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Abstract: Algebraic differentiators have attracted much
interest in recent years. Their simple implementation as
classical finite impulse response digital filters and sys-
tematic tuning guidelines may help to solve challenging
problems, including, but not limited to, nonlinear feed-
back control, model-free control, and fault diagnosis. This
contribution introduces the open source toolbox AlgDiff
for the design, analysis and discretisation of algebraic
differentiators.
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Zusammenfassung: Algebraische Ableitungsschätzer ha-
ben in den letzten Jahren großes Interesse erlangt. Dank
ihrer einfachen Implementierung als klassische digitale Fil-
ter mit endlicher Impulsantwort und der systematischen
Parametrierungsansätze können sie zur Lösung anspruchs-
voller regelungstechnischer Probleme beitragen. Dieser
Beitrag stellt die Open-Source-Toolbox AlgDiff für den
Entwurf, die Analyse und die Diskretisierung algebraischer
Ableitungsschätzer vor.

Schlagwörter: Numerisches Differenzieren, orthogonale
Polynome, lineare Filterung

1 Introduction
Numerical estimation of derivatives of measured signals
is a long-standing and challenging problem because small
perturbations in the measurements may yield significant
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errors in the estimates. Numerous approaches have been
proposed to address this problem: frequency-domain dig-
ital filter design [1, 2], Tikhonov regularisation [3, 4],
observers design [5–9], local least-squares fitting of data
by polynomials [10, 11], and differentiation by integration
methods [12–14]. Algebraic differentiators have been pro-
posed in [15, 16] and further discussed and extended in
[17–25], for example. A detailed introduction to these dif-
ferentiation techniques, their historical evolution, and links
to established methods in the literature are summarised
in the free-access survey [26].

Algebraic differentiators may be interpreted as differ-
entiation by integration methods and may be implemented
as classical finite impulse response (FIR) digital filters.
The design of these differentiators involves the judicious
choice of up to five parameters, which can be challeng-
ing. For example, it has been pointed out in [15, 16] that
accepting a slight but known delay in the estimates re-
duces the order of the approximation error. In [23], it has
been observed that delay-free differentiators may exhibit
intolerable gains in their amplitude spectra.

Analysing the effects of the parameters on the
frequency-domain properties has been very useful in de-
riving systematic tuning guidelines. In [21], it has been
shown that it is possible to approximate the differentiators
as low-pass filters. The tuning parameters can then be
determined by specifying the desired cutoff frequency and
stopband slope. Further effects of the parameters on the
frequency-domain properties have been discussed in [22,
24, 25], for example. The simple implementation of these
differentiators and their good robustness with respect to
measurement disturbances has motivated their wide use.
An extensive list of applications including but not lim-
ited to parameter estimation, fault detection and feedback
control has been published in [26].
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Fig. 1: Screenshot of the GUI for a specific parametrisation of algebraic differentiators.

A first version of an open-source toolbox implement-
ing all necessary functions for the design, analysis, and
discretisation of algebraic differentiators has been made
available with the survey [26]. The toolbox is implemented
in Python. Numerous examples show how it can be used
in Matlab. The toolbox [27] allows users to specify de-
sired frequency-domain properties and estimating deriva-
tives of signals in very few lines of code, for example.
Time-domain and frequency-domain properties are auto-
matically calculated and can be easily accessed. In the
current contribution a step-by-step tutorial is provided
for algebraic differentiators using this toolbox. Relevant
properties are recalled and demonstrated. Discretisation
effects and a special parametrisation for the exact annihi-
lation of harmonic signals first discussed in [21] are also
addressed using simple examples. The source code of the
latter examples is made freely available in the toolbox
repository for Python and Matlab.

This tutorial-like article is structured as follows. Sec-
tion 2 describes the main features of the toolbox. Section 3
recalls the basics of algebraic differentiators required for
the remaining parts. Section 4 constitutes the main part
of this work and recalls the properties of algebraic differen-
tiators in the light of the toolbox. Example code snippets
are used to show how the different functions can be used.
A short conclusion is provided in Section 5. Appendices A

to E summarise explicit mathematical expressions related
to algebraic differentiators that are provided for the sake
of completeness.

2 The toolbox AlgDiff
The toolbox contains an implementation in Python for all
necessary functions for the design, analysis, and discreti-
sation of algebraic differentiators. The toolbox is available
under the BSD-3-Clause License, making it suitable for
academic and industrial/commercial use. An interface to
Matlab is included in the package, and several use cases
are documented. The repository also contains detailed
documentation of the Python class and its methods. The
prerequisites for using the toolbox are described in detail.

The repository also includes a graphical user interface
(GUI) that further simplifies the design of algebraic differ-
entiators. The GUI enables specifying desired time-domain
and frequency-domain properties for the filters. Relevant
properties like the approximation delay, the discretisation
error, the cutoff frequency, and the filter window length
are displayed. Numerical values for amplitude spectra,
step responses, impulse responses, and filter coefficients
can be exported. Different approaches can be used to
discretise the differentiators. Measurement data can be
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Table 1: Extract from [26]: Interpretations of 𝑔 = 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 and the practical usage of each.

Context Interpretation Practical usage

Approximation-
theoretic

Polynomial approximation of derivative
using a Hilbert reproducing kernel

Analysis of estimation properties and relation
to established differentiation methods

Systems-theoretic

Linear time-invariant filtering of the sought
derivative:

y(n)
g

ŷ(n) Analysis of filter properties and
parametrisation

Linear time-invariant filtering of the
measured signal:

y(n)
g

ŷ(n) Discretisation and implementation

loaded into the GUI and derivatives can then be easily
computed. Fig. 1 shows a screenshot of the GUI for a
specific algebraic differentiator.

3 Background material on
algebraic differentiators

This section provides a brief summary of the fundamentals
of algebraic differentiators, which were originally devel-
oped in [15, 16]. A survey on the existing results, inter-
pretations, relationships to established methods, tuning
guidelines, and applications can be found in [26].

3.1 Derivative estimation

While the early works [15, 16] use differential algebraic ma-
nipulations and operational calculus to derive the differen-
tiators, later ones such as [20–22, 25, 28] use time-domain
derivations. This shall be briefly recalled.

Let ℐ𝑡 = [𝑡 − 𝑇, 𝑡] ⊂ R, 𝑇 > 0, be an arbitrary closed
interval and consider a Lebesgue integrable signal 𝑦 : ℐ𝑡 →
R. The derivatives up to a finite order 𝑛 < min{𝛼, 𝛽} + 1,
with 𝛼, 𝛽 ∈ R and 𝛼, 𝛽 > −1, of 𝑦 can be approximated
using truncated generalised Fourier expansions of order
𝑁 based on orthogonal Jacobi polynomials as

𝑦(𝑛)(𝑡) =
𝑡∫︁

𝑡−𝑇

𝑔(𝑛)(𝑡 − 𝜏)𝑦(𝜏)d𝜏, 𝑔(𝜏) = 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜏), (1)

with 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 defined in (A.7). In the following, the kernel

𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 and the parameter 𝑇 are called algebraic differ-

entiator and window length, respectively. The scalars 𝛼

and 𝛽 parametrise the weight function of the Jacobi poly-
nomials. Section 3.2 discusses their effects on the filter
properties.

The estimate 𝑦(𝑛) corresponds to a delayed approxi-
mation of 𝑦(𝑛) at time 𝑡 and the delay, denoted by 𝛿𝑡, can
be parametrised by 𝜗. It can be expressed as

𝛿𝑡 =

{︃
𝛼+1

𝛼+𝛽+2 𝑇, 𝑁 = 0,
1−𝜗

2 𝑇, 𝑁 ̸= 0.

If 𝜗 is a zero of the polynomial P(𝛼,𝛽)
𝑁+1 , which yields a

small but known delay, the order of the approximation is
increased, as first pointed out in [16] (see also [22, 26]).
Alternatively, a delay-free approximation can be achieved
for 𝜗 = 1 or a prediction for 𝛿𝑡 < 0 (see also [22, 26, 29]).

3.2 Interpretations

As discussed in [26], different interpretations can be at-
tached to algebraic differentiators. Two important ones
are recalled in Table 1. The approximation-theoretic in-
terpretation stems from the time-domain derivation of
the differentiators. It is helpful for the analysis of the
approximation error and delays. The systems-theoretic in-
terpretation is a direct consequence of the definition of the
approximated derivative in (1): The estimate is the output
of a linear time invariant filter where the kernel is the
𝑛-th order derivative of 𝑔

(𝛼,𝛽)
𝑁,𝑇,𝜗. Applying an integration

by parts in (1) shows that the estimate can be interpreted
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Fig. 2: Impulse and step responses of algebraic differentiators with parameters 𝛼, 𝛽 ∈ {1, 3, 6}, and 𝑁 = 0.

as the output of a filter with kernel 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗. The filter

output, then, is the sought derivative. This interpretation
will be used in the next section to design differentiators
using the toolbox.

4 Algebraic differentiators in the
light of AlgDiff

This section reviews the properties of algebraic differen-
tiators in the time and frequency domains and shows how
the toolbox can be used to analyse these filters. First,
the continuous-time differentiators are considered. Then,
discretisation issues are discussed and functions of the
toolbox that can be used to ensure that the discrete-time
filter preserves the properties of the continuous-time ones
are introduced. Finally, the estimation of the derivative
of an example signal is considered. The code snippets
provided in this section are written in Python to adhere
to the open-source philosophy of the package. However,
the repository contains the corresponding Matlab code.

4.1 Impulse and step responses

The impulse and step responses of an algebraic differentia-
tor 𝑔

(𝛼,𝛽)
𝑁,𝑇,𝜗 have been derived in [22] and are summarised

in Appendix C. Example 1 shows how the toolbox can be
used to easily compute impulse responses, their derivatives
and step responses of an algebraic differentiator.

Example 1 (Impulse and step responses)
The impulse and step responses of an algebraic differentia-
tor with parameter 𝛼 = 4, 𝛽 = 4, 𝑁 = 0, and 𝑇 = 0.1 can
be computed using the toolbox as shown in Code snippet 1.

# Create an i n s t a n c e o f t h e c l a s s
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0, a lpha

=4. , b e t a =4. ,T=0.1)
# Eva lua te t h e impu l se and s t e p r e s p o n s e s

f o r a g i v e n time range 𝑡 ∈ [−0.05, 0.05]
t = np . l i n s p a c e ( −0.05 ,0 .1 ,100)
# Order o f d e r i v a t i v e o f impu l se r e s .
order_der = 0
# Eva lua te t h e impu l se re sponse
g = d i f f A . eva lKerne lDer ( order_der , t )
# Eva lua te t h e s t e p response
h = d i f f A . ge t_stepResponse ( t )

Code snippet 1: Evaluation of the impulse and step responses of
an algebraic differentiator.

Fig. 2 shows the impulse and step responses of alge-
braic differentiators for 𝑁 = 0 and different values of 𝛼

and 𝛽. It can be observed that increasing 𝛽 and keeping
𝛼 constant causes a stronger weighting of the impulse re-
sponse towards 0. This increase implies a stronger weight-
ing of more recent values of the sought derivative and
corresponds to the reduction of the estimation delay. In
contrast, increasing 𝛼 and keeping 𝛽 constant yields a
stronger weighting of the impulse response in the direction
of 𝑇 , which leads to a stronger weighting of older values
of the sought derivative and, thus, to an increase of the
estimation delay. The effects of the parameters on the
delay has been analysed analytically in [16, 20, 25, 26],
for example.

The analytical properties of the impulse response and its
derivatives can be used to derive tuning guidelines for
fault detection algorithms, for example. Approaches have
been developed and experimentally validated in [21, 22,
28, 30], for example.
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Fig. 3: Amplitude and phase spectra of the differentiator from Code snippet 2. The approximation (2) and the upper bound from [22,
25] are also given.

4.2 Frequency-domain properties

By recalling that the estimate of the 𝑛-th order derivative
of 𝑦 is a convolution product of the signal and the 𝑛-th
order derivative of the differentiator 𝑔

(𝛼,𝛽)
𝑁,𝑇,𝜗, it follows that

ℱ
{︁

𝑦(𝑛)
}︁

(𝜔) = (𝜄𝜔)𝑛𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜄𝜔)𝒴(𝜔), 𝜄2 = −1,

with ℱ
{︀

𝑦(𝑛)}︀, 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗, and 𝒴 the Fourier transforms of

𝑦(𝑛), 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗, and 𝑦, respectively. For the sake of com-

pleteness, the closed form of 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗 is recalled in (A.9).

Thus, this numerical differentiation scheme falls within
the framework of classical approaches for differentiation
in the frequency domain, where a smoothing filter, in this
case 𝑔

(𝛼,𝛽)
𝑁,𝑇,𝜗, is followed by an ideal differentiation operator

(𝜄𝜔)𝑛. This property has first been observed in [23].
Analysing 𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗 is thus helpful to derive tuning
guidelines by specifying desired frequency-domain proper-
ties. The approximation⃒⃒⃒

𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜔)

⃒⃒⃒
≈ 𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗(𝜔) =

{︃
1, |𝜔| ≤ 𝜔c,⃒⃒

𝜔c
𝜔

⃒⃒𝜇
, otherwise,

(2)

of the amplitude spectrum of an algebraic differentiator
has been proposed in [21], where 𝜔c is defined in (A.11)
and 𝜇 = 1 + min{𝛼, 𝛽}. It follows that 𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗 can be
interpreted as a low pass filter: The frequency 𝜔c and the
set |𝜔| < 𝜔c are called cutoff frequency and passband,
respectively. The set |𝜔| > 𝜔c is called stopband.

Tuning guidelines proposed in [21, 22] can then be
inferred from (2): A desired cutoff frequency 𝜔c and a de-
sired filter order, i.e., the stopband slope given by 20𝜇 dB,
can be specified. Then, the filter window length can be
computed from (A.11).

It has been shown in [24–26] that increasing 𝑁 in-
creases the sensitivity to noise. It has also been shown

in [24] that the choice 𝛼 = 𝛽 yields differentiators with
maximum robustness to noise. In addition, according to
[22, 25], and [26], choosing 𝛼 ̸= 𝛽 reduces stopband ripples
in the amplitude spectrum.

Example 2 shows how a differentiator can be designed
from desired frequency-domain properties. The computa-
tion of the amplitude and phase spectra is demonstrated.
Example 3 compares and discusses the amplitude spectra
of differentiators with and without delay.

Example 2 (Specifying frequency-domain properties)
An algebraic differentiator with an amplitude spectrum
asymptotically decreasing by 40 dB per decade, i.e.,
min{𝛼, 𝛽} = 1, and a cutoff frequency 𝜔c = 100 rad s−1

can be designed as described in Code snippet 2. The ex-
ample also shows how the toolbox can be used to compute
the amplitude spectrum, its approximation (2), and the
resulting window length 𝑇 . To increase the robustness with
respect to corrupting noises the choices 𝑁 = 0 and 𝛼 = 𝛽

are made. Additionally, upper and lower bounds for 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗

can be computed. They have been discussed in [22, 25, 26].
The amplitude spectrum, the approximation, the

bounds, and the phase spectrum are given in Fig. 3. Note
that for this parametrisation the amplitude spectrum has
infinitely many zeros. Thus, its lower bound is equal to
zero (see also [22]).

# Create an i n s t a n c e o f t h e c l a s s
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0, a lpha

=1. , b e t a =1. ,T=None , wc=100)
# Compute t h e amp l i tude spectrum o f t h e

d i f f e r e n t i a t o r
omega = np . l i n s p a c e (1 ,800 ,4∗10∗∗3)
ampA, phaseA = d i f f A . get_ampAndPhaseFil ter

( omega )



6 Amine Othmane, Designing algebraic differentiators using AlgDiff

0 0.5 1 1.5 2 2.5 3

−40

−20

0

passband stopband

ω in rad s−1

a
m
p
li
tu
d
e
sp
ec
tr
a
in

d
B

with delay delay-free

0 0.5 1 1.5 2 2.5 3
− 3π

2

−π

−π
2

0

passband

stopband

ω in rad s−1

p
h
a
se

sp
ec
tr
a
in

ra
d

Fig. 4: Amplitude and phase spectra of the differentiators with and without delay from Code snippet 3.

# Get t h e upper and lower bounds and t h e
approx imat ion o f t h e amp l i tude
spectrum

uA, lA , mA = d i f f A .
ge t_asymptotesAmpFi l ter ( omega )

# Get t h e f i l t e r window l e n g t h
T = d i f f A . get_T ( )

Code snippet 2: Design of an algebraic differentiator from desired
frequency-domain properties.

Example 3 (Differentiators with and without delay)
As discussed in Section 3, algebraic differentiators can also
be parametrised such that the estimated derivative is delay-
free. This is done in Code snippet 3 for a differentiator
with 𝑁 = 1 and 𝛼 = 𝛽 = 1. Its amplitude spectrum is also
computed. For a comparison a differentiator with delay
but the same parameters 𝛼, 𝛽, and 𝑁 is also considered.

Fig. 4 shows the amplitude spectra of both differentia-
tors from the latter example. The delay-free differentiator
shows a significant overshoot. Thus, the resulting estimated
derivative might not be usable. The decrease in the estima-
tion quality of these differentiators has been remarked in
[31]. The overshoots in the amplitude spectra of delay-free
differentiators have first been observed in [23].

# Create an i n s t a n c e o f the c l a s s f o r a
d i f f e r e n t i a t o r with de lay

d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=1, alpha
=1. , beta =1. ,T=None , wc=100)

# Create an i n s t a n c e o f the c l a s s f o r a
d i f f e r e n t i a t o r without de lay

d i f f B = A l g e b r a i c D i f f e r e n t i a t o r (N=1, alpha
=1. , beta =1. ,T=None , wc=100)

d i f f B . set_theta (1 , Fa l se )

# Compute amplitude spectrum of the
d i f f e r e n t i a t o r

omega = np . l i n s p a c e (1 ,1000 ,8∗10∗∗2)

ampA, phaseA = d i f f A . get_ampAndPhaseFilter (
omega )

ampB, phaseB = d i f f B . get_ampAndPhaseFilter (
omega )

Code snippet 3: Comparison of amplitude spectra for
differentiators with and without delay.

It has been observed in [21, 22] that the Fourier trans-
form 𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗 of an algebraic differentiator with 𝑁 = 0 and
𝛼 = 𝛽 simplifies to

𝒢(𝛼,𝛼)
0,𝑇,𝜗 (𝜔) = e−𝜄

𝜔𝑇
2 Γ

(︂
𝛼 + 3

2

)︂(︀ 4
𝜔𝑇

)︀𝛼+ 1
2 J𝛼+ 1

2

(︂
𝜔𝑇

2

)︂
,

where Γ denotes the Gamma Function and J𝛼+ 1
2

is the
Bessel function of the first kind and order 𝛼 + 1/2. These
special functions are defined in [32], for example. Thus,
the amplitude spectrum exhibits an infinite number of
positive zeros. Moreover, the differentiator provides phase
linearity. By carefully choosing the parameters 𝛼 and
𝑇 such that the zeros of 𝒢(𝛼,𝛼)

0,𝑇,𝜗 coincide with a specific
frequency, the exact annihilation of disturbing harmonics
can be performed. This parametrisation has been used
in experimental studies in [21, 22, 29, 30, 33]. Therein,
the measured signals are corrupted by an unmodelled
mechanical eigenmode of the system. Its influence on the
control and estimation algorithms has been annihilated
using the latter property. In [22], this parametrisation has
been used to approximate a matched filter. The following
example demonstrates this special parametrisation.

Example 4 (Exact annihilation of frequencies)
Assume that the signal the derivative of which has to be
estimated is corrupted by a harmonic signal of known
frequency 𝜔0. Choosing the window length 𝑇 such that
𝜔0𝑇 = 2𝑗𝑘, with 𝑗𝑘 the 𝑘-th zero of the Bessel function
of the first kind and order 𝛼 + 1/2 yields 𝒢(𝛼,𝛼)

0,𝑇,𝜗 (𝜔0) =
0, i.e., the effects of the corrupting signal are exactly
annihilated. This is demonstrated in Code snippet 4 for
𝜔0 = 100 rad s−1 and 𝛼 = 2.
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Fig. 5: Amplitude and phase spectrum of the differentiator from Code snippet 4 for the annihilation of a harmonic disturbance with
angular frequency 𝜔0.

# Create an i n s t a n c e o f t h e c l a s s
w_0 = 100
a lpha = 2 .
# Choose t h e k−t h ze ro o f t h e B e s s e l

f u n c t i o n
k = 2
j k = f l o a t (mp. b e s s e l j z e r o ( a lpha +0.5 , k ) )
T = 2∗ j k /w_0
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0, a lpha=

alpha , b e t a=alpha ,
T=T)
# Eva lua te t h e Four ier t rans form
omega = np . l i n s p a c e (0 ,200 ,1000)
amp , phase = d i f f A . get_ampAndPhaseFil ter (

omega )

Code snippet 4: Parametrisation of a differentiator to annihilate
a known frequency.

Fig. 5 shows the amplitude and phase spectra of this
differentiator and confirms the exact annihilation of the
disturbing harmonic with frequency 𝜔0. However, choosing
an appropriate zero and a numerical value for 𝛼 remain
as the degrees of freedom for every specific application.
The works [21, 22, 29, 30, 33] have proposed an approach
where these parameters are chosen such that a satisfying
compromise between disturbance rejection and tolerable
window length can be achieved. The size 𝑇 of the window is
a crucial parameter since it influences the estimation delay,
the computational burden, and the memory requirements
of the implemented differentiators. Available hardware may
imply constraints on the latter properties.

4.3 Discrete-time implementation

In most applications, the measured signal is available
at discrete time instants only and the integral (1) must

be approximated by an appropriate quadrature method.
Thus, the estimates are outputs of digital FIR filters.

From the Nyquist–Shannon sampling theorem, it fol-
lows that when discretising a filter, the gain at the Nyquist
frequency must be sufficiently small to reduce aliasing ef-
fects. As proposed in [22], a possibility to avoid these
effects is to specify the weakest relative attenuation

𝑘N,min =
𝜔N

⃒⃒⃒
𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗(𝜔N)
⃒⃒⃒

𝜔c

⃒⃒⃒
𝒢(𝛼,𝛽)

𝑁,𝑇,𝜗(𝜔c)
⃒⃒⃒ ≈

(︂
𝜔c
𝜔N

)︂min{𝛼,𝛽}+1−𝑛max

of an algebraic differentiator 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 at the Nyquist fre-

quency 𝜔𝑁 = 𝜋/𝑡s, where 𝑡s and 𝑛max are the sampling
period and the highest required derivative order, respec-
tively (see also [26]). Example 5 demonstrates the design of
a differentiator with a desired relative attenuation 𝑘N,min.

Example 5 (Specifying the relative attenuation 𝑘N,min)
To achieve at least a desired relative attenuation of 𝑘N,min
for a given cutoff frequency 𝜔c, the parameters 𝛼 and 𝛽

have to be chosen such that

min{𝛼, 𝛽} =
ln
(︀
𝑘N,min

)︀
ln (𝜔c/𝜔N) + 𝑛max − 1.

A differentiator is designed in Code snippet 5 for the
approximation of a first order derivative with the cutoff
frequency equal to 90 rad s−1 and a relative attenuation
equal to 10−3 = −30 dB. The considered sampling period
is equal to 10 ms, the parameters 𝛼 and 𝛽 are chosen
equal, and 𝑁 = 0. The resulting differentiator has a filter
window length equal to 100 ms, i.e., 10 sampling periods.
The parameters 𝛼 and 𝛽 are equal to 5.53. The estimation
delay is equal to 5 sampling periods.

# S p e c i f y c u t o f f f r e q u e n c y
wc = 90
# S p e c i f y r e l a t i v e a t t e n u a t i o n
kn = 10∗∗( −3)
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Fig. 6: Amplitude of two continuous-time differentiators compared to those of discretised ones with and without normalisation.

# S p e c i f y sampl ing p e r i o d and Nyqu i s t
f r e q u e n c y

t s = 0.01
wN = np . p i / t s
# S p e c i f y order o f d e r i v a t i v e
der_order = 1
# Compuate parameter 𝛼

a lpha = np . l o g ( kn ) /np . l o g ( wc/wN)+
der_order −1

# Create an i n s t a n c e o f t h e c l a s s w i th
d e l a y

d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0, a lpha
=alpha , b e t a=alpha ,

T=None , wc=wc , t s=t s )
# Get window l e n g t h
T = d i f f A . get_T ( )
# Get d e l a y
d e l a y = d i f f A . ge t_de lay ( )

Code snippet 5: Design of a differentiator with a specified
relative attenuation.

In the following, it is assumed that the window length 𝑇 is
an integral multiple of the sampling period, i.e., 𝑇 = 𝑛s𝑡s,
and equidistant sampling is considered for simplicity. The
abbreviation 𝑦𝑘 = 𝑦(𝑘𝑡s), 𝑘 ∈ N, for a sample of a signal
𝑦 at time 𝑘𝑡s is used. Then, a discrete-time approximation

𝑦
(𝑛)
𝑘+𝜃 = 1

Φ

𝐿−1∑︁
𝑖=0

𝑤𝑖𝑦𝑘−𝑖, Φ = 𝑡𝑛
s

𝑛!

𝐿−1∑︁
𝑘=0

𝑤𝑘(−𝑘)𝑛, (3)

of (1) can be achieved. Therein, 𝜃, 𝐿, and 𝑤𝑖 depend on
the numerical integration method used as discussed in
[22, 26, 28]. For example, the mid-point rule yields 𝜃 = 1

2 ,
𝑤𝑖 = 𝑡s𝑔

(𝑛)
𝑖+𝜃, and 𝐿 = 𝑛s. The normalisation factor Φ

has been first introduced in [22] to guarantee that the
DC component of the sought derivative is preserved. The
effects of normalisation are demonstrated in the following
example using the functions of the toolbox.

Example 6 (Effect of the normalisation factor)
Per default, the toolbox implements the normalisation pre-
sented in (3). The code in Code snippet 6 demonstrates the
effects of the normalisation by comparing the amplitude
spectra of two differentiators: The first one is discretised
with the normalisation and the second is without.

# Create an i n s t a n c e o f t h e c l a s s f o r a
d i f f e r e n t i a t o r w i th t h e n o r m a l i s a t i o n

t s = 0.01
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=1, a lpha

=1. , b e t a =1. ,
T=10∗ t s , t s=t s )
# Create an i n s t a n c e o f t h e c l a s s f o r a

d i f f e r e n t i a t o r w i t h o u t t h e
n o r m a l i s a t i o n

d i f f N = A l g e b r a i c D i f f e r e n t i a t o r (N=1, a lpha
=1. , b e t a =1. ,

T=10∗ t s , t s=ts , corr=Fa l se )
# Eva lua te Four ier t rans form o f t h e

cont inuous −t ime and d i s c r e t e −t ime
d i f f e r e n t i a t o r s f o r comparisons

omega = np . l i n s p a c e (0 ,200 ,1000)
method = ’ mid−p o i n t ’
d = 0
ampA_C, phaseA_C = d i f f A .

get_ampAndPhaseFil ter ( omega )
ampA_D, phaseA_D = d i f f A .

ge t_ampSpec t rumDiscre teF i l t e r ( omega ,
d , method=method )

ampN_D, phaseN_D = d i f f N .
ge t_ampSpec t rumDiscre teF i l t e r ( omega ,
d , method=method )

Code snippet 6: Discretisation of differentiators with and without
normalisation.

Fig. 6 shows the spectra of two continuous-time differentia-
tors discretised with and without the normalisation factor.
It can be seen that the DC component is only preserved
when the normalisation is used.
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Algebraic differentiators and their tuning guidelines have
been discussed in the continuous-time domain. Thus, the
discretised ones have to preserve the specified properties.
Since most tuning guidelines discussed here rely on the
frequency-domain interpretation of the differentiators, the
analyses of the discretisation effects can be performed by
comparing the Fourier transform of the continuous and
discrete differentiators. This can be done using the cost
function

𝒥 =
∫︀ Ω

0
⃒⃒
ℱ
{︀

𝑔(𝑛) − 𝑔(𝑛)}︀ (𝜔)
⃒⃒2 d𝜔∫︀ Ω

0
⃒⃒
ℱ
{︀

𝑔(𝑛)
}︀

(𝜔)
⃒⃒2 d𝜔

(4)

introduced in [22] (see also [26, 28]), where Ω has to be
chosen according to the frequency interval of interest. In
the latter cost function, 𝜔 ↦→ ℱ

{︀
𝑔(𝑛)}︀ (𝜔) is the Fourier

transform of the continuous-time differentiator 𝑔 = 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗.

The discrete-time filter from (3) is denoted 𝑔(𝑛) and its
Fourier transform is

𝜔 ↦→ ℱ
{︁

𝑔(𝑛)
}︁

(𝜔) = 1
Φ

𝐿−1∑︁
𝑘=0

𝑤𝑘e−𝜄𝜔(𝑘+𝜃)𝑡s . (5)

The cost function 𝒥 compares the discretisation error
with the noise amplification of the continuous-time dif-
ferentiator (the reader is referred to [22, 26] for further
details). Thus, it can be used to decide if the former can
be neglected compared to the latter. The cost function
can be easily computed using the functions in the toolbox
as demonstrated in Example 7.

Example 7 (Discretisation error)
The cost function (4) is computed in Code snippet 7 for a
differentiator with the parameters 𝛼 = 𝛽 = 7, 𝑁 = 0, and
𝑇 = 20𝑡s.

# Create an i n s t a n c e o f t h e c l a s s f o r a
d i f f e r e n t i a t o r wi th d e l a y

t s = 0.001
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0, a lpha

=7. , b e t a =7. ,
T=20∗ t s , t s=t s )
# Compute t h e d i s c r e t i z a t i o n e r r o r
Omega = np . p i / t s
J = d i f f A . g e t _ d i s c r e t i z a t i o n E r r o r (1 , Omega

)

Code snippet 7: Evaluation of the discretisation error.

The resulting cost 𝒥 is approximately equal to 1.6 · 10−10.
Thus, the discretisation effects can be neglected. The vari-
ation of 𝒥 with respect to the parameters of the differen-
tiator has been analysed in [22, 28], for example.

4.4 Estimation of derivatives using AlgDiff

Example 8 demonstrates the numerical differentiation of
a given signal using the implemented functions and a
differentiator with desired frequency-domain properties.

Example 8 (Numerical differentiation)
An algebraic differentiator with the cutoff frequency
𝜔c = 20 rad s−1 and a desired relative attenuation
𝑘N,min = 10−3 shall be designed for the estimation of
the first order derivative of a signal sampled with a sam-
pling period equal to 20 ms. As in Example 2, the choice
𝑁 = 0 and 𝛼 = 𝛽 is made to increase the robustness
with respect to disturbances. The resulting differentiator
has the parameters 𝛼 = 𝛽 = 3.35 and a window length
equal to 14𝑡s. The estimation delay corresponds to 7𝑡s. The
cost function 𝒥 is equal to 7.9 · 10−6. Thus, discretisation
effects can be neglected. The parametrisation of the differ-
entiator and the estimation of the derivative of a noisy
signal 𝑡 ↦→ 𝑦(𝑡) = sin(𝑡) + 𝜂(𝑡) is shown in Code snippet 8.
The additive disturbance 𝜂 is drawn from a Gaussian distri-
bution with standard deviation equal to 0.02 such that the

signal to noise ratio is SNR = log10

(︂∑︀
𝑖

𝑦2(𝑡𝑖)∑︀
𝑖

𝜂2(𝑡𝑖)

)︂
≈ 31 dB.

The estimation results are shown in Fig. 7 and com-
pared to the results of a simple forward difference method.
For a comparison with more advanced methods the reader
is referred to [25, 34, 35]. This example shows the advan-
tages of algebraic differentiators and their systematic tun-
ing guidelines. Furthermore, it highlights the user friendli-
ness of the toolbox AlgDiff.

# Design d i f f e r e n t i a t o r
t s = 0.02
kn = 10∗∗( −3)
wN = np . p i / t s
a = np . l o g ( kn ) /np . l o g ( wc/wN)
d i f f A = A l g e b r a i c D i f f e r e n t i a t o r (N=0,

a lpha=a , b e t a=a , T=None , t s=ts , wc=20)
J = d i f f A . g e t _ d i s c r e t i z a t i o n E r r o r (1 , np . p i

/ t s )
# Def ine t h e s i g n a l
t = np . arange (0 ,10 , t s )
a0 = 1
w0 = 1
x = a0∗np . s i n (w0∗ t )
dx = a0∗w0∗np . cos (w0∗ t )
e t a = np . random . normal ( 0 , 0 . 0 2 , l e n ( t ) )
y = x+e t a
# Est imate d e r i v a t i v e
dyApp = d i f f A . es t imateDer (1 , y )

Code snippet 8: Approximation of a derivative of a given signal
using a differentiator designed with desired frequency-domain
properties.
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˙̂yFD ẋ ˙̂yAlg.

Fig. 7: Estimation of the first order derivative �̇� of a sinusoidal signal 𝑥 using a measurement 𝑦 using the forward-difference method
(FD) and the algebraic differentiator (Alg.) designed in Code snippet 8.

5 Conclusion
This contribution discusses algebraic differentiators and
the use of the toolbox AlgDiff. Properties of the differentia-
tors are recalled and the use of the functions implemented
in AlgDiff was shown. The design of differentiators with
desired frequency-domain properties and the analysis of
discretisation issues are addressed with AlgDiff and the
results are discussed and illustrated. It is shown that
with few lines of code, efficient differentiators can be de-
signed and used for the numerical differentiation of signals.
Further works where the systematic tuning of the differ-
entiators are discussed in detail are [21, 22, 25, 26, 28, 30,
33] and [36], for example. An extensive list of applications
and more examples for the tuning of the differentiators
are provided in [26] .
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Appendices
A Jacobi polynomials

The Jacobi polynomial P(𝛼,𝛽)
𝑁 can be defined as

P(𝛼,𝛽)
𝑁 (𝜏) =

𝑁∑︁
𝑘=0

𝑐
(𝛼,𝛽)
𝑘 (𝜏 − 1)𝑘,

𝑐
(𝛼,𝛽)
𝑘 = Γ(𝛼+𝑁+1)Γ(𝛼+𝜗+𝑁+𝑘+1)

2𝑘𝑁 !Γ(𝛼+𝛽+𝑁+1)Γ(𝛼+𝑘+1) ,

where 𝜏 ∈ ℐ𝑃 = [−1, 1], 𝑁 ∈ N, 𝛼, 𝛽 > −1, and Γ is
the Gamma function (see [32, Sections 6.1 & 22.2] for
the definitions). The polynomials are orthogonal in the
interval ℐ𝑃 with respect to the weight function

𝑤(𝛼,𝛽)(𝜏) =

{︃
(1 − 𝜏)𝛼(1 + 𝜏)𝛽 , 𝜏 ∈ ℐ𝑃 ,

0, otherwise.
(A.6)

B Kernel of algebraic
differentiators

The kernel 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 in (1) is defined as

𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗(𝑡) = 2

𝑇

𝑁∑︁
𝑘=0

P(𝛼,𝛽)
𝑘

(𝜗)⃦⃦
P(𝛼,𝛽)

𝑘

⃦⃦2

(︁
𝑤(𝛼,𝛽) · P(𝛼,𝛽)

𝑘

)︁
∘(𝜃𝑇 (𝜏)) ,

(A.7)

https://doi.org/10.1109/CDC.2009.5400719
https://doi.org/10.1524/auto.2008.0711
https://doi.org/10.1007/978-3-642-27413-8_28
https://doi.org/10.1007/978-3-642-27413-8_28
https://doi.org/10.1007/s11075-011-9447-8
https://doi.org/10.1007/s11075-011-9447-8
https://doi.org/10.1109/CDC.2013.6761000
https://doi.org/10.22028/D291-27034
https://doi.org/10.3182/20140824-6-za-1003.02132
https://doi.org/10.3182/20140824-6-za-1003.02132
https://doi.org/10.1080/00207179.2017.1421776
https://doi.org/10.1080/00207179.2017.1421776
https://doi.org/10.1016/j.ejcon.2021.06.020
https://doi.org/10.1016/j.ejcon.2021.06.020
https://doi.org/10.1080/00207721.2022.2025948
https://github.com/aothmane-control/Algebraic-differentiators
https://github.com/aothmane-control/Algebraic-differentiators
https://doi.org/10.22028/D291-38806
https://doi.org/10.1109/IConSCS.2012.6502453
https://doi.org/10.1016/j.conengprac.2014.01.009
https://doi.org/10.1080/00036810802555441
https://doi.org/10.1109/IcConSCS.2013.6632038
https://doi.org/10.1016/j.conengprac.2023.105453
https://doi.org/10.1016/j.conengprac.2023.105453
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with 𝜃𝑇 (𝑡) = 1 − 2𝑡/𝑇 and ‖𝑥‖ =
√︀

⟨𝑥, 𝑥⟩ the norm
induced by the inner product

⟨𝑥, 𝑦⟩ =
1∫︁

−1

𝑤(𝛼,𝛽)(𝜏)𝑥(𝜏)𝑦(𝜏)d𝜏 .

C Impulse and step responses
The impulse and step responses of an algebraic differen-
tiator 𝑔

(𝛼,𝛽)
𝑁,𝑇,𝜗 are by (A.7) and

ℎ
(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜏) =

⎧⎪⎪⎨⎪⎪⎩
0, for 𝜏 < 0
𝐼 𝜏

𝑇
(�̄�, 𝛽) + 𝑓

(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜏), for 𝜏 ∈ [0, 𝑇 ]

1 otherwise,

,

respectively, with �̄� = 𝛼 + 1, 𝛽 = 1 + 𝛽, 𝐼𝜏 the regularized
incomplete Beta function defined in [32, Section 6.6], and

𝑓
(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜏) =

𝑁∑︁
𝑘=1

P(𝛼,𝛽)
𝑘

(𝜗)

2𝑘
⃦⃦

P(𝛼,𝛽)
𝑘

⃦⃦2

(︁
𝑤(�̄�,𝛽) · P(�̄�,𝛽)

𝑘−1

)︁
∘(𝜃𝑇 (𝜏)) .

D Fourier transform 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗

Closed forms of the Fourier transform 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗 of an alge-

braic differentiator 𝑔
(𝛼,𝛽)
𝑁,𝑇,𝜗 have been derived in [22, 29]

and [24]. One possible representation of 𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗 is

𝒢(𝛼,𝛽)
𝑁,𝑇,𝜗(𝜔) =

𝑁∑︁
𝑖=0

(𝛼+𝛽+2𝑖+1)P(𝛼,𝛽)
𝑖

(𝜃)
𝛼+𝛽+𝑖+1 ×

𝑖∑︁
𝑘=0

(−1)𝑖−𝑘

(︂
𝑖

𝑘

)︂
M(𝛼,𝛽)

𝑖,𝑘 (−𝜄𝜔𝑇 ), 𝜄2 = −1,

(A.9)
with

M(𝛼,𝛽)
𝑖,𝑘 (𝑧) = M(𝛼 + 𝑖 − 𝑘 + 1, 𝛼 + 𝛽 + 𝑖 + 2, 𝑧), (A.10)

where 𝑧 ∈ C and M is the confluent hypergeometric func-
tion defined in [32, Section 13.1].

E Cutoff frequency 𝜔c

Let 𝜇 = 1 + min{𝛼, 𝛽}, 𝜅 = |𝛼 − 𝛽|. The cutoff frequency
of an algebraic differentiator is

𝜔c = 1
𝑇

(︃
𝑞

(𝛼,𝛽,𝜎)
𝑁,𝜗

Γ(𝜇 + 𝜅)

)︃ 1
𝜇

, (A.11)

where

𝑞
(𝛼,𝛽,𝜎)
𝑁,𝜗 =

⎧⎨⎩Γ(𝜇) max
{︁⃒⃒⃒

𝑟
(𝜇,0,𝜎)
𝑁,𝑇

⃒⃒⃒
, 𝑠

(𝜇,0,𝜎)
𝑁,𝑇

}︁
, 𝜅 = 0,

Γ(𝜇 + 𝜅)
⃒⃒⃒
𝑟

(𝜇,𝜅,𝜎)
𝑁,𝑇

⃒⃒⃒
, 𝜅 > 0,

𝜎 =

{︃
1, 𝛼 ≤ 𝛽,

−1, 𝛼 > 𝛽,

𝑟
(𝜇,𝜅,𝜎)
𝑁,𝜗 =

𝑁∑︁
𝑖=0

𝑐
(𝜇,𝜅)
𝑖

Γ(𝜇 + 𝜅 + 𝑖)P(𝜇−1,𝜇+𝜅−1)
𝑖 (𝜎𝜗),

𝑠
(𝜇,𝜅,𝜎)
𝑁,𝜗 =

𝑁∑︁
𝑖=0

(−1)𝑖 𝑐
(𝜇,𝜅)
𝑖

Γ(𝜇 + 𝑖)P(𝜇−1,𝜇+𝜅−1)
𝑖 (𝜎𝜗),

𝑐
(𝜇,𝜅)
𝑖 = (2𝜇 + 𝜅 + 2𝑖 − 1) Γ(2𝜇 + 𝜅 + 𝑖 − 1).
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