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Abstract: The online classification of grid disturbances in

power transmission systems has been investigated since

many years and shows promising results on measured and

simulated PMU signals. Nonetheless, a practical deployment

of machine learning techniques is still challenging due to

robustness problems, which may lead to severe misclassi-

fications in the model application. This paper formulates

an advanced evaluation procedure for disturbance classi-

fication methods by introducing additional measurement

noise, unknown operational points, and unknown distur-

bance events in the test dataset. Based on preliminary

work, Siamese Sigmoid Networks are used as classifica-

tion approach and are compared against several bench-

mark models for a simulated power transmission system at

400 kV. Different test scenarios are proposed to evaluate the

disturbance classification models assuming a limited and

full observability of the grid with PMUs.

Keywords: disturbance classification; neural networks;

phasor measurement units

Kurzzusammenfassung: Die Online-Klassifikation von

Betriebsstörungen in Übertragungsnetzen wird seit

einigen Jahren untersucht und zeigt vielversprechende

Ergebnisse für gemessene und simulierte PMU-Daten.

Dennoch steht der praktische Einsatz von maschinellen

Lernverfahren aufgrund von Robustheitsproblemen,

die zu schwerwiegenden Fehlklassifizierungen in der
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Modellanwendung führen können, vor weiterhin großen

Herausforderungen. In diesem Beitrag wird ein neues

Verfahren zur Bewertung der Störungsklassifikation

formuliert, bei dem zusätzliches Messrauschen,

unbekannte Betriebspunkte und unbekannte

Betriebsstörungen in den Testdatensatz eingeführt

werden. Auf der Grundlage von Vorarbeiten werden

Siamesische Sigmoide Netze als Klassifizierungsansatz

verwendet und mit mehreren Benchmark-Modellen für

ein simuliertes 400-kV-Übertragungsnetz verglichen. Es

werden verschiedene Testszenarien vorgeschlagen, um

die Klassifikationsmodelle unter der Annahme einer

begrenzten und vollständigen Beobachtbarkeit des Netzes

mit PMUs zu bewerten.

Schlagwörter: Klassifikation vonBetriebsstörungen; Künst-

liche Neuronale Netze; PMU

1 Introduction

1.1 Disturbance classification in power
transmission systems

The reliable operation of power transmission systems faces

ongoing challenges by the integration of renewable energy

sources, the utilization of active equipment (e.g. flexible AC

transmission systems or high-voltage direct current links),

and additional loads by active distribution systems. This

reduces the available dynamic reserves of the system and

increases the risk for critical grid situations. Disturbances

like generator outages or line trips can lead to severe

power supply disruptions and can cause system instabili-

ties if not handled properly by suitable countermeasures

(e.g. remedial action schemes like set point changes or load

shedding [1]). Phasor measurement units (PMUs) provide
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high-resolution (typically between 10 and 50 frames per sec-

ond) and time synchronized frequency, voltage, and current

measurements frommultiple sensors in the grid [2–5]. Some

exemplary PMU frequency and voltage magnitude signals

for a generator outage from a simulated power system (see

Section 4.1) are given in Figure 1.

The analysis of disturbance events from PMU signals

have been investigated since many years and can be cate-

gorized into the tasks:

– disturbance detection as the recognition of deviations

from the normal operation,

– disturbance identification as the recognition of distur-

bance types, and

– disturbance localization as the recognition of distur-

bance locations.

Whereas the disturbance detection can be seen as a pre-

analysis step to detect outliers or anomalies for subse-

quent classification tasks. This study focuses on the PMU

based disturbance classification, which usesmachine learn-

ing techniques to simultaneously identify and locate dis-

turbance events in power systems. Most of the distur-

bance classification approaches derive features from prin-

ciple component analysis [6–8], time-frequency transfor-

mations (e.g. S-Transform or wavelet transform) [8–10], or

from the analysis of minimum volume enclosing ellipsoids

[11]. The subsequent classification is implemented by deci-

sion trees [7, 12, 13], support-vector-machines [9, 14, 15], or

Figure 1: PMU frequency and voltage magnitude signals for a generator

outage (station 1D1) over 10 s.

k-nearest-neighbors [10, 16]. In addition, deep learningmod-

els have been investigated including convolutional [17, 18],

recurrent [19], and spiking neural networks [20]. Most of the

studies simulate PMU signals from a dynamic power system

model (e.g. the IEEE 39 bus reference system [21]), whereas

measured PMU signals are only used in some investigations.

Precise information about the location and type of a

disturbance allows an assignment of the current grid sit-

uation to one of the precalculated contingencies, which

enables the activation of appropriate countermeasures to

restore a stable system state and power supply [2, 3].

For this purpose, the disturbances should be detected as

early as possible and with current methods this can be

achieved below 2 s after the start of the event. Any misclas-

sifications (e.g. the detection of a short circuit on another

line) and associated, incorrectly triggered countermeasures

can have severe consequences for the system operation

and may lead to a deterioration in the power supply or

the stability of the grid. The investigation of the model

robustness as well as the handling of the model uncer-

tainties are therefore necessary to enable a practical use

of disturbance classification methods in the power system

operation.

1.2 Limitations of current approaches and
nuisance variables

Disturbance classification algorithms rely on a sufficient

set of examples for the disturbance events. As also men-

tioned in [22], measured PMU signals may not contain

enough examples for all event types or locations and need

additional effort to extract and label the relevant time

ranges. Dynamic simulations provide a useful way to create

PMU signals for specific disturbance events and operational

points. As a downside, they rely on an accurate dynamic

power system model and can only simulate power system

dynamics ignoring effects like measurement noise or nat-

urally changing operational conditions. Furthermore, only

a specific subset of disturbance events (called critical con-

tingencies) are relevant for the power system operation

and require an activation of countermeasures. Especially

for large power systems, a simulation of all possible distur-

bance events may therefore become infeasible.

In this work, we assume that the disturbance classifi-

cation model is trained on simulated PMU signals X (S) and

is applied on measured PMU field data X
(P). To achieve a

robust model design, the following nuisance variables can

be taken into consideration:

– measurement noise z
R
that results from errors of the

data acquisition in the PMU sensors (e.g. errors in

phasor estimation or filter effects),
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Table 1: Nuisance variables of the PMU based disturbance classification.

Nuisance variable Current research Impact on disturbance classification

Measurement noise z
R

Add Gaussian white noise to the test data signals Deviations from simulated training signals

lead to overall reduced accuracy

Model errors z
M

Not investigated, ideal model assumptions Deviations from measured test signals lead to

overall reduced accuracy

Unknown operational points z
O

Not investigated, same operational points in the

training and test data sets

Limited generalization capability and accuracy

drop for new operational points

Unknown disturbance events z
U

Not investigated, all disturbance events are included in

the training data set

Misclassifications due to falsely assigned

disturbance events

– model errors z
M
that result from inaccuracies of the

dynamic power system model (e.g. wrong machine

parameters, substitute models),

– unknown operational points z
O
as operational points

that are not included in the training data set, and

– unknown disturbance events z
U
as disturbance events

that are not included in the training data set.

Current classification approaches do not address these nui-

sance variables properly. Consequently, misclassifications

are to be expected for these models, which will lead to

falsely activated countermeasures and induce a severe

threat to the power system operation. A corresponding

overview of the nuisance variables is given in Table 1.

1.3 Main contributions and paper
organization

This paper investigates the influence of multiple nuisance

variables on the performance of disturbance classification

models, which are trained on simulated PMU signals from

amodeled power transmission system. For that, several test

scenarios are considered to evaluate the robustness of dif-

ferent classification approaches in the presence ofmeasure-

ment noise, unknown operational points, and unknown dis-

turbance events in the test data. With that, the disturbance

classification approaches are evaluated under more real-

istic test conditions, which gives a better estimate of their

generalization performance on PMU field measurements.

As already introduced in [23–26], this study uses Siamese

Sigmoid Networks (SSN) as a special type of a recurrent

neural network based classification model with integrated

rejection capability to simultaneously identify and locate

disturbance events from PMU frequency and voltage sig-

nals. These SSNs are comparedwith different closed-set and

open-set classification models.

The paper is organized as follows. Section 2 describes

the disturbance classification problem and the nuisance

variables from a systems theory point of view. Section 3

presents the classification approaches including Siamese

Sigmoid Networks and several benchmark models as well

as the used evaluation metrics. Section 4.1 describes the

dynamic power system model and the simulated database

for the experiments. Section 4.2 introduces the test scenar-

ios to evaluate the different nuisance variables. Section 4.3

presents and discusses the classification performance

results. Section 5 summarizes the results and gives an out-

look on possible future work.

2 Problem statement

A systems theory based overview of the disturbance clas-

sification problem is given in Figure 2 and can be roughly

divided into.

– a process domain,

– a simulation domain, and

– a classification model.

The process domain includes the electrical grid, which is

measured by several PMUs to provide the PMU signals x

for the classification model in the application phase. The

simulation domain includes a dynamic simulation model,

which is created by process knowledge (e.g. topological

information, controller settings, parameter sets) and addi-

tional a priori information. This allows the simulation of

disturbance events y for specific operational points and

the extraction of the PMU signals x̂ to create the training

data. During the model training, the estimated class ŷ is

comparedwith the true class y to compute andminimize the

empirical error e. The influence variables consisting of the

operational pointu
O
(set points of all loads and conventional

or renewable resources) and the grid topology u
T
(all active

and passive grid components) define the load flow of the

power system in steady state. The nuisance variables act at

different points in the process and simulationdomain. In the
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Figure 2: Systems theory based description of the disturbance

classification problem (training phase: top, test phase: bottom).

first place, these include the (known) disturbance events z
K

that lead to a loss of the steady state and lead to character-

istic PMU signals, which are analyzed by the classification

model. The other nuisance variables comprise unknowndis-

turbance events z
U
, measurement errors z

R
, and unknown

operational points z
O
in the process domain aswell asmodel

errors z
M
in the simulation domain. Detailed information

have been already given in subsection 1.2.

3 Classification approaches

3.1 Siamese Sigmoid Networks

As introduced in [23, 25], SSN are a special type of recur-

rent neural networks to simultaneously identify and locate

disturbance events from PMU signals. This means the

class label y contains information about the disturbance

type yType and the disturbance location yLoc, such that

y =
[
yType; yLoc

]
. The input data X consists of PMU fre-

quency and voltage signals over T timesteps from N PMU

sensors in the grid (no full PMU observability required),

such that X ∈ RT×(N⋅2). The basic architecture is given in

Figure 3.

SSNs estimate the class affiliation of a query instance

XQ by the comparison with multiple support instances XS

of known disturbance events C1 … CK. Therefore, a fixed

number of support instances is selected for each class to

create the support set S. Gated recurrent units (GRU) with
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Figure 3: Siamese Sigmoid Network architecture.

additional attention mechanisms are used in the encoder

network to compute the low-dimensional feature vectors l
Q

and l
S
. The Manhattan distance d between the support and

query feature vectors is converted into a matching proba-

bility pPos and into a non-matching probability pNeg with a

double-sigmoid function based classifier, such that:

pPos(d) =
(
1+ exp

(
−
(
𝑤

C
Pos
d + bC

Pos
+ b0

)))−1
, and (1)

pNeg(d) = 1−
(
1+ exp

(
−
(
𝑤

C
Neg

d + bC
Neg

+ b0

)))−1
. (2)

The weights𝑤C
Pos∕Neg and biases b

C
Pos∕Neg of the sigmoid

functions are learned class-wise and are used to compute

the positive threshold distance dC
Thr,pos

and the negative

threshold distance dC
Thr,neg

for each class C:

dC
Thr,pos

= −
(
bC
Pos

+ b0
)
∕𝑤C

Pos
, and (3)

dC
Thr,neg

= −
(
bC
Neg

+ b0

)
∕𝑤C

Neg
. (4)

The difference between the positive and negative

threshold distance corresponds to the margin

mC = dC
Thr,neg

− dC
Thr,pos

, which controls the separation

between the positive and negative samples per class. To

achieve low positive threshold distances and high negative

threshold distances, the following additional margin loss is

proposed:

Margin = 𝛽Margind
C
Thr,pos

∕
(
dC
Thr,neg

− dC
Thr,pos

)
. (5)

Depending on the classifier results, the two cases can

arise:

– the support and query instance belong to the same class

if d→ 0, pPos → 1, and pNeg → 0, or



A. Kummerowand P. Bretschneider: Nuisance variables on the PMU-based disturbance classification — 871

– the support and query instance belong to different

classes if d→∞, pPos → 0, and pNeg → 1.

With that, the class affiliation of the query instance ŷ is

estimated from the maximum of the matching probabilities

pPos of all support instances in the support set S follow-

ing a simple one-against-all strategy. The query instance is

rejected if the maximum matching probability is below the

rejection probability pR = 0.5, such that:

ŷ =
{
if max p̂

Pos
> pR: argmax

S

p̂
Pos

else: reject
. (6)

3.2 Benchmark models

The SSN model is compared with different benchmark

models to evaluate the classification performance. The

first benchmark model SSFD-SVM is a conventional distur-

bance classification approach from [27], which combines a

strongest signal and fault detection (SSFD) algorithm for the

localization task with a support-vector-machine (SVM) for

the identification task. This approach requires a full PMU

observability of the grid and is only applicable for closed-

set classification problems. The second benchmark model

Triplet-1NN is oriented at [28] and applies a triplet network

architecture with hard negative online mining. This is a

special training strategy for triplet networks and requires

a sampling of negative examples beyond the margin. The

feature vectors are generated with the same GRU encoder

network as in Section 3.1 and the classification is performed

with a 1-nearest-neighbor method (1NN). A full PMU observ-

ability is not required but again this approach is only appli-

cable for closed-set classification problems. To solve open-

set classification tasks, the third benchmark model GRU-

DOC combines the GRU encoder network from Section 3.1

with a deep-open classifier (DOC) from [29]. Like the second

benchmark model, a full PMU observability is not required.

3.3 Evaluation metrics

The classification models are evaluated for different clas-

sification tasks considering known and unknown distur-

bance events. For that, the class configuration of the K

knownclasseswill be extendedwith an additional container

class CU, which includes the rejections of the samples of all

unknown classes, such that C =
[
C1,… , CK, CU

]
. Based on

this, the following performance metrics are chosen accord-

ing to [30]:

– the classification accuracy of the known classes 𝜂ACC,K,

– the classification accuracy of the known and unknown

classes 𝜂ACC,

– the F1-score withmacro averaging of the known classes

𝜂F1,K, and

– the F1-score with macro averaging of the known and

unknown classes 𝜂F1.

Thus, the true positives of the unknown classes are excluded

from the calculations of 𝜂ACC and 𝜂F1. The macro averaged

F1-score corresponds to the arithmetic mean of the class-

specific F1-scores.

4 Simulation studies

4.1 Simulation model and database

As already described in [26], a generic power transmission

system is simulated to extract the PMU frequency and volt-

age magnitude signals at all 400 kV busbars. The power sys-

temmodel includes 21 substations and 68 transmission lines

with additional voltage regulators, power system stabilizers

and protection systems. In total, the available database con-

sists of 440 simulated contingencies at 7 operational points

(OP1 to OP7) with different generation and load conditions.

These operational points result from optimal power flow

calculations and are given in Table 2. The grid topology

is shown in Figure 4. The following disturbance types are

considered within this study:

– base load power plant outages (BLPP),

– peak load plant outages (PLPP),

– low (<50 % of the maximum capacity) and high (>50 %

of the maximum capacity) load losses (LLLow and

LLHigh),

– low (<50 % of the maximum capacity) and high (>50 %

of themaximum capacity) PV losses (PVLow and PVHigh),

– line trips (L), and

– short circuits at 10 % (SC10), 50 % (SC50), and 90 % (SC90)

line length.

Table 2: Overview of the operational points.

OP Conventional Renewable Load

generation generation

OP1 1512 MW 1075 MW 3060 MW

OP2 1355 MW 1258 MW 2900 MW

OP3 1066 MW 1353 MW 2834 MW

OP4 1104 MW 1230 MW 2527 MW

OP5 1619 MW 1135 MW 2839 MW

OP6 1121 MW 1247 MW 2679 MW

OP7 783 MW 1198 MW 2475 MW
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Figure 4: Topology of the simulated power system.

For the experiments, we considered 54 known and 60

unknown disturbance events with randomly chosen distur-

bance types and locations in the grid. We sampled the PMU

frequency and voltage signals at the substationswith a fixed

window size T of 50 timesteps and a reporting rate of 25 f.p.s.

from the 10 s post-disturbance records.

4.2 Test scenarios

To evaluate the influence of the nuisance variables on the

disturbance classification results, we define the test sce-

narios listed in Table 3. For each scenario, we distinguish

between a limited (“a”) and a full (“b”) observability of the

grid with PMUs. In the “a”-scenarios the input signals are

taken from 13 randomly selected PMUs of the grid. In the

“b”-scenarios the input signals are taken from all 21 PMUs

in the grid. Scenarios S.1a and S.1b investigate the influence

of additional measurement noise with 20 dB and an AR-

coefficient of AR = 0.2 in the test data. The measurement

noise is generated by an autoregressive error model from

[31]. Scenarios S.2a and S.2b investigate the influence of

unknown operational points and scenarios S.3a and S.3b

investigate the influence of unknown disturbance events

in the test data. These unknown disturbance events corre-

spond to new combinations of known disturbance types at

known or unknown disturbance locations. Scenarios S.4a

and S.4b include all nuisance variables.

4.3 Results and discussion

The experimental results for the different test scenarios cor-

respond to the average values of the 10-fold cross-validation

runs after hyper-parameter tuning. We used early stopping

as regularization technique. Table 4 shows the accuracies

and F1-scores of the classification models SSN, Triplet-1NN,

and GRU-DOC for the scenarios S.1a and S.1b. Due to the

limited PMU observability in the “a”-scenarios, the SSFD-

SVM benchmark model is only applied for the “b”-scenarios

(see also Section 3.2). As it can be seen, the accuracy values

and F1-scores decrease between roughly between−4 % and

−5 % due to the measurement noise in the test data. In

case of a limited PMU observability (scenario S.1a), the SSN
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Table 3: Overview of the test scenarios.

Scenario PMUs Training/validation data Test data

S.1a 13 Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: 20 dB with AR= 0.2

S.1b 21 (all) Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: 20 dB with AR= 0.2

S.2a 13 Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) Operational points: OP1,

OP5 Noise: –

S.2b 21 (all) Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) Operational points: OP1,

OP5 Noise: –

S.3a 13 Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) and 60 (unknown)

Operational points: OP2, OP3, OP4, OP6, OP7

Noise: –

S.3b 21 (all) Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) and 60 (unknown)

Operational points: OP2, OP3, OP4, OP6, OP7

Noise: –

S.4a 13 Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) and 60 (unknown)

Operational points: OP1, OP5 Noise: 20 dB

with AR= 0.2

S.4b 21 (all) Classes: 54 (known) Operational points: OP2,

OP3, OP4, OP6, OP7 Noise: –

Classes: 54 (known) and 60 (unknown)

Operational points: OP1, OP5 Noise: 20 dB

with AR= 0.2

Table 4: Performance results for the scenarios S.1a and S.1b.

Model 𝜼ACC,K in % (training) 𝜼F,K in % (training) 𝜼ACC,K in % (test) 𝜼F,K in % (test) 𝚫𝜼ACC,K in % 𝚫𝜼F,K in %

Scenario: S.1a

SSN 98.17 98.11 . . −4.98 −5.06
Triplet-1NN 97.09 96.88 91.95 91.82 −5.14 −5.06
GRU-DOC 96.17 95.32 92.11 90.79 −. −.

Scenario: S.1b

SSN 99.20 99.18 . . −. −.
Triplet-1NN 99.47 99.40 94.88 94.83 −4.59 −4.57
GRU-DOC 96.55 96.01 92.37 91.53 −4.18 −4.48
SSFD-SVM 88.32 89.25 80.77 81.76 −7.55 −7.49

Bold values indicate the best performance results.

model achieves the highest test accuracies (93.19 %) and test

F1-scores (93.05 %) compared to the Triplet-1NN and GRU-

DOC benchmark models. In case of a full PMU observability

(scenario S.2b), the accuracy and F1-score results increase

slightly among all models due to the higher number of input

signals. Here, the SSN model again achieves the highest test

accuracies (95.15 %) and F1-scores (94.98 %). In contrast to

that, the SSFD-SVM benchmarkmodel performs very poorly

with a test accuracy of 80.77 % and a F1-score of 81.76 %.

Also, the loss of accuracy and F1-score is significantly higher

with roughly −7.5 % compared to the other models, which

indicates a bad generalization capability of the model.

Table 5 shows the accuracies and F1-scores of the classi-

fication models SSN, Triplet-1NN, GRU-DOC, and SSFD-SVM

for the scenarios S.2a and S.2b. In this case, the accuracy

and F1-score decrease significantly of about−20 % to−50 %
compared to the training results due to the new opera-

tional points. For the scenario S.2a, the Triplet-1NN bench-

markmodel achieves the highest test accuracy (77.01 %) and

test F1-score (75.38 %). For all models, the accuracy value
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Table 5: Performance results for the scenarios S.2a and S.2b.

Model 𝜼ACC,K in % (training) 𝜼F,K in % (training) 𝜼ACC,K in % (test) 𝜼F,K in % (test) 𝚫𝜼ACC,K in % 𝚫𝜼F,K in %

Scenario: S.2a

SSN 98.71 98.73 76.99 73.73 −21.72 −25.00
Triplet-1NN 97.26 97.01 . . −20.25 −.
GRU-DOC 95.24 92.67 75.23 69.01 −. −23.66

Scenario: S.2b

SSN 98.75 98.64 . 77.65 −. −.
Triplet-1NN 99.43 99.37 80.38 . −19.05 −21.10
GRU-DOC 95.33 93.95 77.01 71.49 −18.32 −22.46
SSFD-SVM 88.01 88.99 33.83 37.73 −54.18 −51.26

Bold values indicate the best performance results.

decrease on average of about −20.66 % and the F1-score

values of about −23.43 % compared to the training results.

The accuracy andF1-score losses far exceed the results of the

scenarios S.1a and S.1b (see Table 4), which shows a greater

impact of unknown operational points on the classification

performance compared to measurement noise. In case of

scenario S.2b, the SSN model achieves the highest test accu-

racy (81.48 %) and the lowest accuracy and F1-score losses

compared to the training results. The Triplet-1NN bench-

markmodel still achieves the highest test F1-score (78.28 %).

Again, the accuracies and F1-scores of the SSFD-SVM bench-

mark model are significantly lower compared to all other

models, with a remarkably large difference between the

training and test results.

In case of the scenarios S.3a and S.3b, we also evaluate

the accuracies and F1-scores for the known and unknown

classes. The corresponding training and test results are

given in Table 6. Due to the missing rejection capability, the

Triplet-1NN and the SSFD-SVM benchmark models cannot

be applied for these scenarios (see also Section 3.2). As it can

be seen, the additional integration of unknown classes in the

test data significantly reduces the accuracy results 𝜂ACC and

F1-score results 𝜂F1. A direct comparison between the 𝜂ACC,K
and 𝜂ACC values or the 𝜂F1,K and 𝜂F1 values is difficult due

to the different class configurations. Still, the high number

of misclassifications in the test data demonstrates the high

impact of unknown disturbance events on the overall classi-

fication performance. The SSNmodel outperforms the GRU-

DOC benchmark model in both scenarios and achieves the

highest accuracies (81.09 % for known classes and 58.32 %

for all classes) and F1-scores (78.99 % for known classes and

57.27 % for all classes).

The results regarding the influence of all nuisance

variables is given in Table 7. Similar to the scenarios S.3a

and S.4b, the SSN model outperforms the GRU-DOC bench-

mark model and achieves the highest accuracies (77.65 %

for known classes and 56.93 % for all classes) and F1-scores

(74.91 % for known classes and 51.82 % for all classes). The

large differences between the training and test results indi-

cate the impact of the nuisance variables on the perfor-

mance of the classification models.

Table 6: Performance results for the scenarios S.3a and S.3b.

Model 𝜼ACC,K in % (training) 𝜼F,K in % (training) 𝜼ACC,K in % (test) 𝜼ACC in % (test) 𝜼F,K in % (test) 𝜼F in % (test)

Scenario: S.3a

SSN 88.09 85.54 . . . .

GRU-DOC 84.48 81.21 78.05 46.65 74.42 52.48

Scenario: S.3b

SSN 89.69 87.14 . . . .

GRU-DOC 84.88 82.99 81.04 50.68 77.76 56.20

Bold values indicate the best performance results.
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Table 7: Performance results for the scenarios S.4a and S.4b.

Model 𝜼ACC,K in % (training) 𝜼F,K in % (training) 𝜼ACC,K in % (test) 𝜼ACC in % (test) 𝜼F,K in % (test) 𝜼F in % (test)

Scenario: S.4a

SSN 88.11 85.14 . . . .

GRU-DOC 82.83 79.29 72.43 44.39 67.51 46.52

Scenario: S.4b

SSN 89.92 87.68 . . . .

GRU-DOC 85.60 83.53 75.23 48.01 71.28 49.84

Bold values indicate the best performance results.

5 Summary and outlook

This paper investigates the robustness of PMU based distur-

bance classification methods in case of deviations between

the training and test data sets. For this, the classification

problem is described from a systems theory point of view

by introducing the nuisance variables: measurement noise,

unknown operational points, and unknown disturbance

events. Siamese Sigmoid Networks (SSN) as recurrent neu-

ral network based classification model are evaluated and

compared to several closed-set and open-set benchmark

models. A generic 400 kV transmission power system is

modeled to simulate disturbance events under different

operational conditions and to create the necessary training

and test data sets. An autoregressive error model adds mea-

surement noise to the test signals. The experiments show

that SSNs perform on pair compared to Triplet networks

in case of unknown operational points and achieve slightly

better test results in case of measurement noise. Further-

more, SNNs clearly outperform an open-set classifier when

handling unknowndisturbance events. Especially unknown

operational points and unknown disturbance events lead to

severe performance degradations (above−20 %of accuracy

and F1-score) in all classification models in the application

phase. This demonstrates the importance of investigations

regarding the robustness of disturbance classification mod-

els as well as possible improvements of the model perfor-

mance under real conditions.

No field measurements from real power systems are

available for this work but should be investigated in fur-

ther studies to validate the approach. Future work should

focus on an improved evaluation of the nuisance variables,

especially model errors, and the derivation of represen-

tative datasets as well as performance criteria to develop

robust disturbance classification models. Other benchmark

models and benchmark power systems should be taken into

consideration to further substantiate the findings. Also, the

application of the disturbance classification in distribution

systems (e.g. at 110 kV voltage level) could be investigated in

future studies.
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