

models benefit from their inherent stability and therefore,

they are also a preferable choice for online learning algo-

rithms [20–22]. It only has to be ensured that the estimated

impulse response is long enough to cover all coefficients of

the true impulse response which significantly deviate from

zero. However, this may lead to a high number of model

coefficients n [1]. Therefore, especially for a small number of

data samples, FIR models suffer from a high variance error

which causes overfitting inmany cases [2]. To overcome this,

in [3] a regularization method has been introduced which

decreases the variance error.

3.1 Regularized FIR models

Due to its model structure, a large number of parameters is

required to cover the dynamics of the given process prop-

erly. By regularization, the effective number of parameters

can drastically be reduced. Therefore, a satisfying small

variance error can be achieved. Thus, the major draw-

back of FIR models can be overcome. By introducing an

additional penalty term in the estimation procedure, regu-

larization is applied:
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J =
N∑
k=1

(
y(k)− ŷ(k)

)2 + 𝜆𝜃
TR(𝜂 ) 𝜃, (7)

where R is the regularization matrix which is dependent

on the hyperparameters 𝜂 . The hyperparameter 𝜆 denotes

the regularization strength. The second term is the regu-

larization term which introduces a relationship between

the parameters of the FIR model themselves. The linking of

adjacent parameters is defined by the matrix R. Due to the

fact that the parameters of an FIR model correspond to the

impulse response coefficients of the modeled process, prior

knowledge on the dynamic behavior can be incorporated

in the matrix R. From the Bayesian perspective the model

parameters 𝜃 can be interpreted as a Gaussian process. The

parameter vector 𝜃 is assumed to be a random variable

with a prior distribution of zero mean and the covariance

matrix P [10], which is also known as the kernel matrix. It

has to be noted that R corresponds to the inverse parameter

covariance matrix P−1 of the prior. The hyperparameter 𝜆

is used to adjust the strength of the regularization. With a

regularization strength of zero the prior knowledge in R has

no influence on the estimated parameters. In contrast, for a

high regularization strength almost only the prior is used

for the parameter estimation. Furthermore, this approach

preserves the analytical form of the solution from LS [2, 3]:

𝜃 =
(
XTX + 𝜆R(𝜂 )

)−1
XT y. (8)

3.1.1 Choice of the regularization matrix

The choice of the regularization matrix R can strongly

influence the parameter estimation of the FIR model. The

most common regularizationmethod is named ridge regres-

sion, where R = I [2]. Another regularization method con-

tributed in [3] correlates the impulse response coefficients.

Hereby, smoothness of the impulse response and knowledge

about the exponential decay of the process is imposed. By

decomposing the regularization term as

𝜃
TR 𝜃 = 𝜃

TFTF 𝜃 = ‖F 𝜃‖2
2
, (9)

the regularization matrix can be interpreted as a filter F of

the parameter vector [23]. It enables the incorporation of the

prior knowledge directly in the filter matrix F .

In [7] a method is contributed, which assumes a trans-

fer behavior of the process under investigation. Typically,

a linear nIRPth-order transfer function is used as prior

from which only the denominator polynomial is needed.

For the sake of convenience here nIRP = 2 is chosen as an

example

G(z) = B(z)

a0 + a1z
1 + z2

. (10)

However, the extension to lower- and higher-order

transfer functions is straightforward. With the coefficients

a =
[
a0 a1

]T
, the second-order impulse response preserving

(IRP2)
1 filter matrix F

IRP
(a) ∈ ℝ(n−2)×n is given for processes

without direct feedthrough by [7]

F
IRP
(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

a0 a1 1 0 … 0

0 a0 a1 1 ⋱
...

... ⋱ ⋱ ⋱ ⋱ 0

0 … 0 a0 a1 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (11)

The approach to use only one regularization matrix,

which corresponds from the Bayesian perspective to one

kernel matrix, is also called single kernel method. In con-

trast, the authors of [11] propose a multiple kernels method.

Here, nMK kernels R
i
, i = 1, 2,… , nMK are superimposed

each with its own regularization strength 𝜆i.

3.1.2 Hyperparameter optimization

To determine the hyperparameters, e.g. for the IRP kernel

a and 𝜆, a hyperparameter optimization can be performed.

Various criteria have been proposed to determine themodel

quality for a certain hyperparameter combination. Typi-

cally, these criteria are nonlinear and non-convex in a and

𝜆. In [8] the generalized cross-validation (GCV) error

JGCV =
1

N

N∑
k=1

(
y(k)− ŷ(k)

1− tr(S)∕N

)2

, (12)

with S = X
(
XTX + 𝜆R

)−1
XT denoting the smoothing

matrix, is contributed. The objective JGCV has to be

minimized to determine the optimal hyperparameters.

From a Bayesian perspective, usually, the marginal

likelihood (ML) function is used. For an easier calculation

and better numerics, the log-likelihood

JML = yTΣ−1y + logdet
(
Σ
)
, (13)

with Σ = 𝜆X R−1XT + 𝜎2I and 𝜎2 denoting the variance of

the process noise, is minimized [9].

3.2 Identification of time-delay systems
with regularized FIR models

A major benefit of FIR models in general is the property

that they are robust w.r.t. unknown time delays, because

1 The index stands for the IRP order nIRP corresponding to the order of

the transfer function which is used as prior to build the filter matrix.
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Figure 2: Model parameters 𝜃 j from the estimation of a second-order

process with time delay with an unregularized ( ) and a regularized FIR

model ( ).

each parameter can be independently set to zero. By reg-

ularization neighboring parameters are coupled and this

advantage is weakened or lost. This coupling leads to unde-

sired behavior, because only after the time delay, the model

parameters should deviate from zero. Thereby, regulariza-

tion causes a blurring of the parameter vector, which nor-

mally changes suddenly after the timedelay has passed. This

behavior can be seen in Figure 2. It causes that the regu-

larization strength can no longer be chosen high, because

the regularization penalty term does not fit to the process

anymore. To overcome this issue, the regularization matrix

(11) has to be modified to also allow the incorporation of

time delays.

4 Incorporation of time delay in

regularization matrix

In this chapter amodified regularizationmatrix is proposed

which allows the incorporation of time delays. Additionally,

twomethods – a single kernel and amultiple kernelmethod

– are developed applying this kernel on the identification of

processes with unknown time delays. These methods were

developed for the single input single output (SISO) case.

However, it is also possible to extend them to themulti input

single output (MISO) case.

4.1 Time-delay kernel

From the Bayesian perspective the inverse of the regular-

izationmatrix P = R−1 can be interpreted as the covariance

matrix of a Gaussian prior with zero mean. Partitioning the

prior of the parameters into two parts (‘d’ and ‘dyn’) leads

to

p(𝜃 ) = 

⎛⎜⎜⎜⎜⎜⎜⎝

[
0

0

]
⏟⏟⏟

𝜇

,

[
P
d

0

0 P
dyn

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

P

⎞⎟⎟⎟⎟⎟⎟⎠
. (14)

The zero off-diagonal elements account for the fact

that parameters corresponding to the time delay and

parameters corresponding to the dynamic behavior are

not correlated with each other. Additionally, two different

covariance matrices P
d
and P

dyn
represent the two parame-

ter groups.

For the second part (P
dyn

) it can clearly be argued that

all assumptions on the undelayed system, such as exponen-

tial decay and smoothness in the TC kernel case or impulse

response preservation for the IRP kernel, still hold. For the

first part (P
d
), however, these assumptions do not hold. So

the questions arises, how to build the covariance matrix P
d

for the time-delay parameters.

A natural choice can be made from the fact, that all

time-delay parameters should be exactly zero. Due to the

absolute certainty of this condition, all variances of the

parameter prior, which populate the diagonal elements of

the covariance matrix, can be set to zero. Additionally, no

covariance between the parameters exist which results in

zero entries at the off-diagonal elements in P
d
as well.

The goal of the identification from the Bayesian per-

spective is to find the parameter distribution conditioned

on the measured outputs. The mean of this distribution

corresponds to the regularized LS solution [3]

𝜃 = P XT
(
X P XT + 𝜎2I

N

)−1
y. (15)

By splitting the parameter vector

𝜃 =
[
𝜃
d

𝜃
dyn

]
(16)

as well as the regressor matrix

X =
[
X
d

X
dyn

]
(17)

into a time-delay and a dynamic part and including this into

the mean of the parameter distribution we get

𝜃 =
[

P
d
XT
d

P
dyn

XT
dyn

](
X
d
P
d
XT
d
+ X

dyn
P
dyn

XT
dyn

+ 𝜎2I
N

)−1
y.

(18)

With the previous choice of P
d
= 0, from (18) it can

be reasoned that 𝜃
d
= 0 since P

d
XT
d
= 0. Additionally, due

to X
d
P
d
XT
d
= 0 the regressor part X

d
is not influencing

the estimation of the dynamic parameters 𝜃
dyn

. Which is

intended by the choice of P
d
.

From the implementation perspective as well as the fil-

ter perspective however, a choice of P
d
= 0 is questionable.

For the filter interpretation the inverse of the covariance

matrix
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R = P−1 =
[
P−1
d

0

0 P−1
dyn

]
(19)

is needed. This inversion is not possible with a zeros matrix

for P
d
since it leads to a rank-deficient matrix P. Also for

small values of𝜎2 the inversion in (18) is poorly conditioned.

This problem is also known from the IRP kernel and can be

overcome executing a SVD, for details see [24].

A second possibility is exploiting an approximation,

that preserves the desired property of forcing all parame-

ters corresponding to the time delay to zero. It is given by

P
d
(𝛽) = 𝛽I

nd
. (20)

With𝛽 the variance of the prior of all time-delay param-

eters can be adjusted. Compared to the previously explained

special case 𝛽 = 0, increasing 𝛽 results in higher variance

of the parameter prior. Still, with small values for 𝛽 similar

results can be achieved as with 𝛽 = 0. This choice coinci-

dences with the well-known ridge regression but only for

the parameters describing the time delay.

For the filter perspective of the kernel the inverse of P
d

is needed which can be calculated by

R
d
(𝛽) = P−1

d
(𝛽) = 1

𝛽
I
nd
. (21)

This results in an additional penalty term in the LS

problem for 𝜃̂ = argmin𝜃 J with

J = ‖y − X 𝜃‖2
2
+ ‖𝜆 1√

𝛽
𝜃
d
‖2
2
+ ‖𝜆F

dyn
𝜃
dyn
‖2
2

= ‖y − X 𝜃‖2
2
+ ‖𝜆⎡⎢⎢⎢⎣

1√
𝛽
I
nd

0

0 F
dyn

⎤⎥⎥⎥⎦
[
𝜃
d

𝜃
dyn

]‖2
2
. (22)

As explained in Section 3.1, we intend using the IRP ker-

nel for the dynamic parameters. With the time-delay exten-

sion we propose the novel kernel named impulse response

and time-delay preserving (IRDP) kernel which leads to the

following regularization matrix

R
IRDP

(nd, a, 𝛽) =
[
R
d
(𝛽) 0

0 R
IRP
(a)

]
(23)

with R
d
∈ ℝnd×nd and R

IRDP
∈ ℝn×n.

While deriving the time-delay kernel, the assumption

of exactly known time delay is made. This, however, in most

practical situations does not hold. Therefore, a mechanism

has to be developed identifying the time delay along with

the FIR parameters, to properly build the time-delay kernel.

This problem is addressed in the following sections and

solved in two different ways.

4.2 Single kernel method

The first approach for identifying RFIR models with

unknown time delays is based on a single kernel method. As

explained in Section 4.1 the incorporation of the time delay

into the regularization matrix is done by strict distinction

between the time-delay and the dynamics part. Thus, choos-

ing the point of separation nd in the regularizationmatrix is

an integer optimization problem. Solving it along with the

other real hyperparameters (a, 𝜆) results in amixed-integer

optimization problem which usually is not easy to solve.

Therefore, wemodify the kernel by fuzzifying the sepa-

ration. First, we build two separate regularization matrices

of size n × n. The first purely consists of the time-delay

kernel regularization matrix. The second is the regular

dynamic kernel regularizationmatrix, which can be decom-

posed into the filter matrix as shown in (9). Then both

kernels are superimposed in a weighted manner. A sigmoid

function and its remainder to one are used for this purpose.

The combined regularization matrix is given by

R
SK

= diag(𝜇)R
d
+ FT

dyn
diag(1 − 𝜇)F

dyn
, (24)

with R
d
∈ ℝn×n. It has to be noted that the rows of F

dyn

are weighted with diag(
√
1 − 𝜇) and therefore, the model

parameters in the corresponding rows with zero weighting

are not penalized. The values for 𝜇 are calculated by evalu-

ating the sigmoid function

sig(x, y, z) = 1

1+ exp((x − y)z)
(25)

at different query points. Here y defines the inflection point

of the sigmoid and z the slope. The query points are chosen

corresponding to the number of FIR parameters:

𝜇 =
[
sig(1, d̂, 𝜎d), sig(2, d̂, 𝜎d),… , sig(n, d̂, 𝜎d)

]T
. (26)

Figure 3 visualizes this approach. With it, the mixed-

integer optimization problem of the time-delay selection is

changed into a continuous optimization problem w.r.t. the

hyperparameter d̂. This may result in a slightly different

solution, but it is much easier to solve. Additionally, the

fuzzification strength can be adjusted by the second hyper-

parameter 𝜎d. By increasing 𝜎d the overlapping region of

both regularization matrices is reduced. It is worth noticing

that the case of strict distinction between both regulariza-

tion matrices explained in Section 4.1 is included in this

optimization problem for 𝜎d →∞.

Now, the hyperparameter optimization fromSection 3.1

can be utilized to optimize d̂ and 𝜎d along with the other

kernel specific hyperparameters. An intermediate version

of this is approach is achieved by presetting 𝜎d and only
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Figure 3: Sigmoid functions for fuzzification of kernel superim-position.

optimizing d̂ in the hyperparameter optimization. To distin-

guish between these two versions, in the following we call

the full optimization SK2 and the intermediate optimization

SK1.

4.3 Multiple kernel method

The second method to incorporate time delay into the

procedure of identifying RFIR models is based on a

multiple kernel method. Here, multiple time-delay ker-

nels are used for the identification of time-delay pro-

cesses. Thereby, the mixed-integer optimization problem

discussed in Section 4.2 can be overcome. The time-delay

kernel R
IRDP

in Section 4.1 with different time delays 𝛿 =[
dmin, dmin + 1,… , dmax

]
is used. The number of nMK =

dmax − dmin + 1 regularization matrices R
IRDP

are each mul-

tiplied with a separate 𝜆i (all gathered in 𝜆) and summed up

R
MK
(𝜆, a) =

nMK∑
i=1

𝜆iRIRDP
(𝛿i, a, 𝛽). (27)

The considered time delays and therefore also the num-

ber of multiple kernels nMK as well as the parameter 𝛽 have

to be set a priori. The model parameters can be calculated

with

𝜃 =
(
XTX + R

MK
(𝜆, a)

)−1
XT y. (28)

In comparison to (8), a vector of 𝜆 is used instead of

a scalar 𝜆. This leads to more hyperparameters. To deter-

mine them, a hyperparameter optimization as described in

Section 3.1.2 is performed. For the calculation of the scalar

estimated time delay d̂ the time delays of the different ker-

nels are weighted with the corresponding regularization

strengths 𝜆i

d̂ =

nMK∑
i=1

𝜆i𝛿i

nMK∑
i=1

𝜆i

. (29)

4.4 Comparison of the methods

In this section a kernel, which incorporates time delay in

the structural assumptions of the regularization matrix,

Table 1: Comparison of the methods MK, SK1, and SK2 regarding the used

regularization matrix as well as the to be optimized hyperparameter.

Method MK SK SK

Regularization matrix R
MK

R
SK

R
SK

(Eq. (27)) (Eq. (24)) (Eq. (24))

Hyperparameter 𝜆, a 𝜆, a, d̂ 𝜆, a, d̂, 𝜎d

was proposed. To include an unknown time delay in the

RFIR estimation and avoiding a mixed-integer optimization

problem, two methods were developed. The complexity of

the utilized hyperparameter optimization increases by the

proposed methods. Compared to the estimation with the

regular IRP kernel, method SK1 requires one additional

hyperparameter (inflection point) and SK2 requires two

additional hyperparameters (inflection point and slope).

The number of hyperparameters required for the MK

method depends on the number of kernels which has to be

chosen a priori. This requires the selection of a time interval

the time delay is expected in. The higher the uncertainty of

the unknown time delay, the more hyperparameters have

to be optimized. Therefore, theMKmethod requires nMK − 1

more hyperparameters than the estimationwith the regular

IRP kernel. The kernels as well as the hyperparameters used

in the different methods are summarized in Table 1.

5 Results

To investigate the methods proposed in Section 4, first, a

parameter study for 𝛽 is performed and the influence of

the two hyperparameter optimization criteria on the model

quality is evaluated. Finally, a simulation study on a wide

range of different processes is performed to compare the

proposed approaches.

5.1 Simulation setup

To investigate the different methods regarding robustness

of the time-delay estimation and themodel quality, different

Monte Carlo studies with 100 runs are performed. In Table 2

three different process types are defined. The pole(s) of the

different processes are chosen uniformly distributed in the

given range for each run. The range is determined to cover

typically present poles with a well chosen sample time.

White Gaussian noise with N = 1000 data samples is

used as excitation signal. In each run other noise realiza-

tions are used for the excitation. White Gaussian noise is

added to the output data such that a signal-to-noise-ratio
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Table 2: Three different processes types: a first-order, a second-order,

and a third-order process.

G(z
−1)=

z
−
z
−d

−az−

G(z
−1)=
z
−
z
−d

(−az−)(−bz−)

G(z
−1)=

z
−
z
−d

(−az−)(−bz−)(−cz−)

a∈ [0.7, 0.92] a, b∈ [0.7, 0.92] a, b, c ∈ [0.7, 0.92]

d ∈ [5, 20] d ∈ [5, 20] d ∈ [5, 20]

(SNR) of 10 dB results. The FIR model order n is set to

100 in order to capture all significant impulse response

coefficients. For the MK method nMK = 21 kernels with 𝛿 =
[5, 6,… , 25] are used. To evaluate the model quality, the fit

between the true impulse response coefficients 𝜃∗, which

we assume to be the first n coefficients of g̃ , and the esti-

mated model parameters 𝜃 is calculated by using

fit
(
𝜃
∗
, 𝜃
)
= 100%

(
1− ‖𝜃∗ − 𝜃‖2‖𝜃∗‖2

)
. (30)

5.2 Kernel specific hyperparameter choice

The time-delay kernel explained in Section 4.1 contains the

hyperparameter 𝛽 which accounts for numerical stability in

the calculation of the parameters 𝜃 . To make a reasonable

choice on this parameter, a Monte Carlo study as described

in Section 5.1 for each process order from Table 2 is per-

formed. The parameter 𝛽 is varied in the heuristically cho-

sen range of

𝛽 = 10−i ∀ i ∈ {0, 1, 2,… , 7}. (31)

The order of the IRDP kernel, which is part of the time-

delay kernel, is varied from first to third order.

For the SK1 method the results show, that the mean

model fit is not sensitivew.r.t. the choice of𝛽 . The sameholds

for the estimation accuracy of the time-delay. However, it

could be observed that the smaller 𝛽 is chosen the more

outlier are present.

Table 3 summarizes the results of the investigation on

the SK2 and MK method w.r.t. the choice of 𝛽 . It can be seen

that the optimal choice of 𝛽 for the SK2 method is dependent

on the process order. For first-order processesG1(z
−1) higher

values for𝛽 yield the best results both, for fit and accuracy of

the time-delay estimation. For higher-order processes such

asG2(z
−1) andG3(z

−1) lower values for 𝛽 showbetter results.

Against that, the order of the IRDP kernel does not influence

the best choice of 𝛽 which can be seen from identical best

values for 𝛽 in each column.

Table 3: Choice of 𝛽 corresponding to the best fit for the methods

SK2/MK with the IRDPnIRP kernel.

best 𝜷 G(z
−1) G(z

−1) G(z
−1)

IRDP1 10−1/10−1 10−3/10−1 10−3/10−1

IRDP2 10−1/10−0 10−3/10−0 10−3/10−0

IRDP3 10−1/10−1 10−3/10−0 10−3/10−0

Exemplary, in the upper part of Figure 4 the parameter

fit calculated with (30) is shown for 100 input and noise

realizations for second-order processes, for the different

choices on 𝛽 and the SK2 IRDP2 kernel. The distribution

of the fit values shows that the estimation method for the

given process is robust for 𝛽 ≥ 10−4. For lower values the

estimation becomes less robust which can be substantiated

by the increasing number of outlier models. Similar results

are also observed for the other process orders.

The MK method performs almost independently from

the process order and the order of the IRDP kernel and

yields the best results with high values for 𝛽 such as 10−1

or 10◦, respectively. From the lower part of Figure 4 it

can be reasoned that the robustness and performance is

significantly reduced for 𝛽 ≤ 10−2. This behavior can also

be observed for the other process and IRDP kernel order

combinations.

To summarize the results, we advise to choose 𝛽 =
10◦ for the SK1 method. A choice of 𝛽 dependent on the

Figure 4: Boxplot of parameter fit for different choices of 𝛽 for

second-order processes and the methods SK2 and MK with the IRDP2
kernel for 100 realizations.
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process is advised for the SK2 method. If this knowledge is

not available, 𝛽 = 10−1 achieves a good trade-off between

robustness and performance of the estimation. For the MK

method choosing 𝛽 = 10−1 generally yields good estima-

tion performance and robustness simultaneously and is

recommended.

5.3 Criteria for hyperparameter
optimization

The choice of the criterion for the hyperparameter opti-

mization is crucial, since themodel quality strongly depends

on the hyperparameter. Therefore, the marginal likelihood

(ML) function and generalized cross-validation (GCV) error

explained in Section 3.1.2 are investigated with a Monte

Carlo study described in Section 5.1 and the resultant param-

eter fit as well as the time-delay estimation are compared.

For this purpose only the results of the second-order process

G2(z
−1) from Table 2 are shown, since the results of the other

process orders are similar.

For the investigation of the different hyperparam-

eter optimization criteria an interior-point optimization

algorithm is utilized. It is chosen based on a comparison of

different optimization algorithms, inwhich it outperformed

the competitive algorithms.

In Figure 5 a boxplot of the parameter fit and the time-

delay estimation for the three different methods (SK1, SK2,

and MK) with the IRDP2 kernel is shown. The parameter 𝛽

is chosen according Table 3. Here, both the mean and the

variance of the parameter fit are significantly better using

the GCV error instead of ML for optimization. Similar to the

fit, the GCV error outperforms the ML and consequently is

the preferred choice for the hyperparameter optimization

objective. For the multiple kernel (MK) approach with ML,

Figure 5: Boxplot of parameter fit and time-delay estimation for the

three different methods SK1, SK2, and MK with the IRDP2 kernel for 100

realizations of G2(z
−1). Here, the two criteria – generalized

cross-validation (GCV) error and the marginal likelihood (ML) function are

compared.

it can be seen that there is a mean error of −0.5 for the
time-delay estimation. This means that by using ML in the

optimization not only one kernel is weighted highly, but two

consecutive kernels with a similar regularization strength

are chosen. This undesirable choice also leads to a worse

parameter fit.

In summary, for all methods themodels with GCV error

optimized hyperparameters show better and more robust

performance. Therefore, in the following only the GCV error

is used for hyperparameter optimization. This result devi-

ates from previous investigations on the TC or IRP kernel

for linear dynamic system without time-delay. In that case

the ML objective usually outperforms the GCV objective

[25, 26].

5.4 Comparison of all proposed methods

In this section, all proposed methods for identifying time-

delay processes (SK1, SK2, MK) are compared. To show the

improvement of the novel methods developed for time-

delay processes, also unregularized FIR models and RFIR

modelswith the regular IRP kernel are compared. The order

of the IRP and IRDP kernel, respectively are chosen iden-

tically to the order of the process. The hyperparameter

optimization is performed with the GCV error and 𝛽 is set

according to Table 3. All three process orders of Table 2 are

investigated. A Monte Carlo simulation with the setup of

Section 5.1 is performed and the parameter fit as well as the

deviation of the estimated time delay d̂ to the true time delay

d is compared. It has to be noted, that for unregularized

FIR models as well as for RFIR models with the regular

IRP kernel no specific time-delay estimation procedure is

carried out and therefore no explicit information can be

gained.

In Figure 6 the investigation of first-order processes is

shown. It can be seen that unregularized FIR models and

Figure 6: Boxplot of parameter fit and time-delay estimation for the five

different methods FIR, IRP, SK1, SK2, and MK with the IRP1 and IRDP1
kernel for 100 realizations of G1(z

−1). Note: There is no time-delay

estimation for the methods FIR and IRP.
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RFIR models with IRP kernel show a similar performance.

Due to the inappropriate regularization matrix, the regu-

larization strength has been chosen low. The specifically

developed methods for time-delay processes show a signif-

icant improvement of the estimation. Especially, the mul-

tiple kernel (MK) method outperforms the other methods

in the parameter fit as well as in the accuracy of the time-

delay estimation. For the time-delay estimation SK2 shows

a smaller 75 % quantile, but yields more outlier models in

comparison to SK1.

The results for a second-order process are shown in

Figure 7. It again shows the superiority of the MK method.

For second-order processes the performance of the IRP

method is superior in comparison to the unregularized

FIR models. This can be explained by the smoothness

assumption of the IRP kernel since the impulse response of a

first-order process is not continuous. However, the impulse

response of a second-order process is continuous and there-

fore the smoothness assumption is not violated. Conse-

quently, this allows to choose the regularization strength

𝜆 higher. For this process order, the method with variable

slope SK2 obtains better results thanwith afixed slope. Here,

all deviations of the time-delay estimation of theMKmethod

lie in a range of 0– and −1.
For third-order processes the results of the parame-

ter fit as well as the time-delay estimation are similar to

the second-order process. Only the time-delay estimation of

method SK1 is slightly inferior and is not as robust as for the

second-order process.

In Figure 8 estimated impulse responses of a second-

order process G2(z
−1) with the fixed poles a = 0.9, b = 0.7,

and the time delay d = 10 are shown. The process is excited

and disturbed as explained in Section 5.1. The parameter

variancewithin the different sets of FIRmodels correspond-

ing to the chosen estimation methods show the superiority

Figure 7: Boxplot of parameter fit and time-delay estimation for the five

different methods FIR, IRP, SK1, SK2, and MK with the IRP2 and IRDP2
kernel for 100 realizations of G2(z

−1).

Figure 8: Impulse responses of a second-order process G2(z
−1) with

poles a = 0.9, b = 0.7, and time delay d = 10 for 50 different noise

realizations estimated with the methods FIR, IRP, SK2, and MK with the

IRP2 and IRDP2 kernel.

of the novelmethods. Especially in the time-delay part of the

impulse response almost every deviation from zero can be

suppressed. Additionally, improvements in the smoothness

are also visible in the dynamics part. Since the results of

the methods SK1 and SK2 are similar, only SK2 is shown for

improved visualization. Moreover, the MK method outper-

forms the SK2.

In summary, the multiple kernel (MK) method outper-

forms all other methods in both, robustness and perfor-

mance of the estimation. However, the number of hyperpa-

rameters increaseswith the number of time delays assumed

a priori. Nevertheless, the hyperparameter optimization

achieves a sparse configuration of𝜆 evenwith nMK = 21, i.e.,

most 𝜆i = 0, typically only one 𝜆i ≠ 0, for i = 1, 2,… , nMK.

Moreover, the incorporation of the time delay in the struc-

ture of the kernel significantly improves the model estima-

tion of time-delay processes in comparison to the standard

techniques. The methods SK1 and SK2 show similar model

qualities, although for second- or third-order processes opti-

mizing the slope of the sigmoids improves the estimation

performance. In contrast to regular regularization methods

like the TC or IRP kernel, for the proposed methods the GCV

error should beused as criteria for thehyperparameter opti-

mization instead of ML to get the best model performance.

6 Conclusions

We proposed novel kernel techniques which incorporate

knowledge on the time delay to estimate regularized FIR

models. Two methods have been developed to estimate

the unknown time delay by using a single kernel as well

as a multiple kernel approach. Two studies were per-

formed to obtain the best parameterization and optimiza-

tion criteria for the hyperparameter optimization. It is

shown that as criteria for the hyperparameter optimization



T. Kösters et al.: Handling of time delays in system identification with RFIR models — 843

generalized cross-validation (GCV) error should be used

instead of the marginal likelihood (ML) function. The mul-

tiple kernel method is the most robust method and achieves

the best model quality. However, the number of hyper-

parameters increases with the assumed range the time

delay possibly lie in. Also the single kernel methods sig-

nificantly improve the model estimation of time-delay pro-

cesses, while the number of hyperparameters and thus the

complexity of the optimization remains low.

Further research will be done on extending this con-

cept to nonlinear time-delay processes by using linear local

model networks.
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