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Short summary

The reconstruction of unmeasured quantities in dynamical systems often boils down to the

knowledge of derivatives of the measured system variables. This work presents a unified

framework for synthesizing and analysing differentiators based on classical orthogonal poly-

nomials. Existing approaches are extended, and their relations to established methods are

investigated. Parameter selection guidelines are derived based on filter interpretations of

the differentiators to achieve desired frequency-domain properties. The discussion of the

discrete-time implementation emphasizes the preservation of the latter properties. A new

tuning approach based on an optimization problem which requires only the measured signal

is proposed. The differentiators are used for model-based fault detection problems in two ex-

perimental case studies. First, the collision of a table tennis ball with a magnetically supported

plate is discussed. Then, a model-based approach for the efficient real-time detection of faults

in rolling element bearings is proposed. Finally, a parameter estimation problem is discussed.

This work generalises recently proposed algorithms. The derived convergence conditions are

less restrictive than the previously published ones. Two experimental case studies validate

the theoretical analysis. These examples underline the great potential of these methods.

Kurzfassung

Die Rekonstruktion nicht direkt gemessener Größen läuft oft auf die Kenntnis von Ableitungen

gemessener Signale hinaus. In dieser Arbeit wird ein einheitlicher Rahmen für die Synthese

und Analyse von auf klassischen orthogonalen Polynomen basierenden Ableitungsschätzern

diskutiert. Bestehende Ansätze werden erweitert und ihre Beziehungen zu etablierten Meth-

oden untersucht. Auf der Grundlage von Filterinterpretationen der Ableitungsschätzer wer-

den Empfehlungen für die Parameterauswahl hergeleitet, um gewünschte Eigenschaften im

Frequenzbereich zu erreichen. Bei der Diskussion der zeitdiskreten Implementierung wird

auf die Bewahrung dieser Eigenschaften eingegangen. Des Weiteren wird ein neuer Parame-

trierungsansatz vorgeschlagen, der auf ein Optimierungsproblems basiert und nur das

gemessene Signal benötigt. Die Anwendung der Ableitungsschätzer im Rahmen regelung-

stechnischer Aufgaben wird mittels experimenteller Fallstudien zur modellbasierten Fehler-

diagnose demonstriert. Zunächst wird die Kollision eines Tischtennisballs mit einer mag-

netisch gelagerten Platte diskutiert. Anschließend wird ein modellbasierter Ansatz für die

effiziente Echtzeiterkennung von Fehlern in Wälzlagern vorgeschlagen. Schließlich werden

Ansätze zur Parameterschätzung diskutiert. Diese Arbeit verallgemeinert kürzlich vorgeschla-

gene Algorithmen. Die hergeleiteten Konvergenzbedingungen sind weniger restriktiv als die

zuvor veröffentlichten. Zwei experimentelle Fallstudien dienen der Validierung.



Summary

The reconstruction of unmeasured quantities in dynamical systems often boils down to the

knowledge of derivatives of the measured system variables. The approximation of these deriva-

tives in the presence of measurement disturbances is known to be challenging. However,

numerical differentiation algorithms based on orthogonal polynomials and truncated gener-

alised Fourier series may considerably simplify the problem. These differentiators are robust

to measurement disturbances and may contribute to solving complex control engineering

tasks. Critical challenges for the application of the methods are the selection of favourable

parameters and their real-time implementation.

This work presents a unified framework for synthesizing and analysing differentiators

based on classical orthogonal polynomials. Existing approaches are extended, and their

relations to established methods are investigated. Differentiators based on Jacobi polyno-

mials, also known as algebraic differentiators, form a particular class of the considered

algorithms. Parameter selection guidelines are derived based on filter interpretations of

the differentiators to achieve desired frequency-domain properties. The discussion of the

discrete-time implementation emphasizes the preservation of the latter properties. A new

tuning approach based on an optimization problem which requires only the measured signal

is proposed. An experimental case study compares the performance of the differentiators in

the presence of measurement disturbances. The approximation results, the computational

burden, and the storage requirements are discussed in detail. Especially the latter two

properties are crucial for real-time applications.

The differentiators are used for model-based fault detection problems in two experimental

case studies. First, the collision of a table tennis ball with a magnetically supported plate is

discussed. Only the measurement of the plate position and the applied forces are known. The

proposed approach significantly reduces the computational burden and memory requirements

when compared to previously considered methods. Besides, the new approach decreases the

minimum detectable falling height of the ball. Then, a model-based approach for the efficient

real-time detection of faults in rolling element bearings is proposed. The approach is validated

using experimental data from different test benches.

Finally, a parameter estimation problem is discussed. This work generalises recently pro-

posed algorithms. The derived convergence conditions are less restrictive than the previously

published ones. Besides, this approach allows identifying a subset of parameters even if some

are not excited. Two experimental case studies validate the theoretical analysis. The results

are compared to those achieved using standard gradient estimators and algebraic parameter

estimation methods. These examples underline the great potential of these methods.



Zusammenfassung

Die Rekonstruktion nicht direkt gemessener Größen in dynamischen Systemen läuft oft auf

die Kenntnis von Ableitungen beliebiger endlicher Ordnung der gemessenen Systemvariablen

hinaus. Die Approximation dieser Ableitungen bei Vorhandensein von Messstörungen ist

bekanntermaßen eine Herausforderung. Numerische Ableitungsalgorithmen, die auf orthog-

onalen Polynomen und abgeschnittenen verallgemeinerten Fourier-Reihen basieren, können

das Problem jedoch erheblich vereinfachen. Diese Ableitungsschätzer sind robust gegenüber

Messstörungen und können zur Lösung komplexer regelungstechnischer Aufgaben beitragen.

Kritische Herausforderungen bei der Anwendung der Methoden sind die Auswahl günstiger

Parameter und ihre Implementierung in Echtzeit.

In dieser Arbeit wird ein einheitlicher Rahmen für die Synthese und Analyse von auf

klassischen orthogonalen Polynomen basierenden Ableitungsschätzern diskutiert. Beste-

hende Ansätze werden erweitert und ihre Beziehungen zu etablierten Methoden untersucht.

Ableitungsschätzer, die auf Jacobi-Polynomen basieren, auch algebraische Ableitungsschätzer

genannt, bilden eine besondere Klasse der betrachteten Algorithmen. Auf der Grundlage

von Filterinterpretationen der Ableitungsschätzer werden Empfehlungen für die Parameter-

auswahl hergeleitet, um gewünschte Eigenschaften im Frequenzbereich zu erreichen. Bei der

Diskussion der zeitdiskreten Implementierung wird auf die Bewahrung dieser Eigenschaften

detailliert eingegangen. Des Weiteren wird ein neuer Parametrierungsansatz vorgeschlagen,

der auf ein Optimierungsproblems basiert und nur das gemessene Signal benötigt. Eine

experimentelle Fallstudie vergleicht die Ergebnisse der Ableitungsschätzer in Gegenwart von

gestörten Messungen. Die Approximationsergebnisse, der Rechenaufwand und die Speicher-

anforderungen werden ausführlich diskutiert. Insbesondere die beiden letztgenannten Eigen-

schaften sind für Echtzeitanwendungen entscheidend.

Die Anwendung der Ableitungsschätzer im Rahmen regelungstechnischer Aufgaben wird

mittels zweier experimenteller Fallstudien zur modellbasierten Fehlerdiagnose demonstriert.

Zunächst wird die Kollision eines Tischtennisballs mit einer magnetisch gelagerten Platte

diskutiert. Dabei sind nur die Messung der Plattenposition und die eingeprägten Kräfte

bekannt. Der vorgeschlagene Ansatz reduziert den Rechenaufwand und den Speicherbedarf

im Vergleich zu den bisher betrachteten Methoden erheblich. Außerdem verringert der neue

Ansatz die minimal detektierbare Fallhöhe des Balls. Anschließend wird eine modellbasiertere

Methode für die effiziente Echtzeiterkennung von Fehlern in Wälzlagern vorgeschlagen. Der

Ansatz wird anhand experimenteller Daten von verschiedenen Prüfständen validiert.

Schließlich werden Ansätze zur Parameterschätzung diskutiert. Diese Arbeit verallge-

meinert kürzlich vorgeschlagene Algorithmen. Die hergeleiteten Konvergenzbedingungen sind

weniger restriktiv als die zuvor veröffentlichten. Außerdem ermöglicht dieser Ansatz die

Identifikation einer Teilmenge von Parametern, selbst wenn einige nicht angeregt werden.

Zwei experimentelle Fallstudien dienen der Validierung. Die Ergebnisse werden mit mit-

tels etablierten Gradientenschätzern und algebraischen Methoden zur Parameterschätzung

erzielten Ergebnissen verglichen. Diese Beispiele unterstreichen das große Potential dieser

Methoden.



Résumé

La reconstruction de grandeurs non mesurées de systèmes dynamiques se résume souvent à

la connaissance de dérivées d’ordres arbitraires mais fini des variables connues du système.

L’approximation de ces dérivées à partir de mesures perturbées est néanmoins connu pour

être un problème complexe. Toutefois, des algorithmes de différentiation numérique basés

sur des polynômes orthogonaux et des séries de Fourier généralisées tronquées peuvent le

simplifier considérablement. Ces dérivateurs sont en effet robustes aux bruits de mesure et

peuvent contribuer à la résolution de problèmes complexes dans le domaine de l’automatique.

Néanmoins, la sélection des paramètres des dérivateurs ainsi que leurs implémentations en

temps réel constituent des défis critiques lors de l’application de ces méthodes.

Ce travail présente un cadre unifié pour la synthèse et l’analyse de dérivateurs basés sur

des polynômes orthogonaux classiques. Des approches existantes sont davantage développées

et leurs relations avec les méthodes établies sont analysées. Les dérivateurs basés sur

les polynômes de Jacobi, également appelés dérivateurs algébriques, constituent une classe

particulière des algorithmes étudiés dans ce travail. Des directives pour la sélection des

paramètres sont déduites à partir des interprétations des filtres des dérivateurs afin d’obtenir

les propriétés souhaitées dans le domaine fréquentiel. Une nouvelle approche de paramé-

trage basée sur un problème d’optimisation et nécessitant uniquement le signal mesuré

est proposée. Lors de la discussion de l’implémentation en temps discret, la préservation

des propriétés dans le domaine fréquentiel est abordée en détail. Une étude expérimentale

compare les résultats issus des différents dérivateurs. Les approximations obtenues, la

charge de calcul et les besoins de mémoire sont analysés et interprétés. Les deux dernières

caractéristiques sont essentielles pour les applications en temps réel.

L’application des dérivateurs dans le domaine de l’automatique est démontrée à l’aide de

deux études expérimentales pour la détection de défauts avec des algorithmes basés sur des

modèles physiques. Tout d’abord, la collision d’une balle de ping-pong avec une plaque à

lévitation magnétique est discutée. Seules la mesure de la position de la plaque et les forces

appliquées sont disponibles. L’approche proposée réduit considérablement le temps de calcul

et les besoins en mémoire comparée aux méthodes considérées jusqu’à présent. En outre,

la nouvelle approche réduit la hauteur de chute minimale détectable de la balle. Ensuite,

une approche est proposée pour une détection efficace et en temps réel des défauts dans

des roulements. Cette méthode est validée à l’aide de données expérimentales provenant de

différents bancs d’essai.

Des approches d’estimation de paramètres sont ensuite discutées. Ce travail généralise

des algorithmes récemment proposés. Les conditions de convergence dérivées sont moins

restrictives que celles publiées précédemment. De plus, cette approche permet d’identifier

un sous-ensemble de paramètres, même si certains ne sont pas excités. Deux études expéri-

mentales valident l’analyse théorique. Les résultats sont comparés à ceux obtenus avec des

estimateurs établis et des méthodes algébriques d’estimation des paramètres. Ces exemples

confirment les potentiels de ces méthodes développées dans ce travail.
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1

Introduction

Describing the real world in mathematical terms, i.e., deriving mathematical models from

observations, has been a key to understanding natural phenomena and technological systems.

Scientists and engineers employed these models to design the technologies that shaped the

course of history and characterise our "modern world". Mathematical models are used, for

example, in weather forecasting, to predict planet movements, analyse biomedical images,

design electronic circuits, send satellites to their orbits, minimise energy consumption of

machines, and detect system malfunctions.

Mathematical models of technical systems are undoubtedly crucial for most modern con-

trol methods (see, e.g., Aström and Eykhoff (1971); Isermann (2013a); Ljung (1999)). However,

a wide variety of information that is required to infer, study, and use these models is not

directly accessible to measurements (consider, e.g., numerical values of system parameters

and system states). The missing information needs to be extracted from measured signals

that are corrupted by disturbances.

It is well known that for linear and nonlinear systems, the outputs and a finite set of

their derivatives play an essential role in determining unknown system quantities/variables.

According to Diop and Fliess (1991a, 1991b), for instance, a nonlinear input-output system is

observable if, and only if, any system variable is a differential function of the inputs and the

outputs. This condition means that the system variables are functions of the inputs and the

outputs and their respective derivatives of some finite order. In fact, any unknown quantity

such as system parameters, faults, or disturbances, may be determined if, and only if, it is

expressible as a differential function of the input and output variables (see, e.g., Fliess and

Join (2003); Fliess, Join, and Sira-Ramírez (2008); Fliess and Sira-Ramírez (2003a)). Thus,

the problem of extracting the required information boils down to numerical differentiation,

i.e., the approximation of derivatives of noisy signals.

1.1 Numerical differentiation

The numerical estimation of derivatives of measured signals is a fundamental problem in

many fields of applied mathematics and engineering. Application areas range from chemistry

(see, e.g., Kiss, Lv, and Hudson (2005)), biology (see, e.g., D'Amico and Ferrigno (1992);

Schäfer, Rosenblum, Abel, and Kurths (1999)), physics (see, e.g., Ahnert and Abel (2007);

Raffel, Willert, and Kompenhans (2007)), and applied mathematics (see, e.g., Anderssen and

Bloomfield (1974); Anderssen and de Hoog (1984); Anderssen and Hegland (1999); Cullum

1



1. INTRODUCTION

(1971); Hanke and Scherzer (2001); Kantz and Schreiber (2004)) to a variety of problems in

engineering (see, e.g., Diop, Grizzle, Moraal, and Stefanopoulou (1994); Levant (2003); Mboup,

Join, and Fliess (2007); Mboup et al. (2020); Reger, Sira-Ramírez, and Fliess (2005); Wang,

Zheng, Efimov, and Perruquetti (2018)). Estimating derivatives is, however, a challenging and

ill-posed problem in the sense that a small error in the measured signal can yield notable

errors in the approximated derivatives.

This problem has attracted a lot of attention over decades and different approaches have

been developed. Mollification and Tikhonov regularisation methods have been derived for

instance in Hao (1994); Murio (2011) and Cullum (1971); Hanke and Scherzer (2001), re-

spectively. The discrete Savitzky-Golay filters have been developed in analytical chemistry

and spectroscopy as described in Madden (1978); Savitzky and Golay (1964). Frequency-

domain digital filter design techniques have been used in Chen and Lee (1995); Rader and

Jackson (2006) to solve the problem. Differentiation by integration approaches, i.e., methods

where the approximated derivative is computed as the integral of the measured signal mul-

tiplied with a special function, have been discussed in Cioranescu (1938); Lanczos (1956).

Approaches based on the properties of orthogonal polynomials (OPs) have been discussed in

Blackman (1965); Bromba and Ziegler (1983); Burch, Fishback, and Gordon (2005); Mai and

Hillermeier (2008); Persson and Strang (2003); Rangarajan and Purushothaman (2005). The

history of approximation formulas for higher-order derivatives by integrals involving OPs has

been discussed in Diekema and Koornwinder (2012). The control community has developed

approaches based on observers as in Chitour (2002); Dabroom and Khalil (1997, 1999); Levant

(1998, 2003) and differential-algebraic methods, which are discussed in detail in the following.

A family of numerical differentiators (diffs.) has been derived using differential-algebraic

manipulations of truncated Taylor series in Mboup et al. (2007); Mboup, Join, and Fliess

(2009). These works improved the algebraic techniques developed to solve various problems

in signal and image processing in Fliess, Join, Mboup, and Sira-Ramírez (2004); Fliess and

Sira-Ramírez (2003b, 2004). A least squares interpretation can be attached to the obtained

derivative estimates as shown in Mboup (2009); Mboup et al. (2007); Mboup et al. (2009);

Nöthen (2007). Time-domain derivations of these diffs., called in the sequel algebraic diffs.,

can be found in Kiltz (2017); Liu, Gibaru, and Perruquetti (2011a). The design process of

these diffs. involves five parameters, the judicious choice of which is crucial to achieve a

good accuracy of the estimates. The tuning of the diffs. has been discussed in Kiltz (2017);

Kiltz and Rudolph (2013); Liu et al. (2011a); Mboup et al. (2009); Mboup and Riachy (2014,

2018); Othmane, Mounier, and Rudolph (2021). In particular, it has been shown in Kiltz

(2017); Kiltz and Rudolph (2013) that the diffs. can be approximated as low-pass filters of

an arbitrary order, and the parameters can be computed from a desired cutoff frequency

and the desired filter order. A summary of the tuning guidelines and their application on

example case studies can be found in Othmane, Kiltz, and Rudolph (2022). An exhaustive

list of applications including parameter estimation, state reconstruction, feedback control,

fault diagnosis, anomaly detection, fault-tolerant control, and model-free control has been

provided in Othmane et al. (2022). A MATLAB and Python toolbox implementing all necessary

functions for the design, analysis, and discretisation of the filters has been released with the

discussions in Othmane et al. (2022) and is accessible in Othmane (2021).

The relations to existing methods such as deadbeat state estimation, Savitzky-Golay filters,

Legendre filters, and mollification have been discussed in Kiltz (2017); Othmane et al. (2022);
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1.2. Fault diagnosis

Reger and Jouffroy (2009); Riachy, Efimov, and Mboup (2016). A detailed discussion of

the historical developments of these diffs. with an analysis and summary of the relations

to established estimation approaches can be found in Othmane et al. (2022). It has been

shown that these diffs. outperform high-gain and sliding mode diffs. in Liu (2011); Othmane,

Rudolph, and Mounier (2021a); Sidhom (2011), for example. The result of algebraic diffs. is

comparable to that of a high-gain differentiator when a delay-free estimation is considered

(see Othmane, Rudolph, and Mounier (2021a)). However, when a small but known delay

is tolerated, the estimation result is greatly improved. It has also been claimed that with

the systematic tuning guidelines, the parametrisation of algebraic diffs. is simpler than that

of high-gain or sliding mode diffs. In the experimental case study Yan, Primot, and Plestan

(2014), algebraic diffs. have been compared to sliding mode ones for the estimation of velocities

and accelerations in pneumatic systems. It has been argued that for low frequency signals,

the first approach outperforms the second and it is the opposite for high frequencies. However,

this observation is probably due to the large filter window, which corresponds to a low cutoff

frequency. Moreover, the observed deterioration of the results for the algebraic approach with

reduced sampling frequency can be overcome by a suitable and systematic parametrisation of

the diffs. as will be shown in this work.

A different class of algebraic diffs. has been proposed in Ushirobira (2018); Ushirobira and

Quadrat (2016). Therein, a series expansion of the signals in sums of Laguerre and Hermite

polynomials have been considered. Then, differential-algebraic manipulations are used in the

operational domain to design estimators for the derivative of interest. However, neither an

analysis of the estimation error and delay nor the tuning and implementation of the diffs. are

discussed. These missing investigations are presented in this thesis.

1.2 Fault diagnosis

The growing complexity of technical systems and the implementation of modern control algo-

rithms allow companies to increase their process efficiency, profitability, and product quality.

However, this complexity increases the potential fault sources and may lead to severe damage

in safety-critical applications, for example. Here, a fault should be understood as any mal-

function deteriorating the performance of systems. Frank (1990) distinguishes three types

of faults: actuator faults (malfunctions of the actuators), component faults (malfunctions in

the other components affecting the dynamics of the process), and instrument faults (malfunc-

tions of the sensors). Faults need to be detected, i.e., the occurrence of faults needs to be

determined, then isolated, i.e., the kind and the location of the fault need to be determined,

and finally identified, i.e., the size and time behaviour need to be determined. These three

tasks can be summarised as the process of fault diagnosis (see, e.g., Isermann and Ballé

(1997)). Fast and accurate fault diagnosis algorithms are crucial to increase plant reliability

and reduce the risk of safety hazards.

Numerous approaches have been developed for fault diagnosis over the last decades:

Parity space methods (see, e.g., (Isermann, 2006, Ch. 10) and Gertler (1991)), observer-based

methods (see, e.g., (Isermann, 2006, Ch. 11) and Frank (1990)), fault-detection filters (see,

e.g., Frank (1992); Willsky (1976)). A vast body of literature is available on the topic and the

main methods have been well summarised in Frank (1990); Gertler (1991); Hwang, Kim, Kim,

and Seah (2010); Isermann (2006); Patton, Frank, and Clark (1989); Willsky (1976). Algebraic
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fault detection methods have been initiated in Join (2002) and further discussed in Fliess and

Join (2003); Fliess, Join, and Sira-Ramírez (2004). As for the algebraic derivative estimation

approaches, fault diagnosis algorithms are derived using differential-algebraic manipulations

in the operational domain.

Fault diagnosis methods have also been investigated for nonlinear systems (see, e.g., Alavi

and Saif (2010); De Persis and Isidori (2001, 2002); Jiang, Staroswiecki, and Cocquempot

(2006); Yan and Edwards (2007); Yang and Saif (1996)). These methods require a consid-

erable implementation and comprehension effort. In contrast, methods based on numerical

differentiation and especially algebraic diffs. have shown a great success in solving challenging

problems mainly due to their simplicity and efficient implementations. These approaches and

their implementation have been discussed in Ahmed et al. (2016); Fliess, Join, and Mounier

(2004); Fliess et al. (2008); Kiltz, Join, Mboup, and Rudolph (2014); Lomakin and Deutscher

(2020a, 2022); Mai and Hillermeier (2010); Mai and Hillermeier (2010); Tisserand, Lezama,

Schweitzer, and Berviller (2015), for instance. An extensive list of applications in various

domains is provided in Othmane et al. (2022), for example.

1.3 Parameter estimation

When working with a model to predict, explain, or control system dynamics, estimating the

numerical values of model parameters is an important task. The literature on parameter esti-

mation is extensive. For general textbooks on the subject from the control theory perspective

the reader is referred to Garnier and Wang (2008); Isermann (2013a, 2013b); Ljung (1999);

Unbehauen and Rao (1987), for example. Despite the long-standing history of the topic, it still

attracts considerable attention and effort.

Some of the recently-proposed methods are again based on differential-algebraic manipula-

tions and have their roots in the work Fliess and Sira-Ramírez (2003a). A least squares inter-

pretation and a finite-impulse response (FIR) filter implementation of these algebraic methods

have been discussed in Mboup (2009). Problems in various domains ranging from electrical

to automotive engineering have been solved with these methods. The online estimation of

a load of a boost converter has been discussed in Gensior, Weber, Rudolph, and Güldner

(2008) for example. The parameters of rigid bodies have been identified in Lomakin and

Deutscher (2020b). The estimation of the parameters of harmonic signals has been discussed

in Liu, Gibaru, Perruquetti, Fliess, and Mboup (2008); Mboup (2009); Ushirobira, Perruquetti,

and Mboup (2016) for example. A major advantage of these approaches is the simplicity of

implementation.

In Aranovskiy, Bobtsov, Ortega, and Pyrkin (2016b, 2017), a new approach for parameter

estimation has been proposed for models in the form of linear regression equations (LRE).

The convergence of the approach does not depend on a persistence of excitation condition,

which is required for the convergence of standard gradient estimators (see, e.g., (Slotine & Li,

1991, Sec. 8.7.3) or (Sastry & Bodson, 1989, Sec. 2.5)). This condition, which is ubiquitous

in most adaptive control algorithms (see, e.g., Åström and Wittenmark (2013); Narendra and

Annaswamy (2012); Slotine and Li (1991)), is rarely verified in applications. The new approach

called Dynamic Regressor Extension and Mixing (DREM) consists of two steps. First, new

regression equations are generated by using suitable operators applied on the measurement

data. In a second step, these equations are combined in a way to ensure that each parameter
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satisfies an independent regression equation. The parameters can then be estimated using a

gradient estimator for example and the convergence depends on the non-square integrability

of the determinant of a specific matrix. The approach has attracted a lot of attention (see, e.g.,

Belov, Ortega, and Bobtsov (2018); Ortega, Aranovskiy, Pyrkin, Astolfi, and Bobtsov (2021);

Ortega, Gerasimov, Barabanov, and Nikiforov (2019); Ortega, Nikiforov, and Gerasimov (2020);

Ortega, Praly, Aranovskiy, Yi, and Zhang (2018); Yi and Ortega (2022)) and has been applied to

different problems (see, e.g., Aranovskiy, Bobtsov, Ortega, and Pyrkin (2016a); Bazylev, Doria-

Cerezo, Pyrkin, Bobtsov, and Ortega (2017); A. Bobtsov, Bazylev, Pyrkin, Aranovskiy, and

Ortega (2017); A. A. Bobtsov, Pyrkin, Ortega, and Vedyakov (2018); Yi, Ortega, Siguerdidjane,

and Zhang (2018)).

1.4 Contributions and outline of the thesis

This thesis can be divided into two main parts. The first part consists of the Chapters 2

and 3 and deals with the derivations, interpretations, tuning, and implementation of numer-

ical differentiation algorithms based on OPs. Chapters 4 and 5 form the second part and

discuss different applications of these diffs. in the context of fault detection and parameter

identification. In the following, the contributions are outlined and clarified.

Chapter 2: Numerical differentiation using orthogonal polynomials

This chapter presents the general framework for the design of diffs. based on orthogonal func-

tions. In particular, diffs. based on classical OPs are derived, reviewed, and analysed in the

time and the frequency domains. Different interpretations for these numerical differentiation

schemes are provided.

Section 2.1 provides a basic introduction to the approximation problem of arbitrary func-

tions by recalling the mathematical background on which the remaining sections depend.

Sets of orthogonal functions and generalised Fourier series play a predominant role. The

notation required for the remaining parts of the chapter is thus introduced.

Section 2.2 uses the methods from Section 2.1 to the causal real-time approximation of

signals. In particular, general time transformations are introduced to map intervals of interest

to the orthogonality intervals of orthogonal functions. These transformations may depend on

different parameters. Their influence on the approximation errors is analysed for general

orthogonal functions. The estimation delay and the degree of exactness of an approximation

scheme are then introduced. It has already been shown in Mboup et al. (2007); Mboup

et al. (2009) that orthogonal differentiators (orth. diffs.) based on Jacobi OPs can yield a

delay in the estimation. Here, the delay is derived for general time transformations. The

degree of exactness, first introduced in Kiltz (2017), describes the degree of a polynomial the

approximation of which is exact up to a known delay (see also Othmane et al. (2022)).

In Section 2.3, the approximation of arbitrary derivatives of signals is considered using

sets of orthogonal functions. The results of the preceding two sections are used and different

interpretations for the diffs. are given. The diffs. are then considered from an algebraic point

of view where the key ideas are the interpretation of undesired derivatives as disturbances

and their annihilation. Then, system theoretic, inverse problem, and wavelet-decomposition

viewpoints are presented.
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Section 2.4 applies the methods from Sections 2.1 to 2.3 to sets of classical orthogonal

polynomials. Thus, diffs. based on Hermite, Laguerre, and Jacobi polynomials are considered

and called in the sequel Hermite differentiators (Hermite diffs.), Laguerre differentiators (Lag.

diffs.), and Jacobi differentiators (Jac. diffs.), respectively. Their properties in the time and

frequency domains are investigated. The Jac. diffs. have already been derived in Mboup

et al. (2007); Mboup et al. (2009) and analysed in Kiltz (2017); Kiltz and Rudolph (2013);

Liu et al. (2011a); Mboup and Riachy (2014, 2018) and their properties are only recalled

here. Contrarily, the proposed Lag. diffs. and Hermite diffs. are more general than those

from Ushirobira (2018) in the sense that different tuning parameters are considered. Their

influence on the approximation errors, delay, and degree of exactness will also be analysed.

In Ushirobira (2018); Ushirobira and Quadrat (2016), the signal is first expanded into a series

of Laguerre or Hermite polynomials. Then, annihilators are derived to identify the coefficients

of the required derivatives. Section 2.4 considers directly the Taylor series expansion for the

derivation of the annihilators required for the Lag. diffs. as in the works Mboup et al. (2007);

Mboup et al. (2009) on Jac. diffs.

Chapter 3: Tuning and real-time implementation of classical orthogonal differentiators

The diffs. developed in Chapter 2 depend on numerous parameters that affect the approxima-

tion error and delay. Finding good parameter compromises to achieve a satisfying accuracy

of the approximated derivatives without relying on trial-and-error approaches is crucial. Be-

sides, in most applications, the measured signals are available at discrete sampling instants

only. The discretised diffs. have to preserve the properties of the continuous-time ones.

Achieving this can be challenging, especially for low sampling rates. All these issues are

addressed in detail in Chapter 3.

Section 3.1 analyses the systematic tuning of diffs. based on OPs. It is shown that these

diffs. can be interpreted as low-pass filters, and the parameters can be computed from a

desired cutoff frequency. An arbitrary filter order, i.e., stopband slope, can be assigned to the

Jac. diffs. and Lag. diffs. These considerations greatly simplify the tuning process as already

discussed for Jac. diffs. in Kiltz (2017); Kiltz and Rudolph (2013); Othmane et al. (2022).

The discrete-time implementation of the diffs. is analysed in Section 3.2. Different discreti-

sation schemes are considered and their effects, especially on the preservation of frequency

domain properties, are investigated. It is shown that all considered diffs. can be implemented

as FIR filters or sufficiently closely approximated by the latter. An error norm, initially

introduced in Kiltz (2017) for the truncation of the filter window length of Jac. diffs., is

used here to approximate Lag. diff. and Hermite diffs. by FIR filters. The error norm will be

important when experimental approximation results are compared. Besides, it is illustrated

that for a particular parameter choice, Lag. diffs. can be efficiently approximated by dynamic

systems, the solutions of which converge exponentially to the approximation of the former.

This result enables the analysis of the relations to established approaches such as state-

variable filters and high-gain (HG) diffs. In particular, it is shown that the latter are a special

case of Lag. diffs., which allows the quantification of their estimation delay. Simple academic

examples are used for illustration.

Section 3.3 applies the previously mentioned tuning and discretisation guidelines to two

experimental case studies. First, the derivatives of a disturbed signal are approximated. Then,
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the approximate inversion of analogue anti-aliasing filters is considered as presented in Kiltz

et al. (2019); Othmane et al. (2022). The approximation results are compared qualitatively

and quantitatively for the different diffs. The computational burden and storage requirements

for each approach is analysed in detail. These considerations are especially important for

industrial applications.

An entirely new and different tuning approach is proposed in Section 3.4. Labelled as

"automatic tuning approach", this method is based on an optimisation problem requiring only

the measured signal as input and yields the filter parameters as output. An experimental case

study shows that the approach furnishes excellent results.

Chapter 4: Model-based detection of impulsive forces

While Chapter 3 illustrates the systematic tuning guidelines in detail on some relatively simple

examples, the current chapter applies the methods to two advanced experimental problems.

The results validate the theoretical analysis and support the importance of these numerical

differentiation schemes for practical problems.

Section 4.1 considers the collision detection of a table tennis ball weighing 2.7 g with a

magnetically levitated plate with a mass of 4.7 kg. A detailed description of the experimental

setup can be found in Kiltz et al. (2014); Kiltz and Rudolph (2013). The precise estimation

of the collision instant is also investigated. The problem is solved by using the measurement

of the vertical position of the plate only. The approach developed in Kiltz (2017); Kiltz and

Rudolph (2013) is compared to a new one based on Lag. diffs. and notch filters. This new

approach requires 95.33 % fewer arithmetic operations than the approach from Kiltz and

Rudolph (2013) and 60.77 % less than Kiltz (2017). The number of filter coefficients to be stored

is reduced by 96.14 % compared to that in Kiltz and Rudolph (2013) and by 75.58 % compared

to that in Kiltz (2017). Besides, the new approach decreases the minimum detectable falling

height of the ball by 11.7 %.

In Section 4.1, a model-based approach for the efficient real-time detection of faults in

rolling element bearings is presented. The algorithm is based on a model for the vibrations

and efficient numerical differentiation schemes using Jac. diffs. and has been first published

in Othmane and Rudolph (2021). The method includes a failure detection threshold specifying

the probability of false alarms. The approach is validated by using experimental data1 from

different research centres (see CWRU (2015); Daga, Fasana, Marchesiello, and Garibaldi

(2009, 2019); Nectoux et al. (2012); Smith and Randall (2015)).

Chapter 5: On the problem of parameter estimation

The parameter estimation problem is considered in Chapter 5, which consists of three parts.

Especially, systems linear in their parameters and LRE are discussed in detail within the

framework of the DREM methodology. Section 5.1 recalls some background material on

DREM, bibliographical comments, and remarks on using orth. diffs. within this framework.

Two modifications of the DREM parameter estimation approach are proposed in Sec-

tion 5.2. In the first one, an alternative derivation of the parameter estimation approach

1The experimental validation of the approach for the fault detection in rolling element bearing elements developed
in this thesis would not have been possible without the use of the publicly available experimental data sets. The
author of this thesis is greatly indebted to the research centres providing them.
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is provided, which yields weaker convergence conditions than the one by Aranovskiy et al.

(2016b, 2017); Ortega et al. (2021). The previously published approaches in the latter ref-

erences are shown to be a special case of the new one. In the second modification, QR

decompositions with column pivoting are used to split the system parameters into excited and

non-excited ones. This adaptation allows identifying a subset of parameters even if others

are not excited. The advantages of the approaches are discussed in simple examples. A

counter-example is provided, where none of the DREM approaches yield a convergence of the

estimates. Contrarily, an algebraic method (see, e.g., Mboup et al. (2009)) yields good results.

Section 5.3 validates the new techniques. First, a simulation study is provided to show the

properties of the second modification. Then, two experimental case studies investigate the use

of Jac. diff. as example orth. diffs. with the proposed modifications. The first one examines

the estimation of frequencies from a disturbed measurement of a linear combination of two

harmonic functions. The approach requires estimates of the derivatives up to the fourth

order. The low Nyquist frequency equal to 100 Hz in comparison to the highest frequency equal

to 80 Hz in the signal makes the design of diffs. challenging. The method is compared to the

algebraic identification procedure developed in Mboup (2009). In the second case study, the

parameters of an electro-mechanical system are identified. The estimates are compared to

those from a standard gradient estimator. For validation, recorded input trajectories are used

to compare simulation results to measurements. These examples confirm the excellent results

that can be achieved using the new methods.

Chapter 6: Conclusion

Chapter 6 summarises the contributions of this thesis and provides open problems and

further ideas for future research.

Appendices

Appendices A and B contain supplementary material regarding special functions and the

Fourier transform.

8



2

Numerical differentiation using orthogonal polynomials

The approximation of functions using sets of basis functions has been studied for centuries

due to its importance in solving numerous applications in engineering and physics (see, e.g.,

Davis and Hersh (1981)). This chapter first recalls the mathematical background, specifically

generalised Fourier series and orthogonal sets, required to derive function approximations

based on least squares optimisation problems.

The approximation methods are then used to derive approaches for the causal approxi-

mation of arbitrary derivatives of signals affected by additive disturbances. The main ideas

here are based on time transformations mapping some orthogonality intervals of functions

to an interval containing a known history of the signals of interest. These transformations

depend on parameters that shift and dilate or shift and contract the intervals. The effects

of these parameters are investigated. In the detailed analysis of the approximation errors,

an intriguing yet interesting result will be discussed: Admitting a small but precisely known

delay in the causal approximation of a signal or any of its derivatives reduces the order of

the approximation error and significantly increases the robustness in the presence of additive

disturbances. This has been first observed for example in Mboup et al. (2007); Mboup et al.

(2009) for differentiators (diffs.) based on Jacobi orthogonal polynomials (OPs).

The approximation methods are subsequently applied to sets of classical orthogonal poly-

nomials that include Hermite, Laguerre, and Jacobi polynomials, which have as special case

the Gegenbauer, Chebyshev, and Legendre polynomials (see, e.g., Szegö (1939) for a detailed

discussing on these polynomials). It is shown that the resulting approximation methods are

linear filters. The kernel of theses filters act on the sought derivatives whereas the derivatives

of the kernels act on the measured signals. The properties of these filters in the time and

the frequency domains are discussed in detail. Moreover, it is shown that the considered

diffs. can be derived using differential-algebraic manipulations of truncated Taylor series in

the operational domain. These ideas root1 in the seminal works and ideas of Fliess and his

co-authors on parameter estimation in Fliess and Sira-Ramírez (2003a).

While the diffs. based on Jacobi polynomials have initially been derived in Mboup et al.

(2007); Mboup et al. (2009) and investigated in Kiltz (2017); Kiltz and Rudolph (2013); Liu

(2011); Liu, Gibaru, and Perruquetti (2010); Liu et al. (2011a); Liu, Gibaru, and Perruquetti

(2011b); Mboup (2009), those based on Laguerre and Hermite polynomials discussed here

are more general than the diffs. derived in Ushirobira (2018); Ushirobira and Quadrat (2016).

1See the survey Othmane et al. (2022) for a detailed discussion of the history of diffs. based on Jacobi diffs.
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Their properties are studied in great detail. A detailed discussion of the historical development

of the diffs. based on Jacobi polynomials and their application can be found in the survey

Othmane et al. (2022) and only a summary is presented here.
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2.1 The approximation problem of arbitrary functions

Consider a function f : I1 → I2, with I1, I2 ⊆ R, satisfying some integrability conditions to be

specified later. The expansion of f in a convergent2 infinite series

∞∑

n=0

anφn, (2.1)

with an ∈ R and φn : I1 → I2 to be specified, has been discussed for centuries. Preliminary

results can be found in the works of Euler and Bernoulli on vibrating strings developed in the

18-th century3 where φn are trigonometric functions. Substantial improvements have been

made by Fourier in his works Fourier (1822); Fourier and Freeman (1878) on heat conduction

in the 19-th century for trigonometric functions φn as well. The concepts of Fourier have then

been rigorously analysed and generalised in the 20-th century when the orthogonality property

of functions has been understood more thoroughly. This has led to powerful methods for the

2Different convergence definitions (e.g., convergence in the mean, uniform convergence, absolute convergence,
pointwise convergence) can be considered for an infinite series of the form (2.1). A series might convergence if one
definition is used and diverge for an other. This will be addressed in detail in the sequel.

3The reader is referred to the beautiful work Davis and Hersh (1981) where the history of Fourier expansion has
been presented, and the evolution of the mathematical thinking has been presented.
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approximation of arbitrary functions. Some of these approaches rely on polynomial functions

φn known as OPs, with very interesting properties.

The relevant theoretical background on function approximation and infinite series of the

form (2.1) used in the current work is briefly reviewed in the following subsections. For

a detailed discussion of function approximation, orthogonal systems, and general OPs the

reader is referred to the standard works Bateman and Erdélyi (1953); Courant and Hilbert

(1924); Kaczmarz and Steinhaus (1951); Lebedev and Silverman (1965); Szegö (1939); Tricomi

(1970).

2.1.1 Sets of orthogonal functions

Let w be a non-negative function defined on an interval Iw = (a, b) ⊆ R and

f1, f2 : Iw → R

two real functions for which w
1
2 f1 and w

1
2 f2 are square integrable, i.e., the Lebesgue integrals

∫ b

a

(
w

1
2 (τ)f1(τ)

)2

dτ and
∫ b

a

(
w

1
2 (τ)f2(τ)

)2

dτ

exist. Then, the scalar product of the functions f1 and f2 denoted by 〈f1, f2〉w is defined by the

Lebesgue integral4

〈f1, f2〉w =

∫ b

a

w(τ)f1(τ)f2(τ)dτ. (2.2)

This scalar product induces the norm and the distance

‖f1‖w =
√
〈f1, f1〉w, (2.3)

dw(f1, f2) = ‖f1 − f2‖w , (2.4)

respectively. The function w is called the weight function of the interval Iw, or shortly weight

function.

Denote by L2
w (Iw) the class of all functions f : Iw → R for which the integral

∫ b
a
w(τ)f2(τ)dτ

exists. Two distinct functions f1, f2 ∈ L2
w (Iw) are said to be orthogonal, if their scalar product

vanishes, i.e., 〈f1, f2〉w = 0. Orthonormal sets can now be defined using these concepts.

Definition 2.1: Orthonormal set (Szegö (1939))

An orthonormal set of functions Φw = {φn}ln=0, l finite or infinite, associated with a weight

function w is defined by

〈φn, φm〉w =

∫ b

a

w(τ)φn(τ)φm(τ)dτ = δnm, n,m = 0, 1, . . . , l,

where δnm = 0 or 1, according as n 6= m, or n = m. Here φn is real-valued and belongs to

the class L2
w (Iw).

4When f1 and f2 are complex functions, f2 must be replaced in (2.2) by its complex conjugate. The reader is
referred to Szegö (1939) for a more general definition of the scalar product by a Stieltjes-Lebesgue integral. This
definition is required for the analysis of functions of discrete variables, for example.
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

The elements of any finite subset of an orthogonal set are linearly independent (see, e.g.,

(Bateman & Erdélyi, 1953, P. 154)).

The previously mentioned trigonometric functions used in the early works of Euler, Bernoulli,

and Fourier form such orthonormal sets. The approximation of arbitrary functions using

these sets is analysed and the concept of best approximation is introduced.

2.1.2 The approximation problem

In various engineering and scientific problems an approximation f̂N ∈ Aw of an element f ∈
L2
w (Iw) is required, with Aw a finite dimensional subspace of L2

w (Iw) and w : Iw → R a

weight function. The accuracy of such an approximation can be evaluated using the dis-

tance dw(f, f̂N ) between f and f̂N defined in (2.4). The approximation problem can then be

formulated as follows.

Problem 2.1: The approximation problem

For a given f ∈ L2
w (Iw) determine an element f̂N ∈ Aw ⊂ L2

w (Iw), with Aw finite dimen-

sional, such that

dw(f, f̂N ) 6 dw(f, ĥ) (2.5)

for all ĥ ∈ Aw. An element f̂N satisfying (2.5) is called a best approximation of f with

respect to Aw.

A simple yet powerful linear approximation scheme can be derived using the orthonormal

sets introduced in Section 2.1.1 to solve Problem 2.1. Let Φw = {φn}Nn=0 ⊂ L2
w (Iw), with N

finite, be an orthonormal set and consider the linear approximation Ansatz

f̂N =

N∑

n=0

cnφn, cn ∈ R.

Then, Problem 2.1 can be solved by minimising the square of the distance dw(f, f̂N ) given as

(
dw(f, f̂N )

)2

=

∫ b

a

w(τ)
(
f(τ)− f̂N (τ)

)2

dτ = ‖f‖2w −
N∑

n=0

f2
n +

N∑

n=0

(cn − fn)2, fn = 〈f, φn〉w , (2.6)

with respect to the coefficients cn. This corresponds to an approximation of f in the mean.

The approximation problem is solved if, and only if, the coefficients cn satisfy

cn = fn =

∫ b

a

w(τ)f(τ)φn(τ)dτ = 〈f, φn〉w .

Thus, the function f̂N minimising the square of the distance dw(f, f̂N ) is called in the sequel

best approximation and corresponds to the N-th order truncation of the Fourier expansion

defined below.

12



2.1. The approximation problem of arbitrary functions

Definition 2.2: Fourier expansion (Szegö (1939))

Let Φw = {φn}Nn=0, with N finite or infinite, be a given orthonormal set associated with

a weight function w : Iw → R. To an arbitrary real-valued function f ∈ L2
w (Iw) let there

correspond the formal Fourier expansiona

f ∼
N∑

n=0

fnφn.

The coefficients fn, called the Fourier coefficients of f with respect to Φw, are defined by

fn = 〈f, φn〉w.

aIf two sequences zn and wn have the property that wn 6= 0 and the sequence |zn| / |wn| has finite positive
limits of indetermination, the notation zn ∼ wn is used. The reader is referred to Szegö (1939) for more details.

Since the squared distance between a function f and its best approximation f̂N is positive

it is clear from (2.6) that
N∑

n=0

f2
n 6 ‖f‖2w .

The right side of the inequality is independent of N and it can be concluded that the series∑∞
n=0 f

2
n converges and the inequality

∞∑

n=0

f2
n 6 ‖f‖2w ,

known as Bessel’s inequality (see, e.g., (Bateman & Erdélyi, 1953, P. 157)), is recovered. If the

equality holds, i.e.,
∞∑

n=0

f2
n = ‖f‖2w , (2.7)

also known as Parseval’s formula, the system Φw is called closed in L2
w (Iw) and it follows that

lim
N→∞

dw(f, f̂N ) = 0.

When this equality is satisfied, the partial sum f̂N =
∑N
n=0 fnφn converges in the mean to f .

This is discussed in detail in (Bateman & Erdélyi, 1953, Sec. 10.3), for example.

From the preceding developments it can be concluded that every f ∈ L2
w (Iw) can be ap-

proximated arbitrarily closely, in the mean, by a truncated Fourier expansion with respect to

any closed orthonormal set, i.e.

0 6 dw(f, f̂N ) 6 dw(f, f̂N+1) and ∀ε > 0 ∃N0 ∈ N | N > N0 : dw(f, f̂N ) < ε.

Moreover, every closed orthonormal set Φw is also complete, i.e., if 〈f, φ〉w = 0, for all elements

φ ∈ Φw, then f vanishes almost everywhere.

13



2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Remark 2.1: Convergences properties

The best approximation f̂N of f is said to converge pointwise to f in Iw, if

lim
N→∞

f̂N (τ) = f(τ)

for all τ ∈ Iw. This is a stronger property than the convergence in the mean and requires

much more restrictive assumptions on f . This property is only addressed in Section 2.1.3

for special choices of orthonormal sets formed by classical OPs. General results can be

found in (Szegö, 1939, Ch. X) and (Tricomi, 1970, Ch. V&VI), for example.

The orthonormal set Φw used for the series expansion of f has to be judiciously chosen

and can highly influence the approximation results and the computational burden required

for its online implementation. The Weierstrass approximation theorem (see, e.g., (Szegö,

1939, Sec. 1.3)) stating that every continuous function defined on a closed interval can be

uniformly and arbitrarily closely approximated by a polynomial function motivates the use of

polynomials for the generation of orthonormal sets.

2.1.3 Orthogonal polynomial sets

Denote by πN and w the set of polynomials of degree N and a weight function defined on

Iw = (a, b), respectively. An element pn ∈ πN is a polynomial of degree n ∈ {0, . . . , N} whose

leading coefficient, denoted by kn, is not zero.

Definition 2.3: Orthogonal polynomial set

An orthogonal polynomial set Πw = {pn}ln=0, l finite or infinite, associated with a weight

function w defined on Iw = (a, b) ⊆ R is defined by

〈pn, pm〉w =

∫ b

a

w(τ)pn(τ)pm(τ)dτ = 0 for n 6= m.

Here pn is a polynomial of degree n and belongs to the class L2
w (Iw). It is called an OP

associated with w on Iw.

General properties

An orthogonal polynomial set Πw associated with w is uniquely determined up to a non-zero

scaling factor. Since every pn ∈ Πw has the degree n, every polynomial of degree n can be

represented as a linear combination of p0, p1, . . . , pn. Thus, pn is orthogonal to any polynomial

of lower degree.

The elementary properties of the zeros of the polynomials in an OP set Πw are summarised

in the following theorems.

Theorem 2.1: Location of zeros (Szegö, 1939, Thm. 3.3.1)

The zeros of an OP pn associated with a weight function w on the interval Iw = (a, b) are

14



2.1. The approximation problem of arbitrary functions

real and distinct and are located in the interior of the interval Iw.

Theorem 2.2: Separation of zeros (Szegö, 1939, Thm. 3.3.2)

Let z1 < z2 < . . . < zn be the zeros of an OP pn associated with a weight function w on

the interval Iw = (a, b), z0 = a, and zn+1 = b. Then each interval (zm, zm+1), m ∈ {0, . . . , n},
contains exactly one zero of pn+1.

In Section 2.1.2 it has been shown that for closed orthonormal sets Parseval’s formula

(2.7) holds and functions can be approximated arbitrarily closely, in the mean, by truncated

Fourier expansions. It follows from (Szegö, 1939, Thm. 3.1.5) that the orthogonal polynomial

set Πw associated with w is closed for every finite interval Iw. This is not necessarily true in

general for infinite intervals, as discussed in (Szegö, 1939, Sec. 5.7). However, classical OP

sets introduced in the following subsection are closed.

Definition and properties of classical orthogonal polynomials

The most widely used OPs are known as classical OPs and include Hermite, Laguerre, and

Jacobi polynomials, which have as special case the Gegenbauer, Chebyshev, and Legendre

polynomials. These polynomials will first be defined and then used for the derivation of causal

signal estimators. A detailed investigation of the properties of these polynomials can be found

in Szegö (1939), for example.

Let Πw be a set of classical OPs associated with a weight function w defined on an interval

Iw = (a, b). Let pn ∈ Πw and denote by hn the norm of pn defined in (2.3), i.e., hn = ‖pn‖w.

The weight functions, orthogonality intervals, and notations of the classical polynomials are

summarised5 in Table 2.1. All these sets formed by these polynomials are closed. In addition,

it is known from Erdélyi, Magnus, Oberhettinger, and Tricomi (1954a); Lebedev and Silverman

(1965); Szegö (1939) that the series also converges pointwise to f at every continuity point of

f if f is piecewise smooth in Iw, i.e.,

lim
N→∞

N∑

n=0

〈pn, f〉w
‖pn‖w

pn(x) = f(x),

for every point of continuity x. At a discontinuity point x, it holds that

lim
N→∞

N∑

n=0

〈pn, f〉w
‖pn‖w

pn(x) =
1

2

(
lim
z→x+

f(z) + lim
z→x−

f(z)

)
.

Approximations based on OP

Observe that an OP set Πw associated with a weight function w defined on an interval Iw =

(a, b) can be transformed into an orthonormal set by normalising each element pn ∈ Πw, i.e.,

replacing it by pn/‖pn‖w. Thus, only orthonormal sets of polynomials are considered in the

sequel for the approximation of functions. Let Πw be one of these, assume it is closed, and

denote its elements by pn.

5Appendix A.1 summarised useful properties of classical OPs. The notation #A.1 indicates the item in the
appendix A where further details on a particular mathematical notion are given.
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Table 2.1: Properties of classical OPs (see, e.g., Abramowitz and Stegun (1965)): Orthogonality
intervals, weight functions, and norms. The parameters α, β, and λ satisfy the constraints
α, β > −1, λ > −1/2, and λ 6= 0.

Name pn Iw w : τ 7→ w(τ) ‖pn‖2w

Jacobi P
(α,β)
n (−1, 1) (1− τ)α(1 + τ)β 2α+β+1Γ(n+α+1)Γ(n+β+1)

n!(2n+α+β+1)Γ(n+α+β+1)

Gegenbauer C
(λ)
n (−1, 1) (1− τ2)λ−

1
2

21−2λπΓ(n+2λ)

(n+λ)(Γ(λ))2n!

Chebychev of
the first kind

Tn (−1, 1) (1− τ2)−
1
2

{
1
2π, n > 0

π, n = 0

Chebychev of
the second kind

Un (−1, 1) (1− τ2)
1
2

1
2π

Chebychev of
the third kind

Vn (−1, 1) (1− τ)−
1
2 (1 + τ)

1
2 π

Chebychev of
the fourth kind

Wn (−1, 1) (1− τ)
1
2 (1 + τ)−

1
2 π

Legendre Pn (−1, 1) 1 2
2n+1

Laguerre L
(α)
n (0,∞) e−ττα Γ(n+α+1)

n!

Hermite Hn (−∞,∞) e−τ
2 √

π2nn!

The best approximation of a function f ∈ L2
w (Iw) is now studied in detail. Let

S{f}=

∞∑

n=0

fnpn, fn = 〈f, pn〉w , (2.8)

and

f̂N =

N∑

n=0

fnpn, (2.9)

be the Fourier expansion of f and its N-th order truncation, respectively. Recall from Sec-

tion 2.1.2 that f̂N is the best approximation of f . The function f̂N can also be written as

f̂N = 〈f,RN,τ 〉w , with RN,τ : σ 7→ RN,τ (σ) =

N∑

n=0

pn(τ)pn(σ). (2.10)

Since p = 〈p,RN,τ 〉w, for all p ∈ πN , RN,τ is called the reproducing kernel of πN with respect to

Πw (see, e.g., Luenberger (1997); Meinardus (1967)).

The error e = S{f}− f̂N stemming from the N-th order truncation of S{f} is analysed in the

following theorem6. It shows that the zeros of OPs play a crucial role for the approximation

error. This will be discussed deeper when causal estimators based on classical OPs are

introduced in Section 2.2.

6The proof of Theorem 2.3 follows the lines of the proof developed in Kiltz (2017) for the numerical differentiation
using Jacobi OPs.
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2.1. The approximation problem of arbitrary functions

Theorem 2.3: Error from truncation

Let Πw be a closed orthonormal set of polynomials associated with a weight function

w : Iw → R, Iw = (a, b) ⊆ R, and f ∈ L2
w (Iw) be an m+ 1 times differentiable function.

Denote by S{f} and f̂N the Fourier expansion and the best approximation of f given in

(2.8) and (2.9), respectively.

The N-th order truncation error e = S{f}− f̂N evaluated at σ ∈ Iw satisfies

|e(σ)| 6 supθ∈Iw
∣∣f (ρ+1)(θ)

∣∣
ρ!

M, (2.11)

with ρ = min{N̄ ,m},

N̄ =




N + 1, for σ ∈ {zn}N+1

n=0 ,

N, otherwise,

M =

∫ b

a

∣∣∣∣∣∣

∞∑

n=N̄+1

〈hρσ, pn〉pn(σ)

∣∣∣∣∣∣
dσ,

hρσ : θ 7→ hρσ(θ) =





(σ − θ)ρ, for σ > θ,

0, otherwise.
(2.12)

and zn the zeros of the polynomial pN+1.

Proof. The truncation error is defined as

e(σ) =

∞∑

n=0

fnpn(σ)−
N∑

n=0

fnpn(σ)

for σ ∈ Iw. It satisfies

e(σ) =

∞∑

n=N̄+1

fnpn(σ),

for

N̄ =




N + 1, for σ ∈ {zn}N+1

n=0 ,

N, otherwise,

with zn the zeros of the polynomial pN+1. From Taylor’s theorem (see, e.g., Apostol (1967)) it

follows that the expansion of f in Iw around t0 ∈ Iw reads

f(σ) =

ρ∑

i=0

f (i)(t0)

i!
(σ − t0)i +Rρ(σ), ρ ∈ {0, . . . ,m},

with the remainder

Rρ(σ) =

∫ b

a

f (ρ+1)(θ)

ρ!
hρσ(θ)dθ,

with the function hρσ defined in (2.12). Since pn is orthogonal to any polynomial of lower degree,

the projection of f onto pn is

fn = 〈f, pn〉w =

ρ∑

i=n

f (i)(t0) 〈πi, pn〉w
i!

+

∫ b

a

f (ρ+1)(θ)〈hρσ, pn〉
ρ!

dθ,
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

with πi : σ 7→ πi(σ) = (σ − t0)i, for ρ > n. Choosing ρ = min{N̄ ,m} yields

e(σ) =

∞∑

n=N̄+1

∫ b

a

f(ρ+1)(θ)〈hρσ,pn〉
ρ! dθpn(σ).

Recall that this series converges due to the closure of the orthonormal set considered here.

Thus, the summation and the integration in the latter equation can be exchanged such that

e(σ) =

∫ b

a

f(ρ+1)(θ)
ρ!

∞∑

n=N̄+1

〈hρσ, pn〉dθpn(σ).

By the mean value theorem it finally follows that

|e(σ)| 6 supθ∈Iw
∣∣f (ρ+1)(θ)

∣∣
ρ!

∫ b

a

∣∣∣∣∣∣

∞∑

n=N̄+1

〈hρσ, pn〉pn(σ)

∣∣∣∣∣∣
dθ.

The parameter M from (2.11) depends only on the properties of the orthonormal set used for

the approximation and does not depend on the function to be approximated. From the proof

of the theorem it is clear that the roots of the OP pN+1 play an import role: Evaluating the

approximation at a zero of a specific polynomial decreases the order of the approximation

error. This will be even more clear in the next section.

2.2 Causal real-time signal approximation

In numerous applications the approximation of a function

f : I(t)→ R,

τ 7→ f(τ)
(2.13)

in I(t) = [0, t], for an arbitrary t > 0, is sought. Thus, an approximation problem as in

Problem 2.1 has to be solved. It shall be assumed in the following that f ∈ L2 (I(t)). The

approximation has to be evaluated at an arbitrary σ ∈ [t− t0, t] ⊆ I(t), 0 6 t0 6 t.

The interval I(t) does not necessarily correspond to the orthogonality interval Iw of an

orthonormal polynomial set Φw associated with a weight function w. Thus, the approximation

schemes based on truncated Fourier expansions developed earlier cannot immediately be

applied to this problem. However, this can be overcome by suitable time transformations and

function extensions.

2.2.1 Causal approximation

In the following a bijective function

ϕt,T : Iw → I(t),

τ 7→ ϕt,T (τ),
(2.14a)

is used to map the orthogonality interval Iw of the orthogonal functions of interest to an

arbitrary interval I(t) ⊆ R. It shall be assumed that I(t) ⊆ I(t). The function ϕt,T might

depend on some parameter T and its inverse is denoted by

ϕ−1
t,T : I(t)→ Iw,

τ 7→ ϕ−1
t,T (τ).

(2.14b)
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2.2. Causal real-time signal approximation

The function ϕt,T , called time transformation in the sequel, will be defined such that the

composition of f , or a suitable extension of it, and ϕt,T is an element of L2
w (Iw). The properties

of the resulting approximation are then studied.

Time transformations

The time transformations are now discussed for closed, half-open, and open orthogonality

intervals separately.

Closed intervals: For a closed interval Iw = [a, b], it is sufficient to find a function

mapping the orthogonality interval Iw to an interval [t − T, t] = I(t), T > t0. The parameter

T might not necessarily be equal to t0 and is a degree of freedom in the design. The explicit

definition of an affine function ϕt,T from (2.14) performing this transformation is given in

Table 2.2. Its effects on the approximation will be discussed in detail in the next section.

Half-open intervals: For a half-open interval7 Iw = [a,∞) the function f can be extended

as
f1 : (−∞, t]→ R,

τ 7→ f1(τ) =




f(τ), for τ > 0,

0, otherwise.

(2.15)

Then, f1 is approximated in the interval I(t) = (−∞, t] and the approximation is evaluated at

τ = σ. The explicit definition of an affine function ϕt,T of the form (2.14) mapping Iw to I(t)

is given in Table 2.2. This corresponds to flipping and scaling the interval Iw. The scaling,

here denoted by the parameter T , is a degree of freedom in the design. Its effects on the

approximation are discussed in detail in the next section.

Open intervals: For the open interval Iw = (−∞,∞) the function f can be extended as

f1 : (−∞,∞)→ R,

τ 7→ f1(τ) =




f(τ), for τ ∈ I(t),

0, otherwise.

(2.16)

The function f1 is then approximated on the new interval I(t) = (−∞,∞). The explicit

definition of an affine function ϕt,T of the form (2.14) mapping Iw to I(t) is given in Table 2.2.

The scaling and translation parameters T and µ, respectively, are again degrees of freedom.

Their effects on the approximation are discussed in the next section.

Summary: All previously discussed time transformations ϕt,T summarised in Table 2.2

are of the form

ϕt,T : τ 7→ ϕt,T (τ) = κ0Tτ + t+ κ1 (2.17)

with κ0 and κ1 depending on the parameters of the orthogonality interval. The function

θT : τ 7→ θT (τ) = ϕ−1
t,T (t− τ) (2.18)

mapping the point t− τ to the corresponding point in the orthogonality interval will be useful

in later discussions.
7A similar procedure can be used for the interval Iw = (−∞, a].
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Table 2.2: Time transformation ϕt,T defined in (2.14) mapping the orthogonality interval Iw to
I(t) and its inverse ϕ−1

t,T . It is assumed that T, µ > 0.

I(t)
ϕt,T : Iw → I(t)

τ 7→ ϕt,T (τ)

ϕ−1
t,T : I(t)→ Iw

τ 7→ ϕ−1
t,T (τ)

Iw = [a, b] [t− T, t] ϕt,T (τ) = t+ T
b−a (τ − b) ϕ−1

t,T (τ) = b−a
T (τ − t) + b

Iw = [a,∞) (−∞, t] ϕt,T (τ) = −T (τ − a) + t ϕ−1
t,T (τ) = t−τ

T + a

Iw = (−∞,∞) (−∞,∞) ϕt,T (τ) = Tτ − µ+ t ϕ−1
t,T (τ) = τ−t+µ

T

Function approximation using time transformations

Using the former time transformation it follows that f ◦ ϕ−1
t,T ∈ L2

w (Iw) when Iw is closed.

Similarly f1 ◦ ϕ−1
t,T ∈ L2

w (Iw) with f1 given in (2.15) and (2.16) for half-open and open interval

Iw, respectively. Then, the approximation schemes developed earlier can be applied. To

simplify the notation, f is considered in the sequel and it should be replaced by f1 whenever

half-open or open intervals are considered.

The generalised Fourier transform of f with respect to an orthonormal polynomial set Πw

is

S{f}=

∞∑

n=0

fnpn ◦ ϕ−1
t,T , fn = 〈f ◦ ϕt,T , pn〉w . (2.19)

The best approximation f̂N of f evaluated at the sought point σ is

f̂N (σ) =
〈
f ◦ ϕt,T ,RN,ϕ−1

t,T (σ)

〉
w

(2.20)

with the reproducing kernel RN,ϕ−1
t,T (σ) defined in (2.10). The following result bounding the

error e = S{f}− f̂N can immediately be derived from the general Theorem 2.3.

Corollary 2.1

Let Πw be a closed orthonormal set of polynomials associated with a weight function

w : Iw → R, Iw ⊆ R. Consider an m + 1 times differentiable function f : I(t) → R
satisfying f ◦ϕ−1

t,T ∈ L2
w (Iw), with ϕt,T the time transformation from (2.14) and (2.17) with

explicit form given in Table 2.2. Denote by S{f}and f̂N its Fourier expansion and its best

approximation defined in (2.19) and (2.20), respectively.

Then, the N-th order truncation error e = S{f}− f̂N evaluated at σ ∈ I(t) satisfies

|e(σ)| 6 |κ0T |ρ+1
supθ∈I(t)

∣∣f (ρ+1)(θ)
∣∣

ρ!
M = O

(
T ρ+1

)
, for T → 0,

with ρ = min{N̄ ,m},

N̄ =




N + 1, for ϕ−1

t,T (σ) ∈ {zn}N+1
n=0 ,

N, otherwise,

and M defined in (2.11).
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2.2. Causal real-time signal approximation

From Corollary 2.1, it is clear that the approximation error is reduced when the parameter

T of the time transformations is decreased. It is also clear that when the approximation

is evaluated at σ with ϕ−1
t,T (σ) a zero of the orthonormal polynomial of degree N + 1 the

approximation error is reduced by one order.

Observe that any σ ∈ I(t) can be written as σ = t − δ, for some δ. The definitions from

Table 2.3 of the time transformation yield that ϕ−1
t,T (σ) =: ϑ is independent of t. It depends only

on δ and the parameters of the time transformation. Thus, if ϑ is a zero of the orthonormal

polynomial of degree N + 1 the order of the approximation error is reduced by one.

2.2.2 Degree of exactness and delay

Evaluating the best approximation f̂N of a function f at σ = t− δ ∈ I(t), for some δ, yields the

reproducing kernel RN,ϑ, with ϑ := ϕ−1
t,T (σ), defined in (2.10) and given as

RN,ϑ : σ 7→ RN,ϑ(σ) =

N∑

n=0

pn(ϑ)pn(σ). (2.21)

From the definition of the time transformation ϕt,T given in Table 2.2 it follows that ϑ depends

only on T , δ, and the parameters of the OPs but not on t.

Let f̂(t) = f̂N (t− δ), i.e.,

f̂(t) = 〈f ◦ ϕt,T ,RN,ϑ〉w ,

and recall that RN,ϑ is a reproducing kernel of πN . The definitions of the time transformation

given in Table 2.2 yield

f̂(t) = (f ◦ ϕt,T ) (ϑ) = f(t− δt), (2.22)

for f ∈ πN , where δt depends on the choice of the OP set. Thus, the approximation is exact

up to a delay δt. This observation motivates the definition of the degree of exactness (DoE)

initially introduced in Kiltz (2017) and recalled in Othmane et al. (2022) for diffs. based on

Jacobi OPs.

Definition 2.4: Degree of Exactness

Let RN,ϑ, N ∈ N and ϑ ∈ R, defined in (2.21) be a reproducing kernel of πN with respect to

a closed orthonormal set Πw of polynomials associated with a weight function w : Iw → R,

with Iw ⊆ R. The degree of exactness γ of RN,ϑ is the polynomial degree up to which the

approximation is exact but delayed with a known delay δt.

From (2.21) it is clear that if ϑ is a zero of the polynomial pN+1 it holds that RN,ϑ = RN+1,ϑ.

Then, even for f ∈ πN+1 the relation (2.22) is valid. This corresponds to the result from

Corollary 2.1 stating that the estimation error is reduced by one order for special choices of

the evaluation time instant. Since p0 ≡ 1, the reproducing kernel R0,ϑ is independent of ϑ and

it holds that

R0,ϑ = R1,z1 , (2.23)

with z1 the zero of the polynomial p1. These observation can be summarised in the following

result for the DoE.
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Corollary 2.2: Degree of exactness

Let RN,ϑ, ϑ ∈ R and N ∈ N, defined in (2.21) be a reproducing kernel of πN with respect to

a closed orthonormal set Πw of polynomials associated with a weight function w : Iw → R,

with Iw ⊆ R. The degree of exactness γRN,ϑ of RN,ϑ is

γRN,ϑ =




N + k, for N = 0 ∨ ϑ ∈ {zn}N+1

n=0 ,

N, otherwise,

with {zn}N+1
n=0 the zeros of the polynomial pN+k.

In numerous applications the function f needs to be approximated at σ = t, i.e., at the

upper boundary of its definition interval. It follows from (2.23) that

f̂(t) = f(t− δt), δt = z1,

for N = 0 and f ∈ π1. Thus, for N = 0 the approximation of f at σ = t is independent of ϑ and

necessarily delayed. For N > 0, it follows from Table 2.2 that

δt = θ̄T (ϑ) = t− ϕt,T (ϑ) (2.24)

and δt depends only on the parameters ϑ, T , and the orthonormal set chosen for the approxi-

mation. By adapting ϑ the parametrisation δt = 0 is possible, i.e., a delay-free approximation

is achieved. For this reason, in the remaining parts of this work the quantity δt is called the

estimation delay of the reproducing kernel RN,ϑ. Its analytic representation for classical OPs

is recalled in Table 2.3. These observations are now summarised in the following corollary.

Corollary 2.3: Estimation delay

Let RN,ϑ, ϑ ∈ R, defined in (2.21) be a reproducing kernel of πN with respect to a closed

orthonormal set Πw of polynomials associated with a weight function w : Iw → R, with

Iw ⊆ R. The estimation delay δt of RN,ϑ is

δt =




θ̄(z1), for N = 0,

θ̄T (ϑ), otherwise,

where z1 is the zero of the polynomial p1 ∈ Πw and θ̄T is given in (2.24).

In summary, for N = 0 the best approximation of f is necessarily delayed. By varying the

parameter ϑ of the reproducing kernel, an arbitrary value can be assigned to the estimation

delay δt. Accepting a small but known delay increases the degree of exactness and decreases

the approximation error by one order. The delay is minimised by choosing the appropriate

zero of the corresponding OP. Recalling from Theorem 2.1 that the zeros of OPs are distinct

and lie within the interior of the orthogonality interval of the polynomials, it follows that for

closed intervals the estimation delay also lies in the interval (t − T, t). Using Theorem 2.2 it

can also be concluded that the estimation delay can be decreased by increasing N .
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2.3. The approximation problem of derivatives of arbitrary orders

Table 2.3: Delay δt from Corollary 2.3 for N > 1 computed for classical OPs.

Jacobi Laguerre Hermite

δt
1−ϑ

2 T Tϑ µ− Tϑ

2.3 The approximation problem of derivatives of arbitrary orders

In the preceding section the causal approximation of a function

f : I(t)→ R,

τ 7→ f(τ)
(2.25)

in I(t) = [0, t], for an arbitrary t > 0, has been discussed. Thus, an approximation problem as

in Problem 2.1 has to been solved.

The results of the last section can be immediately extended for the estimation of derivatives

of arbitrary large order. Thus, assuming that f is sufficiently smooth, the estimation of f (n),

the n-th order derivative of f , is considered in this section. In the sequel, it is also assumed

that only an additively disturbed measurement f̃ of f is available, i.e.,

f̃ : t 7→ f̃(t) = f(t) + η(t), (2.26)

where η is a bounded disturbance.

This section is divided into four parts. Application of the previous approaches for the

approximation of the derivatives f (n) using only f̃ is first discussed and the different errors are

analysed. Then, the derivation of these methods using differential-algebraic manipulations of

Taylor series is analysed. Finally, system-theoretic, wavelet-based and a regularisation-based

interpretations are provided.

2.3.1 An approximation-theoretic point of view

Using the methods developed in Section 2.2 the following approximation schemes can be

immediately derived8. Recall that the best approximation f̂
(n)
N evaluated at σ = t− δ ∈ I(t), for

some δ, of f (n) is

f̂
(n)
N (t− δ) =

〈
f (n) ◦ ϕt,T ,RN,ϑ

〉
w
, ϑ = θT (δ), (2.27)

where the reproducing kernel RN,ϑ is defined in (2.21) and θT in (2.18). Let

gN,ϑ : τ 7→ gN,ϑ(τ) = w(τ)RN,ϑ(τ). (2.28)

Using the definition of the time transformation in (2.17), a repeated integration by parts of

(2.27) yields9

f̂
(n)
N (t− δ) =

∫ b

a

gN,ϑ(τ)
(
f (n) ◦ ϕt,T

)
(τ)dτ

=
1

κn0T
n

∫ b

a

gN,ϑ(τ) (f ◦ ϕt,T )
(n)

(τ)dτ

=
1

κn0T
n

[
n−1∑

m=0

(−1)mg
(m)
N,ϑ(τ)f (n−1−m)(τ)

]b

a

+
(−1)n

κn0T
n

∫ b

a

(f ◦ ϕt,T ) (τ)g
(n)
N,ϑ(τ)dτ.

8When an open or half-open orthogonality interval Iw is used the function f (n) needs to be replaced in the
following by the extended function as discussed in detail in Section 2.2

9For a function f and a =∞ the notation f(a) should be read as f(a) = limτ→∞ f(τ)
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Thus, if the first n− 1 derivatives of gN,ϑ vanish at the boundaries of the orthogonality interval

Iw = (a, b), the best approximation f̂
(n)
N evaluated at t− δ of f (n) can be computed using solely

f as

f̂
(n)
N (t− δ) =

(−1)n

κn0T
n

∫ b

a

(f ◦ ϕt,T ) (τ)g
(n)
N,ϑ(τ)dτ. (2.29)

This observation yields the definition of an orthogonal differentiator (orth. diff.) used in the

remaining parts of this work.

Definition 2.5: Orthogonal differentiator

Let RN,ϑ, ϑ ∈ R and N ∈ N finite, defined in (2.21) be a reproducing kernel of πN with

respect to a closed orthonormal set Πw of polynomials associated with a weight function

w : Iw → R, with Iw ⊆ R. Assume that the first n − 1 derivatives of gN,ϑ defined in (2.28)

vanish at the boundaries of Iw. The function gN,ϑ is called an orthogonal diff. of order n

associated with Πw.

Replacing in (2.29) the function f by the measurement f̃ yields the approximation

ˆ̃
f

(n)
N (t− δ) =

(−1)n

κn0T
n

∫ b

a

(
f̃ ◦ ϕt,T

)
(τ)g

(n)
N,ϑ(τ)dτ

of f (n). The latter approximation requires only the measurement f̃ . The concept of differenti-

ation by integration can be clearly seen here. Approaches for the approximation of derivatives

using integrals have been known for a long time as can be seen in (Lanczos, 1956, P. 324) and

Cioranescu (1938), for example.

The approximated derivative ˆ̃
f

(n)
N (t− δ) is corrupted by two sources of errors10:

1. the bias term, denoted by eN , stemming from the truncation of the Fourier expansion

and

2. the variance term, denoted by eη, stemming from the disturbance η.

The bias term eN = S
{
f (n)

}
− f̂ (n)

N can be immediately bounded using Corollary 2.1 to get

the following result.

Corollary 2.4

Let gN,ϑ be an orth. diffs. associated with Πw a closed orthonormal set of polynomials.

Consider an n + m + 1 times differentiable function f : I(t) → R satisfying f ◦ ϕt,T ∈
L2
w (Iw), with ϕt,T the time transformation from (2.14) and (2.17) with explicit forms given

in Table 2.2. Denote by S
{
f (n)

}
and f̂

(n)
N the Fourier expansion of f (n) and its best

approximation defined in (2.19) and (2.29), respectively.

Then, the N-th order truncation error eN = S
{
f (n)

}
− f̂

(n)
N evaluated at t − δ ∈ I(t)

satisfies

|eN (t− δ)| 6 |κ0T |ρ+1
supθ∈I(t)

∣∣f (n+ρ+1)(θ)
∣∣

ρ!
M = O

(
T ρ+1

)
, for T → 0,

with ρ and M defined in Corollary 2.1.

10The nomenclature of the errors follows the lines of Mboup et al. (2009).
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2.3. The approximation problem of derivatives of arbitrary orders

The variance term eη =
ˆ̃
f (n) − f̂ (n) reads

eη(t− δ) =
(−1)n

κn0T
n

(∫ b

a

((
f̃ − f

)
◦ ϕt,T

)
(τ)g

(n)
N,ϑ(τ)dτ

)

=
(−1)n

κn0T
n

(∫ b

a

(η ◦ ϕt,T ) (τ)g
(n)
N,ϑ(τ)dτ

) (2.30)

and it is straightforward to see that it satisfies the bound in the following corollary.

Corollary 2.5: Variance term

Let f and η be two functions satisfying f ◦ ϕt,T , η ◦ ϕt,T ∈ L2
w (Iw) and f̃ be the function

defined in (2.26). Assume that η is bounded and f (n) ◦ ϕt,T ∈ L2
w (Iw). The variance term

eη defined in (2.30) satisfies |eη(t− δ)| = O (T−n) for T → 0.

From Corollaries 2.4 and 2.5 a known dilemma in function approximation can be observed:

Reducing the parameter T reduces the bias term but significantly increases the variance term.

For example, consider a closed orthogonality interval. The parameter T is then the width of the

approximation window. For a fixed N decreasing the window length T will decrease the bias

term |eN (t− δ)|. However, a large T is required to smooth out the effects of the disturbance

and thus to reduce the variance term |eη(t− δ)|. Hence, finding a compromise is important.

As for reproducing kernels, an orth. diff. has a DoE γgN,ϑ , i.e., the polynomial degree up to

which the derivative approximation is exact but delayed with a known delay. It follows imme-

diately from Corollary 2.2 as n + γRN,ϑ with γRN,ϑ the DoE of the corresponding reproducing

RN,ϑ. The estimation delay corresponds to that of RN,ϑ given in Corollary 2.3.

In addition to this approximation theoretic derivation of orth. diffs., an algebraic interpre-

tation can be given in terms of a parameter estimation problem with annihilation of undesired

structured perturbations as discussed in the next section.

2.3.2 An algebraic point of view

Let f : t 7→ f(t) be analytic in I ⊆ R, with 0 ∈ I, and consider its convergent Taylor series

expansion at t = 0 namely

f(t) =

∞∑

m=0

f (m)(0)
tm

m!
.

For the estimation of the n-th order derivative of f , the truncated Taylor series expansion

fn?(t) =

n?∑

m=0

f (m)(0)
tm

m!
(2.31)

for n? > n is considered. It satisfies the linear differential equation f
(n?+1)
n? (t) = 0, which

using operational calculus (Laplace transform or Mikusinski’s operational calculus detailed

in Doetsch (1974) and Mikusinski (1983), respectively) reads

sn
?+1L{fn?}(s) =

n?∑

m=0

sn
?−mf (m)(0), (2.32)

where L{fn?} is the operational counterpart of fn? . It should be noted here that all deriva-

tives f (m)(0), m ∈ {0, . . . , n?} are linearly identifiable parameters of (2.32) according to the

identifiability definition developed in Fliess and Sira-Ramírez (2003a) using module theory.
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Annihilators

For the estimation of the n-th order derivative of f all terms sn
?−mx(m)(0), m 6= n, i.e., deriva-

tives that are not of interest, are now viewed as perturbations to be annihilated. This can be

achieved using differential operators of the form

D =

l∗∑

l=0

L{dl}(s)
(

d

ds

)l
, L{dl} : C→ C, l∗ finite, (2.33a)

satisfying

DL{fN}(s) = L{d}(s)f (n)(0), (2.33b)

for some function L{d} : C → C. As in Mboup et al. (2009), a differential operator of the

form (2.33a) is called an annihilator for f (n)(0). Obviously, such operators exist and are not

unique. However, it is clear that to each annihilator D, there is a unique L{d} : C → C such

that (2.33b) is satisfied. The operator D and the function L{d} are said to be associated.

The operator D has to be judiciously chosen to ensure that only integral operators are

involved when the relations are interpreted in the time domain. In the sequel, an operator

satisfying this condition is called a proper differential operator in accordance with the discus-

sions in Mboup et al. (2009). It has been shown in the latter reference that for L{dl} ∈ C(s)

the operator D is proper if, and only if, each L{dl} is a proper rational function11.

Time-domain approximation

Replacing in (2.33) the truncated Taylor series expansion fn? by the actual known signal f̃

from (2.26) yields

L{d}(s)f (n)
n? (0) = DL

{
f̃
}

(s).

This equation provides an operational estimator for f (n)(0), observed by f̃ . The latter ex-

pression needs now to be transformed in the time domain. Let d and dl be the time-domain

counterparts of L{d} and L{dl}, respectively. Writing the latter equation in the time domain

yields12

d(t)f̃
(n)
n? (0) =

l∗∑

l=0

∫ t

0

dl(t− τ)(−1)lτ lf̃(τ)dτ. (2.34)

Here, the variable t represents the estimation time and the equation has to be considered for

fixed t. A finite and an infinite estimation time are considered in the sequel. The relation to

truncated Fourier series is discussed.

Finite estimation time

In Mboup et al. (2009) a finite estimation time t∗ > 0 has been used in (2.34). This yields the

approximated derivative

f̃
(n)
n? (0) =

1

d(t∗)

l∗∑

l=0

∫ t∗

0

dl(t
∗ − τ)(−1)lτ lf̃(τ)dτ.

11A rational function is called proper if, and only if, the degree of the nominator is less or equal to that of the
denominator.

12Recall from the classical rules of operational calculus that d
ds

in the operational domain corresponds to a
multiplication by −t in the time domain (see, e.g., Doetsch (1974); Mikusinski (1983)).
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2.3. The approximation problem of derivatives of arbitrary orders

A causal approximation of the derivative denoted in the following by f̂ (n) of the n-th order

derivative is obtained by replacing in the last equation f(τ) by −Θ(τ)f(t − τ), for t > t∗. The

approximated derivative

f̂ (n)(t) =

∫ t∗

0

l∗∑

l=0

dl(t
∗ − τ)(−1)l+1τ l

d(t∗)
f̃(t− τ)dτ

is then obtained. Observing that this corresponds to an approximation in the sliding window

[t− t∗, t] motivates the definition of annihilators that yield a kernel

R(τ) =

l∗∑

l=0

dl(t
∗ − τ)(−1)lτ l

d(t∗)
,

which is a reproducing kernel of πn?−n derived using polynomials orthogonal on a closed

interval that can be mapped to the interval [0, t∗] using the time transformation given in

Table 2.2.

In Mboup et al. (2009) annihilators that yield a reproducing kernel based on Jacobi poly-

nomials have been derived. These are recalled in Section 2.4.3, where orth. diff. based on

classical OP are discussed.

Infinite estimation time

Assuming that the quantity

f̃
(n)
n? (0) = lim

t∗→∞
1

d(t∗)

l∗∑

l=0

∫ t∗

0

dl(t
∗ − τ)(−1)lτ lf̃(τ)dτ

exists and is finite, an infinite estimation time can be used. Let

d∞(τ) = lim
t∗→∞

1

d(t∗)

l∗∑

l=0

dl(t
∗ − τ)(−1)l.

A causal approximation of the n-th order derivative is obtained by replacing in the last

equation f(τ) by −Θ(τ)f(t−τ), for t > 0. The approximated derivative, denoted in the following

by f̂ (n), is

f̂ (n)(t) = −
∫ ∞

0

d∞(τ)τ lf̃(t− τ)dτ

is then obtained, which corresponds to an approximation in the growing window [−∞, t].
In Ushirobira (2018) annihilators that yield reproducing kernels based on Laguerre and

Hermite polynomials have been derived. These are recalled and generalised Section 2.4.2, for

example, where orth. diff. based on Laguerre OP are discussed.

2.3.3 A system-theoretic point of view

In addition to the approximation-theoretic and algebraic interpretations of the approximation

scheme derived above, a system-theoretic one can be provided by reconsidering the approxi-

mation from (2.29).

The approximation f̂
(n)
N defined in (2.29) can be rewritten as

f̂
(n)
N (t− δ) =

1

κ0T

∫ ϕt,T (b)

ϕt,T (a)

f(τ) (gN,ϑ ◦ θT )
(n)

(t− τ)dτ, (2.35)
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

with θT given in (2.18). It is clear that orth. diffs. can be interpreted as linear time-invariant

filters acting on the measured signals. It is clear that this numerical differentiation approach

falls within the framework of classical approaches for differentiation in the frequency domain,

where a filter is followed by an ideal diff.

The result of the integration by parts of the latter equation yields

f̂
(n)
N (t− δ) =

(−1)n

κ0T

∫ ϕt,T (b)

ϕt,T (a)

f (n)(τ) (gN,ϑ ◦ θT ) (t− τ)dτ. (2.36)

Thus, the approximated derivative is the output of a linear time-invariant filter applied on the

sought derivative f (n). This interpretation can be used for the parametrisation of the orth.

diffs. to achieve desired filter characteristics.

These two interpretations motivate the analysis of the filter characteristics of orth. diff. to

derive systematic tuning guidelines.

2.3.4 An inverse-problem point of view

It is well known13 that the n-th order derivative of an n-times differentiable signal x : t 7→ x(t)

can be seen as a solution of a Fredholm integral equation (see, e.g., Cullum (1971); Engl,

Hanke, and Neubauer (1996)). In fact it is an ill-posed inverse problem and the mollification

approach (see, e.g., Hegland and Anderssen (1998); Murio (2011)), which is a regularisation

technique, is one of numerous numerical methods that have been developed to obtain stable

algorithms robust to additive noise. In the control community, these methods have been dis-

cussed in Diop, Grizzle, and Chaplais (2000); Diop and Martínez-Guerra (2001), for example.

From Hegland and Anderssen (1998) it follows that a real function mγ is called a mollifier
if there exists a constant integer ν ∈ N such that

mγ(t) =
1

γ
m

(
t

γ

)
, m ∈ Cν(R), t ∈ R,

with the mollifier’s generator m satisfying the following conditions

m(t) > 0, t ∈ R, (2.37)

m(k)(t) ∈ L1(R), k = 0, . . . , s, s ∈ N,
∫ ∞

−∞
m(t)dt = 1,

∫ ∞

−∞
tkm(t)dt ∈ R, k = 0, 1, 2, . . .

where Lp(R) =
{
f : R→ R |

∫∞
−∞ |f(x)|p dx <∞

}
, for 0 < p < ∞. This is a generalises the

definition of Friedrichs’ mollifiers discussed in Adams and Fournier (1975) in the context

of function approximation.

It is now straightforward to verify that minimal diffs., i.e., those with N = 0, are mollifiers,

and from Hegland and Anderssen (1998) it follows that differentiation based on orthogonal

polynomials with N = 0 is a regularisation strategy. Affine diffs., however, do not satisfy the

non-negativity condition (2.37) in general. The interpretation of diffs. based on Jacobi OPs

as mollifiers has been used in Riachy et al. (2016) instead of a high-gain observer for the

differentiation of the output signal in the context of universal integral control introduced in

Khalil (2000).
13This subsection stems literally from Othmane et al. (2022).
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2.4. Numerical differentiation using classical orthogonal polynomials

2.3.5 A wavelet-decomposition point of view

Recall the approximation of the n-th order derivative of a function f defined in (2.36) and

define

h : τ 7→ h(τ) =





(−1)n

κ0

√
T

(gN,ϑ ◦ θT )
(n)

(−τT ), for τ ∈ [ϕt,T (a), ϕt,T (b)] ,

0, otherwise.
(2.38)

Then, (2.35) can be written as

f̂
(n)
N (t− δ) =

∫ ∞

−∞
f(τ)

1√
T
h

(
τ − t
T

)
dτ =: Whf(t, T ),

i.e., the approximated derivative is the wavelet decomposition of f , at time t and scale T ,

denoted by Whf(t, T ) (see, e.g., Mallat (1999)).

Let F {h} be the Fourier transform of h and assume that14

Ch =

∫ ∞

0

|F {h} (ω)|2
ω

dω <∞. (2.39)

According to (Mallat, 1999, P. 124), this condition is called the wavelet admissibility condition.

Then, from the Calderón-Grossman-Morlet Theorem (see, e.g., (Mallat, 1999, Thm. 4.3)) it

follows that any function f ∈ I2 can be reconstructed from its n-th order derivative approxi-

mation Whf(·, T ) with continuously varying parameter T = σ by

f(t) =
1

Ch

∫ ∞

0

∫ ∞

−∞
Whf(τ, σ)

1√
σ
h

(
τ − t
σ

)
dτ

dσ

σ2
.

This wavelet-based interpretation of numerical differentiation using Jacobi polynomials has

first been proposed in Mboup and Riachy (2018).

2.4 Numerical differentiation using classical orthogonal polynomials

The classical OPs have already been introduced in Section 2.1.3 as a particular subset of OPs.

The orthonormal sets formed by these polynomials can now be used to approximate functions

and their derivatives. The estimation of arbitrary derivatives of a function f defined in (2.25)

is considered using these polynomials in the sequel. The disturbance-free case is considered

for notational simplicity only since the effects of the additive disturbances in (2.26) have been

analysed in detail for the general case, and the results are immediately transferable to the

diffs. based on classical OPs.

The time transformations from (2.14) required for adaptation of the orthogonality intervals,

the corresponding reproducing kernels, and orth. diffs. defined in (2.9) and Definition 2.5, re-

spectively, can immediately be derived from the previous considerations in Tables 2.1 and 2.2

and (2.9). Thus, it is assumed in the following that the considered functions always satisfy

the required integrability conditions used in Section 2.3.1.

The properties of orth. diffs. based on the Hermite, Laguerre, and Jacobi OP are inves-

tigated. The time-domain, frequency-domain properties, and the variation of the estimation

delays as functions of the involved parameters are discussed. For the diffs. based on Jacobi

polynomials, a brief overview describing their different historical derivations summarising the

14It is straightforward to show that this condition is satisfied for the diffs. based on classical OPs discussed in
Section 2.4. Indeed, as discussed in (Mallat, 1999, P. 124), it is sufficient to see that in this special case F {h} is
continuously differentiable and satisfies F {h} (0) = 0.
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survey in Othmane et al. (2022) is provided. A MATLAB and Python toolbox implementing all

necessary functions for the design, analysis, and discretization of Jacobi differentiators (Jac.

diffs.) has been made available in Othmane (2021). Its use is demonstrated in the appendix

of Othmane et al. (2022) and in the examples provided in Othmane (2021). This publicly

available code has been used for the generation of all results relying on Jac. diff. in the current

work.

2.4.1 Hermite differentiators

Recall from Table 2.1 that Hermite polynomials are orthogonal on the interval Iw = (−∞,∞)

and their weight function w satisfies limτ→−∞ w(τ) = limτ→∞ w(τ) = 0. Thus, the effects of the

weight function vanish for large absolute values of the argument and the interval has to be

shifted using a parameter µ to ensure that the maximum of w is in an interval of interest. A

second degree of freedom can be incorporated by adding a scaling parameter T to compress

or dilate the orthogonality interval. The transformation follows from Table 2.2 as

ϕt,T : Iw → I(t),

τ 7→ ϕt,T (τ) = T (τ − µ) + t,
(2.40a)

and its inverse is
ϕ−1
t,T : I(t)→ Iw,

τ 7→ ϕ−1
t,T (τ) =

τ − t
T

+ µ,
(2.40b)

where Iw = (−∞,∞) and I(t) = (−∞,∞).

The approximation of a function f : (−∞, t] → R is now considered using Hermite poly-

nomials (see Table 2.1 for a summary of their properties). This can be performed using the

filter interpretation of the approximation scheme given in (2.35), the definitions (2.18), (2.21),

and (2.28). Then, the delayed approximation is

f̂(t) =

∫ t

−∞
f(τ)gN,T,ϑ,µ(t− τ)dτ

with15

gN,T,ϑ,µ =
1

T

N∑

n=0

Hn (ϑ)

‖Hn‖w
(w ·Hn) ◦ θT

where

‖Hn‖w =
√
π2nn!, w(τ) = e−τ

2

, θT (τ) =
µ− τ
T

and ϑ ∈ R.

The parameter ϑ influences the estimation delay and the degree of exactness as discussed

in Corollary 2.2 and Corollary 2.3. Choosing ϑ as a zero of the Hermite OP of degree N + 1

decreases the approximation error by one order as discussed in the Corollaries 2.1 and 2.4

and yields a delayed approximation. The estimation delay is given in Table 2.3 and its

variation with respect to the parameter N is shown in Fig. 2.1. As given in Theorem 2.1

increasing N decreases the delay. A delay-free approximation is achieved by choosing ϑ = µ/T .

Since the orthogonality interval of the Hermite polynomials is IH = (−∞,∞), the latter

approximation corresponds to that of the extended function

f̄ : τ 7→ f̄(τ) =




f̄(τ), for τ 6 t

0, otherwise.
15The pointwise product of two functions f and g is denoted by f · g.
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Figure 2.1: Variation of the estimation delay of the Hermite diff. as a function of the parameter
N .

Since f̄ is discontinuous at time τ = t the Fourier expansion of f at τ = t converges to f̄(t)/2.

Thus, if an approximation at τ = t is sought the extension should be adapted such that f̄ is

continuous at this point.

For the approximation of the n-th order derivative of a sufficiently differentiable functions

f it has been shown in Section 2.3.1 that the n − 1 first derivatives of the kernel gN,T,ϑ,µ
must vanish at the boundaries of Iw. The analytical form of the derivatives of the Hermite

polynomials from #A.3 yields

(gN,T,ϑ,µ)
(n)

=
1

Tn+1

N∑

m=0

Hm (ϑ)

‖Hm‖w
(w ·Hm+n) ◦ θT , (2.41)

and it is clear that the derivatives of the kernel always vanish as required for a diff.

Definition 2.6: Hermite diff.

Let N ∈ N and T, µ, ϑ ∈ R, with T, µ > 0. The function

gN,T,ϑ,µ : τ 7→ gN,T,ϑ,µ(τ) =
1

T

N∑

m=0

Hm (ϑ)

‖Hm‖w
((w ·Hm) ◦ θT ) (τ), (2.42a)

with

‖Hm‖w =
√
π2mm!, w(τ) = e−τ

2

and θT (τ) =
µ− τ
T

, (2.42b)

is called a Hermite diff. Its n-th order derivative is given in (2.41).

Filter characteristics

Since the approximation of functions and their derivatives using Hermite OPs can be inter-

preted as filtering the measurement, the properties of these filters are now discussed both in

the time domain and the frequency domain.

Time-domain properties: The explicit representation of the impulse response of a Hermite

differentiator (Hermite diff.) gN,T,ϑ,µ defined in Definition 2.6 is given in (2.42) and can be
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Figure 2.2: Variation of the impulse and step responses given in (2.43) and (2.45), respectively,
of a Hermite diff. as a function of the parameter N .

rewritten as

gN,T,ϑ,µ =

N∑

m=0

bm2 c∑

l=0

m! Hm (ϑ) (−1)l2m−2l

T ‖Hm‖w l!(m− 2l)!
(w · πm−2l) ◦ θT , (2.43)

using #A.1. For N = 0 it satisfies

g0,T,ϑ,µ : τ 7→ g0,T,ϑ,µ(τ) =
1

T
√
π

e−(µ−τT )
2

, (2.44)

hence, the normal distribution with mean value µ and variance T 2/2 is recovered.

The symmetry properties of the Hermite polynomials given in #A.2 yield

gN,T,−ϑ,µ(τ + µ) = gN,T,ϑ,µ(−τ + µ).

Thus, changing the sign of ϑ, which corresponds to mirroring the estimation delay around the

point µ, yields the reflection of the diff. across the line µ.

The step response hN,T,ϑ,µ can be computed using the properties of the Hermite polynomi-
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Figure 2.3: Variation of the impulse and step responses of a delay-free Hermite diff. with
respect to the parameter µ = σκ and N = 1.

als from #A.5 to get

hN,T,ϑ,µ(τ) =

∫ τ

0

gN,T,ϑ,µ(σ)dσ

=
1

2

(
erf
(µ
T

)
− erf

(
µ− τ
T

))

−
N∑

m=1

Hm (ϑ)

‖Hm‖w

(
w
(µ
T

)
Hm−1

(µ
T

)
− w

(
µ− τ
T

)
Hm−1

(
µ− τ
T

))
(2.45)

with τ 7→ erf (τ) the Error Function defined in #A.15.

The impulse and step responses of Hermite diffs. are shown in Figs. 2.2 and 2.3 for

different parameter combinations. The impulse response depicts negative values for N > 0,

which results in overshoots in the step responses. The magnitude of the overshoot peaks

increase with increasing N . It can be seen that the step response in the delay-free case shows

significant overshoots.

Frequency-domain properties: The Fourier transform of a Hermite diff. can be computed

using the property in #B.11 as

F {gN,T,ϑ,µ} (ω) =
1

T

N∑

m=0

Hm (ϑ)

‖Hm‖w
F {(w ·Hm) ◦ θT } (ω)

=
√
πe−ιωµw

(
Tω

2

) N∑

m=0

Hm (ϑ)

‖Hm‖w
(ιTω)m,

(2.46)

where ι2 = −1. Since ω 7→ F {gN,T,ϑ,µ} (ω) is continuously differentiable it follows that F {h}
with h defined in (2.38) also has this property. It is then easy to show that the admissibility

condition in (2.39) is satisfied. Thus, the wavelet interpretation given in Section 2.3.5 is valid

for this choice of orth. diffs.

The variation of the amplitude spectrum of the diff., i.e., ω 7→ |F {gN,T,ϑ,µ} (ω)|, as a function

of N is given in Figs. 2.4 and 2.6. As for the step response, it can be seen that the amplitude

spectrum shows overshoots for N > 0. They are significant for the delay-free case and may
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Figure 2.4: Variation of the amplitude spectrum of a Hermite diff. for different values of the
parameter N .

yield useless results in practical implementations. The amplitude spectrum also shows a

low-pass behaviour: For low frequencies the amplitude spectrum is close to one since

lim
ω→0
F {gN,T,ϑ,µ} (ω) = 1.

High frequencies are attenuated.

This frequency-domain analysis is used in the next chapter to derive tuning guidelines.

2.4.2 Laguerre differentiators

The Laguerre polynomials are orthogonal over the interval Iwα = [0,∞). Their weight function

wα : t 7→ wα(t) = e−ttα, α > −1, satisfies limτ→∞ wα(τ) = 0, i.e., the effects of wα vanishes

for large arguments. The interval has to be flipped and shifted. A degree of freedom can be

incorporated by adding a scaling parameter T . From Table 2.2, the transformation follows as

ϕt,T : Iwα → I(t),

τ 7→ ϕt,T (τ) = −Tτ + t,
(2.47a)

with the inverse
ϕ−1
t,T : I(t)→ Iwα ,

τ 7→ ϕ−1
t,T (τ) =

t− τ
T

,
(2.47b)

where I(t) = (−∞, t]. The approximation of a function f : (−∞, t] → R using orthogonal

Laguerre polynomials, is now discussed. Their properties are summarised in Table 2.1.

The filter interpretation developed in (2.35) of the approximation scheme and the defini-

tions (2.18), (2.21), and (2.28) can be used to derive the delayed approximation f̂ of f as

f̂(t) =

∫ t

−∞
g

(α)
N,T,ϑ(t− τ)f(τ)dτ (2.48)

with

g
(α)
N,T,ϑ(τ) =

1

T

N∑

n=0

L
(α)
n (ϑ)∥∥∥L
(α)
n

∥∥∥
2

wα

(
wα · L(α)

n

)
◦ θT (τ),

34



2.4. Numerical differentiation using classical orthogonal polynomials

0 4 8 12
0

3T

6T

9T

12T

α

es
ti

m
at

io
n

d
el

ay
N = 0
N = 1
N = 2
N = 3

Figure 2.5: Variation of the esti-
mation delay δt of Lag. diffs. as a
function of the parameters N and α.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

ωT

am
p
li
tu

d
e

σ = 2
σ = 4
σ = 6
σ = 8

Figure 2.6: Variation of the amplitude
spectrum of delay-free Hermite diffs.
with respect to the parameter µ = σT
and N = 1.

where

∥∥∥L(α)
n

∥∥∥
wα

=
Γ(n+ α+ 1)

n!
, wα(τ) = e−ττα, θT (τ) =

τ

T
, ϑ ∈ R and α > −1.

The parameter ϑ influences the estimation delay and the degree of exactness as discussed in

Corollaries 2.2 and 2.3. Choosing ϑ as a zero of the Laguerre OP of degree N + 1 decreases the

approximation error by one order as discussed in Corollaries 2.1 and 2.4 and yields a delayed

approximation. The estimation delay is given in Table 2.3 and its variation with respect to the

parameters N and α is shown in Fig. 2.5. Increasing α increases the delay and in accordance

with Theorem 2.1, increasing N decreases the delay. A delay-free approximation is achieved

by choosing ϑ = 0.

For the approximation of the n-th order derivative of a sufficiently differentiable functions

f it has been shown in Section 2.3.1 that the n− 1 first derivatives of the kernel gN,T,ϑ,µ must

vanish at the boundaries of Iw. Recalling the analytical form of the derivatives of the Laguerre

polynomials from #A.8 yields

(
g

(α)
N,T,ϑ

)(l)

=
1

T l+1

N∑

m=0

(m+ l)! L
(α)
m (ϑ)

m!
∥∥∥L

(α)
m

∥∥∥
2

w

(
wα−l · L(α−l)

m+l

)
◦ θT , (2.49)

for α > n − 1 and l ∈ {1, . . . , n − 1}, and it is clear that the derivatives of the kernel vanishes.
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Figure 2.7: Impulse and step responses g = ḡ
(α)
N,T,ϑ and h = h

(α)
N,T,ϑ from (2.53) and (2.55),

respectively, of a Lag. diff. with N = 0 and various values of α.

Definition 2.7: Laguerre diff.

Let N,n ∈ N and T, α, ϑ ∈ R, with T > 0 and α > n− 1. The function

g
(α)
N,T,ϑ : τ 7→ g

(α)
N,T,ϑ(τ) = g

(α)
N,T,ϑ(τ) =

1

T

N∑

n=0

L
(α)
n (ϑ)∥∥∥L
(α)
n

∥∥∥
2

wα

(
wα · L(α)

n

)
◦ θT (τ), (2.50a)

with ∥∥∥L(α)
n

∥∥∥
wα

=
Γ(n+ α+ 1)

n!
, wα(τ) = e−ττα, and θT (τ) =

τ

T
, (2.50b)

is called a Laguerre differentiator (Lag. diff.) of order n. Its n-th order derivative is given

in (2.49).

Filter characteristics

As for the function approximation based on Hermite polynomials the filter properties of Lag.

diffs. are now discussed in the time and frequency domains. The properties of the filter g(α)
N,T,ϑ

and the cascade of several filters for the estimation of higher order derivatives are analysed.

Time-domain properties: For N = 0 a Lag. diff. g(α)
0,T,ϑ defined in Definition 2.7 can be written

as

g
(α)
0,T,ϑ =

wα ◦ θT
T Γ(α+ 1)

, (2.51)

with Γ the Gamma function defined in #A.13. Recalling the explicit definition of Laguerre

polynomials from #A.6, any Lag. diff. g(α)
N,T,ϑ can be rewritten as

g
(α)
N,T,ϑ =

N∑

n=0

n∑

m=0

l
(α)
n,m,ϑg

(α+m)
0,T,ϑ (2.52a)

with

l
(α)
n,m,ϑ =

(−1)mΓ(α+m+ 1)L
(α)
n (ϑ)

m!
∥∥∥L

(α)
n

∥∥∥
2

wα

(
n+ α

n−m

)
. (2.52b)
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Observing that the latter sum has a triangular structure yields

g
(α)
N,T,ϑ =

N∑

n=0

l̄
(α)
n,ϑg

(α+n)
0,T,ϑ , with l̄

(α)
n,ϑ =

N∑

m=n

l
(α)
m,n,ϑ.

The impulse response of a Lag. diff. g(α)
N,T,ϑ is

ḡ
(α)
N,T,ϑ(τ) =





g
(α)
N,T,ϑ(τ), for τ > 0,

0, otherwise.

(2.53)

The special parametrisation N = 0 yields

ḡ
(α)
0,T,ϑ(τ) =





1
TΓ(α+1)e−

τ
T

(
τ
T

)α
, for τ > 0,

0, otherwise,

and corresponds to the probability density function in the shape-scale parametrisation of a

Gamma distribution (see, e.g., Papoulis (1984)) with mean and variance

η = (α+ 1)T, (2.54a)

σ2 = (α+ 1)T 2, (2.54b)

respectively. Furthermore, it also follows from Hegland and Anderssen (1998) that for this

choice of parameters the diff. is a mollifier and derivative estimation is a regularisation

strategy.

The step response h(α)
N,T,ϑ of a Lag. diff. g(α)

N,T,ϑ is

h
(α)
N,T,ϑ(t) =

∫ t

0

g
(α)
N,T,ϑ(τ)dτ

=
1

Γ(α+ 1)
γ

(
α+ 1,

t

T

)
+

N∑

n=1

L
(α)
n (ϑ)∥∥∥L
(α)
n

∥∥∥
2

wα

∫ t
T

0

wα(τ)L(α)
n (τ)dτ,

with γ the lower incomplete Gamma function defined in #A.14. With relation #A.9 the step

response can be written as

h
(α)
N,T,ϑ(t) =

1

Γ(α+ 1)
γ

(
α+ 1,

t

T

)
+

N∑

n=1

L
(α)
n (ϑ)∥∥∥L
(α)
n

∥∥∥
2

wα

1

n
wα+1(t)L

(α+1)
n−1 (t). (2.55)

Figs. 2.7 to 2.9 show the impulse and step responses of several diffs. As for Hermite diffs.

significant overshoots appear in the step responses when ϑ = 0, i.e, for the delay-free case.

These overshoots decrease with increasing α. Contrarily, the overshoots are negligible when

ϑ = l
(α)
N+1, i.e., when the approximation is delayed. While for α = 0 the maximum of the impulse

response is at the beginning of the interval, for increasing α it moves to the right. Thus, for

α = 0 the most recent values of f are multiplied with the strongest weights, which is not true

any more when α is increased. This corresponds to the increase of the estimation delay for

increasing α as shown in Fig. 2.5.
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Figure 2.8: Impulse and step responses of a Lag. diff. for N = 1 and various values of α.
Differentiators with delay are shown on the left and delay-free ones on the right.

Cascade of diffs. Let ḡi = ḡ
(αi)
0,Ti,ϑ

and recall that it is a density function with mean value ηi

and variance σ2
i given in (2.54). Consider a cascade of p ∈ N diffs. The impulse response Gp

of this cascade can be written as the convolution product of the impulse responses ḡi of the

diffs. From (Papoulis, 1962, Sec. 11.2) it follows that the first and second moments of Gp are

η(p) =

p∑

n=1

ηi and σ2(p) =

p∑

n=0

σ2
i . (2.56)

Since the third moments

m3,i =

∫ ∞

−∞
τ3ḡi(τ)dτ = T 3(α+ 1)(α+ 2)(α+ 3)

of ḡi, i ∈ {1, . . . , p}, are finite and limp→∞ σ2(p) = ∞, by using the central-limit theorem (see,

e.g., (Papoulis, 1962, Sec. 11.2)) it can be concluded that Gp tends to a Gaussian function,

i.e.,

Gp(t)→
1

σ
√

2π
e−(t−η(p))2/(2σ2(p)) for p→∞.

Define the duration Dt of a function f : t 7→ f(t) by Dt{f} =
∫∞
−∞ t2|f(t)|dt, the duration Dω of its

Fourier transform F by Dω{f} =
∫∞
−∞ ω2 |F(ω)|dω, and its energy by E{f} =

∫∞
−∞|f(t)|2dt. The

uncertainty principle (see (Papoulis, 1962, Sec. 4.4)) states that if f satisfies limt±∞
√
tf(t) = 0,

then
Dt{f}Dω{f}
E{f} >

√
2

π
,
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Figure 2.9: Impulse and step responses of a Lag. diff. for N = 2 and various values of α. Diffs.
with delay are shown on the left and delay-free ones on the right.

and the equality holds only for Gaussian f(t) =
√

β
π e−βt

2

, β > 0. Thus, the cascade Gp con-

verges to a compromise between the width of the impulse response, i.e. a clear concentration

of values to be filtered and thus a high estimation accuracy, and the width of the frequency

response, which corresponds to an effective low-pass effect.

Corollary 2.6: Optimality of cascade of Laguerre diffs.

Consider a cascade of p ∈ N diffs. The impulse response Gp of this cascade converges to

an optimal compromise in the sense of the uncertainty principle between the resolution

in the time and the frequency domain for p→∞.

It follows that the cascade of first-order Laguerre diffs. for the estimation of higher order

derivatives can yield better results. Fig. 2.10 shows the impulse response of a cascade of Lag.

diffs. It can be seen that the responses converge quickly to a Gaussian function.

To parametrise a diff. g(α)
0,ϑ,T with desired mean value η and variance σ2 it is sufficient to

invert (2.54a) and (2.54b) to get

Td = σ2/η and αd =
η2

σ2
− 1. (2.57)
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Figure 2.10: Impulse responses of Gp, the cascade of p Lag. diffs. with α = 4, a diff. g(αp)
0,ϑ,Tp

with αp and Tp from (2.58), and a Gaussian for different values of p. The mean η(p) and the
variance σ(p) are defined in (2.56).

Thus, using (2.54) and (2.57) a Lag. diff. g(αp)
0,ϑ,Tp

can be parametrised by

Tp = T and αp = p(α+ 1)− 1 (2.58)

to get the properties of the cascade Gp. Fig. 2.10 shows the impulse response of g(αp)
0,ϑ,Tp

for

different values of p. It can be seen that, as expected, g(αp)
0,ϑ,Tp

converges to a Gaussian function.

Thus, for α→∞ and N = 0 the Hermite diffs. are recovered from the Lag. diffs.

Frequency-domain properties: Using the Fourier transform of the function

f : t 7→ f(t) =





L
(α)
n (t)e−ttα, for t > 0

0, otherwise,

given in #B.13, the Fourier transform ω 7→ F
{
ḡ

(α)
N,T,ϑ

}
of ḡ(α)

N,T,ϑ can be computed as

F
{
ḡ

(α)
N,T,ϑ

}
(ω) =

N∑

n=0

L(α)
n (ϑ)

(ιωT )n

(ιωT + 1)(α+n+1)
. (2.59)

Since ω 7→ F
{
ḡ

(α)
N,T,ϑ

}
(ω) is continuously differentiable it follows that F {h} with h defined in

(2.38) also has this property. It is then easy to show that the admissibility condition in (2.39)

is satisfied. Thus, the wavelet interpretation given in Section 2.3.5 is valid when Laguerre

polynomials are used.

Fig. 2.11 shows different amplitude spectra of Lag. diffs. with and without delay. It can

be seen that in the delay-free case significant overshoots appear. Delay-free diffs. amplify the

low-frequency content of the signals by more than 100% (e.g, by 280% for N = 2 and α = 4),

which might yield very bad approximations and may not be tolerable in practice.

Annihilators

The algebraic interpretation of numerical differentiation discussed in Section 2.3.2 is now

specified for Lag. diff. and an annihilator of the form (2.33) is derived. As in Section 2.3.2, an

analytic function

f : R+ → R (2.60)
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Figure 2.11: Amplitude spectra of Lag. diffs. for α = 4 and different values of N . Differentiators
with delay are shown on the left and delay-free ones on the right.
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Figure 2.12: Amplitude spectra of Lag. diffs. for different values of α and N . All diffs. exhibit
a delay in the approximation.

is considered. In the operational domain, the truncated Taylor series expansion (2.31) corre-

sponds to

L{fn?}(s) =

n?∑

m=0

1

s1+m
f (m)(0). (2.61)

Recall for convenience that all derivatives, that are not of interest are now considered as

undesired perturbations to be annihilated. Assume for the beginning that n? = n and consider

the differential operator

DL,0 = ρ0(s)

(
d

ds

)n+α0

sn

with ρ0(s) = 1/(s − 1) and α0 ∈ N. In the sequel, let ᾱ0 = n + α0. Applying the operator DL,0 to

(2.61) yields

DL,0L{fN}(s) = ρ0(s)

(
d

ds

)ᾱ0
(

n∑

m=0

sn−m−1f (m)(0)

)

= (−1)ᾱ0 ᾱ0!
ρ0(s)

sᾱ0+1
f (n)(0).

(2.62)
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Thus, the differential operator DL,0 and the function s 7→ (−1)ᾱ0 ᾱ0!ρ0(s)/sᾱ0+1 are associated.

Writing (2.62) in the time domain and replacing fN by f , as in Section 2.3.2, yields

∫ t

0

e−ττ ᾱ0f (n)(τ)dτ = (−1)ᾱ0f (n)(0)

∫ t

0

e−ττ ᾱ0dτ,

= (−1)ᾱ0γ (ᾱ0 + 1, t) f (n)(0).

Thus, an approximation of the n-th order derivative is

f̂ (n)(0) =
(−1)ᾱ0

γ (ᾱ0 + 1, t)

∫ t

0

e−ττ ᾱ0f (n)(τ)dτ.

Recalling from #A.14 that limt→∞ γ (ᾱ0 + 1, t) = Γ(ᾱ0 + 1) = ᾱ0! and assuming that the integral

on the right side of the latter equation exists16, the approximation of the desired derivative

after an infinite time is

f̂ (n)
∞ (0) =

1

(−1)ᾱ0 ᾱ0!

∫ ∞

0

e−ττ ᾱ0f (n)(τ)dτ.

To obtain a causal approximation of the derivate at time t it is now sufficient to replace f (n)(τ)

in the latter equation by (−1)ᾱ0f (n) (t− τT ) Θ (t− τT ), where the parameter T > 0 can be used

to dilate or contract the interval [0,∞). The obtained approximated derivative is

f̂ (n)(t) =
1

ᾱ0!

∫ ∞

0

e−ττ ᾱ0f (n) (t− τT ) Θ (t− τT ) dτ

=

∫ t

0

g
(α0+n)
0,T,ϑ (t− τ)f (n)(τ)dτ,

(2.63)

with g
(α0+n)
0,T,ϑ defined in (2.51), and corresponds to the approximated (2.48) derived using the

approximation theoretic approach. Thus, the Lag. diff. defined in Definition 2.7 with α ∈ N
and N = 0 can also be derived using differential-algebraic manipulations of truncated Taylor

series when the function of which the derivative is to be approximated is analytic.

The case of a Taylor expansion of order n? > n is considered by

1. extending the differential operator in (2.60) to also annihilate the derivatives of orders

greater than n, and by

2. exploiting the property (2.52) stating that any Lag. diff. with N > 0 can be written as a

linear combination of minimal ones.

For this purpose, start with the differential operator

DL,l = ρ0(s)

(
d

ds

)n+l
1

s

(
d

ds

)n?−n
sn
?+1

that annihilates all derivatives that are not of interest. This operator is associated to the

function ρl : s 7→ ρl(s) = (n? − n)!(n + l)!(−1)n+lρ0(s)/sn+l+1. Consider now the differential

operator

DL =

N∑

n=0

n∑

m=0

l
(α)
n,m,ϑ

(n? − n)!
DL,α+m+1−n, α ∈ N>n−1,

16Recall that this corresponds to the assumption on f (n) used for the derivation of the diffs. using the
approximation-theoretic approach in Section 2.1.2.
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with l
(α)
n,m,ϑ defined in (2.52b), motivated by the linear combination of minimal diffs. in (2.52).

This differential operator is associated to the function

ρ : s 7→ ρ(s) =

N∑

n=0

n∑

m=0

l
(α)
n,m,ϑ

(n? − n)!
ρl(s).

Exploiting the shifting of the origin as in (2.63), a dilatation parameter T , and the property

(2.52) yields the approximated derivative

f̂ (n)(t) =

∫ t

0

g
(α)
N,T,ϑ(t− τ)f (n)(τ)dτ.

Thus, with a suitable combination of differential operators, Lag. diff. with α ∈ N can also be

derived using differential-algebraic manipulations on truncated Taylor series assuming that

the function of which the derivative is to be approximated is analytic.

2.4.3 Jacobi differentiators

Recall from Table 2.1 that Jacobi polynomials are orthogonal on the interval Iw(α,β) = (−1, 1).

The time transformation required for the causal approximation of functions follows from

Table 2.2 as
ϕt,T : Iw → I(t),

τ 7→ ϕt,T (τ) = t+
τ − 1

2
T,

(2.64a)

and its inverse is
ϕ−1
t,T : I(t)→ Iw,

τ 7→ ϕ−1
t,T (τ) = 1 + 2

τ − t
T

,
(2.64b)

where Iw = [−1, 1] and I(t) = [t− T, t].
The results from (2.18), (2.21), (2.28), and (2.35) can be used to derive the approximation

f̂ of f as

f̂(t) =

∫ T

0

g
(α,β)
N,T,ϑ(τ) f(t− τ)dτ (2.65a)

with

g
(α,β)
N,T,ϑ(τ) =

2

T

N∑

m=0

P
(α,β)
m (ϑ)∥∥∥P

(α,β)
m

∥∥∥
2

((
w(α,β) · P(α,β)

m

)
◦θT

)
(τ), (2.65b)

where
∥∥∥P(α,β)

m

∥∥∥
2

=
2α+β+1Γ(m+ α+ 1)Γ(m+ β + 1)

m!(2m+ α+ β + 1)Γ(m+ α+ β + 1)
, w(α,β)(τ) = (1− τ)α(1 + τ)β ,

and θT (τ) = 1 − 2τ/T . The parameter ϑ influences the estimation delay and the degree of

exactness as discussed in Corollaries 2.2 and 2.3. Choosing ϑ as a zero of the Jacobi OPs of

degree N+1 decreases the approximation error by one order as discussed in the Corollaries 2.1

and 2.4 and yields a delayed approximation. The estimation delay is given in Table 2.3 and

its variation with respect to the parameters α, β, and N is shown in Fig. 2.13. It can be

seen that increasing N and β decreases the delay. Contrarily, increasing α increases the

delay. These numerical observations can be proved using the properties of OPs in Szegö

(1939) as discussed in Kiltz (2017); Mboup (2009); Othmane, Rudolph, and Mounier (2021a),

for example. A delay-free approximation is achieved by choosing ϑ = 1.
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Figure 2.13: Variation of the delay of Jac. diffs. with respect to the parameters α, β, and N .

For the approximation of the n-th order derivatives of a sufficiently differentiable function

f it has been discussed in Section 2.3.1 that the n − 1 first derivatives of g(α,β)
N,T,ϑ must vanish

at the boundaries of [t− T, t]. Recalling the properties of Jacobi polynomials in #A.12 yields

(
g

(α,β)
N,T,ϑ

)(l)

=
22l+1

T l+1

N∑

m=0

(m+ l)!P
(α,β)
m (ϑ)

m!
∥∥∥P

(α,β)
m

∥∥∥
2

(
P

(α−l,β−l)
m+l · w(α−l,β−l)

)
◦ θT (2.66)

for α, β > n− 1 and l ∈ {0, . . . , n− 1}. It is thus clear that for α, β > n− 1 the derivatives always

vanish at the boundaries.

Definition 2.8: Jacobi diff.

Let N,n ∈ N and α, β, ϑ ∈ R, with T > 0 and α, β > n− 1. The function

g
(α,β)
N,T,ϑ : τ 7→ g

(α,β)
N,T,ϑ(τ) =

2

T

N∑

m=0

P
(α,β)
m (ϑ)∥∥∥P

(α,β)
m

∥∥∥
2

(
w(α,β) · P(α,β)

m

)
◦(θT (τ)) ,

with
∥∥∥P(α,β)

m

∥∥∥
2

=
2α+β+1Γ(m+ α+ 1)Γ(m+ β + 1)

m!(2m+ α+ β + 1)Γ(m+ α+ β + 1)
, w(α,β)(τ) = (1− τ)α(1 + τ)β ,

and θT (τ) = 1 − 2τ/T , is called a Jacobi diff. of order n. Its n-th order derivative is given

in (2.66).

From this approximation theoretic viewpoint, the estimation process can be explained as
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Figure 2.14: Three-step process of the estimation of the n-th order derivative f (n) of a function
f : t 7→ f(t) using Jac. diffs. as given in Othmane et al. (2022).

in Othmane et al. (2022) by the following three steps17 illustrated in Fig. 2.14:

1. Projection: At time t, the n-th order derivative f (n) on the interval IT (t) is projected to the

space of polynomials of degree N . This yields the polynomial pN depicted in the left and

middle part of Fig. 2.14.

2. Evaluation: The polynomial pN is evaluated at t − δt, which gives an approximated

derivative ŷ(n)(t) = pN (t− δt) for the derivative y(n)(t) as depicted in the central part of

Fig. 2.14. Choosing the delay to be a root of the OP increases the approximation order by

1 with a precisely known delay. Alternatively, a delay-free estimation or even a prediction

of the future derivative might be selected, at the cost of a reduced accuracy.

3. Repetition: The first two steps are repeated at each time instant ti while keeping the

parameters of the diffs. constant, i.e., evaluating (2.35) at every discrete time instant ti.

This yields the approximated derivative f̂ (n) depicted in the right part of Fig. 2.14, where

the dots show the evaluation of f̂ (n) at discrete time instants.

Filter characteristics

As for the previous diffs. the filter properties of Jac. diffs. are now discussed in the time and

frequency domains. The properties of the filter g(α,β)
N,T,ϑ and the cascade of several filters for

the estimation of higher order derivatives are analysed. The discussions of this section stem

almost entirely from Othmane et al. (2022). The reader is referred to the latter reference for a

more detailed discussion on the effects of the parameters on the estimation errors.

Time-domain properties: From (2.65) it is clear that the diffs. act as linear finite-impulse

response (FIR) filters on the sought derivative. This motivates the analysis of their impulse

and step responses.

The closed form of the impulse response g(α,β)
N,T,ϑ is given in (2.67), which simplifies to

g
(α,β)
0,T,ϑ =

w(α,β) ◦ θT
2α+βTB(α+ 1, β + 1)

17This time-domain interpretation of the numerical differentiation using Jacobi OPs has first been described in
Kiltz (2017); Kiltz and Rudolph (2013).
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for N = 0. In the latter equation, B is the Beta function defined in #A.16.

Using the explicit definition of Jacobi polynomials given in #A.11, any g(α,β)
N,T,ϑ can be written

as a linear combination of minimal Jac. diffs. as

g
(α,β)
N,T,ϑ =

N∑

m=0

m∑

l=0

(
m+ α

l

)(
m+ β

m− l

)
(−1)m−lP(α,β)

m (ϑ)

2m−1T
∥∥∥P

(α,β)
m

∥∥∥
2 w

(α+m−l,β+l) ◦ θT

=

N∑

m=0

m∑

l=0

(
m+ α

l

)(
m+ β

m− l

)
(−1)m−lP(α,β)

m (ϑ)

2m−1
∥∥∥P

(α,β)
m

∥∥∥
2 B

(α,β)
m,l g

(α+m−l,β+l)
0,T,ϑ

(2.68)

with B
(α,β)
m,l = 2α+β+mB(α+m− l + 1, β + l + 1).

The step response has been derived in Kiltz (2017) and reads

h
(α,β)
N,T,ϑ(t) =





0, for t < 0

I t
T

(ᾱ, β̄) +
∑N
m=0

P(α,β)
m (ϑ)∥∥∥P
(α,β)
m

∥∥∥2

(
w(ᾱ,β̄) · P(ᾱ,β̄)

m−1

)
◦(θT (τ)) , for t ∈ [0, T ]

1. otherwise

with ᾱ = α + 1, β̄ = 1 + β, and Iτ the regularised incomplete Beta function defined in #A.18.

Figs. 2.15 to 2.17 depict the responses for different parameters. For N > 0 the impulse

response can become negative and the step response may show an overshoot. This overshoot

increases with increasing α and β. As for the previous diffs., the overshoots of a delay-free

parametrisation are significant (compare the Figs. 2.16 and 2.17). The variation of the delay as

a function of α and β observed in Fig. 2.13 can again be seen in the variation of the impulse

response. Increasing α shifts the maximum towards T which increases the approximation

delay. Contrarily, increasing β shifts the maximum towards 0 and thus decreases the delay.

For α = β and N = 0 both are symmetric around the axis t = T or the point (T/2, 1/2),

respectively. Recall from Othmane et al. (2022) that this parametrisation corresponds to the

Legendre filters. More generally it can be verified that

g
(β,α)
N,T,ϑ

(
t+

T

2

)
= g

(α,β)
N,T,−ϑ

(
T

2
− t
)
. (2.69)

Cascading differentiators: In (Kiltz, 2017, Sec. 3.2.2) it has been proven that a cascade of

an infinite number of minimal diffs. converges to a Gaussian kernel G. Let ḡp(t) = g1(t)g2(t) · · · gp(t),
where gi(t) = g

(αi,β)
0,Ti,ϑ

(t), i = 1, . . . , p, and T̄p =
∑p
i=1 Ti. Then

ḡp(t)→
1

σp
G

(
t− µp
σp

)
for p→∞

with µp and σ2
p the mean value and variance of the filter gp. For their closed-form expressions

the reader is referred to (Kiltz, 2017, Eq. (3.11)). It has also been proven there that for p→∞
the diff. ḡp corresponds to the best compromise between the width of the impulse response

and that of the frequency response, i.e., for p → ∞, ḡp converges to an optimal compromise

in the sense of the uncertainty principle between the resolutions in the time domain and the

frequency domain. This explains the observation made in Mboup and Riachy (2014): Two

successive first-order diffs. instead of one second order diff. can be better.
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Figure 2.15: Impulse and step responses of a minimal Jac. diff. g(α,β)
N,T,ϑ with the parameters

α, β ∈ {1, 3, 6}, and N = 0.
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Figure 2.16: Impulse and step responses of a Jac. diff. g(α,β)
N,T,ϑ with the parameters α, β ∈

{1, 3, 6}, N = 1, and ϑ = p
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Figure 2.17: Impulse and step responses of a delay-free Jac. diff. g(α,β)
N,T,ϑ with the parameters

α, β ∈ {1, 3, 6}, ϑ = 1, and N = 1.
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Furthermore, it has been shown in (Kiltz, 2017, Sec. 3.2.2) that the diff. g(ᾱp,β̄p)

0,T̄p,ϑ
with

ᾱp =

(
µp
σp

)2(
1− µp

T̄p

)
−
(

1 +
µp
T̄p

)
and β̄p =

((
µp
σp

)2

+ 1

)(
µp
T̄p
− 2

)
+
T̄pµp
σ2
p

is an approximation of a Gaussian kernel with mean value µp and variance σ2
p.

Frequency-domain properties: Denote by ω 7→ F(ω) the Fourier transform of the signal

t 7→ f(t). Recall that the algebraic derivative approximation of the n-th order derivative of f is

f̂ (n)(t) =

∫ T

0

g(n)(τ)f(t− τ)dτ, with g(n)(τ) =

(
d

dτ

)n
g

(α,β)
N,T,ϑ(τ),

the Fourier transform of which reads

F
{
f̂ (n)

}
(ω) = (ιω)nG(α,β)

N,T,ϑ(ιω)F(ω),

with G(α,β)
N,T,ϑ the Fourier transform of g(α,β)

N,T,ϑ. Again it is clear that this numerical differen-

tiation approach falls within the framework of classical approaches for differentiation in

the frequency domain, where a smoothing filter, in this case G(α,β)
N,T,ϑ, is followed by an ideal

differentiation operator (ιω)n.

Analysing G(α,β)
N,T,ϑ is thus crucial to tune the parameters. Its closed-form has been derived

in Kiltz (2017); Kiltz, Mboup, and Rudolph (2012); Mboup and Riachy (2018). One possible

representation of G(α,β)
N,T,ϑ is

G(α,β)
N,T,ϑ(ω) =

N∑

i=0

(α+ β + 2i+ 1)P
(α,β)
i (ϑ)

α+ β + i+ 1

i∑

k=0

(−1)i−k
(
i

k

)
M

(α,β)
i,k (−ιωT )

with

M
(α,β)
i,k (z) = M(α+ i− k + 1, α+ β + i+ 2, z), z ∈ C,

where M is the confluent hypergeometric function defined in Abramowitz and Stegun (1965).

Since ω 7→ G(α,β)
N,T,ϑ(ω) is continuously differentiable it follows that the Fourier transform H of h

with h defined in (2.38) also has this property. It is then easy to show that the admissibility

condition in (2.39) is satisfied. Thus, the wavelet interpretation given Section 2.3.5 is valid for

Jacobi polynomials, which has been first discovered in Mboup and Riachy (2018).

In the frequency domain, the symmetry property of g(α,β)
N,T,ϑ discussed earlier and given in

(2.69) corresponds to

eι
ωT
2 G(β,α)

N,T,ϑ(ω) = e−ι
ωT
2 G(α,β)

N,T,−ϑ(−ω)

and implies ∣∣∣G(β,α)
N,T,ϑ(ω)

∣∣∣ =
∣∣∣G(α,β)
N,T,−ϑ(ω)

∣∣∣ .

As in Kiltz (2017); Mboup and Riachy (2018), it is assumed in the sequel that α 6 β. By the

latter symmetry property the next results hold also for α > β by exchanging α and β and

mirroring the estimation delay at T/2.

Annihilators

For the estimation of the n-th order derivative, n ∈ {0, . . . , n?}, the operational domain formu-

lation in (2.32) is reconsidered. All the terms sN−ix(i)(0), i 6= n, are now viewed as undesired
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perturbations to be annihilated. Assume first that the Taylor series (2.32) is truncated at the

sought derivative, i.e. n? = n.

Consider now the differential operator

Π(α0,β0)
n =

1

sN+β0+1

(
d

ds

)n+α0

sn, α0, β0 ∈ N,

associated to the rational function

ρ(α0,β0)
n (s) =

(−1)n+α0(n+ α0)!

sα0+β0+2+2n
.

The notation f̂ (n)(0;α0, β0, T ) is adopted for the approximation of f (n)(0) when n? = n.

Transforming

Π(α0,β0)
n XN (s) = ρ(α0,β0)

n (s)f (n)(0),
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back into the time domain yields the expression

f̂ (n)(0;α0, β0, T ) =
γα0,β0,n

Tα0+β0+2n+1

∫ T

0

(T − τ)β0+nτα0+nf (n)(τ)dτ,

where T denotes an estimation time and

γα0,β0,n =
(α0 + β0 + 2n+ 1)!

(α0 + n)!(β0 + n)!
.

To obtain a causal approximation of the n-th order derivative at a time t > T , it is sufficient

to consider the sliding window IT (t) = [t− T, t], with window length T . This yields linear time-

invariant filters and the resulting approximated derivative corresponds to

f̂ (n)(t) =

∫ T

0

g
(α0+n,β0+n)
0,T,ϑ (τ)f (n)(t− τ)dτ.

with g
(α0+n,β0+n)
0,T,ϑ from (2.65b). Thus, the Jac. diff. with α, β ∈ N and N = 0 can be derived

using algebraic manipulations of truncated Taylor series.

Recall from (2.68) that any Jac. diff. with N > 0 can be written as a linear combination

of minimal Jac. diffs., i.e., diff. with N = 0. As for the case of Laguerre polynomials in

Section 2.4.2, a differential operator can be derived to get the approximation of the derivative.

Since the steps are identical the details are omitted here. The original derivation of the

operators for N > 0 has been proposed in Mboup (2009); Mboup et al. (2007).

2.4.4 Bibliographical and historical comments

In18 Fliess and Sira-Ramírez (2003a) new algebraic approaches for the non-asymptotic esti-

mation of parameters and states of linear systems have been proposed. These approaches

are based on module theory, differential algebra, and operational calculus. They permit the

18These bibliographical and historical comments related to the Jac. diffs. stem entirely from Othmane et al. (2022).
The reader is referred to this reference for a more detailed discussion and an exhaustive survey of applications of
Jac. diff.
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annihilation of structured perturbations and exhibit good robustness properties with respect

to corrupting disturbances, without the need to know their statistical properties, as discussed

in Fliess (2006, 2008).

The approaches have then been used and extended in Fliess, Join, Mboup, and Sira-

Ramírez (2004); Fliess, Join, and Mounier (2004); Fliess and Sira-Ramírez (2004) for the

estimation of time derivatives of noisy signals. The works Mboup (2009); Mboup et al. (2007);

Mboup et al. (2009) have further extended these approaches to obtain a least squares inter-

pretation for the approximated derivatives and an implementation in terms of linear shift-

invariant finite impulse response (FIR) digital filters. With these filters the estimation of

individual derivatives is possible, which avoids the inversion of a possibly ill-conditioned

matrix, as discussed in Mboup et al. (2007). Each of these individual derivatives can be

seen as a single parameter to be estimated. In Mboup et al. (2009) it has been shown that

admitting a small delay in the approximation can improve its accuracy by one order, where

this favourable delay can be computed from the parameters of the diffs. Later works Kiltz

(2017); Kiltz and Rudolph (2013); Liu et al. (2010, 2011a, 2011b) have derived the filters in

the time domain by using orthogonal projections and Jacobi polynomials. This has extended

the range of the parameters involved from the set of natural numbers to a subset of the real

numbers.

The use of the Gaussian kernel from (2.44) as a mollifier has been discussed in detail in

(Murio, 2011, Ch. 1) and its use in the control community has been described in Braci and

Diop (2003); Diop, Fromion, and Grizzle (2001), for example. However, the resulting estimation

delay has not been discussed in earlier works. The use of Hermite polynomials allows richer

signals models and decreases the estimation delay. An algebraic derivation of annihilators

for Hermite diffs. and Lag. diffs. using Weyl algebra has been proposed in Ushirobira (2018);

Ushirobira and Quadrat (2016). The properties of the resulting diffs., like the estimation error,

have been discussed for the first time in this chapter.

2.5 Summary and concluding remarks

Different derivation methods and interpretations for numerical differentiation approaches

based on OPs have been discussed in this chapter. The differential-algebraic manipulations

of truncated Taylor series in the algebraic context has shown the relation to the linear iden-

tifiability of parameters. The derivation using the orthogonal projections has been used for

the analysis of the estimation errors and the estimation delay. The filter interpretation has

permitted to associate to these diffs. a system theoretic interpretation. Table 2.4 summarises

these findings19. For all discussed approaches it has been shown that admitting a small but

known delay reduces the estimation error by one order and avoids overshoots in the amplitude

spectra.

All orth. diffs. discussed in this chapter depend on several parameters. During their design

for specific applications, it is important to choose the parameters such that the estimation er-

ror is minimised. Needless to say that finding good compromises without relying on trial-and-

error approaches is important. Moreover, in most applications, measurements are available at

discrete sampling instants only. Thus, the convolution integral (2.35) must be approximated

19A similar table summarizing the properties of Jac. diffs. has first been published in Othmane et al. (2022)
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2. NUMERICAL DIFFERENTIATION USING ORTHOGONAL POLYNOMIALS

Table 2.4: Summary of the interpretations of the discussed diffs. gN,ϑ from Definition 2.5 and
the practical usage of each.

Context Interpretation Practical usage

Algebraic
Annihilation of undesired
perturbations with the
annihilator in (2.33)

Relation to linear
identifiability

Approximation
theoretic

Polynomial approximation of
derivative using a Hilbert
reproducing kernel

Analysis of estimation
properties and relation to
established differentiation
methods

Systems theoretic

Linear time invariant filtering of
the sought derivative in (2.36):

f (n)

gN,ϑ ◦ θT
f̂ (n)

Analysis of filter properties
and parametrisation

Linear time invariant filtering of
the measured signal in (2.35):

f
(gN,ϑ ◦ θT )

(n)
f̂ (n) Implementation

by an appropriate quadrature method. These problems are addressed in detail in the next

chapter.
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3

Tuning and real-time implementation of classical
orthogonal differentiators

The differentiators (diffs.) developed in the last chapter depend on numerous parameters.

For example, a Jacobi differentiator (Jac. diff.) depends on the parameters α, β, T , ϑ, and

N . Thus, five numerical values must be assigned to these parameters, which is challenging

since the approximated derivative cannot be compared to the true one. For instance, consider

the parameter T : Decreasing it decreases the estimation error stemming from the polynomial

approximation and increases the noise contribution, whereas increasing T yields the opposite

results (see, e.g., Corollaries 2.4 and 2.5). Finding good compromises without relying on

trial-and-error approaches is important in practice. Furthermore, in most applications, the

measurement is only available at discrete sampling instants. Thus, the convolution integrals

seen in the last chapter must be approximated by sums.

This chapter discusses systematic tuning guidelines for the diffs. based on classical orthog-

onal polynomials. The guidelines can be used to design diffs. with desired frequency-domain

properties. The discrete-time implementation is then addressed in light of these properties.

Different discretisation schemes are discussed, and the preservation of the frequency-domain

properties is considered using an error norm initially proposed for Jac. diff. in Kiltz (2017).

It is shown that all diffs. can be implemented as finite-impulse response (FIR) filters, with a

filter window length that needs to be computed. It is then shown that Jacobi and Laguerre

diffs. can be efficiently implemented using recursive schemes. For the Jac. diffs., the recursive

implementation has been derived in Kiltz (2017). This implementation can significantly reduce

the memory requirements and computational burden. Moreover, it is shown that Laguerre

differentiators (Lag. diffs.) can be efficiently used for the simultaneous approximation of

numerous derivatives. This bridges the gap to known approaches like the high-gain (HG)

diffs. (see, e.g., Dabroom and Khalil (1997, 1999); Esfandiari and Khalil (1992)) and the state

variable filters (see, e.g., Hofmann, Lion, and Best (1966); Peter and Isermann (1990); Young

(1981)). It is shown that for a special parametrisation of the Lag. diffs. it is possible to recover

state variable filters and HG diffs.

The parametrisation of Jac. diffs. has first been discussed in Mboup et al. (2007) and

then in Liu (2011); Liu et al. (2010, 2011a) in the time-domain. Later works Kiltz (2017);

Kiltz and Rudolph (2013); Mboup and Riachy (2014, 2018) propose frequency-domain tuning

guidelines. A summary of these discussions is provided in Othmane et al. (2022). Thus,

this chapter only summarises the most important tuning guidelines for the Jac. diffs. While
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3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS

Laguerre and Hermite polynomial-based diffs. have been proposed in Ushirobira (2018); Ushi-

robira and Quadrat (2016), no tuning guidelines have been developed and the discrete-time

implementation has not been addressed in the literature.

The systematic tuning guidelines and the discretisation issues are illustrated using some

academic examples first. Then, different experimental case studies are performed to show

the application of the diffs. The first and second order derivatives of a known but disturbed

laboratory measurement are approximated. The three diffs. are compared with respect to the

quality of the estimation and the required computational burden and storage requirements.

Then, the use of diffs. for the approximate inversion of analogue anti-aliasing filters is dis-

cussed.

The chapter ends with Section 3.4 discussing an automatic tuning approach for all diffs.

This approach is based on an optimisation problem that requires only the measured signal.

It is shown that the approach yields excellent results with experimental data.

Chapter content
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3.3 Application of systematic tuning guidelines . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Derivative approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Approximate inversion of analogue anti-aliasing filters . . . . . . . . . . . . 82

3.4 Automatic tuning of orthogonal differentiators . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Examples for automatic tuning . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1 Systematic tuning of classical orthogonal differentiators

In the following, systematic tuning guidelines for the parametrisation of the diffs. shall be

discussed. These approaches rely on the analysis of the Fourier transform of the diffs.

3.1.1 Tuning of Hermite differentiators

From the analysis of the Fourier transform of Hermite differentiators (Hermite diffs.) in Sec-

tion 2.4.1 it can be seen that in the amplitude of the Fourier transform given in (2.46) the

weight function of the Hermite polynomials appears. It is then easy to conclude that the

Hermite diffs. have a low-pass property: While the low-frequency components of signals are
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Figure 3.1: Low-pass interpretation of Hermite diffs. with delay for different values of the
parameter N . The cutoff frequency is the frequency for which the amplitude is equal to −3 dB.

passed through, high-frequency ones are attenuated. In the case of a delay-free approxima-

tion, high overshoots can, however, appear in the amplitude spectrum, as shown in Fig. 2.4.

Thus, for a delayed approximation, the parameter T can be adapted to achieve, for frequen-

cies ω that are lower than a specific frequency ωc, an amplitude attenuation lower than Fωc
.

The frequency ωc and the interval |ω| 6 ωc are called the cutoff frequency and the passband,

respectively. The interval |ω| > ωc is called stopband. This low-pass filter interpretation is

illustrated in Fig. 3.1. The parameter µ does not affect the amplitude spectrum and only

influences the phase spectrum as can be seen in (2.46), for example.

Hermite diffs. with N = 0, also known as Gaussian filters (see, e.g., Papoulis (1962)), have

been very popular to filter disturbed measurements. Application of these low-pass filters can

be found in Canny (1986); Koenderink (1984); Marr and Hildreth (1980); Witkin (1987) for

image processing or Diop et al. (2001, 2000); Murio (2011) for numerical differentiation to

name only a few.

3.1.2 Tuning of Laguerre differentiators

Recalling the amplitude spectrum of Lag. diffs. depicted in Figs. 2.11 and 2.12 for some

example parametrisations, it can be observed that for low frequencies the amplitude is close

to 0 dB and decreases significantly for high frequencies. Thus, a piecewise approximation of

the amplitude spectrum of (2.59) that yields a low-pass interpretation shall be proposed.

The limit

lim
ω→0
F
{
ḡ

(α)
N,T,ϑ

}
(ω) = 1

and the expansion1

F
{
ḡ

(α)
N,T,ϑ

}
(ω) =

1

(ιωT )α+1

N∑

n=0

L(α)
n (ϑ) +O

(
1

(ιωT )α+2

)
, ω →∞, (3.1a)

1The expansion (3.1a) follows from the fact that

1

(ιωT + 1)α+1
=

1

(ιωT )α+1

(
1 +

1

ιωT

)−α−1

=
1

(ιωT )α+1

∞∑
n=0

(−α− 1

n

)( 1

ιωT

)n
,

with
(−α−1

n

)
= (−α− 1)(−α− 2) . . . (−α− n)/n!. The binomial series converges for |ω| > T (see, e.g., Abel (1826)).
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Figure 3.2: Amplitude spectra of Lag. diffs. with delay for various values of N , α = 4 and
ϑ = l

(α)
N+1. The approximation (3.2) is depicted with a dashed line.

motivate the piecewise approximation

∣∣∣F
{
ḡ

(α)
N,T,ϑ

}
(ω)
∣∣∣ ≈





1, for |ω| < ωc,

| ωωc |
−α−1

, otherwise,
(3.2a)

of the amplitude spectrum with

ωc =
1

T

∣∣∣∣∣
N∑

n=0

L(α)
n (ϑ)

∣∣∣∣∣

1
α+1

. (3.2b)

The frequency ωc is called the cuttoff frequency of the diff. The intervals |ω| 6 ωc and |ω| > ωc

are called the passband and the stopband, respectively. The amplitude spectrum asymptoti-

cally decreases by 20(α + 1) dB per frequency decade for high frequencies. Thus, the diff. can

be interpreted as a low-pass filter of order α+1. Figs. 3.2 to 3.4 depict the amplitude spectra of

diffs. for various parameter combinations and the corresponding approximations from (3.2).

It can be seen that it well describes the relevant properties of the amplitude spectra except

around overshoots that appear for the delay-free parametrisation as shown in Fig. 3.4.

This analysis motivates the following parametrisation procedure. First, choose the polyno-

mial degree N and the order of the low-pass filter α + 1, i.e., the stopband slope. Then, the

parameter T can be calculated to achieve a desired cutoff frequency ωc by rewriting (3.2b) as

T =
1

ωc

∣∣∣∣∣
N∑

n=0

L(α)
n (ϑ)

∣∣∣∣∣

1
α+1

.

3.1.3 Tuning of Jacobi differentiators

First tuning aspects of Jac. diffs. have been discussed in the initial works Mboup et al.

(2007); Mboup et al. (2009). Further discussions on the effects of the parameters in the

time domain can be found in Liu (2011); Liu et al. (2010); Liu et al. (2008). Promising

tuning approaches based on the frequency-domain analysis of the diffs. have been proposed in

Kiltz and Rudolph (2013); Mboup and Riachy (2014, 2018); Othmane, Mounier, and Rudolph

(2021). The following paragraphs have first been published in Othmane et al. (2022) and recall

the most important approaches that are useful for a systematic tuning of the diffs. to achieve

desired frequency-domain properties.
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Figure 3.3: Amplitude spectra of Lag. diffs. with delay for varying filter orders α, N = 1 and
ϑ = l

(α)
N+1. Dashed lines show the approximations from (3.2).
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Figure 3.4: Amplitude spectra of delay-free Lag. diffs. for varying filter orders α and
parameters N = 1 and ϑ = 0. The approximations from (3.2) are given in dashed lines.

Exact analysis

The effect of N on the filter amplitude spectrum is considered first. While increasing N

augments the accuracy of the underlying signal model, it increases the sensitivity to noise.

It has been shown in (Mboup & Riachy, 2018, Prop. 3.1) that the L2-norm
∥∥∥G(α,β)

N,T,ϑ

∥∥∥
L2

is an

increasing function of N . Thus, the filter output noise power increases with N . The variation

of
∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ with respect to N is depicted in Fig. 2.19. For the delay-free parametrisation

significant overshoots can be observed. This explains the poor performance of the delay-free

Jac. diff. noticed in Mboup et al. (2009) and explained in Mboup and Riachy (2014).

Minimal diffs. allow for a particularly pronounced noise rejection. It has been proven in

(Mboup & Riachy, 2018, Lem. 3.1) that

∥∥∥G(α+l,β)
0,T,ϑ

∥∥∥
L2

<
∥∥∥G(α+m,β)

0,T,ϑ

∥∥∥
L2

, l < m,

i.e., the overall noise power increases with the difference |α− β| as depicted in Fig. 2.20. This

effect has first been observed in Mboup and Riachy (2014) and has led the authors in Mboup

and Riachy (2018) to recommend the parametrisation α = β also for the affine (and minimum

variance) diffs. .

For α = β and N = 0 the amplitude spectrum possesses infinitely many zeros. In fact, as
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discussed in Kiltz (2017); Kiltz et al. (2012) the Fourier transform reads

G(α,α)
0,T,ϑ (ω) = e−ι

ωT
2 Γ

(
α+

3

2

)(
4

ωT

)α+ 1
2

Jα+ 1
2

(
ωT

2

)
,

where Jα+ 1
2

is the Bessel function of the first kind and order α + 1/2 defined in #A.20. The

parameters α and T can now be chosen such that the zeros of G(α,α)
0,T,ϑ coincide with specific

frequencies. This has been used in Kiltz (2017); Kiltz, Janocha, and Rudolph (2013); Kiltz

and Rudolph (2013) to compute derivatives of experimental signals corrupted by a harmonic

disturbance with a known frequency without resorting to further filtering methods. The

approach is extended in Othmane, Mounier, and Rudolph (2021) to approximately annihilate

disturbances with Fourier transforms showing repetitive peaks and applied to the estimation

of derivatives of quantised signals.

Asymptotic analysis

The work Kiltz and Rudolph (2013) shows that algebraic diffs. can be interpreted as low-pass

filters with a desired cutoff frequency and arbitrary low-pass order, i.e., stopband slope. This

will be briefly reviewed along with the extensions in Kiltz (2017).

Using the asymptotic expansion of the confluent hypergeometric function (Abramowitz &

Stegun, 1965, Ch. 13), it has been proven in (Kiltz, 2017, Sec. B.3.3) that the amplitude

spectrum ω 7→
∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ of the diff. g(α,β)
N,T,ϑ satisfies

∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ =
∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣+O
(
|ω|−µ−min{κ,1}

)
, ω →∞,

where
∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣ =
q

(α,β,σ)
N,ϑ

Γ(µ+ κ) |ωT |µ , µ = 1 + min{α, β}, κ = |α− β| , (3.3)

and

q
(α,β,σ)
N,ϑ =





Γ(µ) max
{∣∣∣r(µ,0,σ)

N,T

∣∣∣ , s(µ,0,σ)
N,T

}
, κ = 0,

Γ(µ+ κ)
∣∣∣r(µ,κ,σ)
N,T

∣∣∣ , κ > 0,

σ =





1, α 6 β,

−1, α > β,

r
(µ,κ,σ)
N,ϑ =

N∑

i=0

c
(µ,κ)
i

Γ(µ+ κ+ i)
P

(µ−1,µ+κ−1)
i (σϑ),

s
(µ,κ,σ)
N,ϑ =

N∑

i=0

(−1)i
c
(µ,κ)
i

Γ(µ+ i)
P

(µ−1,µ+κ−1)
i (σϑ),

c
(µ,κ)
i = (2µ+ κ+ 2i− 1) Γ(2µ+ κ+ i− 1).

Consequently, for large frequencies the amplitude spectrum ω 7→
∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ can be approxi-

mated by the asymptote ω 7→
∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣.
Additionally, in (Kiltz, 2017, Sec. B.3.3) the asymptotes

Ĝ(α,β)
N,T,ϑ(ω) =

∣∣∣∣∣

∣∣∣∣∣
r

(µ,κ,σ)
N,ϑ

(ωT )
µ

∣∣∣∣∣−
∣∣∣∣∣
s

(µ,κ,σ)
N,ϑ

(ωT )
µ+κ

∣∣∣∣∣

∣∣∣∣∣ , Ĝ(α,β)
N,T,ϑ(ω) =

∣∣∣∣∣
r

(µ,κ,σ)
N,ϑ

(ωT )
µ

∣∣∣∣∣+

∣∣∣∣∣
s

(µ,κ,σ)
N,ϑ

(ωT )
µ+κ

∣∣∣∣∣ (3.4)
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for the lower and upper envelopes, respectively, of the amplitude spectrum of the diff. have

been derived.

For N = 0 and α = β, it holds that
∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣ = 0, which is consistent with the observation

that the filter amplitude spectrum has infinitely many zeros.

Fig. 3.5 depicts two amplitude spectra with the corresponding approximations. It is clear

that even though the latter approximation is derived for large frequencies, the convergence

rate of the approximation error is high and the bounds can be used for the in depth of the

effects of the parameters on the filter. In Othmane, Rudolph, and Mounier (2021a) a region of

validity for the approximation is derived.

The function ω 7→ ∆Ĝ(α,β)
N,T,ϑ(ω) = Ĝ(α,β)

N,T,ϑ(ω) − Ĝ(α,β)
N,T,ϑ(ω) describes the distance between the

bounds introduced in (3.4). It satisfies

∆Ĝ(α,β)
N,T,ϑ(ω) = p

(α,β,σ)
N,T

∣∣∣ωc
ω

∣∣∣
µ+κ

, (3.5)

for κ = 0 and |ωT |κ > k =
∣∣∣r(µ,κ,σ)
N,ϑ /s

(µ,κ,σ)
N,ϑ

∣∣∣. In the latter equation

p
(α,β,σ)
N,T =





2 min{k, 1/k}, for κ = 0,

2k/
∣∣∣r(µ,κ,σ)
N,ϑ

∣∣∣
κ

, otherwise,

ωc =
1

T

(
q

(α,β,σ)
N,ϑ

Γ(µ+ κ)

) 1
µ

, (3.6)

where ωc is referred to as the cutoff frequency.

Comparing (3.6) with the asymptote
∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣ introduced in (3.3), it can be seen that

∣∣∣Ĝ(α,β)
N,T,ϑ(ω)

∣∣∣ =
∣∣∣ωc
ω

∣∣∣
µ

.

Since, moreover, it can be shown that limω→0 G(α,β)
N,T,ϑ(ω) = 1, Kiltz and Rudolph (2013) has

proposed the following approximation of the amplitude spectrum of the Jac. diff.

∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ ≈ G̃(α,β)
N,T,ϑ(ω) =





1, for |ω| 6 ωc,
∣∣ωc
ω

∣∣µ , otherwise.
(3.7)

As it can be seen in Fig. 3.5 for two example diffs., (3.7) is a remarkably good approximation

of the amplitude spectrum, except around overshoots.

The tuning guidelines developed in Kiltz and Rudolph (2013) can then be easily deduced

from (3.7): The diff. window length T can be chosen by using a desired cutoff frequency from

(3.6). The parameter µ = 1 + min{α, β} can be used to get a desired filter order, i.e., the

stopband slope given by 20µdB. It follows from (3.5) that increasing κ = |α− β| increases the

convergence speed of the difference ∆Ĝ(α,β)
N,T,ϑ(ω) between the bounds to zero, which supports

the statement from Mboup and Riachy (2018) reported above that the choice α = β decreases

the sensitivity to noise.

3.2 Implementation of classical orthogonal differentiators

In most applications, the function f is known at discrete sampling instants only. Then, the

convolution integrals must be approximated by an appropriate quadrature method, which
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∣∣∣Ĝ(α,β)N,T,ϑ(ω)
∣∣∣

Figure 3.5: Amplitude spectrum ω 7→
∣∣∣G(α,β)
N,T,ϑ(ω)

∣∣∣ of a Jac. diff. g(α,β)
N,T,ϑ along with the upper and

lower bounds from (3.4), the approximations G̃(α,β)
N,T,ϑ from (3.7) and the low-pass interpretation

for two parametrisations. The left figure shows a diff. with delay. The right figure shows a
delay-free one.

yields discrete FIR filters. In the following, equidistant sampling with sampling period ts is

assumed for simplicity. For the sake of brevity, the abbreviation fi = f(its), i ∈ N, for a sample

of a function f at time its is used in the sequel. The discretisation of the Hermite, Laguerre,

and Jacobi diffs. is discussed in the following.

3.2.1 Implementation of Hermite differentiators

Recall from Section 2.4.1 that the n-th order derivative of a function f can be approximated

as

f̂ (n)(t) =

∫ t

−∞
g(n)(t− τ)f(τ)dτ, g = gN,T,ϑ,µ, (3.8)

with gN,T,ϑ,µ a Hermite diff. defined in Definition 2.6.

Continuous-time FIR approximation

The values gN,T,ϑ,µ(τ) vanish for τ � µ and τ � µ as depicted in Fig. 2.2 for different diffs., for

example. This motivates the following approximation

f̂ (n)(t) ≈
∫ µ+τ+

µ−τ−
g(n)(τ)f(t− τ)dτ, τ−, τ+ > 0,

where the integration bounds from (3.8) have been adapted. Thus, an FIR filter is recovered

with the window length TL = τ+ + τ−.

To determine τ− and τ+ the approach proposed in Kiltz (2017) for the truncation of the

filter window length of Jac. diff. is used. Consider the distribution function

Φ(t) =

∫ t
−∞

∣∣g(n)(τ)
∣∣dτ

m0

(∣∣g(n)
∣∣) , (3.9)
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Figure 3.6: Approximation of the first-order derivative of the Hermite diff. g = gN,T,ϑ,µ from
Example 3.1 as an FIR filter with window length TL using the distribution function Φ given in
(3.9).

with m0 the moment of g(n) of order 0 defined as

m0

(∣∣∣g(n)
∣∣∣
)

=

∫ ∞

−∞

∣∣∣g(n)(τ)
∣∣∣ dτ.

To ensure that the truncation at both interval ends is approximately equal it is sufficient to

choose Φ(µ − τ−) = 1 − Φ(µ + τ+). Assuming that f is continuous, the error stemming from

this approximation can be easily upper bounded as
∣∣∣∣∣f̂

(n)(t)−
∫ µ+τ+

µ−τ−
g(n)(τ)f(t− τ)dτ

∣∣∣∣∣ 6 2m0

(∣∣∣g(n)
∣∣∣
)

Φ(µ− τ−) max
τ∈(−∞,t]

|f(τ)| .

Truncating the interval bounds does not only yield an FIR filter for the estimation of the

derivatives but also reduces the estimation delay by µ − τ−. Using the analytical form of the

estimation delay from Table 2.3, the delay after the truncation becomes

δt = τ− − Tϑ.

Example 3.1 FIR formulation of Hermite diff.

Consider the estimation of the first-order derivative of a function using a Hermite diff.

gN,T,ϑ,µ with N = 1 and ϑ the largest zero of the Hermite polynomial of degree 2. Fig. 3.6

shows the evolutions of the first-order derivative of gN,T,ϑ,µ and the distribution function

Φ from (3.9). The resulting FIR filter is given by the area in grey where the window is

computed such that it starts when Φ takes values greater than 10−5.

Discrete-time FIR approximation

It is assumed for simplicity that the window length of the diff. is an integral multiple of

the sampling period, i.e., TL = NLts. Then, various discrete-time approximations (see, e.g.,

(Stroud, 1974, Ch. 3)) of the integral in the form of the sum

f̂
(n)
k+θ ≈

L−1∑

i=0

wifk−i, (3.10)
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can be achieved, where θ, L, and wi depend on the numerical integration method used.

In Kiltz (2017) a simple normalisation factor has been introduced to take into account the

error stemming from the discretisation. This has also been recalled, for example, in Othmane

et al. (2022). Instead of using the approach in (3.10) the following discretisation scheme shall

be considered

f̂
(n)
k+θ ≈

1

Φ

L−1∑

i=0

wifk−i, with Φ =
tns
n!

L−1∑

k=0

wk(−k)n. (3.11)

The constant Φ is a normalisation factor that takes into account the error stemming from the

discretisation when f is assumed to be a polynomial of degree n. This ensures that the low-

frequency amplification of the discrete-time filter corresponds to that of the continuous-time

filter.

The tuning and derivation of the diff. have been performed in the continuous-time domain.

Thus, the discrete-time diff. in (3.11) should preserve the input-output properties of the filter.

The discretisation effects can be assessed by comparing the frequency-domain properties

of the continuous-time and discrete-time diffs. Denote by G the Fourier transform of the

continuous-time filter given in (2.46). Let Gd be the Fourier transform of the discrete-time

filter from (3.11) given as

Gd : ω 7→ Gd(ω) =
1

Φ

L−1∑

i=0

wie
−ιω(k+θ)ts .

The effects of the discretisation can then be assessed by considering the error norm

J =

∫ Ω

0
|Gd(ω)− (ιω)nG(ω)|2 dω
∫ Ω

0
|(ιω)nG(ω)|2 dω

. (3.12)

The frequency Ω has to be chosen according to the frequency interval of interest. A reasonable

choice is the Nyquist frequency ωN = π/ts, i.e., Ω = ωN. The latter error norm has been

introduced in Kiltz (2017) for the analysis of Jac. diffs. This error norm enables a discretisation

analysis that does not depend on the properties of the function f . To interpret J , assume that

the filter takes as input a band-limited white noise with bandwidth Ω. Then, J is the ratio

of the amplification of the average noise power stemming from the discretisation error and

that stemming from the continuous-time filter. Thus, J is a measure that may help to decide

if the discretisation error can be neglected in comparison to the noise amplification of the

continuous-time diff. Note that the error stemming from the truncation of the integration

interval is also considered by this error norm.

In the following, three discretisation schemes are discussed: the mid-point rule, the trape-

zoidal rule, and the zero-order hold rule.

Mid-point rule Using the mid-point integration rule yields

θ =
1

2
, wk = tsg

(n)
k+θ, L = NL.

Thus, the delay is reduced by half a sampling period. The formulation in (3.11) then requires

2NL − 1 operations (NL multiplications and NL − 1 additions) as well as the storage of NL filter

coefficients and past values of f .
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Figure 3.7: Evaluation of the effects of the discretisation on the diff. discussed in Example 3.2:
Error norm J from (3.12) for different discretisation methods and amplitude spectrum of the
diff. for T/ts = 3.

Trapezoidal rule Using the trapezoidal integration rule yields

θ = 0, L = NL + 1, wk =




tsg

(n)
k+θ/2, for k ∈ {0, NL},

tsg
(n)
k+θ, otherwise.

This approach requires two more operations than that of the mid-point rule and the storage

of one more filter coefficient and past value of f .

Zero-order hold For the first-order hold approach, the function f is assumed to be

constant during a sampling interval, i.e., f(τ) = fk for τ ∈ (tk−1/2, tk+1/2]. This yields

f̂ (n)(t) ≈
NL−1∑

k=0

∫ tk+1

tk

g(n)(τ)fkdτ.

Thus,

θ =
1

2
, L = NL, wk = g

(n−1)
k+1 − g(n−1)

k .

for n > 0. As for the mid-point rule, the delay is reduced by half a sampling period.

Example 3.2 Discretisation of a Hermite diff. approximated as an FIR filter

Consider the estimation of the first-order derivative of a function using a Hermite diff.

gN,T,ϑ,µ with N = 1 and ϑ the largest zero of the Hermite polynomial of degree 2. Fig. 3.7

shows the evolution of the error norm J from (3.12) for the three discretisation ap-

proaches as a function of T/ts. While the mid-point and the trapezoidal rules show similar

values for J , it can be seen that the zero-order hold discretisation does not preserve well

the frequency-domain properties of the diff. This is especially true for small values of T/ts
and can be seen in the right part of the figure where the amplitude spectrum of a diff. for

T/ts = 3 is shown.
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Figure 3.8: Approximation of the first-order derivative of the Lag. diff. g = g
(α)
N,T,ϑ from

Example 3.3 as an FIR filter with window length TL using the distribution function Φ given in
(3.9).

3.2.2 Implementation of Laguerre differentiators

Recall from Section 2.4.2 that the n-th order derivative of a function f can be approximated

as

f̂ (n)(t) =

∫ t

−∞
g(n)(t− τ)f(τ)dτ, g = g

(α)
N,T,ϑ, (3.13)

where g(α)
N,T,ϑ is defined in Definition 2.7.

FIR-Filter approximation

Due to the multiplication of a decaying exponential function with polynomials in g
(α)
N,T,ϑ the ker-

nel vanishes at one boundary of the interval. Moreover, for α 6= 0 the diff. satisfies g(α)
N,T,ϑ(0) = 0.

Increasing α flattens the impulse response for small arguments and shifts its maximum

towards the right such that g(α)
N,T,ϑ(t) is a small value for t → 0. This can be seen in Figs. 2.7

to 2.9 for different parametrisations. Thus, the approach developed to truncate the integration

interval for Hermite diff. in Section 3.2.1 can also be used for Lag. diffs. to approximate (3.13)

as FIR filter of the form

f̂ (n)(t) ≈
∫ t−τ+

t−τ−
g(n)(t− τ)f(τ)dτ, τ− < τ+ > 0. (3.14)

The distribution function (3.9) can again be used to compute τ+ and τ−. Thus, the approxi-

mated derivative can be computed by an FIR filter with window length TL = τ− − τ+.

For the assessment of the effects of the discretisation on the frequency-domain properties

the approaches discussed in Section 3.2.1 for Hermite diffs. can also be used for Lag. diffs.

Example 3.3 FIR approximation of a Lag. diff.

Assume that the first-order derivative of a function f : t 7→ f(t) has to be approximated

using a Lag. diff. with the parametrisation N = 1 and α = 1. Then, the approximation of

the first-order derivative is

ˆ̇
f(t) =

∫ t

−∞
ġ(t− τ)f(τ)dτ, g = g

(1)
1,T,ϑ. (3.15)
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Figure 3.9: Evaluation of the effects of the discretisation of the Lag. diff. discussed in
Example 3.4: Error norm J from (3.12) for different discretisation methods as a function
of T/ts and α.

Fig. 3.8 shows the filter window when the integration interval is truncated as in (3.14).

The resulting FIR filter is given by the area in grey where the window is computed such

that it starts when Φ takes values greater than 10−5.

Example 3.4 Discretisation analysis of a Lag. diff.

Consider the Lag. diff. from Example 3.3. Fig. 3.9 shows the variation of the error norm

J as a function of T/ts and α. As for the Hermite diff. in Example 3.2, the mid-point and

trapezoidal rules preserve better the frequency domain characteristics of the diff. than

the zero-order hold method. Furthermore, increasing α decreases J .

IIR-Filter implementation

Consider the following example, where a Lag. diff. is used for the approximation of the first

derivative of a function. This simple example shows that a solution of a specific differential

equation exponentially converges towards the approximated derivative in (3.13). The observa-

tions are then generalised and the discrete-time implementation is discussed. It is assumed

in the sequel that α ∈ N.

Example 3.5 Estimation of first-order derivative

Consider the linear time-invariant (LTI) system

(
T

d

dt
+ 1

)3

y =
d

dt

(
−1 + T (ϑ− 3)

d

dt

)
f. (3.16)

with input f and output y for some arbitrary initial conditions. Its transfer function is

hyf (ιω) =
ιω (−1 + T (ϑ− 3) ιω)

(Tιω + 1)
3
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and corresponds to the Fourier transform of the Lag. diff. considered in Example 3.3. It is

then easy to show that the solution of (3.16) converges towards (3.15) for arbitrary initial

conditions since the system possesses the eigenvalue −1/T with the algebraic multiplicity

of three. If the initial conditions are appropriately chosen, the solution even corresponds

to the latter approximation of the first-order derivative in (3.15). The differential equation

can then be discretised and implemented as a infinite-impulse response (IIR) discrete

filter.

Continuous-time formulation Consider the stable LTI system

(
d

dt
+ T−1

)ᾱ
y =

(
N∑

m=0

h
(α)
m,N,ϑ

Tm+α+1

d

dt

N+n−m
)
f, ᾱ = α+N + 1, (3.17)

for some arbitrary initial conditions with

h
(α)
m,N,ϑ =

N−m∑

k=0

(
N − k
m

)
L

(α)
k (ϑ) (3.18)

where f is the input and y the output. Its transfer function is

hyf (ιω) =
1

Tα+1

N∑

m=0

L(α)
m (ϑ)

(ιω)m+n

(ιω + T−1)α+m+1

which is the Fourier transform of
(
g

(α)
N,T,ϑ

)(n)

.

The solution of (3.17) exponentially converges to the approximation of the n-th order

derivative of f defined in (3.13) for arbitrary initial conditions. While the error stemming

from the initial conditions tends to zero for small T , the transient behaviour needs to be

analysed further. In fact, it is straightforward to show that it may contain terms of the form

e−
t
T T−ρ, for some ρ, which approach an impulse function as T tends to zero. Thus, the

transient phase may contain a peak with amplitude of order 1/T . This phenomenon is known

as peaking phenomenon and has been already observed for HG observers in Esfandiari and

Khalil (1992), for example. The relation to these observers is analysed in detail in the next

section. To conclude, the initial conditions can be specified arbitrarily. However, care must

be paid to the behaviour in the transient phase.

Discrete-time formulation For the computation of y in (3.17) in the presence of discrete

measurements the differential equation has to be discretised. It can be approximated by a

difference equation of the form

P (δ) ξk = Q(δ) fk (3.19)

with P and Q polynomials and δ the backward shift operator. The output y in (3.17) is

then approximated by y(kts) = ξk. The polynomials P and Q depend on the choice of the

discretisation approach and can easily be obtained using the approaches found in (Franklin,

Powell, Workman, et al., 1998, Ch. 6) or (Oppenheim & Schafer, 1975, Ch. 5). The bilinear2

discretisation scheme, for example, preserves the stability properties of the continuous-time

filter. The degrees rP and rQ of P and Q satisfy rP = ᾱ and rQ 6 ᾱ. Thus, implementing (3.19)

2The bilinear discretisation scheme is also known as Tustin’s method after the British engineer Arnold Tustin
1899-1994.
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Figure 3.10: Evaluation of the effects of the discretisation on the diff. discussed in
Example 3.6: Error norm J from (3.12) for different discretisation methods and the amplitude
spectrum of the diff. for T/ts = 10.

using the direct form I realisation3 (see, e.g., (Oppenheim & Schafer, 1975, Sec. 4.3)) requires

storing rP and rQ past values of ξ and f , respectively. The total number of filter coefficients to

be stored is rP + rQ + 1. The number of required operations is 2(rP + rQ) + 1 (more specifically

rP + rQ + 1 multiplications and rP + rQ additions). Thus, the number of required operation

(multiplication, addition, and delays) depends linearly on N and α. It does not depend on T ,

the parameter influencing the cutoff frequency as opposed to the FIR implementation.

As for the approach developed for the FIR approximation, the effect of the discretisation

can be assessed by the error norm in (3.12) by computing the discrete transfer function

corresponding to the difference equation in (3.19). The following example considers the

discretisation of the LTI system discussed in Example 3.5.

Example 3.6 Discretisation of an IIR Lag. diff.

Consider again the diff. from Example 3.5. Fig. 3.10 shows the evolution of the error norm

in (3.12) assessing the effect of the discretisation on the frequency domain properties of

the diff. for different discretisation schemes. The bilinear transform (BT) shows the lowest

error. The forward difference (FD) yields big errors for small T/ts. This is a known problem

since this approach does not preserve the stability as discussed in Franklin et al. (1998);

Oppenheim and Schafer (1975), for example.

The difference equation of the form (3.19) for the BT is

(
p3δ

3 + p2δ
2 + p1δ + p0

)
ξk =

(
q3δ

3 + q2δ
2 + q1δ + q0

)
fk

3The direct form I is not a realisation with the minimum number of shift operators as discussed in (Oppenheim
& Schafer, 1975, Sec. 4.3). Different other forms known as canonic forms can be derived and use the minimum
number of shift operators. However, the direct form I is used in this section due to its simplicity.
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with
p0 = 8T 3 + 12 ts T

2 + 6 t2sT + t3s , q0 = −4Tts ϑ+ 12 ts T + 2 ts
2,

p1 = −24T 3 − 12 ts T
2 + 6 t2sT + 3 t3s , q1 = 4Tts ϑ− 12 ts T + 2 ts

2,

p2 = 24T 3 − 12 ts T
2 − 6 t2sT + 3 t3s , q2 = 4Tts ϑ− 12 ts T − 2 ts

2,

p3 = −8T 3 + 12 ts T
2 − 6 t2sT + t3s , q3 = −4Tts ϑ+ 12 ts T − 2 ts

2.

The latest ξk can then be computed as

ξk =
(
p̄3δ

3 + p̄2δ
2 + p̄1δ

)
ξk +

(
q̄3δ

3 + q̄2δ
2 + q̄1δ + q̄0

)
fk

with p̄i = −pi/p0 and q̄i = qi/p0. Thus, seven filter coefficients and three past values of f

and ξ need to be stored. At each instant k the total number of required operations is 13.

The value of ξk converges towards the approximation of the first-order derivative of f

from a Lag. diff. given in (3.15).

Simultaneous derivative estimation

In numerous applications the estimation of derivatives of several orders is required. Moreover,

it is often important that all derivatives are filtered by the same filter (recall from Table 2.4

that the approximated derivative is the output of a filter driven by the sought derivative). This

ensures that all approximations have the same delay and the same amplitude and phase

distortion. The following analysis also shows that HG diff. are special cases of Lag. diff.

Continuous-time formulation The simultaneous approximation of derivatives of orders up

to n can be easily performed using the discussion from the previous section. The approxima-

tion of all derivatives of orders m ∈ {0, . . . , n} is considered. Then, the parameter α of the Lag.

diffs. has to satisfy α > n− 1 as given in Definition 2.7. Following the lines of Section 3.2.2, it

follows that the solution of the stable LTI system

(
d

dt
+ T−1

)ᾱ
y =

(
N∑

m=0

h
(α)
m,N,ϑ

Tm+α+1

d

dt

N−m
)
f, ᾱ = α+N + 1, (3.20)

with h
(α)
m,N,ϑ defined in (3.18), converges exponentially to the approximation

f̂(t) =

∫ t

−∞
g

(α)
N,T,ϑ(t− τ)f(τ)dτ.

Consider the minimal state realisation (see, e.g., (Kailath, 1980, Ch. 2&6)) for the system

(3.20) given by

ẋ = Ax+ bf,

y = cTx,
(3.21a)
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3.2. Implementation of classical orthogonal differentiators

with x(t) ∈ Rᾱ, suitable initial condition x(t0), and

A =




0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...

0 0 . . . 0 1 0

0 0 . . . 0 0 1

−a0,ᾱ

T ᾱ − a1,ᾱ

T ᾱ−1 . . . . . . −aᾱ−2,ᾱ

T 2 −aᾱ−1,ᾱ

T




, b =




0
...

0

1



, c =




h
(α)
N,N,ϑ

T ᾱ

h
(α)
N−1,N,ϑ

T ᾱ−1

...
h

(α)
0,N,ϑ

T ᾱ−N

0
...

0




(3.21b)

where am,ᾱ =
(
ᾱ
m

)
= ᾱ!/(m!(ᾱ−m)!) and h

(α)
m,N,ϑ is defined in (3.18).

The chain of integrators in (3.21) yields that the linear combination

yl =

N∑

m=0

h
(α)
N−n,N,ϑ
T ᾱ−m

xm+l, l ∈ {1, . . . , α}, (3.22a)

converges exponentially to the approximation of the l-th order derivative computed using a

Lag. diff. g(α)
N,T,ϑ of order α and given as

f̂ (l) =

∫ t

−∞
g(l)(t− τ)f(τ)dτ, g = g

(α)
N,T,ϑ. (3.22b)

It is important to observe here that all the derivatives f (l) act as inputs to the same filter

and thus the approximations are a set of matched time derivatives. An important property

is that all derivatives have the same estimation delay. State realisations of the form (3.21)

with outputs (3.22a) are known as state variable filters (see, e.g., Hofmann et al. (1966); Peter

and Isermann (1990); Young (1981)). They have been widely used in the context of parameter

estimation for linear systems (see, e.g., Isermann (1977, 2013b); Young (1981)).

In addition to the approximations in (3.22b) it also follows that

ȳl =

N−l∑

m=0

h
(α)
N−n,N,ϑ
T ᾱ−m

xα+1+l+m, l ∈ {0, . . . , N}, (3.23a)

exponentially converges to

f̂ (α+1+l) =

∫ t

−∞
g(α+1+l)(t− τ)f(τ)dτ, g = g

(l)
N+α−l,ϑ,T . (3.23b)

This can be verified by computing the input-output relationship between the input f and

the output ȳl. These approximations, however, do not have the same properties as those in

(3.22b). In particular, the estimation delays are different.

Due to the importance of this observation, the result is summarised in the following

corollary.

Corollary 3.1: Simultaneous approximation of derivatives using Lag. diff.

Let f be a function that is bounded and differentiable N times with bounded deriva-

tives up to the N-th order and piecewise continuous N-th order derivative. Consider

the system (3.21). Then, the linear combinations (3.22a) and (3.23a) converge to the

approximations of Lag. diffs. in (3.22b) and (3.23b), respectively.
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3. TUNING AND REAL-TIME IMPLEMENTATION OF THE DIFFERENTIATORS

The error stemming from the initial conditions converges exponentially to zero. The tran-

sient phase, however, may show significant overshoots. In fact, due to the eigenvalue −1/T of

algebraic multiplicity N+α+1 the solution contains expressions of the form e−
t
T T−ρ, for some

ρ. These expressions approach an impulse function as T tends to zero. Thus, when these

approaches are used in closed-loop control care must be paid. The problem can, however, be

easily solved by saturating the approximated derivative outside a compact region of interest

as for HG observers (see, e.g., Esfandiari and Khalil (1992)).

Relation to high-gain differentiators The appearance in (3.21) of negative powers of the

parameter T that scales the orthogonality interval of the Laguerre polynomials raises the

question whether there exists a relation to the well known HG diffs. from Dabroom and Khalil

(1997, 1999); Khalil (2009, 2017); Vasiljevic and Khalil (2006, 2008).

Let f be a function that is bounded and differentiable n times with bounded derivatives

up to the n-th order and piecewise continuous n-th order derivative. Consider the HG diff. of

order n with input f , given as

ẋ = Ax+ bf, x(t0) = x0 ∈ Rn (3.24a)

with

A =




−c0/T 1 0 0 . . . 0

−c1/T 2 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...

−cn−3/T
n−2 0 . . . 0 1 0

−cn−2/T
n−1 0 . . . . . . 0 1

−cn−1/T
n 0 . . . . . . . . . 0




, and b =




c1/T

c2/T
2

...

cn/T
n



, (3.24b)

where the parameters cl, l ∈ {0, . . . , n− 1}, are chosen such that the polynomial

λ 7→ λn +

n−1∑

l=0

clλ
n−l (3.24c)

is Hurwitz. The k-th, k ∈ {1, . . . , n}, component of x is an approximation of the k-th order

derivative of f . As shown in Esfandiari and Khalil (1992), the estimation error decays to O(T )

values after a short transient period of the form [0, T0(T )], where limT→0 T0(T ) = 0.

The following result shows that for a special choice of the roots of the polynomial (3.24c)

the solution of the dynamic system (3.24) converges to the approximated derivative from a

Lag. diff.

70



3.2. Implementation of classical orthogonal differentiators

Corollary 3.2: Relation between HG and Lag. diffs.

Let f : R>0 → R be a function that is bounded and differentiable n times with bounded

derivatives up to the n-th order and piecewise continuous n-th order derivative. Consider

the system (3.24) and assume that the polynomial in (3.24c) has the root −1 with an

algebraic multiplicity of n. Then, there exists positive scalars κ1 and κ2 such that the

m-th component xm of the state x satisfies
∣∣∣∣xm(t)−

∫ t

0

g(m−1)
m (t− τ)f(τ)dτ

∣∣∣∣ < κ1e−κ2t, gm(τ) = g
(m−1)
n−m,T,0(τ) (3.25)

for all t, m ∈ {1, . . . , n}, and arbitrary initial conditions, where g
(m−1)
n−m,T,0 is a Lag. diff. of

order m− 1 defined in Definition 2.7.

Proof. It can be verified using elementary calculus that

xp(t) =




∫ t
t0
g1(t− τ)f(τ)dτ∫ t

t0
ġ2(t− τ)f(τ)dτ

...∫ t
t0
g

(n−1)
n (t− τ)f(τ)dτ




is a particular solution of (3.24). Then, the general solution of (3.24) is

x(t) = eA(t−t0)x0 + xp(t),

where each component xm, m ∈ {1, . . . , n}, of x satisfies

xm(t) = e−t/T pm(t) +

∫ t

t0

gm(t− τ)f(τ)dτ,

for some polynomials pm. Recalling the definition of g(m−1)
n−m,T,0(τ) from (2.49) yields the result

(3.25).

Corollary 3.2 shows that the state components xm, m ∈ {1, . . . , n − 1}, tend towards the

approximation stemming from a delay-free Lag. diff. of order m− 1. The last component tends

toward the approximation stemming from a minimal Lag. diff. of order n − 1 and is thus

delayed. This component corresponds to the approximation of the (n − 1)-th order derivative

of f . Following Table 2.3 and Corollary 2.3 the delay is δt = Tn.

Discrete-time formulation In the presence of discrete measurements the differential equa-

tion (3.21) has to be discretised. It can be approximated by a discrete-time system

ζk+1 = Adζk + bdfk,

ξk = cT
d ζk + ddfk

(3.26)

with k ∈ {0, 1, . . .} and the initial conditions ζt0 = Ad,0x(t0) + bd,0u(t0). Then, y(kts) ≈ ξk. The

involved matrices and vectors depend on the discretisation scheme (see, e.g., Franklin et al.

(1998); Oppenheim and Schafer (1975, 1989); Stroud (1974)).
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3.2.3 Implementation of Jacobi differentiators

Recall from Section 2.4.3 that the n-th order derivative of a function f can be approximated

as

f̂ (n)(t) =

∫ t

t−T
g(n)(t− τ)f(τ)dτ, g = g

(α,β)
N,T,ϑ, (3.27)

where g(α,β)
N,T,ϑ is defined in (2.67).

Jac. diffs. have initially been discretised in Liu (2011); Mboup et al. (2007); Mboup et al.

(2009) using the trapezoidal rule. This yields discrete filters as discussed for Hermite diff. in

Section 3.2.1. Further discretisation approaches as the mid-point rule, zero-order and first-

order hold have then been discussed in Kiltz and Rudolph (2013). For all approaches the

approximation (3.27) becomes

f̂
(n)
k+θ =

L−1∑

i=0

wkfi−k, (3.28)

where wk is the discrete filter coefficients and the parameter θ depends on the discreti-

sation approach (see, e.g., the detailed discussion for the discretisation of Hermite diff. in

Section 3.2.1). This convolution sum has been evaluated non-recursively in each sampling

step in all previously cited publications. A drawback of this approach is that the number

of required arithmetic operations per step and the number of filter coefficients to be stored

increase linearly with increasing filter window length and thus decreasing cutoff frequency.

Thus, they may become very large.

A procedure for the recursive evaluation of the Jacobi derivative estimators in the context

of parameter estimation has been discussed in Gensior (2009); Gensior, Weber, Güldner,

and Rudolph (2007); Gensior et al. (2008). In this procedure, the number of computational

operations per step and the number of filter coefficients to be stored become independent

of the filter window length. This implementation can significantly improve the computational

burden and storage efficiency of the discretised diffs. However, this implementation procedure

is not applicable for all parameter combinations of the Jac. diffs., and the accuracy of the

discrete-time approximation deteriorates as the stopband slope increases. These issues have

motivated the investigation of more complex recursive implementation procedures in Kiltz

(2017). The mid-point discretisation rule plays an important role, as can be seen in the

following motivating example.

Example 3.7 Example recursive implementation of Jac. diff. from Kiltz (2017)

Consider the implementation of a Jac. diff. for the estimation of the first-order derivative

of a function f with N = 0 and α = β = 1 from (Kiltz, 2017, Sec. 2.4). The mid-point

discretisation rule yields the approximated derivative

˙̂
fk+ 1

2
=

L−1∑

i=0

wifk−i, wi =
6(L− 1− 2i)

L2T
,

at step k with the filter window length satisfying T = Lts. Computing this approximation

at each step requires 2L − 1 operations. Moreover, L filter coefficients and past values

of f have to be stored. The latter discrete convolution can however be implemented as a
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3.3. Application of systematic tuning guidelines

recursion. Then, the approximation is ˙̂
fk+ 1

2
= 6

(L2−1)T zk, with

zk = d1(fk − fk−L−1)− d2(fk−1 − fk−L) + 2zk−1 − zk−2, d1 = L− 1, d2 = L+ 1.

To ensure the stability of this recursion the implementation needs to be performed using

fixed point arithmetic. This can be achieved, for example, when f is the output of an

analog-to-digital converter. This implementation is independent of the filter window

length and requirs only nine operations at each step. However, it requires the history

of f in the entire window.

The ideas shown in Example 3.7 have been generalised in Kiltz (2017) for arbitrary values

of N , α, β, and ϑ. It is shown in (Kiltz, 2017, Sec. 3.4.4) that the output y of a Jac. diff. can

be computed as

yk = −
r+1∑

m=0

(
r + 1

m

)
(−1)myk−m +

1

Θ

q∑

i=0

r∑

m=0

ci,mfk−ki

with Θ the normalisation constant from Section 3.2.1. The quantities r, q, ci,m and ki are

parameters that depend on the Jac. diff. that can be taken from (Kiltz, 2017, Eq. (B.79)). The

parameter r and q are independent of T and thus of the filter window length. For α, β ∈ N, for

example, q = 1 and r = α+ β +N − n.

For the stable implementation of the latter recursion a fixed point arithmetic is required.

To ensure that all coefficients ci,m are rational numbers, an approximation of the discretised

filter coefficients using discrete Chebyshev polynomials has been used. The effect of this

approximation and the required quantisation on the filter properties has been discussed in

detail by introducing an error norm that compare these effects with those stemming from

the discretisation of the convolution integral in (3.27). The reader is referred to (Kiltz, 2017,

Sec. 3.4) for further details.

Evaluating the approximation using the discrete convolution in (3.28) requires 2L− 1 arith-

metic operations in each step and the storage of L filter coefficients and past values of

the measurement, respectively. These numbers clearly increase linearly with increasing L.

Contrarily, the recursive implementation requires only (q + 1)(2r + 1) + 2 operations which

is independent of L. The approach requires storing L + r past measurements, r + 1 past

outputs, and (q + 2)(r + 1) filter coefficients. Thus, the total required storage capacities are

(q+4)(r+1)+L−1 elements compared to 2L for the sum in (3.28). Thus, for large enough L the

recursive implementation significantly reduces the computational and storage requirements.

A major drawback of this implementation approach is the importance of the initialisation

of the recursion and the required fixed point arithmetic. For the estimation of the third-order

derivative using a diff. with α = β = 4, N = 0, and L = 200 a representation with at least 33 bits

is required.

3.3 Application of systematic tuning guidelines

The systematic tuning guidelines addressed in the last section shall be applied in two case

studies. First, the estimation of the first and second-order derivatives of a disturbed experi-

mental signal are approximated. The approximation results of the three diffs. are compared

with respect to the quality, computational burden, and memory requirements. Then, the ap-
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Figure 3.11: True and measured voltage signals from Example 3.8.

proximate inversion of analogue anti-aliasing filters is investigated. Convincing experimental

results are presented.

3.3.1 Derivative approximation

The tuning approaches proposed in Section 3.1 are demonstrated using experimental data

from the following example.

Example 3.8 Derivative approximation using a laboratory measurement

The voltage applied to an electric circuit by a signal generator is measured using an

oscilloscope. The applied voltage is

x(t) = a1 sin(2πf1t) + a2 sin(2πf2t), f1 = 10 Hz, f2 = 80 Hz, a1 = 2.15 V, a2 = 0.4 V,

and the disturbed measured voltage is denoted by y. The disturbance is assumed to be

additive. Fig. 3.11 shows the time evolution of x and y. The signal to noise ratio (SNR) is

SNR = 10 log

( ∑Ny
k=0 y

2
k∑Ny

k=0(yk − xk)2

)
= 27 dB,

with Ny the number of samples of the signal. The total length of the considered signal is

0.4 s. The approximation of the first-order derivative of x using y shall be considered. The

measurement is performed at a frequency of 5 kHz.

The systematic tuning approach is used to find filter parameters to approximate the first

and second-order derivative of x using y from Example 3.8. Hermite, Laguerre, and Jacobi

diffs. are considered. In the following, the approximation of the n-th order derivative of x

computed using y is denoted by ŷ(n). Similarly, the approximation computed using x is

denoted by x̂(n).

To perform a quantitative comparison of the approximation results the output signal to

noise ratio (SNRout) of the approximation defined as

SNRout =

∑Ns
k=TL

∣∣∣x̂(n)
k

∣∣∣
2

∑Ns
k=TL

∣∣∣x̂(n)
k − ŷ(n)

k

∣∣∣
2 , n ∈ {0, . . . , 2},
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ẋ
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Figure 3.12: Approximation results for the first-order derivative of the signal x from
Example 3.8. The parameters of the diffs. are summarised in Table 3.1.

and the signal to bias ratio (SBR) given as

SBR =

∑Ns
k=TL

∣∣∣x(n)
δt,k

∣∣∣
2

∑Ns
k=TL

∣∣∣x(n)
δt,k
− x̂(n)

k

∣∣∣
2 , n ∈ {0, . . . , 2},

are considered, where x
(n)
δt

is the n-th order derivative of x delayed by the delay δt of the

differentiator. While the SNRout takes into account the error stemming from the measure-

ment disturbance, the SBR describes the error stemming from the generalised Fourier series

truncation. The parameter TL denotes the filter window length.

For all diffs. the parameter N is equal to 1. According to Corollary 2.2 the obtained diffs. in

a parametrisation for a delayed approximation have a degree of exactness (DoE) equal to two

and three for the approximation of the first-order and second-order derivatives, respectively.

The resulting delay can be computed according to Corollary 2.3. Contrarily, when a delay-free

approximation is considered the DoEs are equal to one and two, respectively. All diffs. are

discretised using the midpoint rule and implemented as FIR filters as discussed in Section 3.2.

The windows of the filters are computed such that the window starts when the distribution

function from (3.9) takes values greater than 10−4. For all diffs. considered in the sequel the

error norm in (3.12) is less than −80 dB. Thus, the discrete filters preserve the frequency-

domain properties of the continuous ones.

Approximation of the first-order derivative

Comparison of approximation results Parametrisations that yield delayed approximations

are considered first. Start with a parametrisation where the cutoff frequencies of the Lag. diff.

and Jac. diff. are chosen as ωc = ω0 = 8πf2rad. Furthermore, α = 3 for the Lag. diff. and

α = β = 3 for the Jac. diff. For the Hermite diff. the parameter T is computed such that

the amplitude of the Fourier transform at ωc is equal to −3 dB. Table 3.1 summarises the

numerical values of the remaining parameters that follow for these parametrisations.

The evolution in time of the approximated derivative using the latter parametrisations of

the diffs. is given in Fig. 3.12. It can be seen that the approximation from the Lag. diff.

is better than that of the remaining two diffs. This is also confirmed by the SNRout given

in Table 3.1 which is equal to 20.0 dB for the Lag. diff. as opposed to 14.47 dB and 13.53 dB
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Table 3.1: Approximation results for the first-order derivative of the signals from Example 3.8
for N = 1, ωc = 8πf2rad. All diffs. are parametrised such that ϑ is a zero of the orthogonal
polynomial (OP) of interest with degree N + 1. The zero is chosen such that the delay is
minimised. The delay and the FIR window length are given as multiples of the sampling
period ts.

Hermite diff. Lag. diff. Jac. diff.

µ = 90 ms, T = 0.91 ms α = 3, T = 0.6 ms α = β = 3, T = 3.6 ms

delay 9 8 6

window length TL 28 55 17

SNRout in dB 14.47 20.0 13.53

SBR in dB 34.84 24.82 44.08
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Figure 3.13: Amplitude spectra for the diffs. used for the approximation of the first-order
derivative of the signal x from Example 3.8. The parameters of the diffs. are summarised in
Table 3.1.

for the Hermite and the Jacobi diffs., respectively. However, the SBR of the Jac. diff. is the

highest with 44.08 dB as opposed to 34.84 dB and 24.82 dB for the Hermite and the Laguerre

diffs., respectively. These differences can be explained by the differences in the amplitude

spectra given in Fig. 3.13. While the Jacobi and Laguerre diffs. have the same filter order,

the amplitude evaluated at the cutoff frequency is higher for the former compared to that

of the latter. Similarly, for the Hermite diff., the amplitude converges faster to zero for

high frequencies than for the remaining two. However, the value at the cutoff frequency is

comparable to that of the of the Jac. diff. Moreover, the estimation delay of the Jac. diff. equal

to six sampling periods is less than the delays of the Laguerre and the Hermite diffs., which

are equal to nine and eight, respectively.

Varying the parameters of the Jac. diff. may yield better results. Fig. 3.14 and Table 3.2

show the results when α and the cutoff frequency are kept identical and β is increased. It

can be seen that the SNRout increases when β is increased. For β = 3 it is equal to 14.47 dB

as opposed to 19.81 dB for β = 45. Contrarily, the SBR decreases from 44.08 dB to 23.20 dB.

These findings can be explained by the variation of the amplitude spectrum as a function of

β as shown in Fig. 3.13. It is clear that the value of the amplitude of the Fourier transform
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Table 3.2: Approximation results for the first-order derivative of the signals from Example 3.8
using a Jac. diff. with N = 1, α = 3, and a cutoff frequency ωc = ω0 = 8πf2rad and different
values of β. The delay and the FIR window length are given as multiples of the sampling period
ts.

β 3 15 30

delay 6 7 8

window length 17 55 60

SNRout in dB 14.47 19.03 19.81

SBR in dB 44.08 33.13 23.20

Table 3.3: Approximation results for the first-order derivative of the signals from Example 3.8
using Jacobi and Hermite diffs. with different values for the cutoff frequency and N = 1. For
the Jac. diff. α = β = 3. The delay and the FIR window length are given as multiples of the
sampling period ts and ω0 = 8πf2rad.

Jac. diff. Hermite diff.

cutoff frequency ω0 0.8ω0 0.7ω0 0.6ω0 ω0 0.8ω0 0.7ω0 0.6ω0

delay 6 7 8 9 9 12 14 17

window length 17 22 27 31 28 36 40 47

SNRout in dB 13.53 18.01 18.43 20.14 14.47 17.23 18.84 20.77

SBR in dB 44.08 39.16 35.12 31.64 34.84 34.8 31.62 26.21

at ωc decreases with increasing β. It also approaches that of the Lag. diff. Increasing β also

increases the estimation delay. For instance, for β = 45 the delay is eight sampling periods,

which is the same as for the Lag. diff.

Decreasing the cutoff frequency of the Jac. diff. and keeping the filter order constant

enhances the approximation results as shown in Fig. 3.14, where time evolution of the signals

for different values of ωc are given. From Table 3.3 it follows that when ωc is decreased by

a factor of 0.4 the SNRout increases from 13.53 dB to 20.14 dB which is comparable to that of

the considered Lag. diff. Contrarily, the SBR decreases from 44.08 dB to 31.64 dB. These results

are not surprising since the filter window length T decreases with increasing ωc as it can

be seen from (3.6). Unsurprisingly, this confirms the theoretical results from Corollaries 2.4

and 2.5. For a lower cutoff frequency the delay also increases since it is proportional to T . For

ωc = 0.6ω0 and a SNRout comparable to that of a Lag. diff. the delay is nine sampling periods

compared to eight for the latter.

Decreasing the cutoff frequency of the Hermite diff. will increase the SNRout and decrease

the SBR as given in Table 3.3. For a cutoff frequency ωc = 0.6ω0 the SNRout equal to 20.77 dB

is comparable to that of the Jacobi and Laguerre diffs. with the cutoff frequencies 0.6ω0 and

ω0, respectively. The SBR of these three diffs. are also comparable. However, the delay of the

Hermite diff. equal to 17 sampling periods is twice as high as for the latter two. Thus, in order

to achieve a comparable SNRout, the Hermite diff. yields a higher estimation delay.
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Figure 3.14: Approximation results for the first-order derivative of the signal x from
Example 3.8 using a Laguerre, two Jacobi and three Hermite diffs. with different cutoff
frequencies. The parameters of the diffs. are summarised in Tables 3.1 and 3.3.

It has already been observed in Section 2.2.2 that the DoE is reduced when delay-free

approximations are considered. In Section 2.4 it has been observed that the amplitude spectra

of delay-free diffs. exhibit significant overshoots which may result in bad approximation

results. Fig. 3.15 illustrates the experimental results for the estimation of the first-order

derivative of the signal y using delay-free Jacobi and Laguerre diffs. All parameters of the

diffs. except ϑ are the same as those for the scenario in Table 3.1 and Fig. 3.12. As expected,

a significant deterioration of the result can be observed. The SBR of the Jac. diff., for example,

is equal to 7.09 dB as opposed to 44.08 dB when a delay is tolerated. Similarly, for the Lag. diff.

the SBR is reduced from 24.82 dB to 2.57 dB. The SNRout are reduced from 13.53 dB to 10.26 dB

and from 20.0 dB to 19.5 dB for the Jac. diff. and the Lag. diff., respectively.

Comparison of computational and memory requirements Consider the approximation

results given in Tables 3.1 and 3.4. For an identical cutoff frequency and the approximation of

the diffs. as FIR filters, the Jac. diff. has the lowest memory and computational requirements.

Only 17 filter coefficients and past measurements have to be saved as compared to 55 and

28 for the Laguerre and Hermite diffs., respectively. Thus, for the same cutoff frequency, the

Lag. diff. requires to store approximately 323% more measurement values. This implementa-

tion, of course, immediately influences the computational requirements, which also increase

by 323%. For the Hermite diff. these values increase by 196%. Thus, for the same cutoff

frequency, the Jac. diff. is advantageous from a memory and computational perspective.

If the parameter β is increased to 45 such that the SNRout and SBR of the Jac. diff. are
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Figure 3.15: Delay-free approximation results for the first-order derivative of the signal x from
Example 3.8.

Table 3.4: Computational and storage requirements for the approximation of the first-order
derivative of the signal from Example 3.8 for N = 1 and ωc = 8πf2rad. All diffs. are parametrised
such that ϑ is a zero of the OP of interest with degree N + 1. The zero is chosen such that
the delay is minimised. The abbreviations C and R stand for the discrete convolution and the
recursive implementation, respectively. The X stands for no recursive implementation.

Hermite diff. Lag. diff. Jac. diff.

µ = 90 ms, T = 0.91 ms α = 3, T = 0.6 ms α = β = 3, T = 3.6 ms

# filter coeff.
C. 56 110 35

R. X 11 21

# arith. opt.
C. 55 109 34

R. X 11 28

# past values y
C. 28 55 17

R. X 5 23

# past values ˙̂y
C. 0 0 0

R. X 5 7

comparable to those of the Lag. diff. the computational and memory requirements of both

diffs. implemented as FIR filters are comparable as it can seen by comparing the results in

Tables 3.1 and 3.2. If α = β and the cutoff frequency of the Jac. diff. is reduced to ωc = 0.6ω

such that SNRout is comparable to that of the Lag. diff., the computational and memory

requirements of the first are 50% less than those of the second, which is a clear advantage.

The requirements for the recursive implementation of the Jacobi and the Laguerre diffs.

discussed in Sections 3.2.2 and 3.2.3, respectively, are summarised in Table 3.1 for equal

cutoff frequencies. For the Jac. diff. the bilinear transform has been used for the discretisation

and the computations. For the Lag. diff. eleven filter coefficients have to be stored compared to

21 for the Jac. diff. which corresponds to a difference of 50%. The Lag. diff. requires the storage

of five past values of the filter output and the input, respectively. Contrarily, the Jac. diff.

requires 23 and seven, respectively. Thus, for the Jac. diff. significantly more values have to

be stored. Similar observations can be made for the number of arithmetic operations. While
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Figure 3.16: Approximation results for the second-order derivative of the signal x from
Example 3.8. The parameters of the diffs. are summarised in Table 3.5.

for the Lag. diff. only eleven additions and multiplications are needed in total, the Jac. diff.

requires 28, which corresponds to a factor of 2.54. Moreover, the recursive implementation of

the Jac. diff. has to be performed in fixed-point arithmetic and requires a careful choice of the

initial conditions as discussed in Section 3.2.3. The recursive implementation of the Lag. diff.

does not suffer from these limitations.

When the Jac. diff. is implemented recursively with a cutoff frequency ωc = 0.6ω0 to achieve

the same SNRout as for the Lag. diff. with ωc = ω0, the number of required arithmetic op-

erations is the same as above. As discussed in Section 3.2.3, this does not depend on the

length of the filter window. However, more filter coefficients, past measurements, and past

filter values must be stored.

Approximation of the second-order derivative

Comparison of approximation results Start with diffs. having the cutoff frequency ω0

and α = 12 for the Lag. diff. and α = β = 12 for the Jac. diff. The remaining parameters are

summarised in Table 3.5. Fig. 3.16 shows the approximation results when all diffs. have the

same cutoff frequency. The numerical values for the SNRout and the SBR are summarised

in Table 3.5. As for the approximation of the first-order derivative, the Lag. diff. shows the

highest SNRout and the lowest SBR. Thus, these diffs. show the best robustness with respect

to the measurement disturbance but the largest error stemming from the truncation of the

generalised Fourier series.

Decreasing the cutoff frequency of the Jacobi and the Hermite diffs. yields larger values

for the SNRout as given in Table 3.6. The evolution of the signals is shown in Fig. 3.17,

where the improvement of the approximation quality can be clearly seen. A decrease of the

cutoff frequency from ω0 to 0.4ω0 for the Jac. diff., for example, results in a SNRout equal to

20.24 dB, which is comparable to the 21.27 dB for the considered Lag. diff. However, the SBR of

the first is larger than that of the second. For this choice of the cutoff frequency, the Jac. diff.

has a delay of 37 sampling periods compared to the Lag. diff. with 28. This corresponds to a

difference of approximately 25%. Parametrising the Jac. diff. such that the delay is equal to

that of the Laguerre one yields a SNRout of 14 dB which is significantly worse than that of the

Lag. diff.

Similar conclusions can be drawn for the Hermite diff. Decreasing the cutoff frequency
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Table 3.5: Approximation results for the second-order derivative of the signal from
Example 3.8 for N = 1, ωc = 8πf2rad. All diffs. are parametrised such that ϑ is the zero of
the OP of interest with degree N + 1. The delay and the FIR window length are given as
multiples of the sampling period ts.

Hermite diff. Lag. diff. Jac. diff.

µ = 91 ms, T = 0.91 ms α = 12, T = 0.5 ms α = β = 12, T = 10 ms

delay 13 28 21

window length TL 34 97 52

SNRout in dB −0.13 21.27 9.61

SBR in dB 39.01 16.43 28.61
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Figure 3.17: Approximation results for the second-order derivative of the signal x from
Example 3.8 using a Laguerre, two Jacobi and three Hermite diffs. with different cutoff
frequencies. The parameters of the diffs. are summarised in Tables 3.5 and 3.6.

significantly increases the quality of the approximation as shown in Table 3.6 and Fig. 3.17.

To achieve a SNRout comparable to that of the Lag. diff. a higher delay must be taken into

account.

Comparison of computational and memory requirements As for the approximation of

the first-order derivative, the analysis of the computational and memory requirements are

considered for the implementation as an FIR filter first. From Tables 3.5 and 3.6 it is clear
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Table 3.6: Approximation results of the second-order derivative of the signal from Example 3.8
for Jacobi and Hermite diffs. with different cutoff frequencies and N = 1. For the Jac. diff.
α = β = 12. The delay and the FIR window length are given as multiples of the sampling period
ts and ω0 = 4πf2rad.

Jac. diff. Hermite diff.

cutoff frequency ω0 0.8ω0 0.7ω0 0.6ω0 ω0 0.8ω0 0.6ω0 0.4ω0

delay 21 28 32 37 13 16 22 33

window length 52 65 75 87 34 42 55 83

SNRout in dB 9.61 14.00 16.99 20.24 −0.13 4.7 10.40 18.75

SBR in dB 28.61 26.60 26.14 21.32 39.01 33.77 24.71 22.14

that in order to achieve comparable values for the SNRout all three diffs. have similar filter

window lengths. For instance, for the Jac. diff. it is 87 sampling periods when the cutoff

frequency is 0.6ω0 as compared to the 97 of the Laguerre one. for the Hermite diff. it is 83.

Thus, the computational and the memory requirements are comparable.

However, when the Lag. diff. is implemented as an IIR filter using the bilinear transform,

it is straightforward to conclude that the numbers of required arithmetic operations and

measurement values to be stored are drastically reduced. For instance, only 14 past values

of the measurement and of the approximated derivative need to be stored in comparison to

the 97 for the FIR implementation. This corresponds to a reduction of 85% of the memory

requirements. Only 57 arithmetic operations need to be performed at each instant as opposed

to the 194 for the discrete convolution, which corresponds to a reduction of 70%. Similarly,

for the Jac. diff. a recursive implementation reduces the number of required operations and

measurement values to be stored. This approach, however, requires to be implemented in

fixed-point arithmetic and a proper initialisation is necessary.

3.3.2 Approximate inversion of analogue anti-aliasing filters

Often in practical applications4, the achievable sampling rates of the real-time hardware are

limited for technical or economical reasons and, thus, analogue low-pass filters are required

in order to avoid irreparable signal distortions due to aliasing (see, e.g., Kotelnikov (1933);

Nyquist (1928); Shannon (1948, 1949)). Unfortunately, these anti-aliasing filters also restrict

the dynamics of the sampled signals available for embedded control, state estimation, or

diagnosis algorithms, which can deteriorate the achievable system performance.

One way to overcome this is to improve the electronic hardware, e.g, by using a faster

computation unit which allows to increase the sampling frequency or by using a more com-

plicated filter circuit with a higher stopband slope. Such measures increase the product

costs. As an alternative, a bank of algebraic numerical diffs. can be used for an approximate

inversion of the analogue anti-aliasing filter, as proposed in Kiltz et al. (2021, 2019). By doing

so, an improved signal dynamics and a simultaneous estimation of signal derivatives can be

4The theoretical part of this subsection has first been published in Othmane et al. (2022). The experimental
validation and the comparison of the different diffs. are first published here.
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achieved without the need for a higher sampling rate or more complicated filter circuits. This

is demonstrated in the following.

The input-output characteristics of typical analogue anti-aliasing filters (from simple RC

circuits to higher-order Butterworth, Bessel, Chebyshev or elliptical filters) can be modelled

as a linear time-invariant differential equation
n∑

i=0

aiy
(i)(t) = u(t)

with the input signal u : t 7→ u(t), the output signal y : t 7→ y(t), and the known scalar filter

coefficients ai, i = 0, . . . , n, where n ∈ N is the filter order (see, e.g., (Tietze, Schenk, & Gamm,

2008, Ch. 13)).

In a practical application, the filter output y is sampled by the real-time hardware, whereas

the filter input u is unknown. In contrast to this, it would often be desirable for the real-time

algorithms to rely on the filter input u (or on one or more time derivatives u(m),m ∈ N, of u)

instead of the filter output y. In such a case, an approximation û(m) of the sought signal u(m)

can be generated from the measurement y by

û(m)(t) =
n∑

i=0

ai

(
g(i+m) ? y

)
(t),

with a diff. g appropriately designed and g(i+m) ? y the convolution of g(i+m) with y.

Note that the filter characteristics of the diff. can be chosen independently of the filter

characteristics of the analogue anti-aliasing filter. In particular, the cutoff frequency of the

diff. can be chosen higher and its stopband slope steeper than the respective characteristics

of the anti-aliasing filter, which explains the achievable increase in the signal dynamics.

This method has successfully been applied in Kiltz et al. (2019) for the reconstruction of

the first-order and second-order derivatives of a measured current signal in an automotive

series product with lean embedded hardware.

Practical limitations of the realisable signal dynamics are due to the fact that the discrete-

time approximations of the convolution integrals g(i+m) ? y, i = 0, . . . , n, must be sufficiently

accurate. See Section 3.2 for suitable discretisation methods and their limitations depending

on the sampling rate.

A drawback of the proposed method is that, for the sake of sufficient noise suppression, a

delay in the reconstructed input signal or its derivatives must be accepted. This delay tends

to increase with the required order m of the reconstructed derivative, the filter order n of the

anti-aliasing filter, and the cutoff frequency and stopband slope of the diff. used, i.e., the

desired bandwidth of the reconstructed signal. Nevertheless, given the parametrisation rules

in Section 3.1, often an acceptable compromise between the signal delay and the bandwidths

of the reconstructed signals can be found. In particular, the signal delay might be of minor

interest in comparison with the increased resolution of the reconstructed signals especially

for applications such as fault diagnosis, anomaly detection or event detection, as in the case

study in Kiltz et al. (2019).

Approximate inversion of a first order filter using experimental measurements

In the following, the method is applied to reconstruct the input signal of a single-stage anti-

aliasing filter

τ ẏ(t) + y(t) = u(t)
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Figure 3.18: Evolution of the measured input
and output of an analogue RC circuit with
cutoff frequency 19.40 Hz.
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ûJac. ûLag.

Figure 3.19: Evolution of the measured
input ũ and its approximations using the
considered Jacobi and Laguerre diffs.

realised by an RC circuit. The time constant of the anti-aliasing filter is τ = 8.2 ms (which cor-

responds to a −3 dB cutoff frequency of 19.40 Hz), and the sampling period for the measurement

of y is ts = 0.8 ms ≈ τ/10. The filter is driven by the input

u(t) = a1 sin(2πf1t) + a2 sin(2πf2t), f1 = 10 Hz, f2 = 80 Hz, a1 = 2.5 V, a2 = 1.75 V.

To compare the approximation results, the input u is measured with a sampling period of

0.01 ms. The evolution of the disturbed measurements ũ and ỹ of u and y, respectively, are

given in Fig. 3.18.

The signal u is reconstructed using Laguerre and Jacobi diffs. with delays. The parameters

N = 1 and α = β = 5 are chosen for both diffs. Fig. 3.20 shows the amplitude and phase

spectra of a Laguerre and a Jacobi diffs. with cutoff frequencies equal to 2356.19 rad/s and

1220.09 rad/s, respectively. These values are chosen such that both diffs. have comparable

properties for low frequencies. The discrete filters preserve the frequency-domain properties

and no aliasing phenomena can occur with these values. The error norm in (3.12) is below

−60 dB for the highest derivative order, for both diffs.

From Fig. 3.20 it can be seen that for low frequencies the phase spectrum of both diffs.

show a linear dependency on the angular frequency and the phase Jac. diff. is lower than that

of the Lag. diff. Thus, a higher delay has to be expected from the former. This is confirmed by

the results in Table 3.7: While the Lag. diff. has a delay of two sampling periods, that of the

Jac. diff. is equal to three. The reconstructed signals are shown in Fig. 3.19 and confirm this

analysis. Both approaches yield convincing results and a very effective reconstruction of the

original signal and a good noise suppression can be achieved at the cost of comparably small

signal delays.

The Jac. diff. has a window length of eleven sampling periods that is significantly smaller

than the Lag. diff. with 19. However, an IIR approximation of the Lag. diff. can significantly

decrease the number of required arithmetic operations and the measurement values to be

stored as discussed in the previous case studies from Section 3.3.

3.4 Automatic tuning of orthogonal differentiators

When designing a diff., a significant issue is the lack of a possibility to compare the estimated

signal with the actual derivative, which is unknown. The systematic tuning approaches
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Figure 3.20: Amplitude and phase spectra of the diffs. used for the approximate numerical
inversion of an analogue RC circuit. The parameter ω0 is equal to π
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.

Table 3.7: Results for the approximate inversion of a first-order analogue anti-aliasing filter
using Jacobi and Laguerre diffs. The latter are approximated by FIR filters. The delay and the
filter window lengths are given in multiples of the sampling period.

window length delay cutoff frequency

Lag. diff. 19 2 2356.19 rad/s

Jac. diff. 11 3 1220.09 rad/s

discussed in Section 3.1 have been developed separately for each diff. by considering the

low-pass properties of the filters. A more general and automatic tuning approach requiring

only the design of one parameter is proposed here. It relies on the filter interpretation of the

diffs.

3.4.1 Proposed approach

Let gN,ϑ be an orthogonal differentiator (orth. diff.) of order n as defined in Definition 2.5.

Denote by f̂ and f̂ (n) the approximations of f and f (n), respectively, computed using the same

diff. gN,ϑ. The offline tuning is considered first and the generalisation to an online adaptive

tuning is considered later. Assume that f is known in the interval [0, t∗], t∗ > 0, square

integrable, and

P(f) =
1

t∗

∫ t∗

0

|f(τ)|2 dτ 6= 0.

Recall from Table 2.4 that the approximated derivative can be seen as the output of the

linear time-invariant filter with impulse response gN,ϑ having as input the sought n-th order

derivative f (n) of f . In numerous applications the filtered version of the function f itself is

also required. Thus, f and its approximation f̂ shall be used to design the diffs. The new

parametrisation approach relies on the comparison of the filter output, i.e., the approximated

function, with the signal itself. Since f and the sought derivative are filtered by the same

filter, the approximation of f is used to design a suitable cost function.
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The filter shall now be designed such that the ratio

κP =
P(f̂)

P(f)
(3.29)

is equal to a desired value κ∗P ∈ (0, 1]. Thus, the filter shall attenuate the power of the input

by the factor κ∗P . Denote in the following by p the tuple of non-integer parameters on which

the diff. gN,ϑ depends. For the Jacobi and Laguerre diffs. the corresponding tuples are pJac. =

(α, β, T ) and pLag. = (α, T ). For the Hermite diff. only the parameter T is considered. Thus,

pHer. = T . By choosing µ large enough the FIR approximation discussed in Section 3.2.1 yields

the filter window length and the corresponding delay and µ does not need to be optimised.

By keeping in mind the effects of discretisation, the diff. can be designed by solving the

following optimisation problem:

min
p∈Pn

|κP(p)− κ∗P |
κ∗P

(3.30a)

subject to J (n, p) 6 Jmax (3.30b)

ωnN |F {gN,ϑ} (ωN)|
ωnc |F {gN,ϑ} (ωc)| 6 kN,max. (3.30c)

In the latter optimisation problem, Pn and κP(p) are the set of admissible parameters for

the estimation of the n-th order derivative and the ratio from (3.29) computed using a diff.

with parameters p, respectively. For a Lag. diff. with a delayed approximation and a fixed

polynomial degree N , the parameters are pLag. = (α, T ) and5 Pn = R>n−1 × R>0, for ex-

ample. The quantity J (n, p) in (3.30b) denotes the error norm defined in (3.12) computed

for a diff. approximating the n-th order derivative using the parameters p. Choosing Jmax

small ensures that the discrete differentiator preserves the frequency-domain properties of

the continuous-time one. In the second constraint (3.30c), ωN, F {gN,ϑ} and kN,max denote

the Nyquist frequency, the Fourier transform of the differentiator and the weakest relative

attenuation the differentiator should have at the Nyquist frequency, respectively. Choosing

kN,max small ensures that aliasing problems are avoided. Thus, the approach finds parameters

that minimise the relative deviation of the ratio in (3.29) from a desired value κ∗P such that

the discretisation does not alter the approximation results.

The approach is now first applied for the approximation of the first-order and second-

order derivatives of a measured signal from Example 3.8. The experimental validation of this

design approach shows promising results as will be shown in the next section. The theoretical

aspects are then discussed in the concluding remarks of this section.

Remark 3.1: Considering a maximally tolerable delay

The optimisation (3.30) can be further extended to include a maximal value for the

estimation delay. This can be important when the approximated derivatives are used

in closed-loop control.

5The set R>x is defined as R>x = {y ∈ R|y > x}.
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Remark 3.2: Motivation for the approach

This design approach is motivatived by the concept of power gain used for the design of

electronic circuits (see, e.g., (Pettit & McWhorter, 1961, Ch. 1) and (Egan, 2003, App. G)).

For the design of amplifiers where the purpose of the circuit is the amplification of the

level of the input signal, for example, the amount of increase is known as gain of the

amplifier.

3.4.2 Examples for automatic tuning

The proposed approach is now applied to approximate the first and second-order derivatives

of the signal from Example 3.8. Recall that this signal has already been used to discuss the

systematic tuning guidelines developed in Section 3.1. For all diffs. the FIR implementation is

used, Jmax = −60 dB and kN,min = −50 dB. Thus, the discrete diff. preserves well the frequency

domain properties of the continuous one. The windows of the filters are computed such

that the window starts when the distribution function takes values greater than 10−4. For

the optimisation the entire history of the signal from Example 3.8 is used. All optimisation

problems are solved using the interior-point method (see Byrd, Hribar, and Nocedal (1999)).

The cost function at the optimal solution is always below 10−5.

Estimation of a first-order derivative

Fig. 3.21 shows the variation of κP from (3.29), the estimation delay, and the length of

the filter window as a function of the logarithm of the parameter T of the Hermite diff. The

values that follow from the solution of the optimisation problem are denoted by a star in the

superscript and shown in the latter figure. Increasing T decreases κP and increases the delay

and the window length. These observations also follow from the theoretical considerations in

Section 3.1. Thus, a global solution for the optimisation problem exists.

Fig. 3.22 shows the variation of κP , the estimation delay, and the length of the filter

window as a function of the parameters T and α of the Lag. diff. It can be seen that level

sets exists, where κP is constant for different values of T and α. Thus, no global solution can

be found using the interior-point method. The variation of the quantities for the Jac. diff. is

not depicted. However, here again, numerous local minima have been, and no global solution

exists.

Table 3.8 gives the optimal diff. parameters, when the optimisation process is initialised

with parameters subject to a difference of 30% from those determined using the systematic

tuning guidelines in Section 3.3.1. The desired value of the attenuation is κ∗P = 0.99. The

table also summarises the estimation delay, the cutoff frequency, the filter window length, the

SNRout, and the SBR. For the Hermite diff., the cutoff frequency is computed as the frequency

where the amplitude reaches −3 dB. Fig. 3.24 shows the resulting amplitude spectra that are

very close to each other for frequencies up to 1000 rad/s. A better disturbance attenuation has

to be expected from the Jac. diff. due to the local minima of the spectrum at approximately

1750 rad/s, for example, for the first one. The worst disturbance attenuation should follow for

the Hermite diff. since its amplitude spectrum is up to 2000 rad/s higher than that of the other

two.
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the first-order derivative from Example 3.8. The values resulting from the optimal parameter
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the first-order derivative from Example 3.8. The values resulting from the optimal parameters
are given by the red dots and summarised in Table 3.8.

From Table 3.8, the Laguerre and the Jacobi diffs. have the same estimation delay of 11

sampling periods. That of the Hermite diff. is 18. The Jac. diff. has the highest SNRout

equal to 25.05 dB and the Hermite diff. the lowest equal to 20.68 dB. This confirms the previous

analysis of the amplitude spectra. However, the time evolution of the approximations given in

Fig. 3.23 show very good results for all cases. Comparing these results with those obtained

using the systematic tuning summarised in Tables 3.1 and 3.3 shows that by accepting

a slightly higher delay the quality of the approximations increases significantly. For the

Jac. diff. the delay for this parametrisation is only two sampling periods higher than that

in Section 3.3.1 for ωc = 0.6ω0.

While the Jacobi and Hermite diffs. have a window length of 35ts and 34ts, respectively,

the Laguerre one requires 67ts. Thus, computing the approximation with the latter requires

storing more filter coefficients and measurement values. However, approximating the optimal

Lag. diff. by a Lag. diff. that has the same cutoff frequency but the order ᾱ = 4, which

corresponds to the closest integer to the optimal α, yields an SNRout of 22.95 dB, the same
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Figure 3.23: Approximation results for the first-order derivative of the signal x from
Example 3.8 using diffs. whose parameter are computed using the automatic tuning
approach. The parameters of the diffs. are summarised in Table 3.8.

Table 3.8: Approximation results for the first-order derivative of the signal in Example 3.8
for N = 1, ωc = 8πf1rad/s using the automatic tuning approach with κ∗P = 0.99. All diffs. are
parametrised such that ϑ is the zero of the N + 1 OP of interest. The delay and the filter
window length are given as multiples of the sampling period ts.

Hermite diff. Lag. diff. Jac. diff.

µ = 1.6 ms, T = 1.5 ms α = 3.898, T = 0.66 ms α = 1.467,β = 1.216

T = 7.25 ms,

cutoff freq. in rad/s 1215.18 1816.02 476.23

delay δt 18 11 11

window length TL 34 67 35

SNRout in dB 20.68 22.82 25.05

SBR in dB 26.04 24.86 23.76

delay, and equal SBR. The cost (3.30) for this diff. is equal to 6 · 10−4, which is close to that

of the optimal solution. Thus, using the IIR implementation of this diff. significantly reduces

the computational burden and the storage requirements without altering the results.

Estimation of a second-order derivative

Consider again the estimation of the second-order derivative of the signal from Example 3.8.

Table 3.9 summarises the optimal parameters of the diffs. and the results of the derivative

approximation process when κ∗P = 0.99. The time evolution of the approximations are shown

in Fig. 3.25. The Jacobi and Laguerre diffs. have very close SNRout which are equal to 12.96 dB

and 12.29 dB, respectively, compared to that of the Hermite diff. having 10.17 dB. The delay of

Lag. diff. is equal to 15 sampling periods and is lower than those of the Hermite and Jacobi

diffs. and equal to 18 and 20, respectively.

As before, the Lag. diff. has the largest filter window with length equal 69ts as compared to

the Jacobi and Hermite with 56ts and 49ts, respectively. However, approximating the Lag. diff.

by a Lag. diff. with the same cutoff frequency and a parameter α equal to the closest integer
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Figure 3.24: Amplitude spectra of the differentiatiors parametrised using the automatic
tuning approach for the estimation of the first and second-order derivatives of the signal x
from Example 3.8. The parameters of the diffs. are summarised in Tables 3.9 and 3.10.

Table 3.9: Approximation results for the second-order derivative of the signal in Example 3.8
for N = 1 using the automatic tuning approach with κ∗P = 0.99. All diffs. are parametrised
such that ϑ is the zero of the N + 1 OP of interest. The delay and the filter window length are
given as multiples of the sampling period ts.

Hermite diff. Lag. diff. Jac. diff.

µ = 1.6 ms, T = 1.5 ms α = 8.93, T = 0.41 ms α = β = 6.04

T = 9.34 ms

cutoff freq. in rad/s 1220.2 2728.91 1322.14

delay δt 20 15 18

window length TL 49 69 56

SNRout in dB 10.17 12.29 12.96

SBR in dB 26.79 24.48 32.90

to the optimal solution, yields a delay of 15ts and a SNRout equal to 12.36 dB and the same

SBR. The cost function for this diffs. is 1 · 10−5, which is close to that for the optimal solution.

Thus, a very efficient IIR implementation can be used without altering the results.

The approximation results when κ∗P = 0.98 are summarised in Table 3.10. It can be seen

that the cutoff frequencies decrease in comparison with those computed for κ∗P = 0.98. This is

not surprising since reducing the cutoff frequencies is required to attenuate the signals more.

The time-evolution of the approximated derivatives is given in Fig. 3.25. Similar observations

can be made regarding the delay, the SNRout and the quality of the approximation as before.

A detailed discussion is thus omitted. Comparing the results with those achieved with the

systematic tuning guidelines shows, for example, for the Jac. diff. that a higher SNRout can

be achieved with a lower delay.

3.4.3 Concluding remarks

The previous examples show that the proposed approach for the automatic tuning of the

differentiators is promising and reduces the number of free parameters to a single one. The

90



3.4. Automatic tuning of orthogonal differentiators

Table 3.10: Approximation results for the second-order derivative of the signal in Example 3.8
for N = 1 using the automatic tuning approach for κ∗P = 0.98. All diffs. are parametrised such
that ϑ is the zero of the N + 1 OP of interest. The delay and the filter window length are given
as multiples of the sampling period ts.

Hermite diff. Lag. diff. Jac. diff.

µ = 1.9 ms, T = 1.84 ms α = 9.14, T = 0.58 ms α = 10.05,β = 9.92

T = 7.6 ms,

cutoff freq. in rad/s 993.15 1939.57 1046.61

delay δt 25 22 34

window length TL 59 97 94

SNRout in dB 14.33 19.31 21.24

SBR in dB 21.76 18.72 17.78
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Figure 3.25: Approximation results for the second-order derivative of the signal x from
Example 3.8 using diffs. with parameters computed using the automatic tuning approach
for two values of κ∗P . The parameters of the diffs. are summarised in Table 3.9.
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initialisation of the optimisation algorithms is, however, important due to the existence of

multiple local minima. Thus, combining it with the systematic tuning guidelines yields

excellent and promising results. Nevertheless, several questions are open and should be

addresses in future research projects:

1. How to choose the parameter κ∗P?

2. How is the ratio P
(
f̂ (n)

)
/P
(
f (n)

)
affected by this approach?

3. Which global optimisation scheme is the best adapted for solving the problem (3.30)?

4. How can this approach be used to design adaptive diffs.?

The last question is an interesting application of this design technique. The known history of

a signal can then be used to adapt the parameters online.

3.5 Summary and concluding remarks

The tuning and discrete-time implementation of Hermite, Laguerre, and Jacobi diffs. have

been discussed in detail in this chapter. A distribution function Φ defined in (3.9) has been

used to derive an FIR implementation for the diffs. Systematic tuning guidelines have been

derived such that desired low-pass properties can be achieved for the diffs. The effect of the

discrete-time implementation on these desired properties has been analysed using an error

norm defined in (3.12). Different discretisation schemes have been discussed. These prop-

erties and ideas have been illustrated using simple examples. For the Jacobi and Laguerre

diffs., recursive implementations have been discussed. While those for the Jac. diffs. have

already been published in Kiltz (2017), the discussions for the Laguerre ones are new.

For the Lag. diffs., the relation to HG diffs. and state variable filters has been discussed.

It has been shown that the latter two established approaches are recovered for a particular

parametrisation of the Lag. diffs. The simultaneous estimation of several derivatives using a

filter having the same properties has been considered. Implementing these filters significantly

reduces the required computational burden and the number of parameters and measurement

points to be buffered.

The systematic tuning guidelines and the use of the diffs. have been illustrated for the ap-

proximation of derivatives of a measured signal and the approximate inversion of an analogue

anti-aliasing filter. Using experimental data, it has been shown that compelling results can

be achieved.

Finally, an automatic tuning approach based on an optimisation problem has been pro-

posed. While the approach shows very convincing results on experimental data for all consid-

ered diffs., some theoretical questions remain open for future research.

The use of these diffs. for more elaborated problems is considered in the next chapters.

It is shown that the approaches can be successfully used when higher-order derivatives are

required.
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Model-based detection of impulsive forces

The detection of abrupt changes in measured signals is crucial in numerous applications.

For instance, popular models for sensor and actuator faults are stepwise changes (see, e.g.,

(Isermann, 2006, Ch. 5) and (Isermann, 2011, Ch. 2)). The ability to detect these abrupt

changes is important to designing fault-tolerant control techniques. The use of numerical

differentiation and in particular Jacobi differentiators (Jac. diffs.) for the detection of abrupt

changes has been successfully demonstrated in simulations and experimental validations

(see, e.g., Belkoura, Floquet, Ibn Taarit, Perruquetti, and Orlov (2011); Bourgeot and Delaleau

(2007); Fliess, Join, and Mboup (2010); Kiltz (2017); Kiltz et al. (2014, 2012); Kiltz and

Rudolph (2013); Tiganj and Mboup (2009)). For an extensive list of fault-tolerant control

applications based on Jac. diffs., the reader is referred to Othmane et al. (2022). In this

chapter, Jacobi and Laguerre differentiators (diffs.) are used to detect impulsive forces in two

different experimental case studies.

First, the detection of collisions of a table tennis ball with a magnetically levitated plate

and the estimation of the collision time is analysed in Section 4.1. The setup of the system

can be found in Fig. 4.1. Only the measurement of the vertical displacement of the plate and

the applied magnetic forces are known. The position of the ball is not measured. In addition

to the corruption stemming from noise, the vertical displacement measurement is disturbed

by a signal stemming from an audible mechanical eigenmode of the plate. This problem

has been solved in Kiltz (2017); Kiltz et al. (2013); Kiltz and Rudolph (2013) using Jac. diffs.

Therein, the parametrisation of the diffs. allowing the annihilation of undesired harmonic

signals recalled in Section 3.1.3 has been used. The current work shows that using Laguerre

differentiators (Lag. diffs.) in combination with a notch filter (see, e.g., (Tietze et al., 2008,

Sec. 13.8) for a discussion of notch filters) yields better results. For instance, the approach

allows to detect a ball falling from a lower height and considerably reduces the computational

burden and storage requirements.

Second, Jac. diffs. are used in Section 4.2 for the data and computation efficient detection

of faults for rolling element bearings. Numerical differentiation is combined with a physical

model of the considered system to derive the required algorithms. Fault-free data can be used

to identify the numerical values of the system parameters. Signals sensitive only to faults

are designed using a simplified model of the bearing vibrations to detect the faults. These

signals, called residuals, are proportional to the force stemming from the faults and are easy

to compute and implement. The design of a failure detection threshold is discussed. When

the residual value is above the threshold, a defect is detected. The desired probability of
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false alarms can be specified when the threshold is designed. The method is validated using

experimental data sets obtained from different research centres. The section has first been

published in Othmane and Rudolph (2021)1 and is taken literally.
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4.1. Model-based collision detection on a magnetically supported plate

Figure 4.1: Experimental setup of a plate which may move in the field of four electromagnets
with a table tennis ball. The vertical position of the plate is captured by four sensors. (Photo:
Saarland University, Oliver Dietze)

4.1 Model-based collision detection on a magnetically supported plate

The use of Jacobi and Laguerre diffs. for the detection of impulsive forces is first demonstrated

on an experimental setup shown in Fig. 4.1. This setup has already been used in Kiltz (2017);

Kiltz et al. (2013); Kiltz et al. (2014, 2012); Kiltz and Rudolph (2013). It consists of a 4.7 kg

rectangular aluminium plate with four iron profiles at its corners. The plate can be lifted

by forces generated by four electromagnets mounted to the frame above the plate. Sensors

measure the vertical displacement between the plate and the frame. The currents through

the magnet coils are driven by current controllers. The controller for the position has been

discussed in Kiltz et al. (2014, 2012).

In this section the following scenario is considered. While the plate is hovering at a

constant vertical position equal to −4.5 mm, a 2.7 g table tennis ball is falling on it. The

task is to first detect a collision and then to estimate the unknown collision time tc, i.e.,

the time instant when the ball hits the plate, using only the displacement measurement and

the known currents. The difficulties here are the significant difference in the mass between

the ball and the plate and the highly disturbed displacement measurement. In fact, an

(audible) mechanical eigenmode of the plate corrupts the measurements. False alarms due to

disturbances and unmodelled dynamics must be prevented.
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Figure 4.2: Collision detection using Jacobi and Laguerre diffs. at a specific hovering position
of the plate equal to y = −4.5 mm and a falling height of the ball equal to 3 cm: The detection
time and the time instant where the residual r from (4.2) crosses the zero line after the
maximum excitation are denoted by td and tz, respectively. The estimated collision time is
tc.

4.1.1 Collision detection and collision time estimation

The vertical motion of the plate may be described as in Kiltz (2017); Kiltz and Rudolph (2013)

by the differential equation

Mÿ +MΓ− F = −C + ν, (4.1a)

with y : R → R the measured vertical displacement of the plate, F : R → R the vertical force

generated by the magnets, C : R → R the contact force between the ball and the plate, and

ν : R→ R model uncertainties, that are assumed to be slowly varying. Moreover, M = 4.691 kg

is the mass of the plate and Γ = 9.8091 m/s2 is the gravitational acceleration. The contact force

derived in Kiltz (2017) can be modelled as

C(t) = ξδ(t− tc), ξ = m(1 + k)
√

2ΓH, (4.1b)

where the weight2 ξ of the Dirac impulse δ depends on the mass m = 2.7 g, the restitution

coefficient k = 0.9314, and the falling height H of the ball. Due to the use of the Dirac impulse

in the model, functions are identified with their induced distributions in the sense of Schwartz

(see, e.g., Schwartz (1966)) in the sequel.

2The weight ξ in (4.1b) corresponds to the change in momentum of the ball as a result of the collision (see (Kiltz,
2017, Sec. 4.1) for more details)
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Figure 4.3: Collision detection using Jacobi and Laguerre diffs. at a specific hovering position
of the plate equal to y = −4.5 mm and a falling height of the ball equal to 15 cm: The detection
time and the time instant where the residual r from (4.2) crosses the zero line after the
maximum excitation are denoted by td and tz, respectively. The estimated collision time is
tc.

Let g be an orthogonal differentiator (orth. diff.). A signal r : R→ R that indicates a collision

has been derived in Kiltz (2017); Kiltz and Rudolph (2013) as3

r = Mg(3) ? y − ġ ? F. (4.2)

The latter equation can be recovered by differentiating (4.1a) with respect to time in order to

eliminate slowly varying model uncertainties. The signal r, which in the sequel is called the

residual, can be computed using solely the known signals of the displacement and the applied

force. Using (4.1a) yields

r = −ξδtc ġ + g ? ν̇, (4.3)

where δtc ġ corresponds to the function ġ delayed by the delay tc. Thus, a reliable detection of

collisions can be achieved if the amplitude of ξδtc ġ is much larger than that of g ? ν̇.

In the absence of a collision the residual corresponds to the zero-mean signal ġ ? ν. To

detect collisions it is then sufficient to compare the residual to a constant threshold the value

of which should be chosen large enough to prevent false alarms. Consequently, only a ball

falling from a minimal height Hmin can be detected. Its value depends on the choice of the diff.

as will be discussed in the next subsection.

3The convolution of two functions f and g is written f ? g.
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When a collision occurs, the impulse response of ġ scaled by ξ stimulates the residual,

as given in (4.3). When the diff. is properly parametrised a ball falling from low heights can

be detected as demonstrated in Fig. 4.2 for a height of 3 cm using Jacobi and Laguerre diffs.

When the residual crosses the threshold, a collision is detected. The crossing time instant

denoted by td is called detection time in the sequel and depends on the chosen diff. As first

observed in Kiltz (2017), the detection time depends highly on the falling height of the ball

(see, e.g., Figs. 4.2, 4.3 and 4.9). Therefore, the detection time generally does not allow an

exact reconstruction of the collision time. On the other hand, the collision time, denoted by

tc, can be estimated with good precision from the zero-crossing that follows the maximum

excitation of the collision indicator. This is also illustrated in Figs. 4.2 and 4.3. From the

figures it is clear that the measurement of the displacement alone is insufficient for a reliable

estimation of the collision time as opposed to the derived residual.

Differentiator parametrisations allowing the detection of collisions for low falling heights

and their implementations are now discussed. Jacobi and Laguerre diffs. are used, and the

estimation quality, detection times, and the implementation burdens are compared.

4.1.2 Parametrisation of differentiators

If the detection threshold is chosen as ζ = ζmaxσġ?ν , with σġ?ν the standard deviation of the

signal ġ ? ν in the collision-free case, then the minimal falling weight required for the residual

to cross the threshold is

ξmin ≈
ζmaxσġ?ν

maxτ |ġ(τ)| .

From (Kiltz, 2017, Ch. 4), this weight corresponds to the minimal detectable falling height of

Hmin ≈
1

2Γ

(
ζmaxσġ?ν

m(1 + k) maxτ |ġ(τ)|

)2

.

The diffs. shall be parametrised to minimise the minimal detection height. In the following

ζmax = 5, which corresponds to a false alarm probability less than 0.6 · 10−4% if the collision-

free residual is assumed to be drawn from a normal distribution. In Fig. 4.4 the cumulative

distribution function (CDF) of a normal distribution is compared to that of the measurement

data for residuals computed using the Jac. diff. parametrised in Kiltz (2017) and the approach

with two different Lag. diff. This shows that the choice of the threshold is reasonable to have

a negligible false alarm probability.

In the absence of collisions the relation ν̇ = My(3) − Ḟ holds. Hence, an estimate of the

discrete Fourier transform D{ν̇}(k) =
∑Lm−1
n=0 ν̇(nts)e

−ι2πnk/Lm of ν̇ is

D̂{ν̇}(k) = −ιωk
(
ω2
kD{y}(k) +D{F}(k)

)
(4.4)

with ωk = 2πk
Lmts

, ts = 0.1 ms the sampling period, and L the number of measurement samples

(see, e.g., (Oppenheim & Schafer, 1989, Ch. 8)). Fig. 4.5 shows an estimate of the amplitude

spectrum of ν̇, where a particularly dominant peak arising from the previously mentioned

audible mechanical eigenmode at ωr = 946.1 rad/s can be seen. Thus, to be able to detect

collisions from low heights a suppression of this disturbing component is necessary.

Jacobi differentiator

In (Kiltz, 2017, Ch. 4), it has been shown that for a Jac. diff. with α = β = 5, N = 0, and

T = 27.4 ms a minimal detected falling height of Hmin = 0.94 cm with a detection time td =
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Figure 4.4: CDFs for the residuals in the collision-free case using measurements of the vertical
displacement at a hovering position y = −4.5 mm.
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Figure 4.5: Estimated amplitude spectrum from (4.4) of the disturbance ν̇ based on Lm = 217

measurements of the vertical displacement at a hovering position y = −4.5 mm.

9.1 ms can be achieved. It has also been shown that for this configuration, the resulting

filter approximates a matched filter (see, e.g., Turin (1960) for an introduction to matched

filters). Fig. 4.8 shows the amplitude spectrum of this diff. It can be seen that its second

local minima, the second zero of the Bessel function (see Section 3.1.3 where the zeros of

the amplitude spectrum are discussed), corresponds to the dominant resonant peak in the

amplitude spectrum of the disturbance. Thus, the effects of mechanical vibrations are exactly

annihilated. In the previous discussion on the estimation of the collision time, the zero-

crossing of the residual after its maximum excitation has been identified as a mean for the

estimation of tc. The impulse response crosses the zero line exactly at the centre of the window

of the diff. given by T/2 = 13.7 ms. The reader is referred to (Kiltz, 2017, Ch. 4) for a detailed

discussion on the parametrisation.

Laguerre differentiator

Since the amplitude spectrum of the Lag. diffs. does not exhibit zeros, an exact annihilation of

the effects of the mechanical vibrations is impossible using only a diff. To this end, the residual
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Figure 4.6: Comparison of the signal flow diagrams for the residual generation using the
approaches with the Jac. diff. and the Lag. diff.

r is further filtered by a second-order notch filter. The resulting signal is denoted by ř. Fig. 4.6

summarises the signal flow diagram of the approach in a more comprehensive representation

and compares it with the previous approach based on the Jac. diff. The transfer function of

the notch filter follows from (Tietze et al., 2008, Sec. 13.8) and is

hřr(ιω) =
−
(
ω
ωr

)2

+ 1

−
(
ω
ωr

)2

+ ι ωωr

1
Q + 1

where the parameter Q is called the quality factor. The larger Q the steeper the gain falls off

in the vicinity of the dominant resonant peak ωr of the mechanical vibrations and the more

narrow the stopband is.

In the presence of a collision, the new residual ř is a linear combination of the impulse

response of the cascade of the notch filter and the first-order derivative of the Lag. diff. and

the influence of the disturbances. In the previous discussion on the estimation of the collision

time tc, the zero-crossing of the residual after its maximum excitation has been identified as

a mean for the estimation of tc. Fig. 4.7 shows the impulse responses of the cascade and the

first-order derivative of the diff. for Q = 30 and two Lag. diffs. with N = 0, α = 5, and two

different values for T . It can be seen that while the cascade has a different impulse response

than the first-order derivative of the diff., the differences in the zero-crossing are negligible

and are less than a sampling period. Thus, the zero-crossing of the first-order derivative of the

Lag. diff., whose location at Tα is precisely known, can be used to estimate the collision time.

Decreasing the parameter Q of the notch filter, which enlarges the stopband, and keeping

the parameters of the Lag. diff. constant will affect the impulse response. The zero of ġ is no

longer a good estimate for the collision time.

Fig. 4.8 shows the amplitude spectra of the cascade of filters with different parameters. It

can be seen that the dominant resonance frequency is nicely annihilated. For both parametri-

sations of the Lag. diff. the amplitude is higher or equal to that of the Jac. diff. for high

frequencies. For low frequencies, the amplitude of the first is lower than that of the second

one. This has already been observed in Section 3.3.

The parametrisation with T = 2.8 ms has been used for the collision detection in the two

examples from Figs. 4.2 and 4.3. It can be seen that the detection times are td = 18 ms

and td = 17.25 ms, for the collision from 3 cm and 15 cm, respectively. For both collisions the

detection time is lower when the Lag. diff. is used compared to those for the Jac. diff. For

the collision from 3 cm the collision is detected 2 ms faster, which corresponds to 20 sampling

periods and a decrease of approximately 10 %. Both approaches estimate the same collision
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Figure 4.8: Amplitude spectra of the used diffs. for the collision detection.

time.

The faster detection observed in these two examples is confirmed by Fig. 4.9 where the

detection time is illustrated as a function of the falling height computed using collision free

measurements. The Lag. diff. with T = 2.8 ms has a minimum detectable falling height of

0.83 cm compared to the Jac. diff. with 0.94 cm. This corresponds to a decrease for Hmin of

approximately 11.7 %. The detection time for the approach with the Lag. diff. is significantly

lower than the one with the Jac. diff. Decreasing the parameter T of the Lag. diff. to 2 ms

increases the minimal detectable falling height to Hmin = 2.3 cm. Thus, decreasing T by 40 %

increases Hmin by 177 %.¸

4.1.3 Implementation of detection algorithms

The discussions started in Section 3.4 comparing the computational burden and the storage

requirements for the simple examples are now extended for this concrete case study.
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Jacobi differentiator

The window length of the Jac. diff. g with the previously mentioned parametrisation equals

274 sampling periods. Thus, computing the first-order derivative of the force F using ġ and

the third-order derivative of the displacement using g(3) requires 1094 arithmetic operations

in each sampling step, if the mid-point rule is used for the discretisation. For the imple-

mentation, 548 filter coefficients and past measurements have to be stored. In contrast,

the recursive implementation schemes briefly discussed in Section 3.2.3, has been used in

(Kiltz et al., 2014, Sec. 4.3) to reduce the required arithmetic operations by 88.1 % and the

storage requirements by 84.3 %. Thus, 130 operations are required in each step, and only 86

filter coefficients have to be stored. The recursive approximation of Ḟ and y(3) require an

implementation in a 26 bit and 33 bit fixed point arithmetic system, respectively.

Laguerre differentiator

Discretising the Lag. diffs. for the approximation of Ḟ and y(3) as in Section 3.2.2 by an

infinite-impulse response (IIR) filters using the bilinear transform yields the recursive scheme

(3.19), i.e.,

˙̂
Fk =

6∑

n=1

pn
˙̂
Fk−n +

6∑

n=0

qn,FFk−n, ŷ
(3)
k =

6∑

n=1

pnŷ
(3)
k−n +

6∑

n=0

qn,yyk−n,

with

p1 = −−384T 6 − 768T 5ts − 480T 4ts
2 + 120T 2ts

4 + 48Tts
5 + 6 ts

6

p0
,

p2 = −960T 6 + 960T 5ts − 240T 4ts
2 − 480T 3ts

3 − 60T 2ts
4 + 60Tts

5 + 15 ts
6

p0
,

p3 = −−1280T 6 + 960T 4ts
2 − 240T 2ts

4 + 20 ts
6

p0
,

p4 = −960T 6 − 960T 5ts − 240T 4ts
2 + 480T 3ts

3 − 60T 2ts
4 − 60Tts

5 + 15 ts
6

p0
,

p5 = −−384T 6 + 768T 5ts − 480T 4ts
2 + 120T 2ts

4 − 48Tts
5 + 6 ts

6

p0
,

p6 = −64T 6 − 192T 5ts + 240T 4ts
2 − 160T 3ts

3 + 60T 2ts
4 − 12Tts

5 + ts
6

p0
,

p0 = 64T 6 + 192T 5ts + 240T 4ts
2 + 160T 3ts

3 + 60T 2ts
4 + 12Tts

5 + ts
6,

and

q0,F =
2 ts

5

p0
, q1,F =

8 ts
5

p0
, q2,F =

10 ts
5

p0
, q3,F = 0, q4,F =

−10 ts
5

p0
, q5,F =

−8 ts
5

p0
, q6,F =

−2 ts
5

p0
,

q0,y =
8 ts

3

p0
, q2,y = −24

ts
3

p0
, q4,y = 24

ts
3

p0
, q6,y = −8

ts
3

p0
, q1,y = q3,y = q5,y = 0.

Thus, the approximation of the two derivatives requires storing 16 filter coefficients, 12 past

filter outputs (six for each) and 12 measurement samples (six for each). In very sampling

period, 42 arithmetic operations have to be performed to compute the residual r.

For the annihilation of the disturbance stemming from the audible mechanical eigenmode

of the plate, the mentioned notch filter can be discretised using the bilinear transform with
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Figure 4.9: Detection time td for the nominal time-evolution of the collision indicator ξδtc ġ as
a function of the falling height of the ball and different diffs. computed using collision free
measurements.

frequency prewarping (see, e.g., (Oppenheim & Schafer, 1975, Ch. 5) and (Franklin et al.,

1998, Ch. 6)). The prewarp frequency is ωr. Then, the residual ř can be approximated as

řk =

2∑

n=1

pn,Nřk−n +

2∑

n=0

qn,Nrk−n

with

p1,N =
4 cos2

(
ωrts

2

)
Q− 2Q

p0,N
, p2,N =

sin
(
ωr ts

2

)
cos
(
ωr ts

2

)
−Q

p0,N
, p0,N = − sin

(
ωr ts

2

)
cos

(
ωr ts

2

)
−Q,

q0,N =
−Q
p0,N

, q1,N =
4 cos2

(
ωr ts

2

)
Q− 2Q

p0,N
, q2,N =

−Q
p0,N

.

This implementation of the notch filter requires storing five filter coefficients, two past filter

outputs, and two measurement samples of the residual r. In total nine arithmetic operations

are required in each sampling step.

To conclude, computing the residual ř using the Lag. diff. and the notch filter requires

51 arithmetic operations in each sampling step. In total 21 filter coefficients, 14 past filter

outputs, and 14 measurement samples (including the two samples of r) have to be stored.

Comparing this implementation with the non-recursive implementation of the approach using

the Jac. diff., the number of arithmetic operations is reduced by 95.33 %. The method also

decreases the number of filter coefficients to be stored by 96.17 %. When the approach is

compared to the recursive implementation from Kiltz (2017), the computational burden and

the number of filter coefficients to be stored are reduced by 60.77 % and 75.58 %, respectively.

4.1.4 Concluding remarks

The previous analyses have confirmed the results in Kiltz (2017); Kiltz and Rudolph (2013)

showing that Jac. diff. can be used for the detection of collisions of a table tennis ball on

a plate using only the displacement measurement of the plate and the applied magnetic

forces. The unique properties of the Jac. diff. have enabled the annihilation of the disturbance

stemming from the audible mechanical eigenmode of the plate. Then, the problem has also

been solved using a Lag. diff. together with a notch filter. It has been shown that the approach
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yields a lower minimal detectable falling height with a lower detection time. Both approaches

estimate the same collision time that cannot be estimated using only the disturbed vertical

displacement measurement of the plate. This new approach also significantly reduces the

computational burden and the storage requirements when the recursive implementation of

the filters is used.

4.2 Model-based fault detection for rolling element bearings

Rolling element bearings are of paramount importance to almost all forms of rotating machin-

ery. Their failures are among the foremost causes of breakdowns in machines and may be

catastrophic and result in costly downtime. In Yung and Bonnett (2004), it is claimed that at

least 50% of electric motor failures start as bearing failures. According to de Azevedo, Araújo,

and Bouchonneau (2016), vast quantities of failures of wind turbines are caused by bearing

failures. To prevent catastrophic damages and costly downtime, early detection of failures is

thus crucial.

Bearing faults can be classified into single, multiple, or distributed point faults. The

single point defects are single localised defects on an intact bearing surface and may be

cracks, pits, or holes on the inner race, outer race, roller elements, or cage. These defects

generate characteristic frequencies that appear in the vibration or acoustic emission signals

and depend on the bearing geometry as discussed in McFadden and Smith (1984) and Smith

and Randall (2015). A characteristic frequency can be associated with every single point defect

of the components of the bearing. Multiple single point defects can appear simultaneously,

and the spectra of the vibrations differ from those observed in the presence of a single defect

as analysed in McFadden and Smith (1985). The analysis and the detection of these failures

are thus challenging. Finally, distributed point faults or generalised roughness faults are a

deterioration of the bearing over a large bearing surface area. As discussed in Stack, Habetler,

and Harley (2004) and Nectoux et al. (2012), these faults do not excite any of the characteristic

fault frequencies, and their early detection may be complicated.

Different bearing condition monitoring approaches have been discussed in the literature.

For several years signal processing methods (Betta, Liguori, Paolillo, and Pietrosanto (2002);

C. Li, Sanchez, Zurita, Cerrada Lozada, and Cabrera (2016); Nikolaou and Antoniadis (2002);

Smith and Randall (2015)) have been used. Machine learning methods, such as artificial

neural networks and support vector machine methods, recently attracted much attention. In

Daga et al. (2019) Principal Component Analysis and Linear Discriminant Analysis are used.

An extensive review of data-driven methods can be found in Cerrada et al. (2018). A model-

based approach for fault detection using linear observers is proposed in Qian (2019).

In this work, a novel model-based approach for detecting failures based on efficient and

robust numerical differentiation is introduced. A simplified model for the vibrations is pro-

posed. The parameters may be estimated from fault-free acceleration measurements using

Jac. diffs. derived in Mboup et al. (2009) and analysed in Kiltz (2017). A detailed analysis of

the estimation errors is carried out in Othmane, Rudolph, and Mounier (2020). This model

is then used to design signals, called residuals, sensitive only to faults. They are easy to

compute, interpret and implement. The time evolution of the residuals is proportional to the

force stemming from the faults. An approach for a systematic derivation of a failure detection

threshold is proposed using the properties of Jac. diffs. This threshold can be designed to
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Figure 4.10: Simplified model of a rolling element bearing.

meet a desired probability of false alarms.

This section is structured as follows. The physically motivated model for the vibrations is

discussed in Section 4.2.1. The estimation of the model parameters and the diff. parametri-

sation is explained in Section 4.2.2. An approach for the computation of a failure detection

threshold is proposed in Section 4.2.3. Finally, the approach is validated using different

experimental4 data sets in Section 4.2.4.

4.2.1 Modelling

In this section, a physically motivated model for the acceleration of the bearings is sought.

The contact between the bearing pedestal and the other components is modelled as a lumped

spring-mass system, where only the vibration of the outer race is considered, as shown in

Fig. 4.10. For simplicity, the vibrations in only one direction are considered here. However,

the extension of the approach is straightforward. As the rolling elements pass through a

defect position, an impulse force f : R→ R will be generated. Thus, the vibration produced by

a local fault can be modelled as the response of the bearing system to impulses that occur at

different time instants (McFadden and Smith (1984, 1985)). The fault force f is modelled as a

sum of weighted Dirac impulses

f(t) =
∑

i∈N
γiδ(t− tfi), (4.5a)

that affect the bearing housing at times tfi > 0, i ∈ N. In the latter equation δ : R→ R is

the Dirac impulse and γi ∈ R, with i ∈ N, describe the impulse strengths. In the sequel, the

explicit dependence of functions on time is omitted when no misinterpretation is possible.

4The experimental validation of the approach developed in this work would not have been possible without the
use of the publicly available experimental data sets. The author is greatly indebted to the research centres providing
them.
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Remark 4.1: Shaft rotating with time-varying velocity

It is assumed for notational simplicity that the shaft is rotating with a constant velocity.

The generalisation of the approach is straightforward by assuming the velocity to be

known. The system parameters are then a function of the velocity. The experimental

validation shows that a set of identified parameters can yield good results for intervals of

velocities.

The displacement t 7→ x(t) of the bearing pedestal satisfies

mbẍ+ dẋ+ cx = u0u+ f + h, (4.5b)

where mb ∈ R denotes the mass of the outer race and associated bearing pedestal, d ∈ R and

c ∈ R the damping and stiffness of the outer race and pedestal, respectively, and u0 ∈ R the

input gain. The system is excited by the input u. Model uncertainties and forces acting on

the system such as gravity or radial forces are summarised in h : R→ R. In the sequel it is

assumed that

ḧ ≈ 0 (4.5c)

and that the input u satisfies the differential equation

ü+ ω2
uu = 0, (4.5d)

i.e., u is a harmonic function with frequency ωu. Due to the introduction of the Dirac impulse

in the model, functions are identified with their induced distributions in the sense of Schwartz

(see, e.g., Schwartz (1966)) in the following.

In practice, the acceleration ẍ is measured by vibration transducers mounted at the bearing

pedestal. In the sequel the measurement is denoted by ỹ and is assumed to satisfy ỹ = y + η,

with y = ẍ and η an additive disturbance.

4.2.2 Parameter estimation

To estimate all unknown parameters of the model (4.5) an equation involving only known

signals and their derivatives is required, i.e., the input u has to be eliminated and the

acceleration y incorporated. Differentiating (4.5b) twice with respect to time and using the

model of the input (4.5d) yields

mbx
(4) + dx(3) + (c+mbω

2
u)ẍ+ ω2

udẋ+ ω2
ucx = ω2

uf + f̈ + ω2
uh+ ḧ.

By differentiating the latter equation twice and using the assumption (4.5c) the model uncer-

tainties vanish and a formulation

y(4) + p3y
(3) + p2ÿ + p1ẏ + p0y = q4f

(4) + q2f̈ (4.6)

with the acceleration y and the fault force f is obtained. In the latter equation p3 = d/mb,

p2 = c/mb + ω2
u, p1 = ω2

ud/mb, p0 = ω2
uc/mb, q4 = 1/mb, and q2 = ω2

u/mb. Equation (4.6) can now

be used to identify the parameters pi, i = 0, . . . , 3. Since the fault f is unknown, the identifica-

tion of qi, i ∈ {2, 4}, is not necessary.
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In the fault-free case

3∑

i=0

piy
(i) = −y(4) (4.7)

holds and the Jac. diffs. can be used for the estimation of the parameters. These Jac. diffs.

can be seen here as a special choice of modulation functions first introduced by Shinbrot in

Shinbrot (1957). Let g be a Jac. diff. with the parameters α, β, Tg, ϑ and N . Convolving both

sides of (4.7) with g yields
∑3
i=0 pig ? y

(i) = −g ? y(4). Assuming α, β > 3, the differentiation can

be transferred from y to g to get
∑3
i=0 piŷ

(i) = −ŷ(4), with ŷ(i) = g(i) ? y. Using Nm + 1 discrete

measurements ỹ(tk), k ∈ {0, . . . , Nm} of the acceleration y, the four unknown parameters can

be estimated by solving the least squares optimisation problem

J
(α,β)
N,Tg,ϑ

= min
p0,...,p3∈R

Nm∑

k=0

(
3∑

i=0

piŷ
(i)(tk) + ŷ(4)(tk)

)2

.

For the parametrisation of the Jac. diffs. the results of the frequency-domain analysis

and the tuning guidelines developed in Kiltz (2017); Kiltz and Rudolph (2013); Mboup and

Riachy (2018); Othmane, Rudolph, and Mounier (2021a) can be used. In particular, the

choice N = 0 and α = β depicts the best robustness with respect to disturbances. From Kiltz

and Rudolph (2013) the filter window length can be computed from a desired cutoff frequency.

The parameters α and β have to be chosen such that the frequency-domain properties of the

Jac. diff. are preserved after the discretisation. For small time window lengths Tg, or similarly

high cuttoff frequencies ωc, the parameters α and β have to be chosen high enough, such that

these properties are preserved after the discretisation.

4.2.3 Fault detection

Residual generation

The model (4.6) containing only the acceleration and the faults, can now be used to derive a

residual signal by replacing the parameters with their identified values. The residual is zero

in the absence of faults and strictly greater than zero otherwise. It is first assumed that the

model (4.6) perfectly describes the system. This assumption is dropped in the next subsection.

Denote by p̂i, i = 0, . . . , 3, the identified parameters from the last section and consider the

signal

r̄ = ŷ(4) +

3∑

i=0

p̂iŷ
i. (4.8a)

In the absence of faults, r̄ contains only measurement noise and errors stemming from the

parameter estimation. These errors are analysed in detail in Othmane et al. (2020). In the

presence of a fault f , the function r̄ satisfies

r̄ ≈ q4g ? f
(4) + q2g ? f̈ = q4g

(4) ? f + q2g̈ ? f.

Defining ϕ = q4g
(4) + q2g̈ and using the general definition of the fault in (4.5a), which corre-

sponds to the force generated by rolling elements striking a defect, yields

r̄(t) =

∫ ∞

−∞
ϕ(τ)f(t− τ)dτ =

∑

i∈N
γiϕ(t− tfi).
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The signal r̄ is now used to derive a residual that is proportional to the impulses strengths. Let

P ⊂ R be the domain of definition of the angle of the rotating shaft with respect to a reference

and I ⊂ R be the time domain of interest. Let φ : I → P map every time instant to an angle.

Assume φ is locally bijective and denote by φ−1 its inverse. From r̄, a residual can be designed

as

r(t) =
1

T̄ κ(t)

∫ φ(t)

φ(t)−φ1

∣∣r̄
(
φ−1(ϕ)

)∣∣dϕ, (4.8b)

with φ1 ∈ P and

κ(t) =

∫ φ(t)

φ(t)−φ1

∣∣∣g(4)(φ−1(ϕ)) + p̂1

p̂3
g̈(φ−1(ϕ))

∣∣∣dτ.

The residual (4.8b) can then be computed using (4.8a). For a better understanding of the

residual (4.8) , the special case of a shaft rotating with a constant velocity is considered. The

residual then simplifies to

r(t) =
1

T̄ κ

∫ t

t−T̄
|r̄(τ)|dτ, R 3 T̄ > Tg. (4.9)

For the interpretation of this residual, assume f consists only of one impulse, i.e., f(t) =

γ0δ(t− tf0
), where tf0

> T̄ . Then, the residual r from (4.8) reads

r(t) = q4
T̄ κ

∫ t

t−T̄

∣∣∣γ0

(
g(4)(τ − tf0) + q2

q4
g̈(τ − tf0)

)∣∣∣ dτ

∝




|γ0| , for tf0

∈ [t− T̄ , t− Tg],
0, otherwise,

i.e., r(t) is proportional to the intensity |γ0| of the impulse occurring at tf0 for tf0 ∈ [t − T̄ , t]
and zero otherwise. This can be generalised when the fault is a sequence of impulses as
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initially defined in (4.5a). Assuming that the instants at which the impulses occur satisfy

tfi+1
− tfi > Tg, for i ∈ N, the residual is proportional to the moving average of the intensities

of the impulse strengths in [t− T̄ , t− Tg].

Decision making

Threshold for fault detection Due to model uncertainties and measurement noise, the

residual r in (4.8b) is not identically zero in the fault-free case. Thus, a strategy is required

to detect faults reliably. Assume the residual r is a random variable drawn from a Gaussian

distribution with mean value µr and standard deviation σr. Fig. 4.12 is an example illustrating

this approximation using experimental data (the theoretical background is discussed in the

following subsection). A κr-fold of the standard deviation σr can be interpreted as a threshold

value which is not exceeded by the residual with a certain probability (e.g. for κr = 3 or

κr = 4 the probability is 99.73% or 99.99%, respectively, that the residual does not exceed the

threshold value κrσr). Thus, a Gaussian distribution can be fitted to the fault-free data, and

by varying κr, the threshold can be computed to obtain a desired probability of false alarms.

Theoretical background Assume the acceleration y = ẍ = 0, i.e., the measurement ỹ = η

consists only of the additive disturbance η, which is now assumed to be a random variable.

It has already been observed in Kiltz (2017) that the output of an algebraic Jac. diff. applied

to a stationary random variable can be well approximated by a random variable drawn from a

Gaussian distribution. Fig. 4.11 confirms this observation with a simulation example.

Consider now the residual r in (4.9) which corresponds to the moving average of r̄ after its

discretisation. Assume that r̄(ti), i ∈ {0, 1, . . .}, are independent identically distributed random

variables drawn from a normal distribution. As depicted in Fig. 4.12, the probability density

of r can be well approximated by a Gaussian distribution for growing T̄ .

From these two observations, it can be concluded that even when the measurement noise

is not drawn from a Gaussian distribution, the residual can be approximated by one.

4.2.4 Experimental validation

The residual is parametrised such that the integration in (4.8) is performed over three revolu-

tions. The threshold for the detection of faults introduced in the last section is parametrised

for all experiments such that the probability of a false alarm is 0.01%, i.e., κr = 4. In the

following, the residual is normalised to become unitless.

Case Western Reserve University data set

Test rig description The approach is first validated using the data set from the Case

Western Reserve University available at CWRU (2015) and introduced in Smith and Randall

(2015). An encoder and a torque transducer are mounted on a shaft driven by an electric

motor. A dynamometer is used to apply torque on the shaft, which is supported by the test

bearings, including drive end and fan end bearings. Faults of diameters of 7 mil, 14 mil,

21 mil, 28 mil, and 40 mil where 1 mil = 0.001 inch, have been introduced manually to the inner

ring, the outer ring, and the rolling elements. Accelerometers are mounted on the bearing

housing to collect vibration data sampled at 12 kHz and 48 kHz. In this work, the data sampled

at 12 kHz is used. Fault-free measurements for 4 different motor speeds ranging from 1730 rpm
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Figure 4.13: Evaluation of the residual (4.9) when the values r̄(ti), i ∈ {0, 1, . . .}, are identically
distributed random variables drawn from a normal distribution and T̄ = Nnts.

Figure 4.14: CWRU bearing test rig from Smith and Randall (2015).

to 1797 rpm are available. For illustration purposes, only the bearing of type 6205-2RSL JEM

SKF is considered.

Experimental validation For the parameter estimation approach introduced in Section 4.2.2

the measurements for 0.25 s at the speeds 1730 rpm and 1797 rpm are used to identify one

single set of parameters. This corresponds to only 6000 data points. Figure 4.12 depicts
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Figure 4.15: Time evolution of the residual of the experimental setup of the CWRU data set for
the fault-free case and the experiments 106 (inner race fault), 133 (outer race centered fault),
and 118 (ball fault). All defects have a diameter of 0.007 inch.

the probability density of the residual in the fault-free case. Figure 4.15 depicts the time

evolution of the residual for the fault-free case compared to the three different fault scenarios

with the narrowest (0.18 mm) possible fault diameter: inner race, outer race, and roller element

defect. The threshold for the detection of a fault is also given. All residuals are above

the computed threshold. These results clearly show that a defect can be recognised and

confirms the approach developed in this work. All, except 198 and 119, remaining faults in

the experiments not considered here were correctly detected, even the defects at the rolling

elements, which are certainly the most difficult to diagnose. These two datasets, namely 198

and 119, were not diagnosable with any of the methods applied in the initial work Smith and

Randall (2015).

The Politecnico di Torino data set

Test rig description In Daga et al. (2009), the DIRG Lab in the Department of Mechanical

and Aerospace Engineering at the Politecnico Di Torino provides measurements of a test bench

described in detail in Daga et al. (2019). The test rig consists of a driven shaft supported by

three bearings B1, B2, and B3. The bearings B1 and B3 are identical. The outer ring of the

bearing B2 is linked to a precision sled moving in orthogonal direction with respect to the

shaft. It produces a radial force acting on the shaft. The acceleration in all three spatial

directions is measured. For more details the reader is referred to Daga et al. (2019). The

monitoring of bearing B1 is of interest, and in this work, only the acceleration of the tested

bearing is used. The experiments at different speeds and loads are considered. Different types

of localised defects have been manually incorporated using a Rockwell tool into the bearing

B1. The acceleration is measured at a sampling frequency fs = 51.2 kHz.

Experimental validation Since measurements of the acceleration in the three spatial direc-

tions are available, a model of the form (4.5) is assumed for each vibration axis, and three

residuals ri, i ∈ {1, 2, 3}, can be computed, one for each axis. These residuals can be combined

to a single one r =
∑3
i=1 ri. The threshold for the detection of a fault can be computed

accordingly. Figure 4.17 depicts the results for different speed and load configurations. The

top plot depicts the CDF of the residual in the fault-free case and a fitted Gaussian. The lower

plot shows the residual time evolution and shows that the considered defects are correctly

detected. However, the approach is not able to correctly detect all defects. For instance, the
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Figure 4.16: The test rig of the The Politecnico di Torino rolling bearing test data set from
Daga et al. (2019).

defects (not depicted in the plot) of diameter 150 µm in the inner ring and on the roller could

not be detected. The experimental setup can explain this: The bearings have been removed

from the test bench and inserted back to incorporate the defects. Thus, the identified model

does not correspond anymore to the monitored one. However, this problem is not a drawback

of the approach since the bearing is not disassembled in industrial applications.

The PRONOSTIA data set

Test rig description The PRONOSTIA is an experimental platform described in Nectoux

et al. (2012) and designed to provide experimental data characterising the degradation of

bearings along their duration of operation. A synchronous motor drives a shaft supported by

the bearing to be analysed through a gearbox and different couplings. A radial force is applied

to the external ring of the test bearing. This force, the rotation speed of the shaft, and the

acceleration of the bearing are measured. Two accelerometers are mounted on the bearing’s

external race, and the acceleration in the orthogonal directions is measured. For illustration

purposes, only the data set Bearing1_1 is considered. It represents a run to failure experiment

where the rotation speed of the shaft and the radial load are 1800 rpm and 4000 N, respectively.

For simplicity, only the vertical acceleration is considered for assessing the bearing health.

Experimental validation The parameters are identified and the threshold is computed us-

ing the methods discussed in the previous sections. In the top of Figure 4.19, the CDF of

the residual in the fault-free case and a fitted Gaussian are depicted. This confirms the

assumption that the residual can be modelled as a normally distributed random variable

in the fault-free case. The figure also depicts the time evolution of the residual for the

complete experiment and the standard deviation of the measured acceleration computed for

each recording phase. The residual depicts an important jump happening approximately at

the 50th minute of the test, followed by an increase in the residual value and a crossing of the

threshold. After the jump the residual is increasing exponentially and an exponential model

t 7→ c0ec1t, with c0 = 924.57 and c1 = 0.005/min, can be fitted to the data. This trend that can be

seen at an early in the residual is not observed in the acceleration’s standard deviation. This

example exhibits again the effectiveness of the proposed approach.
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Figure 4.17: Analysis of the Politecnico di Torino data set. The rotation speed is denoted by v
and is in kHz. The load is denoted by τ and is in kN. The signals are 0A for the fault-free case,
1A and 4A for the inner ring and roller faults of diameters 450 µm and 450 µm, respectively.

Figure 4.18: The test rig of the PRONOSTIA (Nectoux et al. (2012)) data set.
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Figure 4.19: Analysis of the data set Bearing1_1 from the PRONOSTIA data set: CDF of the
residual for the fault-free case, time evolution of the residual with the fault detection threshold
for a run-to failure experiment, and the standard deviation of the vibration signal.

4.2.5 Concluding remarks

A model-based approach for online condition monitoring of rolling element bearings based on

efficient and robust numerical differentiation has been proposed. The physical parameters

and a fault detection threshold are estimated using fault-free data. The threshold can be

designed to guarantee a desired false alarm probability. The detection of sudden degrada-

tions and monitoring the evolution of the faults are ensured. The experimental validation

using different experimental data sets is promising. These results are very advantageous

in terms of implementation simplicity, physical interpretability, low computation complexity,

and avoiding training burden.
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4.3 Summary and concluding remarks

The previous two sections clearly illustrate that numerical differentiation using orthogonal

polynomials (OPs) does not only perform well in simulation studies but also in experimental

ones. The successful detection of collisions of a table tennis ball with a mass of 2.7 g on a

magnetically hovering plate with mass equal to 4.7 kg using the measurement of the vertical

displacement of the plate and Jacobi and Laguerre diffs. shows that even in highly disturbed

environments higher-order derivatives can be reliably estimated. The approach based on the

Lag. diff. does not only achieves a lower detectable minimum falling height of the ball but

also considerably reduces the computational burden and the required storage capacities. The

implementation of the Jac. diff. for the specially chosen parametrisation shows that the ability

to eliminate harmonic disturbances without additional filters is a decisive advantage of these

numerical differentiation schemes as previously reported in Kiltz (2017); Kiltz et al. (2013);

Kiltz et al. (2014); Kiltz and Rudolph (2013). The use of the Jac. diffs. for the model-based fault

detection of rolling element bearings has shown that combining a simple physically motivated

model and numerical differentiation can yield powerful tools for fault detection. These tools,

validated using different experimental case studies, do not require extensive training with

large data sets.
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On the problem of parameter estimation

Inferring mathematical models from measurements is undoubtedly crucial for most modern

control methods. However, the numerical values of the parameters of the models are often not

or only poorly known in advance and have to be estimated from measurements. The literature

on parameter identification is extensive. For general textbooks on the subject from the control

area the reader is referred to Aström and Eykhoff (1971); Garnier and Wang (2008); Isermann

(2013a, 2013b); Ljung (1999); Unbehauen and Rao (1987), for instance. Despite the long

standing history of the topic, some theoretical questions remain open and new approaches

are still developed. Two methods will be discussed and used in this chapter.

An identification approach based on differential-algebraic manipulations in the operational

domain has been proposed in Fliess and Sira-Ramírez (2003a). The approach has attracted

considerable attention and has been extensively studied and extended in Fliess and Sira-

Ramírez (2008); Gehring (2015); Gehring, Rudolph, and Stauch (2012a, 2012b); Gehring,

Stauch, and Rudolph (2016); Mboup (2009); Stauch, Gehring, and Rudolph (2013); Ushirobira

et al. (2016); Ushirobira, Perruquetti, Mboup, and Fliess (2012, 2013) to name only a few

examples. Most of these methods are closely related to the Jacobi differentiator (Jac. diff.) as

discussed in Mboup (2009). A detailed list of applications in various engineering fields can be

found in Othmane et al. (2022).

Standard gradient estimators (see, e.g., (Slotine & Li, 1991, Sec. 8.7.3) and (Sastry &

Bodson, 1989, Sec. 2.5)) for models in the form of linear regression equations (LRE) require the

regressor to be persistently excited to ensure the convergence of the estimates. This condition

is hardly verified in practice. Recently, the Dynamic Regressor Extension and Mixing (DREM)

approach has been proposed in Aranovskiy et al. (2016b, 2017). This parameter estimation

method is applicable for models in the form of LRE and consists of two steps. First, new

equations are generated using a dynamic operator applied to the available data. Then, these

new linearly independent equations are "mixed" to obtain a new regression model on which

standard parameter estimation techniques can be applied. The convergence of the approach

is ensured without the persistency of excitation condition on the regressor. The approach

has attracted a lot of attention (see, e.g., Belov et al. (2018); Ortega et al. (2021, 2019, 2020,

2018); Yi and Ortega (2022)) and has shown to be useful in numerous applications (see, e.g.,

Aranovskiy et al. (2016a); Bazylev et al. (2017); A. Bobtsov et al. (2017); A. A. Bobtsov et al.

(2018); Yi et al. (2018)).

In this chapter, the DREM approach is revisited, and two modifications are proposed.

The original approach from Aranovskiy et al. (2016b, 2017) is called standard DREM in the
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sequel. The first modification yields less restrictive convergence conditions. In the second

modification, a QR decomposition with column pivoting is used to ensure that any excited

parameter is adapted even if a subset of the parameters is not. Simple examples are provided

to illustrate the modifications and their advantages. A specific example is provided where

neither the standard DREM approach nor the modified version yield convergence of the

estimation error to zero. Contrarily, an approach motivated by the ideas in Mboup (2009)

yields estimates in finite time.

The modified DREM approach is then validated using two different experimental case

studies. Therein it is shown that the orthogonal differentiators (orth. diffs.) discussed in

Chapters 2 and 3 can be used as operators to generate new linearly independent equations.

In the first example, the frequencies of a linear combination of harmonic functions are esti-

mated from a disturbed laboratory measurement. The sampling frequency of the system is

100 Hz, and the highest frequency of interest in the measurement is 80 Hz. The tuning of the

differentiators (diffs.) is discussed in detail since it is a challenging problem for this case. The

estimation results of this approach are compared to those achieved with a method proposed in

Mboup (2009) and implemented using finite-impulse response (FIR) filters. In the second case

study, the parameters of a linear time-invariant (LTI) electro-mechanical system are identified

from disturbed laboratory measurements. Comparing simulation results with a validation

trajectory confirms the excellent results that can be achieved using this approach.

The chapter ends with concluding remarks on the proposed approach and a brief discus-

sion on the simultaneous state and parameter estimation problem.
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5.1 Background material on Dynamic Regressor Extension and Mixing

Consider a piecewise constant unknown parameter vector θ ∈ Rn satisfying the LRE

y(t) = φT (t)θ (5.1)

with the known and bounded signals y : t 7→ y(t) ∈ R and φ : t 7→ φ(t) ∈ Rn. LRE of the

form (5.1) appear in numerous problems of parameter estimation and adaptive control (see,
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e.g., Åström and Wittenmark (2013); Ljung (1999); Sastry and Bodson (1989)). The online

estimation of θ using the known signals y and φ is analysed in the following.

For x ∈ Rn, ‖x‖ = xTx. The set of nonnegative real numbers is denoted by R>0. The set Lp
is defined as

Lp =

{
f : R>0 → Rn

∣∣∣∣
∫ ∞

0

‖f(τ)‖p dτ <∞
}
,

for p ∈ (0,∞). The action of an operator H : Lp → Lp on a signal u : t 7→ u(t) is denoted

by H[u](t). The identity matrix of size n is denoted by In. The adjugate matrix of an n × n
matrix M is denoted by adj{M}. A matrix inequality of the form A1 > A2, where A1 and A2 are

square matrices of the same dimension, means that A1−A2 > 0, i.e., that the matrix A1−A2 is

positive definite. Similar notations apply to the concepts of positive semi-definiteness, negativ

definiteness, and negative semi-definiteness.

5.1.1 Gradient-descent estimator and persistent excitation

The parameter vector θ can be identified using a gradient-descent estimator (see, e.g., (Slotine

& Li, 1991, Sec. 8.7.3) and (Sastry & Bodson, 1989, Sec. 2.5)) of the form

˙̂
θ(t) = Γφ(t)

(
y(t)− φT (t)θ̂(t)

)
(5.2)

with Γ ∈ Rn×n a positive definite adaptation gain. The parameter estimate error eθ = θ − θ̂
satisfies the linear differential equation

ėθ(t) = −Γφ(t)φT (t)eθ(t), (5.3)

whose convergence properties are briefly summarised in the following. The analysis requires

the definition of a persistently exciting signal.

Definition 5.9: Persistence of excitation (Sastry and Bodson (1989))

A vector φ : R+ → Rn is persistently excited (PE) (denoted by φ ∈PE), if there exist

α1, α2, δ > 0 such that

α2In >
∫ t+δ

t

φ(τ)φT (τ)dτ > α1In,

for all t ∈ R>0.

As discussed, for instance, in (Slotine & Li, 1991, Sec. 8.7.3), the error eθ exponentially

converges to zero, if and only if φ ∈ PE. Moreover, its norm ‖eθ‖ is monotonically non-

increasing, i.e.,

‖eθ(t1)‖ > ‖eθ(t2)‖ , ∀t1 6 t2 ∈ R>0. (5.4)

Persistence of excitation is a restrictive condition for most practical applications. In Ara-

novskiy et al. (2017) an approach called DREM with weaker convergence conditions has been

proposed and is now briefly recalled.

5.1.2 Dynamic Regressor Extension and Mixing

The main idea behind the DREM approach is the generation of n new linearly independent one-

dimensional LRE and a nonlinear manipulation of the data to independently estimate each
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parameter. The first step is achieved using a linear, single-input n-output, bounded-input

bounded-output (BIBO)-stable operator H (see, e.g., (Khalil, 2002, Ch. 5) for more details on

input-output stability).

Using the linearity of this operator and applying it to (5.1) yields

Y (t) = Φ(t)θ, (5.5)

with Y (t) = H[y](t) ∈ Rn and Φ(t) = H[φT ](t) ∈ Rn×n. Different operators of this kind have been

discussed in the DREM literature and are briefly reviewed and commented.

Remark 5.1: Bibliographical comments

Extending the system (5.1) to obtain a square linear system of form (5.5) or more generally

a non square overdetermined one is not a novelty of the DREM methodology. Initial

ideas can be traced back to early parameter estimation works based on modulating

functions in Jouffroy and Reger (2015); Loeb and Cahen (1965); Pearson and Lee (1985);

Preisig and Rippin (1993a, 1993b); Shinbrot (1954, 1957), for example. More recently,

differential algebraic manipulations in the operational domain have been used to generate

new linearly independent equations as shown in Fliess and Sira-Ramírez (2003a, 2008);

Gehring (2015); Gehring et al. (2012a, 2012b, 2016); Mboup (2009); Stauch et al. (2013);

Ushirobira et al. (2016, 2012, 2013), for example. An advantage of this algebraic ap-

proach is the straightforward annihilation of structured perturbations. This can be done

in the same manner as for the annihilation of unwanted derivatives in the derivation of

diffs. discussed in Section 2.3.2. A connection of these methods of algebraic flavour with

orthogonal polynomials (OPs)a has been discussed in Mboup et al. (2009); Ushirobira

(2018); Ushirobira and Quadrat (2016) and extensively used in Lomakin and Deutscher

(2020a, 2020b, 2021, 2022); Othmane et al. (2022, 2020), for instance. In P. Li (2019); Li,

Boem, Pin, and Parisini (2020); Pin, Assalone, Lovera, and Parisini (2016); Pin, Lovera,

Assalone, and Parisini (2013) a very similar approach to the modulating function method

has been discussed. Therein, known signals are convolved with special kernels such that

the resulting signals are outputs of stable finite-dimensional state realisations for the

integral operators.

A notable difference between the DREM approach and the previously cited works is the

estimation of the parameters. For the latter, a well conditioned square or overdetermined

linear system of the form (5.5) is sought and solved for the parameter vector θ. In contrast,

for the DREM approach a dynamic system is formulated such that the estimation error

converges (in finite or infinite time) to zero under some conditions on the matrix Φ. The

idea is close to the developments in Kreisselmeier (1977); Lion (1967) for adaptive state

and parameter estimation, where new linearly independent regression equations have

been obtained using LTI filters and the application of a gradient-descent estimator. These

approaches have also been discussed in Jenkins, Annaswamy, and Kojic (2015) and

(Narendra & Annaswamy, 2012, Sec. 6.5), for instance. As for the simple estimator in

(5.3) the latter works require the regressor to be PE. The only difference is that the

convergence rate can be made arbitrarily fast by increasing the adaptation gain and

carefully choosing the operators for the generation of the new equations. However, this

remains questionable since it may yield numerical instabilities and a scheme that is less
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robust with respect to unmodeled dynamics (see, e.g., Jenkins et al. (2015); Ortega et al.

(2020)). The DREM approach in contrast is a method with relaxed convergence conditions

and an improved transient performance as will be discussed.

aSee the survey Othmane et al. (2022) for a detailed discussion on the historical background of Jac. diffs.
and an extensive list of applications in the context of parameter estimation.

DREM-operators

Different formulation for the BIBO-stable operators H have been introduced in the literature.

In Aranovskiy et al. (2017), exponentially stable low-pass filters of first order and pure delay

operators are discussed. In Ortega et al. (2021), a generalisation of the latter two operators is

proposed in form of linear time-varying operators

ẋi(t) = Ai(t)xi(t) + bi(t)u(t)

zi(t) = cTi (t)xi(t) + di(t)u(t) + µi(t)u(t− Ti),

with Ai : t 7→ Ai(t) ∈ Rni×ni , ni ∈ N, bi : t 7→ bi(t) ∈ Rni , ci : t 7→ ci(t) ∈ Rni , di : t 7→ di(t) ∈ Rni ,
µi : t 7→ µi(t) ∈ R time-varying functions, Ti > 0, and i ∈ {1, . . . , n− 1}.

In (Ortega et al., 2021, Prop. 4), it is shown that Kreisselmeier’s regressor extension

developed in Kreisselmeier (1977) is a special case of the latter operators. Linear time-varying

operators are used in Ortega et al. (2018) to attach a Luenberger observer interpretation to

this parameter estimation approach.

Parameter estimation

Multiplying both sides of (5.5) with the adjugate of Φ(t) yields1

Y(t) = ∆(t)θ (5.6a)

with

Y(t) = adj{Φ(t)}Y (t) and ∆(t) = det{Φ(t)}. (5.6b)

The relation in (5.6a) can also be written componentwise for each element of the parameter

vector θ as Yi(t) = ∆(t)θi, i ∈ {1, . . . , n}. The parameters θi, i ∈ {1, . . . , n}, can be estimated in

continuous-time by the gradient-descent estimator

˙̂
θi(t) = γi∆(t)

(
Yi(t)−∆(t)θ̂i(t)

)
, γi ∈ R>0, (5.7)

proposed in Aranovskiy et al. (2017). The estimation errors eθ,i = θi − θ̂i, i ∈ {1, . . . , n},
satisfy the differential equations ėθ,i(t) = −γi∆2(t)eθ,i(t). The individual parameter errors are

monotonically non-increasing, i.e.,

|eθ,i(t1)| > |eθ,i(t2)|, ∀t1 6 t2 ∈ R>0, (5.8)

and limt→∞ eθ,i(t) = 0 if and only if ∆ 6∈ L2. The convergence of each error eθ,i can be adjusted

by varying γi. If ∆ ∈ PE the convergence is exponential.

According to Aranovskiy et al. (2017), this estimation approach has three main advantages

over the standard gradient-descent estimator. First, the individual parameter errors in (5.8)

1Recall that for a square n× n matrix M it holds that adj{M(t)}M(t) = det{M(t)}In.
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are monotonically non-increasing, a property that is strictly stronger than the monotonicity

of their norm as in the standard gradient-descent estimator in (5.4). Second, the parameter

convergence is established without the restrictive PE assumption. A less restrictive condition,

the non-square integrability assumption, is required. Third, the convergence rates of DREM

can be adapted for each single parameter by adapting γi.

Remark 5.2: Use of orth. diffs. in DREM

It can be recognised that the orth. diffs. derived in Chapter 2 can be used as operators to

get a system of the form (5.5) and the gradient-descent estimator in (5.7) can then be used

to estimate the parameters. The detailed discussions concerning tuning guidelines and

implementation issues in Chapter 3 can be used to efficiently parametrise the operators.

This will be discussed in detail on the basis of experimental examples in the next section.

Beforehand, an extension of this approach is proposed for general BIBO operators and

generalises the method discussed in Othmane et al. (2020).

5.2 Two modifications of the DREM approach

In this section, a generalisation of the gradient estimator recalled in Section 5.1.2 in form of

a linear time-varying observer is proposed. Consider the linear time-varying system

ż(t) = 0, Y (t) = Φ(t)z(t) (5.9)

with the state z(t) ∈ Rn modelling the sought parameters θ, the bounded output Y (t) ∈ Rn

satisfying (5.5), and the initial condition z(t0) = θ.

The parameter vector z shall be estimated using an observer

˙̂z(t) = L(t) (Y (t)− Φ(t)ẑ(t)) , (5.10)

with state ẑ(t), initial condition ẑ(t0) = ẑ0 ∈ Rn, and a time-varying gain L : t 7→ L(t). The gain

shall be computed such that the estimation error e = z− ẑ satisfying the differential equation

ė(t) = −L(t) (Y (t)− Φ(t)ẑ(t)) = −L(t)Φ(t) (z(t)− ẑ(t)) = −L(t)Φ(t)e(t) (5.11)

converges to zero.

Two approaches for the computation of L are discussed. First, it will be shown that the

convergence condition ∆ 6∈ L2 for the estimator (5.7) can be generalised to ∆ 6∈ Lp for an

arbitrary p ∈ (0,∞). However, similarly to the initially discussed approach, this extension

suffers from the following problem: A poor excitation of some parameters in the system during

a time interval Ih(t) = [t− h, t], h > 0, yields a rank deficient matrix Φ(t), i.e., det{Φ(τ)} ≈ 0,

τ ∈ Ih(t). Hence, parameters will not be adapted during this interval. An approach partially

overcoming this problem is then proposed. The key idea is to decompose the parameter vector

into excited parameters and non-excited ones, at every time instant t. Then, the excited

parameters can always be adapted. This can be achieved using a QR factorisation with column

pivoting. The resulting approach is called generalised DREM (gDREM) in the sequel.
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5.2.1 A first modification of the DREM approach

The first idea for a modification of DREM is based on the generalisation of (5.6) to

L(t)Φ(t) = fp(Φ(t))Γ, (5.12a)

with Γ = diag(γ1, . . . , γn) a diagonal matrix with positive diagonal entries and the function

fp(Φ(t)) = |det{Φ(t)}|p , p ∈ (0,∞). (5.12b)

A matrix L that satisfies (5.12) is2

L(t) =




fp(Φ(t))ΓΦ−1(t), for det{Φ(t)} 6= 0,

0, otherwise.
(5.13)

The estimation error e(t) = z(t) − ẑ(t) satisfies the differential equation (5.11), which for

this choice of L becomes ė(t) = −fp(Φ(t))Γe(t). Its solution is

e(t) = exp

(
−Γ

∫ t

t0

fp(Φ(τ)) dτ

)
(z(t0)− ẑ(t0)).

The individual components ei, i ∈ {1, . . . , n}, of the error e can be written as

ei(t) = exp

(
−γi

∫ t

t0

fp(Φ(τ)) dτ

)
(zi(t0)− ẑi(t0)).

The derivations above establish the following result and it is easy to verify that for p = 2 the

DREM approach with the adjugate matrix is recovered.

Proposition 5.1: First modification of DREM

Consider the estimation error e = z − ẑ(t) with z from (5.9) and ẑ(t) from (5.10), where

the gain L is computed according to (5.13). The following equivalence holds

lim
t→∞

ei(t) = 0⇔ t 7→ det{Φ(t)} 6∈ Lp, p ∈ (0,∞),

for all components ei, i ∈ {1, . . . , n}, of the error e. The convergence is exponential if

t 7→ det{Φ(t)}∈ PE.

The condition t 7→ det{Φ(t)} 6∈ Lp, p ∈ (0,∞), is less restrictive than the condition recalled in

Section 5.1.2 requiring that t 7→ det{Φ(t)} is not square integrable, as demonstrated in the

following example for p = 1.

Example 5.9 Example for first DREM modification

Consider the regressor

φ(t) =

[−(t+ 1) cos(t+ 1) + cos(1)− sin(1) + sin(t+ 1)

t+ 1
,

1

t+ 1

]T

the components of which are bounded for all t > 0. Moreover, the second component

2It can be recognised, that the gain computed using (5.13) corresponds to a solution of the equation
L(t)Φ(t) = f(Φ(t)) Γ. The QR or the Singular Value decompositions can be used to compute the inverse of Φ(t)
as discussed, for instance, in Golub and Van Loan (2013) or Press, Teukolsky, Vetterling, and Flannery (2007) in the
context of linear algebraic equations.
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converges to zero for t→∞. For the application of the previously discussed approaches

a system of the form (5.5) is required, which can be achieved by defining

Φ(t) =

[
φ(t)

φ̇(t)

]
,

i.e., the system is augmented by the derivative of the regressora. This is a reasonable

choice since the orth. diffs. discussed in Chapters 2 and 3 can be used to approximate

these signals. The determinant det{Φ(t)}of Φ(t) satisfies det{Φ(t)}= sinc(t) for all t, where

sinc is the sinc function summarised in #A.19. The function sinc satisfies sinc ∈ L2 and

sinc 6∈ L1. Thus, the estimation error of the standard DREM approach would fail to

converge to zerob. Conversely, the modified approach with p = 1 ensures a convergence

to zero.
aObserve that the augmentation of general LRE by derivatives of the regressors yields conditions on the

Wronskian of the regressor for the error to converge to zero.
bBy increasing the adaptation gain Γ the estimation error of the standard DREM approach can be made

arbitrarily small. However, this can yield numerical instabilities as for the approach in Jenkins et al. (2015)
using the methods from Kreisselmeier (1977); Lion (1967).

Moreover, a bounded function f satisfies

f2(t) 6 |f(t)| sup
τ∈R>0

|f(τ)|

for all t > 0. Thus, every function f ∈ L1 is also in L2. Hence, if the determinant of Φ is ∆ ∈ L1

neither of the approaches converge. This is again illustrated using an example.

Example 5.10 Counter example for first DREM modification

Consider the estimation of the parameters d, ω ∈ R>0 of the signal y(t) = e−dt sinωt. As

discussed in Mboup (2009) the signal satisfies the differential equation

ÿ + 2θ1ẏ + θ2y = 0, θ1 = d, θ2 = ω2 + d2.

According to (Mboup, 2009, Sec. 3) the parameters θ1 and θ2 are linearly identifiablea.

On the other hand, d and ω, which are algebraic functions of θ1 and θ2, are weakly

linearly identifiable. By defining the regressor φ(t) = [2ẏ, y]
T an LRE of the form (5.1) is

obtainedb. Systems of the form (5.5) can be obtained using a delay or a differentiation

operator. Denote by Φ1 and Φ2 the matrices of systems of the form (5.5) obtained using

the derivative of φ and a delayed version of φ with a delay h > 0, respectively. Their

respective determinants ∆1 and ∆2 satisfy

lim
t→∞

∫ t

0

∆2
1(τ)dτ =

ω4

d
lim
t→∞

∫ t

0

|∆1(τ)|dτ =
ω2

d
,

lim
t→∞

∫ t

0

∆2
2(τ)dτ =

ω2 sin2(hω)e2dh

d
, lim

t→∞

∫ t

0

|∆2(τ)|dτ =
ω| sin(hω)|edh

d
.

Thus, none of these approaches yields a convergence of the estimation error to zero.

Contrarily, the algebraic approach from Mboup (2009) yields very good estimates.

aThe reader is referred to Fliess, Mboup, Mounier, and Sira-Ramírez (2003); Fliess and Sira-Ramírez (2003a)
for an in depth discussion of the identifiability concepts used in this example.
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bUsing derivatives of y in the regressor does not present any issue since orth. diffs. can be used to filter the
entire equation and computable signals are then obtained.

While this modification of DREM yields weaker convergence conditions, no adaptation

is performed as soon as one parameter is not excited. This shall be overcome in the next

modification of DREM, which is an extension of the first one.

5.2.2 A second modification of the DREM approach

Suppose Φ(t) has rank3 κ(t) ∈ N. Using a QR factorisation with column pivoting (see, e.g.,

(Golub & Van Loan, 2013, Sec. 5.2)), the matrix Φ(t) can be decomposed as

Φ(t)Π(t) = Q(t)R(t) = Q(t)

[
R1(t) R2(t)

0κ̄(t)×κ(t) 0κ̄(t)×κ(t)

]
, κ̄(t) = n− κ(t) (5.14)

at each instant t, with Q(t) ∈ Rn×n an orthogonal matrix, R(t) ∈ Rn×n an upper triangular

matrix. The matrices R1(t) and R2(t) of dimensions κ(t) × κ(t) and κ(t) × κ̄(t), respectively,

contain the information stemming from the excited parameters. These can be extracted from

the parameter vector using the permutation matrix Π(t). If Φ(t) has full rank, i.e., κ(t) = n,

then R(t) = R1(t).

As opposed to the standard DREM with the adjugate operator in (5.6), or the generalisation

proposed in (5.12), the extension and mixing is now performed in a different but closely related

manner.

Proposition 5.2: Second modification of DREM

Consider the estimation error e = z− ẑ with z from (5.9) and ẑ from (5.10) where the gain

t 7→ L(t) is computed at each instant t as

L(t) = −|det{R1(t)}|pΓK(t), p ∈ (0,∞), (5.15a)

with Γ = diag(γ1, . . . , γn) a diagonal matrix with positive entries and

K(t) =





Π(t)G(t)QT (t), for
(
κ(t) > 0 ∧R2(t) = 0κ(t)×κ̄(t)

)
∨ κ(t) = n,

0n×n, otherwise,

G(t) =

[
R−1

1 (t) 0κ(t)×κ̄(t)

0κ̄(t)×κ(t) 0κ̄(t)×κ(t)

]
,

(5.15b)

where Π(t), R(t), Q(t), R1(t), and R2(t) are given in (5.14). The errors ei, i ∈ {1, . . . , n}
satisfy decoupled differential equations. If

det{Φ(t)} 6∈ Lp (5.16)

then limt→∞ ei(t) = 0. Moreover, the convergence is exponential if det{Φ(t)}∈ PE.

Proof. For notational simplicity, let

r1(t) = |det{R1(t)}|p .
3For the determination of the rank of a matrix using a QR factorisation the reader is referred to (Golub & Van Loan,

2013, Sec. 5.4.3), for example.
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The estimation error e(t) = z(t) − ẑ(t) satisfies the differential equation (5.11) which for L

computed as in (5.15) becomes

ė(t) = r1(t)L(t)Φ(t)e(t)

= −r1(t)Γ





Π(t)G(t)QT (t)Q(t)R(t)ΠT (t), for
(
κ(t) > 0 ∧R2(t) = 0κ(t)×κ̄(t)

)
∨ κ(t) = n,

0, otherwise,

= −r1(t)Γ





Π(t)G(t)R(t)ΠT (t), for
(
κ(t) > 0 ∧R2(t) = 0κ(t)×κ̄(t)

)
∨ κ(t) = n,

0, otherwise,

= −r1(t)Γ





Π(t)J(t)ΠT (t), for
(
κ(t) > 0 ∧R2(t) = 0κ(t)×κ̄(t)

)
∨ κ(t) = n,

0, otherwise,

with

J(t) =

[
Iκ(t)×κ(t) 0κ(t)×κ̄(t)

0κ̄(t)×κ(t) 0κ̄(t)×κ(t)

]
.

Since Π(t) is a permutation matrix, Π(t)J(t)ΠT (t) is a diagonal matrix with elements equal to

zero or one for all t. Thus, the errors ei, i ∈ {1, . . . , n}, satisfy decoupled differential equations

ėi(t) = −γir1(t)fi(t)ei(t)

with fi(t) ∈ {0, 1}. Recall that for det{Φ(t)} 6= 0 the rank of Φ(t) is n and R1 = R(t). Furthermore,

if r1(t) = 0 then det{Φ(t)}= 0. Thus, by observing that

0 6 |det{Φ(t)}| 6 r1(t)fi(t)

it can be concluded that if |det{Φ(t)}| 6∈ Lp, then limt→∞
∫ t

0
r1(τ)fi(τ)dτ =∞ and

lim
t→∞

ei(t) = exp

(
−γi

∫ t

t0

fi(τ)r1(τ)

)
(zi(t0)− ẑi(t0)) = 0,

which concludes the proof. The exponential convergence claim follows from the definition of

PE.

Computing the observer gain L at each time instant as in (5.15) corresponds to an ex-

tension of the result in Proposition 5.1. This can be seen by observing that when Φ(t) is

regular, both gains are equal. They differ only for rank deficient Φ(t) with R2(t) = 0κ(t)×κ̄(t).

While finding conditions on Φ(t) such that R2(t) = 0κ(t)×κ̄(t) remains an open problem, the

considered examples in the following show that this approach presents numerous advantages.

The following example shows that the condition (5.16) is only a necessary condition for the

convergence to zero of all estimation errors.

Example 5.11 Second DREM modification

Consider the regressor

φ(t) =
[

1
t+1 r(t)

]
, r(t) =





1, for t 6 1
2 ,

0, otherwise.

125



5. ON THE PROBLEM OF PARAMETER ESTIMATION

The matrix Φ can be generated using a delay h ∈ (0, 1), for instance, to get

Φ(t) =

[
1
t+1 r(t)

1
t+1−h r(t− h)

]
.

It is straightforward to see that det{Φ(t)} vanishes in finite time. Thus, the standard

DREM estimation approach would fail to converge to zero. However, the QR decomposi-

tion as discussed above yields the following error dynamics for the two parameters

ė1(t) =





−γ1

∣∣∣ 1
(t+1−h)

∣∣∣
p

e1(t), for t ∈ [0, h] ,

−γ1

∣∣∣ 1
(t+1)(t+1−h)

∣∣∣
p

e1(t), for t ∈
(
h, 1

2 + h
]
,

− γ1

t+1e1(t), otherwise,

ė2(t) =





−γ2

∣∣∣ 1
t+1−h

∣∣∣
p

e2(t), for t ∈ [0, h] ,

−γ2

∣∣∣ 1
(t+1)(t+1−h)

∣∣∣
p

e2(t), for t ∈
(
h, 1

2 + h
]
,

0, otherwise.

Thus, the error e1 converges to zero while the error e2 remains constant for t > 1.

The standard DREM approach recalled in Section 5.1.2 requires the adjugate matrix of

Φ(t), which is the transpose of the matrix of the co-factors of Φ(t). The computation of the

adjugate from this definition requires the calculation of n2 determinants of order n − 1. This

algorithm has a complexity of O(n4). A more efficient and numerically stable algorithm is the

computation of the adjugate using a QR decomposition as discussed in Stewart (1998). Thus,

the slight modification of the gain in Proposition 5.2 for the parameter estimation does not

noticeably increase the complexity of the required computations. Hence, when the parameter

p in (5.12b) is chosen equal to 2, this modification of the DREM approach does not yield any

disadvantages compared to the initial formulation in Section 5.1.2.

Remark 5.1: Nonlinearly parametrised regressions

In Aranovskiy et al. (2017) the use of the DREM technique for nonlinearly parametrised

regressions with factorisable nonlinearities has been discussed. The approach can also

be extended using the observer proposed here.

5.3 Validation of the approaches

In the following, the gDREM approach is validated using three case studies. First, a simulation

is provided where only the excited parameters are updated. The non excited ones are kept

constant. Then, two experimental cases studies where gDREM based on Jac. diffs. are

discussed. In the sequel, all dynamic systems are discretised using the Euler backward

method.
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Figure 5.1: Time evolution of the parameter estimates for the system in (5.17) with ΓgDREM =
ΓDREM = ΓGrad = [5, 5] using three different approaches.
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Figure 5.2: Time evolution of the parameter estimates for the system in (5.17) with ΓgDREM =
[5, 5] and ΓDREM = ΓGrad = [200, 200] using three different approaches.

5.3.1 Simulation study

Consider the system

y(t) = φT (t)

[
θ1

θ2

]
, φ(t) =

[
1
t+1 r(t)

]T
, r(t) =





0, for t 6 1.75,

1, otherwise.
(5.17)

The regressor φ is not PE since limt→∞ 1
t+1 = 0. To apply DREM or gDREM one more equation

has to be generated. This is done here using a delay operator with a delay h = 1/2. It can be

verified that the convergence conditions for the gradient estimator and the standard DREM

are not fulfilled. However, the convergence conditions for gDREM with p = 1 are satisfied. In

the simulation θ1 = θ2 = 1.

The time evolution of the estimates for two different values of Γ is shown in the Fig. 5.1 and

Fig. 5.2. It is clear that the gDREM estimates converge to the true values while the remaining

two approaches do not. Here it is important to note that the estimate of θ1 for gDREM starts to

converge to its true value from t = 0 on. The estimate of θ2 starts to converge beginning from

t = 1.75. This once again confirms the importance of the approach using the QR decomposition

to detect the excited parameters.
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Figure 5.3: Time evolution of the measurement for the experimental case study 1 in the time
interval [0 s, 0.15 s]: The discrete measurements are displayed by the markers.

5.3.2 Experimental case study 1

The DREM approach is first validated using a frequency estimation problem. To this end,

assume a signal

y : t 7→ y(t) = a0 sin(ω1t+ φ1) + a1 sin(ω2t+ φ2), a0, a1, φ1, φ2 ∈ R, (5.18)

is known at discrete time instances. The frequencies ω1, ω2 > 0 shall be estimated. The

signal y is generated in the laboratory using a signal generator where ω1 = 20π rad/s and

ω2 = 80π rad/s. The signal is recorded using a sampling period of ts = 5 ms. The corresponding

Nyquist frequency is 100 Hz. The recorded signal is shown in Fig. 5.3. The low sampling rate

in comparison to ω2 makes the problem challenging especially when diffs. are used.

From a signal processing perspective the Fast Fourier Transform (see, e.g., (Oppenheim &

Schafer, 1975, Ch. 6)) can be used for the extraction of the frequencies from logged measure-

ments. However, this can be computationally intensive for an online estimation. Numerous

other approaches better suited for online applications have been developed. Algebraic param-

eter estimation approaches4 based on differential-algebraic manipulations in the operational

domain inspired by the fundamental ideas in Fliess and Sira-Ramírez (2003a) have been

applied in Liu et al. (2008); Trapero, Sira-Ramírez, and Batlle (2007); Ushirobira et al. (2012)

for the estimation of a single frequency and in Trapero, Sira-Ramírez, and Batlle (2008);

Ushirobira et al. (2016, 2013) for the estimation of two frequencies simultaneously with the

signal amplitudes and phases. A different approach for the estimation of multiple frequen-

cies relies on adaptive observers that show global or semi-global stability properties. These

approaches have been discussed in Chen, Pin, and Parisini (2014); Hou (2012); Marino and

Tomei (2002); Xia (2002), for instance. A convergence of the estimates in finite-time can also

be achieved using integral operators as proved by Chen, Li, Pin, and Parisini (2016). Therein,

the measurement is convolved with a kernel and its derivatives to overcome the problem of

unknown derivatives. In this sense, the approach is closely related to the algebraic identifi-

cation method. In Fedele and Coluccio (2010) modulating functions initially introduced5 in

Shinbrot (1954, 1957) have been used for the recursive estimation of the frequencies. Due to

the importance of modulating functions, their definition is recalled in the following.

4In Mboup (2009) a least squares interpretation is attached to an algebraic identification approach.
5See Preisig and Rippin (1993a, 1993b) for a detailed review on modulating functions.
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Definition 5.10: Modulation function (Preisig and Rippin (1993a))

A function φ : [0, T ]→ R is called a modulating function (of order α ∈ N) if it is sufficiently

smooth and if, for some fixed T

φ(i)(0) = φ(i)(T ) = 0,

for all i ∈ {0, . . . , α− 1}.

From Definition 2.8 of Jac. diff. g(α,β)
N,T,ϑ, it is clear that it is a modulating function of order

min(α, β). This property of Jac. diffs. has been used in Liu, Laleg-Kirati, Perruquetti, and

Gibaru (2014) for the simultaneous estimation of the state and unknown input of a nonlinear

system. It is now used for the estimation of the frequencies ω1 and ω2.

It is well known that the signal y from (5.18) satisfies the differential equation

(
d

dt

2

+ ω2
1

)(
d

dt

2

+ ω2
2

)
y = 0,

or equivalently (
d

dt

4

+ θ1
d

dt

2

+ θ2

)
y = 0, θ1 =

(
ω2

1 + ω2
2

)
, θ2 = ω2

1ω
2
2 . (5.19)

Thus, according to Mboup (2009) the parameters θ1 and θ2 are linearly identifiable. On the

other hand, the parameters ω1 and ω2, which are algebraic functions of θ1 and θ2, are weakly

linearly identifiable. The latter equation is used in the following for the estimation of θ1 and

θ2. Denote by θ̂1 and θ̂2 the corresponding estimates. The estimates of the frequencies ω1 and

ω2, denoted in the sequel by ω̂1 and ω̂2, respectively, can then be computed as the positive

roots of the polynomial λ2 + θ̂1λ+ θ̂2.

Let gi = g
(αi,βi)
0,Ti,ϑ

be a Jac. diff. with αi, βi > 3 and denote by

ŷ
(n)
i (t) =

∫ T

0

g
(n)
i (τ)y(t− τ)dτ.

For notational simplicity, the explicit time dependence of signals is dropped in the sequel.

Convolving both sides of the differential equation (5.19) with gi yields6,

ŷ
(4)
i + θ1

¨̂yi + θ2ŷ = 0 ⇔ ŷ
(4)
i = φTi θ,

with φi = −[¨̂yi, ŷi]
T and θ = [θ1, θ2]T .

Two approaches for the estimation of the frequencies are now discussed:

1. Using Neq > 2 different Jac. diff. a linear system of equations

Y = Φθ, (5.20)

with Y = [ŷ
(4)
1 , . . . , ŷ

(4)
Neq

]T and Φ = [φ1, . . . ,φNeq
]T is generated. For Neq > 2 the system is

overdetermined and a least squares solution can be computed. In all cases the solution

can be computed using a Singular Value Decomposition as described in Press et al.

6This equation can also be recovered using differential-algebraic manipulations in the operational domain as
discussed in Mboup (2009). This can be easily seen by recalling the differential-algebraic derivation of Jac. diffs. in
Section 2.4.3.
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Figure 5.4: Error norm (3.12) for an Jac. diff. with N = 0 and cutoff frequency ωc = 500 rad/s
for different values of the parameters α and β.

(2007). When an overdetermined system is used, numerical issues stemming from an

ill-conditioning of the matrix Φ are overcome. In the sequel , this approach is called the

algebraic approach.

2. Using 2 different Jac. diff. a linear system of equations

Y = Φθ (5.21)

with Y = [ŷ
(4)
1 , ŷ

(4)
2 ]T and Φ = [φ1,φ2]T . The gDREM approach7 is used for the estimation

of the parameters. The adaptation gain is Γ = diag
(
1500 V2/s, 1500 V2/s

)
and p = 2.

The parametrisation of the diffs. is particularly challenging in this context due to the low

sampling frequency compared to the highest frequency in the signal. Thus, the bandwidth

where the filters gi act as diffs. must be large enough to ensure that the component from ω2 is

not damped too much, and the discretisation should not alter the continuous-time properties.

Jacobi diffs. with N = 0, cutoff frequencies equal to ωc = 500 rad/s, and different values of α

and β are considered in the sequel. Fig. 5.4 shows the variation of the error norm defined

in (3.12) for a Jac. diff. Thus, to get an error norm less than −95 dB the parameters α and β

must be larger than 35.

Systems of equations of the form (5.20) and (5.21) are now generated using sufficiently

many Jac. diffs. with cutoff frequency8 ωc = 500 rad/s and different values of α and β. Table 5.1

summarises the properties9 of the diffs. used. For the gDREM approach or the algebraic

approach with two equations the diffs. g(35,36)
0,ϑ,T and g

(36,35)
0,ϑ,T are used. This results in two filters

with a window length of 22ts and corresponds to 21 filter coefficients when the mid-point rule

7In Aranovskiy et al. (2016a) the DREM approach is used for the estimation of the frequencies of a linear
combination of two harmonic signals. State variable filters (see, e.g., Peter and Isermann (1990); Young (1981))
are used for the computation of the derivatives of the signal y. New linearly independent equations are generated
using pure delay operators. An upper bound on the frequencies in the signal y needs to be known for the choice of
the delays. The use of the state variable filters induces an exponentially decaying error term in the estimation of the
derivatives as opposed to the approach followed here.

8Choosing the cutoff frequency of the Jac. diff. and varying the parameters α and β rather than fixing the window
length T and varying α and β seems more intuitive to the author. Engineers generally have some basic knowledge of
the system and the frequencies to be expected in the signals. Thus, a cutoff frequency can be chosen based on this
knowledge.

9Even though the diffs. have been parametrised such that the cutoff frequency is the same for all of them, the
chosen parametrisations result in filters with equal window lengths. This equality is due to the low sampling rate.
The reader should be aware that this is no longer the case for a higher sampling rate. For example, choosing the
sampling period as ts = 0.1 ms yields for g(40,35)0,ϑ,T and g(38,37)0,ϑ,T windows of lengths 1151ts and 1128ts, respectively.
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Table 5.1: Jac. diffs. used for the generation of new equations in the first experimental case
study and the value of the error norm (3.12) quantifying the effects of the discretisation for
ωc = 500 rad/s.

Approach diffs. error norm (3.12) in dB T

gDREM and Alg. Neq = 2
g

(35,36)
0,ϑ,T −99.324 22ts

g
(36,35)
0,ϑ,T −99.324 22ts

Alg. Neq = 3

g
(35,37)
0,ϑ,T −96.274 22ts

g
(36,36)
0,ϑ,T −96.600 22ts

g
(37,35)
0,ϑ,T −96.274 22ts

Alg. Neq = 6

g
(35,40)
0,ϑ,T −101.819 23ts

g
(36,39)
0,ϑ,T −103.075 23ts

g
(37,38)
0,ϑ,T −103.721 23ts

g
(38,37)
0,ϑ,T −103.721 23ts

g
(39,36)
0,ϑ,T −103.075 23ts

g
(40,35)
0,ϑ,T −101.819 23ts

is used for the discretisation. The parameters α and β are chosen such that the error norm

(3.12) is lower than −95 dB. For the algebraic approach, the scenarios with Neq = 3 and Neq = 6

are also considered.

Exploiting the FIR interpretation of the Jac. diffs. and the frequency-domain analysis it

can be shown after some tedious but straightforward trigonometric manipulations that t 7→
det{Φ(t)} 6∈ L2. Thus, the gDREM approach will converge. Fig. 5.5 shows the time evolution

of the estimates of the frequencies using the gDREM approach and the algebraic one with

Neq = 6. Since the window length of the Jac. diff. for the algebraic approach is 23ts it is

clear that the approach will converge in finite time to the true value (except for the effects of

the measurement disturbance) at t = 0.115 s. Contrarily, the gDREM estimates converge only

asymptotically. However, from the figure it is clear that the convergence is very fast. Both

estimates show qualitatively good results, while the ones from the gDREM show slightly less

fluctuation around the true value.

The normalised root-mean-square error

NRMS error ωi =

√√√√
Ns∑

k=k0

(ωi − ω̂i(kts))2

ωi
, i ∈ {1, . . . , 2}, (5.22)

with k0 the index corresponding to t = 0.15 s and Ns the total number of measurements, is

used for the quantitative comparison of the results. Table 5.2 summarises its values for

the different approaches. The table confirms the observations from Fig. 5.5. The estimates

from the gDREM have a root-mean-square error that is lower than those from the algebraic

approach. Moreover, increasing Neq decreases the error.
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Figure 5.5: Time evolution of the estimates for the experimental case study 1. For the
algebraic approach Neq = 6.

Table 5.2: Normalised root-mean-square errors from (5.22) for the first experimental case
study.

gDREM Alg. Neq = 2 Alg. Neq = 3 Alg. Neq = 6

NRMS error for ω1 0.0170 0.214 0.129 0.097

NRMS error for ω2 0.0282 0.444 0.154 0.062

rigid linkspring
tower

DC motor

base

φB

φJ

ΘB

ΘJ

Figure 5.6: Experimental setup of the flexible joint system11 and a schematic representation.

5.3.3 Experimental case study 2

A second experimental case study for the validation of the parameter estimation approach is

performed using a rotary flexible joint system10 from Quanser. Fig. 5.6 shows the experimen-

tal setup and a schematic representation of it. The system consist of a rigid link mounted on a

flexible joint. An encoder measures the deflection of the joint whose rotation in the horizontal

plane is counteracted by two extension springs. The joint is attached to a tower the rotation

of which is driven by a DC motor though some gears. The motor and an encoder measuring

the angle of the tower are in the fixed base.

10See https://www.quanser.com/products/rotary-flexible-joint/ (accessed: 31:07:2021) for more details.
11Photo of flexible joint system from https://www.quanser.com/products/rotary-flexible-joint/ (accessed:

31.07.2021)
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Mathematical model of the system

Denote in the following by φB the angle of the tower with respect to some reference as shown

in Fig. 5.6. The deflection of the joint with respect to a fixed reference on the tower is denoted

by φJ. A viscous damping with parameter d is assumed for the joint and the springs shall be

approximated by a linear torsion spring with stiffness cT. Neglecting the electrical dynamics

of the system and applying the Lagrange formalism yield the differential equations

φ̈J = −ΘcφJ −ΘDφ̇J +Kφ̇B − bu (5.23a)

φ̈B = cφJ +Dφ̇J −Kφ̇B + bu (5.23b)

with u the voltage applied to the DC motor. In the latter equations the parameters are:

Θ = 1 +
ΘB

ΘJ
, D =

d

ΘB
, c =

cT
ΘB

, K =
K2
u

ΘBR
, b =

Ku

ΘBR
,

with ΘB and ΘJ inertia parameters of the tower and the link, respectively, Ku the motor

constant, and R the electrical resistance in the motor. The knowledge of the parameters ΘB,

ΘJ, R, Ku, d, cT is not required for the design of controllers or observers. Only the numerical

values of Θ, c, D, K, and b are required. Their estimation is now discussed.

Parameter estimation

Let g = g
(α,β)
0,T,ϑ be a Jac. diff. with α, β > 1 defined in Definition 2.8 and denote by

f̂ (n)(t) =

∫ T

0

g(n)(τ)f(t− τ)dτ

the approximation of the n-th order derivative of some square integrable function f . Convolv-

ing both sides of (5.23a) and (5.23b) with g yields

¨̂
φJ = −Θcφ̂J −ΘD

˙̂
φJ +K

˙̂
φB − bû (5.24a)

¨̂
φB = cφ̂J +D

˙̂
φJ −K ˙̂

φB + bû (5.24b)

The simplest approach for the estimation of the parameters (see Remark 5.1 for a different

method) is to consider both equations (5.24a) and (5.24b) as two separate LRE

¨̂
φJ = φTθ1 and ¨̂

φB = φTθ2 (5.25)

with φ = [φ̂J,
˙̂
φJ,

˙̂
φB, û]T , θ1 = [−Θc,−ΘD,K,−b]T , and θ2 = [c,D,−K, b]. The gDREM approach

can then be used for the estimation of the components θi,j of θi, i ∈ {1, 2} and j ∈ {1, . . . , 4}.

Remark 5.1: Second approach for the estimation of the parameters in (5.24)

Using (5.24b) the parameters c, D, K, and b can be estimated using the gDREM approach,

for example. Denote by ĉ and D̂ the resulting estimates of c and D, respectively. The only

remaining parameter to be estimated is Θ. Adding (5.24a) and (5.24b) yields

¨̂
φJ +

¨̂
φB − cφ̂J −D ˙̂

φJ = Θ(−cφ̂J −D ˙̂
φJ).

Replacing now in the latter equation D and c by their corresponding estimates yields

¨̂
φJ +

¨̂
φB − ĉφ̂J − D̂ ˙̂

φJ = Θ(−ĉφ̂J − D̂ ˙̂
φJ),
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Figure 5.7: Time evolution of the voltage u and the angles φB and φJ of the identification
trajectory.

which is suitable to estimate Θ using again gDREM, for example. Thus, only five pa-

rameters are estimated in total as compared to the previous approach where eight are

considered.

The measurements of u, φB, and φJ are sampled at a frequency of 100 Hz. Fig. 5.7 shows

the time evolution of these signals that shall be used for the identification of the parameters.

A single Jac. diff. with parameters N = 0, α = β = 40, and cutoff frequency ωc = 250 rad/s

is used in the following. This cutoff frequency corresponds to 80 % of the Nyquist frequency.

Using the mid point rule yields a discrete filter with 25 coefficients. To reduce the computation

requirements, the six new equations that are required for the application of gDREM to each of

the LRE in (5.25) are created using a pure delay operator with delay d = 20ts. The parameter

p is chosen equal to 1 and the adaptation gains are

Γ1 = Γ2 = diag (1, 0.2, 1, 1) /sV

for the estimation of θ1 and θ2, respectively. Note that for this example it is analytically not

possible to verify the convergence condition in Proposition 5.2. The results will be verified by

comparing measured trajectories with simulated ones. As a comparison the estimates from

standard gradient estimators of the form (5.2) with gains

Γ̄1 = Γ̄2 = diag
(
3.2/s, 0.04 s, 0.32 s, 36/(s V2)

)
(5.26)

shall be considered. Furthermore, the parameters in θ1 and θ2 are also estimated offline as
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the least squares solutions of the systems12




¨̂
φJ(t1)

...
¨̂
φJ(tNs)


 =




φT (t1)
...

φT (tNs)


θ1 and




¨̂
φB(t1)

...
¨̂
φJ(tNs)


 =




φT (t1)
...

φT (tNs)


θ2,

respectively, with Ns the total number of measurements. Denote in the following by θi,j,LS,

i ∈ {1, 2} and j ∈ {1, . . . , 4}, the solution of the latter equations.

Fig. 5.8 shows the time evolution of the estimates using the gDREM and the standard

gradient approach with the previously discussed parameters. It can be seen that the estimates

from the standard gradient from (5.2) with gains given in (5.26) do not converge to the values

computed using the offline estimation approach. Increasing the adaptation gains significantly

increases the effect of measurement disturbances. In contrast, the estimates from the gDREM

approach quickly converge to the values from the offline estimation. Moreover, the exponential

convergence can be nicely seen especially for the estimates of the parameters θi,j, i ∈ {1, 2}
and j ∈ {2, . . . , 3}.

Consider now the system

φ̈J = θ̂∗1,1φJ + θ̂∗1,2φ̇J + θ̂∗1,3φ̇B + θ̂∗1,4u

φ̈B = θ̂∗2,1φJ + θ̂∗2,2φ̇J + θ̂∗2,3φ̇B + θ̂∗2,4u,

with θ̂∗i,j, i ∈ {1, 2} and j ∈ {1, . . . , 4}, the mean values of the last 100 values of estimates

from the gDREM approach, for the validation of the approach. This system is simulated with

an input trajectory given in Fig. 5.9 and different from that used for the identification and

suitable initial conditions. The time evolution of the angles φB and φJ from the simulation

and the measurement are shown in Fig. 5.9. Comparing the signals proves that the gDREM

approach with this Jac. diff. yields very good results.

5.4 Concluding remarks

The estimation of parameters satisfying a LRE has been discussed in this chapter. The DREM

approach developed in Aranovskiy et al. (2017) has been recalled, and two modifications

have been proposed. These modifications yield less restrictive convergence conditions on

the regressor. The second modification ensures that if only a subset of parameters is excited,

the adaptation is not entirely stopped as in the standard DREM approach. The advantages

of this approach have been discussed using examples. For the generation of new linearly

independent equations, the use of Jac. diffs. has been discussed in two experimental case

studies. The tuning of the diffs. has been discussed in detail based on the analysis in

Chapters 2 and 3. Especially the first example, where derivatives up to the fourth order are

required in the presence of a low sampling rate compared to the frequencies in the signals,

is challenging. An interesting question for future research is the choice of the parameter

p in (5.12) when unmodelled dynamics and disturbances are explicitly considered in the

analysis. While choosing p = 1 yields less restrictive convergence conditions, as discussed

in Example 5.9, no robustness analysis has been carried out.

12In Othmane et al. (2020) the errors arising in the estimation of parameters using this approach with Jac. diff.
are discussed. In Othmane et al. (2022) an approach for the choice of the parameters of Jac. diff. for this application
is discussed in detail.
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Figure 5.8: Time evolution of the estimates for the flexible joint system for the gDREM
approach, the standard gradient approach. The constant lines show the parameter values
estimated offline.

During the discussion of the experimental studies, the concept of modulating function has

been recalled, and it has been emphasised that Jac. diffs. can be interpreted as modulating

functions. This concept is very useful for the estimation of parameters as shown in Preisig and

Rippin (1993a, 1993b); Shinbrot (1954, 1957). Modulating functions have been generalised in

Jouffroy and Reger (2015); Liu et al. (2014) such that the conditions given in Definition 5.10

are relaxed. The generalisation is recalled in the following.

Definition 5.11: Right and left modulating function (Jouffroy and Reger (2015))

Consider a sufficiently smooth function φ : R× R→ R and write one of its partial deriva-

tives as

φ(i)(t, t1) =
∂iφ

∂τ i
(τ, t1)

∣∣∣
τ=t

.

The function φ is called a modulating function (of order k) if there exists t0 < t1 such that

φ(i)(t0, t1)φ(i)(t1, t1) = 0

for all i ∈ {0, . . . , k − 1}. A modulating function for which φ(i)(t0, t1) = 0 and φ(i) 6= 0 is

called a left modulating function, while a modulating function for which φ(i)(t0, t1) 6= 0 and

φ(i) = 0 is called a right modulating function. A modulating function whose boundaries

verify φ(i)(t0, t1) = 0 and φ(i) = 0 is called a total modulating function.

These types of functions can be used for the finite-time simultaneous estimation of states

and parameters of linear (see, e.g., P. Li, Boem, Pin, and Parisini (2018); Li et al. (2020))

systems and special classes of nonlinear polynomial systems (see, e.g., Jouffroy and Reger
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5.4. Concluding remarks
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Figure 5.9: Time evolution of the voltage u and the angles φB and φJ of the measurement and
the simulated system.

(2015)). It is now straightforward for the reader to verify the conditions on the parameters α

and β for the Jac. diffs. from Definition 2.8 and the parameter α of the Laguerre differentiators

(Lag. diffs.) from Definition 2.7 for the filters to act as right and/or left modulating functions.

The tuning guidelines applied in the numerous examples from this and the previous chapters

can immediately be applied for their parametrisation in the context of simultaneous state and

parameter estimation.
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6

Concluding remarks and outlook

Approximating the derivatives of measured signals is essential for reconstructing unmeasured

quantities. This challenging yet fundamental approximation problem is addressed in this

work using methods based on orthogonal polynomials. Chapter 2 discusses differentia-

tors based on the latter functions and provides different interpretations. The analysis of

the differentiators shows that the approximated derivatives are solutions to least squares

problems. Their algebraic formulation creates a link to parameter estimation problems and

their interpretation as linear time-invariant filters is convenient for tuning. While the Jacobi

differentiators, also known as algebraic differentiators, have been derived in Mboup et al.

(2007); Mboup et al. (2009) and thoroughly discussed in Kiltz (2017); Kiltz and Rudolph

(2013); Liu (2011); Mboup and Riachy (2014, 2018); Othmane et al. (2022), those based on

Hermite and Laguerre polynomials are discussed in more detail here than in the literature

known to the author. In particular, the approximation error, delay, concrete tuning guidelines,

and implementation issues are investigated in this work. In the opinion of the author, the here

used approximation-theoretical derivation of the differentiators allows for a more illustrative

interpretation of the methods and their parameters than the abstract differential-algebraic

approach used in Mboup et al. (2007); Mboup et al. (2009); Ushirobira (2018); Ushirobira and

Quadrat (2016), for instance.

Systematic tuning guidelines are investigated in Chapter 3 for differentiators based on

classical orthogonal polynomials. Those based on Hermite, Laguerre, and Jacobi polynomi-

als depend on three, four, and five parameters, respectively, and their choice is essential

to achieve satisfying approximations. It is shown that the amplitude spectra of Laguerre

differentiators can be well approximated by a simple piecewise function, if a known delay

is accepted. This has already been shown for Jacobi differentiators in Kiltz (2017); Kiltz

and Rudolph (2013). These simple yet powerful approximations yield straightforward tuning

guidelines: The parameters of the differentiators can be computed from desired cutoff fre-

quencies and stopband slopes. Section 3.2.2 shows that high-gain differentiators and state

variable filters can be recovered from Laguerre differentiators for particular parameter choices.

The guidelines discussed are crucial to find suitable parametrisations without relying on

trial-and-error approaches and allow their use in numerous control engineering applications.

The application of the methods for Jacobi differentiators in the context of model-free control

has been considered in Othmane, Rudolph, and Mounier (2021a), for examples. The use of

Laguerre differentiators in this context should be considered in future research. The publicly

available toolbox from Othmane (2021) for the design, analysis, and discretization of Jacobi
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differentiators and incorporating the here discussed tuning guidelines significantly simplifies

the use of these filters.

In Section 3.3, the developed tuning guidelines are applied in concrete experimental case

studies. These discussions show that convincing results can be achieved using all the dif-

ferentiators, especially when slight delays are tolerable. Comparisons with high-gain and

sliding mode differentiators have already been published in Liu (2011); Othmane, Rudolph,

and Mounier (2021b); Sidhom (2011), for example, where it has been shown that Jacobi

differentiators outperform the other two approaches. In the case study from Section 3.3,

the Hermite differentiator requires a larger filter window length than the ones based on

Jacobi and Laguerre polynomials to achieve similar noise rejection properties. Thus, a real-

time implementation of the former yields a higher computation burden. The experimental

results presented in Section 3.3.2 shows that the differentiators can be efficiently used for the

approximate inversion of analogue low-pass filters.

Differentiators based on Jacobi polynomials are FIR filters. In contrast, the implementation

of those based on Hermite and Laguerre polynomials requires their approximation as FIR

filters. The distribution function (3.9) is used for the computation of the filter window length.

In contrast, the estimates of Laguerre differentiators having integer orders can be recovered

by the outputs of stable LTI systems, which considerably reduces the computational burden.

This is a significant advantage for application scenarios using a low-cost hardware. A further

difference between the differentiators can be observed in the phase of their Fourier transform.

Jacobi differentiators can have a linear phase for specific parametrisations as shown in

(Kiltz, 2017, Sec. 3.3.1). This property can be a significant advantage. In contrast, neither

Hermite nor Laguerre differentiators can be parametrised as linear phase filters. Thus,

multiple trade-offs must be considered in designing the differentiators. Despite the numerous

tuning guidelines, the final parametrisation of these filters will still most likely be made

by engineering judgments on the specifications regarding the frequency-domain properties,

method of implementation, computational burden, and memory facilities.

A further simplification of the tuning process is proposed in Section 3.4. The optimisation

problem (3.30) is based only on the measured signal and takes into account discretisation

effects. The parametrisation problem is boiled down to the choice of a single parameter. The

computed filter can then be used for the approximation of derivatives. While Section 3.4.2

shows promising results for an experimental case study, numerous theoretical questions

remain open and require further investigations. The choice of the optimisation algorithms

needs to be considered in detail. An analysis of the effects of the different parameters

on the approximated derivative has to be addressed. A further interesting extension of

the approach is the design of adaptive filters that automatically select optimal parameters

to maximise the approximation accuracy. The computation of new parameters can then

be automatically triggered, if the quantity (3.29) exceeds a given threshold. An adaptive

differentiation filter for tracking instantaneous frequencies in power systems has already been

developed in Zivanovic (2007), for example. The proposed algorithm automatically adapts the

filter window length to maximize measurement accuracy. Large values are chosen if the

considered signal has slow dynamics. In contrast, the length is reduced for fast-varying ones.

However, the approach is limited to the estimation of first-order derivatives. Thus, extending

the ideas from Section 3.4 seems promising. The tuning approach can be further developed to

incorporate a maximally tolerable delay as discussed in Remark 3.1, for example. Moreover,
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6. CONCLUDING REMARKS AND OUTLOOK

the group delay (see, e.g., Papoulis (1962)) of differentiators and its variation should be small

to reduce the estimation delay and phase distortion. This can be incorporated into the tuning

approach by including in the cost function of (3.30) the arithmetic mean of the group delay

and its variance over a set of relevant frequencies. The application considered in Section 4.1

requires the differentiators to attenuate a known but undesired frequency stemming from a

mechanical eigenmode. By adapting the cost function such that it includes the amplitude

of the Fourier transform of the differentiator evaluated in an interval of interest it can be

ensured that the undesired frequency is sufficiently attenuated. Alternatively, the ratio of

this amplitude and that evaluated at the cutoff frequency can be considered.

Differentiators based on Jacobi and Laguerre polynomials are used in Chapter 4 for the

model-based detection of impulsive forces. In Section 4.1, it is shown that the collision of a

table tennis ball with a plate can be efficiently detected. Combining a Laguerre differentiator

with a notch filter requires less computational burden and yields a lower minimum detectable

falling height than the approach based on Jacobi differentiators from Kiltz (2017); Kiltz and

Rudolph (2013). Other application scenarios for the developed approach might be fault de-

tection and identification on the same experimental setup to implement fault-tolerant control

algorithms as discussed in Kiltz et al. (2014, 2012), for example. In Section 4.2, Jacobi

differentiators are used for the model-based detection of faults in rolling element bearings.

The potential of the approach is validated through experiments with several publicly available

data sets. While in the considered experimental case studies the shaft is rotating with a

constant velocity, the approach is not limited to this case. Investigating the effectiveness of

the method for systems with time-varying velocities should be considered in future works.

The ideas developed for parameter estimation problems in Chapter 5 extend previously

published works (see, e.g., Aranovskiy et al. (2017); Ortega et al. (2021); Othmane et al.

(2020)). Their experimental validation and the comparison with other approaches show promis-

ing results. However, numerous open questions have to be considered. Even if the analysed

examples contain disturbed measurements and the approach yields convincing results, the

effects of disturbances has yet to be analysed systematically. Moreover, the tuning param-

eter p used in Section 5.2 may be considered in more detail. Especially the robustness of

the approach with respect to unmodelled dynamics and the influence of p require further

investigations.
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A

Special functions and their properties

This chapter lists the properties of special functions used in this work. For a detailed

discussion the reader is referred to Abramowitz and Stegun (1965); Lebedev and Silverman

(1965); Szegö (1939); Watson (1995).

Chapter content

A.1 Classical orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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A.1 Classical orthogonal polynomials

A.1.1 Hermite Polynomials

#A.1 The explicit expression of Hermite polynomials is

Hn(τ) = n!

bn2 c∑

m=0

(−1)m2n−2m

m!(n− 2m)!
τn−2m,

with bxc = maxz∈Z z 6 x the floor function and Z = {. . . ,−2,−1, 0, 1, 2, . . .} the set of

integers.

#A.2 Hermite polynomials are even or odd functions and thus satisfy the symmetry property

Hn(−τ) = (−1)nHn(τ).
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A. SPECIAL FUNCTIONS AND THEIR PROPERTIES

#A.3 Recalling that
d

dτ

(
e−τ

2

Hm(τ)
)

= −e−τ
2

Hm+1(τ)

yields (
d

dτ

)n (
e−τ

2

Hm(τ)
)

= (−1)ne−τ
2

Hm+n(τ).

#A.4 From #A.3 it follows that
(

d

dτ

)n
e−τ

2

= (−1)ne−τ
2

Hn(τ).

#A.5 The Hermite polynomials satisfy

∫ τ

0

w(σ)Hn(σ)dσ = Hn−1(0)− w(τ)Hn(τ) (A.1a)

for n > 0 and ∫ τ

0

w(σ)H0(σ)dσ =

√
π

2
erf (τ) , (A.1b)

with τ 7→ erf (τ) the error function defined in #A.15.

A.1.2 Laguerre polynomials

#A.6 The explicit expression of a Laguerre polynomial denoted by L
(α)
n , with α > −1 and n ∈ N,

is

L(α)
n (τ) =

n∑

m=0

(−1)m

m!

(
n+ α

n−m

)
τm,

(
n+ α

n−m

)
=

Γ(n+ α+ 1)

Γ(n−m+ 1)Γ(α+m+ 1)
.

#A.7 The product1 L
(α)
n · wα, with wα(τ) = e−ττα, can be written as

wα(τ)L(α)
n (τ) =

n∑

m=0

(−1)m

m!

(
n+ α

n−m

)
wα+m.

#A.8 Recalling that
d

dτ

(
e−τταL(α)

m (τ)
)

= (m+ 1)e−ττα−1L
(α−1)
m+1 (τ)

yields (
d

dτ

)n (
e−τταL(α)

m (τ)
)

=
(m+ n)!

m!
e−ττα−nL

(α−n)
m+n (τ).

for α > n− 1.

#A.9 The property in #A.8 yields

∫ t

0

e−ττα−nL
(α−n)
m+n (τ)dτ =

m!

(m+ n)!

(
d

dτ

)n−1 (
e−τταL(α)

m (τ)
)∣∣∣∣∣
τ=t

=
1

(m+ n)
e−ttα−n+1L

(α−n+1)
m+n−1 (t)

1The pointwise product of two functions f and g is denoted by f · g.
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A.2. Other functions

#A.10 Let g(α) : τ 7→ g(α)(τ) = e−ττα and α ∈ N>1. A proof by induction yields

(
d

dτ
+ 1

)α+1

g(α)(τ) = 0.

It then follows that the function f : τ 7→ f(τ) =
∑N
n=0 cng

(α+n)(τ) satisfies the differential

equation (
d

dτ
+ 1

)α+N

f(τ) = cN (N + α)!e−τ .

or equivalently (
d

dτ
+ 1

)α+N+1

f(τ) = 0.

A.1.3 Jacobi polynomials

#A.11 The explicit representation of a Jacobi polynomial P
(α,β)
n , with α, β > −1, is

P(α,β)
n (τ) =

n∑

m=0

=
(−1)n−m

2n

(
n+ α

m

)(
n+ β

n−m

)
w(n−m,m)(τ)

with

w(α,β)(τ) = (1− τ)α(1 + τ)β .

#A.12 The n-th order derivative of the product w(α,β) · P(α,β)
n is

(
w(α,β) · P(α,β)

m

)(n)

=
(−2)n(n+m)!

m!
w(α−n,β−n) · P(α−n,β−n)

n+m .

A.2 Other functions

A.2.1 Gamma function and related functions

#A.13 The Gamma function Γ : z 7→ Γ(z) is defined as

Γ(z) =

∫ ∞

0

τz−1e−τdτ, z ∈ C,

with R{z} > 0, where R{z} denotes the real part of z. For a natural number α ∈ N
it simplifies to Γ(α) = (α − 1)!. The Gamma function can be used to define a binomial

coefficient as (
α

β

)
=

Γ(α+ 1)

Γ(β + 1)Γ(α− β + 1)
.

#A.14 The lower incomplete gamma function γ : (α, t) 7→ γ (α, t) is defined as

γ (α, t) =

∫ t

0

τα−1e−τdτ.

for t ∈ C and a ∈ C with R{α} > 0. From #A.13 it follows that limt→∞ γ (α, t) = Γ(α).

A.2.2 Error function

#A.15 The error function erf : τ 7→ erf (τ) is defined as

erf (τ) =
2√
π

∫ τ

0

e−σ
2

dσ.
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A. SPECIAL FUNCTIONS AND THEIR PROPERTIES

A.2.3 Beta function and related functions:

#A.16 The beta function B : (α, β) 7→ B(α, β) is defined as

B(α, β) =

∫ 1

0

τα−1(1− τ)β−1dτ =
Γ(α)Γ(β)

Γ(α+ β)
.

For natural numbers α and β it simplifies to

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)
.

#A.17 The incomplete beta function Bτ : (α, β) 7→ Bτ (α, β) is defined as

Bτ (α, β) =

∫ τ

0

σα−1(1− σ)β−1dσ.

#A.18 The regularised incomplete beta function Iτ : (α, β) 7→ Iτ (α, β) is defined as

Iτ (α, β) =
Bτ (α, β)

B(α, β)
.

A.2.4 Sinc function

#A.19 The sinc function x 7→ sinc(x) is defined as

sinc(x) =





1, for x = 0

sin x
x , otherwise.

The function satisfies ∫ ∞

0

sinc(τ)
2

dτ =

∫ ∞

0

sinc(τ)
2

dτ =
π

2
,

as derived in (Courant & Hilbert, 1924, P. 55) or (Apostol, 1967, P. 286 and 300), for

example. However, the integral ∫ ∞

0

|sinc(τ)|dτ

diverges as discussed in (Bartle & Sherbert, 2000, P. 297).

A.2.5 Bessel function of the first kind

#A.20 The Bessel function of the first kind and order ν > 0 is defined as

Jν(z) =

∞∑

k=0

(−1)k

Γ(ν + 1 + k)

(z
2

)2k+ν

for z ∈ C. The function possesses infinitely many zeros jν,i, i ∈ N, with 0 < jν,0 < jν,1 < . . .
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B

The Fourier transform and its properties

This chapter recalls the properties of the Fourier transform (see, e.g., Papoulis (1962) for

more details). Furthermore, the Fourier transform of classical OPs and related functions

are recalled. The reader is referred to Abramowitz and Stegun (1965); Erdélyi, Magnus,

Oberhettinger, and Tricomi (1954b) for more details.

Content

B.1 Properties of the Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 Fourier transform of special functions . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.1 Properties of the Fourier transform

#B.5 The Fourier transform F {f} of a function f is defined as

F {f} (ω) = F (ω) :=

∫ ∞

−∞
f(t)e−ιωtdt, ι2 = −1.

The inverse of the latter transformation is

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−ιωtdω.

#B.6 The shifting property is

f(t− µ)↔ e−ιωµF {f} (ω) .

#B.7 The time scaling property is

f(tT )↔ 1

|T |F {f}
(ω
T

)
.

#B.8 Combining #B.6 and #B.7 yields

f

(
t− µ
T

)
↔ e−ιωµ |T | F {f} (Tω) .

#B.9 The Fourier transform of a multiplication of a function with a monomial is

tnf(t)↔
(
ι

d

dω

)n
F {f} (ω).
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B. THE FOURIER TRANSFORM AND ITS PROPERTIES

B.2 Fourier transform of special functions

B.2.1 Hermite polynomials

#B.10 The Fourier transform of the weight function w : τ 7→ w(τ) = e−τ
2

is

F {w} (ω) =
√
πe−

ω2

4 .

#B.11 The Fourier transform of w ·Hn can be computed using the property #B.9 and the explicit

definition of the Hermite polynomial Hn given in #A.1. It follows that

F {w ·Hn} (ω) = n!

bn2 c∑

m=0

(−1)m2n−2m

m!(n− 2m)!

(
ι

d

dω

)n−2m

F {w} (ω).

Using the higher order derivative of the weight function given in #A.4 the Fourier trans-

form becomes

F {w ·Hn} (ω) = n!
√
π

bn2 c∑

m=0

(−1)m

m!(n− 2m)!
(−ι)n−2m

e−
ω2

4 Hn−2m

(ω
2

)

= (−ι)n√πe−
ω2

4 ωn.

Combining this results with the property #B.8 yields

F {(w ·Hn) ◦ θT } (ω) = T
√
πe−ιωµw

(
Tω

2

)
(ιTω)n,

for τ 7→ θT (τ) = µ−τ
T , for T > 0.

B.2.2 Laguerre polynomials

#B.12 The Fourier transform of the function

wα : τ 7→ wα(τ) =




ταe−τ , for τ > 0,

0, otherwise

for α > −1, is

F {wα} (ω) =

∫ ∞

−∞
w(t)e−ιωtdt =

∫ ∞

0

tαe−(ιω+1)tdt =
Γ(α+ 1)

(1 + ιω)α+1
,

with Γ the Gamma function from #A.13.

#B.13 Using the explicit definition of a Laguerre polynomial L
(α)
n given in #A.6 and the Fourier

transform from #B.12 it can be shown that

F
{
wα · L(α)

n

}
=

Γ(α+ n+ 1)(ιω)n

n!(1 + ιω)α+n+1
.
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