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Abstract: Alarmmanagement systems in the process indus-

try use root-cause analysis methods to reduce alarm logs. To

enable the application of these methods in different plant

types, the alarm characteristics of a continuous, two dis-

crete, and a hybrid plant are examined. The main contri-

bution is threefold. First, root-cause analysis requirements,

posed by different plant types, are revealed. Next, existing

approaches are assessed against the requirements. Since the

root-cause is not necessarily the first alarm in time, its jus-

tification requires further plant knowledge. Thus, engineer-

ing documents and the necessary formalized knowledge to

justify root-causes are identified.
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Zusammenfassung: Alarmmanagementsysteme in der Pro-

zessindustrie begrenzen dargestellte Alarme durch Root-

Cause-Analyse. DieHerausforderungenbei derÜbertragung

dieser Methoden auf andere Produktionsanlagen werden

durch die Untersuchung der Alarmcharakteristika von kon-

tinuierlichen, diskreten und hybriden Anlagen aufgezeigt.

Dieser Beitrag zeigt die Anforderungen an die Alarmur-

sachenanalyse für verschiedene Anlagentypen auf und

bewertet vorhandene Ansätze entsprechend. Da die Alarm-

ursache nicht zwingend der zeitlich erste Alarm ist,

erfordert ihre Plausibilisierung weiteres Anlagenwissen.

Deshalb werden notwendige technische Dokumente und

formalisiertes Wissen zur Plausibilisierung identifiziert.

Schlagwörter: Alarmfluten; Alarmmanagement; Enginee-

ring-Wissen; Hybride Anlagen; Root-Cause Analyse

1 Introduction

The need for highly efficient production has led to an exten-

sive use of automated production systems [1], which are

managed by supervisory and control systems. As a con-

stituent, alarm management systems (AMS) raise alarms

whenever a process deviation or a fault is detected [2].

They inform the operator about sensor and actuator values

exceeding or falling below a certain threshold or if some

internal system conditions, like pre- and postconditions in a

process chain, are violated [3]. In undesirable conditions, an

initial disturbance or fault might propagate throughout the

plant causing additional deviations in other components,

worsening the existing abnormal situation and possibly

leading to emergency shutdowns [3, 4]. To avoid such a

shutdown, a quick reaction to abnormal behavior is crucial.

This generally requires manual intervention by the plant
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operator [2], which becomes a bottleneck if alarm floods

(AF) appear.

AF pose a major obstacle in AMS design [5, 6]. They

occur when a large number of alarms are activated within

a short period of time (e.g., more than 10 alarms in 10 min)

[3, 5]. During AF, operators struggle to accurately determine

the underlying reasons for the issue and respond to faults

effectively [6], e.g. by identifying and addressing the root-

cause, which is the underlying fault or trigger leading to an

AF. Missing crucial alarms can yield costly downtimes and

industrial accidents [3]. Often, a straightforward handling

of successively occurring alarms, called an alarm sequence,

may not be feasible, since the root-cause alarms are not

necessarily first in the sequence [7, 8]. Thus, AMS employ

advanced methods and tools to enhance the operator’s

decision-making process and situational awareness [3, 5]

by preprocessing raw alarm data and outputting easy-to-

interpret information about the ongoing situation [6]. Alarm

flood root-cause analysis (AF-RCA) methods determine the

cause-and-effect relationships between disturbed process

variables and help to identify the most likely root-cause

[4, 5, 9].

Given the significance and benefits of AF-RCA, this

paper examines existing approaches. Research to date

focuses mostly on continuous processes within the process

industry and has limited transferability to discrete ones

found in manufacturing and intralogistics. However, also in

discrete processes, a vast number of alarms caused by a sin-

gle root-cause can be a challenge for the plant operator. For

instance, a stuck workpiece or carrier can block subsequent

parts causing a chain of building up alarms with changing

order depending on the desired transport route [9].

To bridge this gap between industries, we aim to pro-

vide a first contribution to the development of comprehen-

sive AF-RCA methods applicable to a wide range of pro-

cess types and use cases. Four exemplary plants covering

discrete, continuous, and hybrid processes are presented

and compared to derive a set of requirements for AF-RCA

development based on their commonalities and differences.

Furthermore, relevant engineering knowledge and docu-

ments for the respective process types to validate potential

dependencies between alarms in a sequence are suggested.

Knowing the root-cause alarm and dependencies between

alarms, unnecessary ones can be filtered to reduce the

operator’s workload [5, 9, 10].

Related work in data-driven and knowledge-based AF-

RCA for different process types is examined in Section 2,

showing the limitations of purely data-driven methods.

Section 3 presents and compares four illustrative plants

with distinct characteristics. Therefore, suitable require-

ments for a comprehensive AF-RCA in those plants are

derived in Section 4. In Section 5, the AF-RCA methods,

which incorporate additional knowledge and overcome lim-

its of purely data-driven ones, are assessed against the

requirements from Section 4. In Section 6, engineering doc-

uments and expert knowledge useful for the advancement

of AF-RCA are proposed. Section 7 concludes with a sum-

mary and an outlook on future research.

2 Related work in alarm flood

root-cause analysis for varying

production process types

Automated production systems are grouped into four cate-

gories based on their type of production process [11]. Contin-

uous processes are characterized by a continuous product

stream and consistent output [12]. In contrast, discrete ones

[13] have production steps with defined start and endpoints,

which are repeated for each individually traceable prod-

uct [14]. Additionally, batch processes are continuous sub-

processes that are completed before being reinitialized [14].

If a process is composed of more than one type, it is a hybrid

process [15].

The following subsections analyze AF-RCA approaches,

regarding their suitability for the previouslymentionedpro-

cess types. They are categorized by data-driven methods

that solely rely on alarm data and methods incorporating

further engineering knowledge, representing any knowl-

edge about the process and its dependencies. This compre-

hensive examination aims to uncover shared characteristics

and distinctions among the various approaches.

2.1 Data-driven AF-RCA methods

Since similar sequenceswill likely have the same root-cause,

historical alarm sequences with an identified root-cause,

were considered. These sequences with a known root-

cause are often found in operator annotations in the alarm

log [16] or in incident reports [17]. However, to discover new,

unknown root-causes, a causal analysis of the AF must be

conducted, e.g., by data-driven AF-RCA methods. Since the

process industry plays a leading role in the development of

AF-RCAmethodsmost research is conducted in this domain.

For an extensive overview of state of the art methods for

data-driven AF-RCA in the process industry, please refer to

[11]. Moreover, Al-Dabbagh et al. [18] rank and reorder AF

by a criticality index, based on a set of selected metrics

associated with the alarms in the AF. The index is updated

every time as a new alarm is detected. Besides, Guo and Guo

[19] use a bag-of-words feature extraction to predict faults
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from multivariate time series and extract critical patterns

associated with the underlying root-cause in a continuous

paper manufacturing process as well as in discrete self-

pierce riveting in the automotive industry.

In contrast, there are still comparably few data-driven

AF-RCAmethods designed for discrete andhybrid processes.

Fan et al. [20] show a semiconductor manufacturing fault

detection approach by identifying key fault producing oper-

ations and associated process parameters using machine

learning techniques. Kinghorst et al. [21] split the alarmdata

into groups of statistically dependent alarms using a graph-

based approach. They assume that alarms are statistically

dependent if their activation time overlaps. Fahimipire-

hgalin et al. [22] used a clustering algorithm based on trans-

fer entropy and time trends. Pezze et al. [23] forecast future

alarms of a dairy product packaging process by a multi-

label classification task with past alarm sequences as input.

Folmer et al. [24] developed amethod that bases causality on

the temporal relationship of alarm appearance considering

cyclic occurring patterns. Most of these approaches were

evaluated on real world industrial data sets originating

from continuous, discrete, or hybrid process plants. How-

ever, they require dependable knowledge about activation

and deactivation timestamps, which is not always avail-

able. Moreover, in [25], different similarity measures for the

detection of comparable alarm sequences were evaluated.

However, purely data-driven AF-RCA methods are

prone to identifying false causality [26] and one alarm

sequence may consist of alarms originating from multi-

ple root-causes [27]. Therefore, data-driven AF-RCA meth-

ods need to rely on additional reasoning, such as human

experts, to verify and increase trust of the detected causal

relations [28].

2.2 AF-RCA methods incorporating
engineering knowledge

The incorporation of engineering knowledge further

extends the AF-RCA methods to justify causal dependencies

(justification). In [29] the data-driven identification of

possible root-causes was extended by the comparison of

alarm sequences. They capture the connections between

plant components to verify that the root-cause alarm

can in fact be the cause for consecutive alarms in

the sequence. Moreover, mass and energy flows using

Multilevel Flow Modelling (MFM) were considered in

[30]. Early detectability and traceability of errors in

chemical systems was established in [31, 32] focusing on

the spatial flow of materials. Connectivity information can

be extracted from Piping and Instrumentation Diagrams

(P & ID). The approach in [33] used this connectivity

information to create Dynamic Causal Digraphs (DCDG) for

fault detection, fault diagnosis and alarm management.

DCDG are cause-effect graphs extended by additional

information and so-called fault propagation carriers which

determine the distribution paths of different fault types

along the DCDG. A related approach is presented in [4].

Here, P & IDs are used to detect possible propagation paths

between the alarm sources combining themwith an AF-RCA

method based on temporal dependencies. Both approaches

were evaluated with data from a simulated continuous

production process. For an application on real-world

plants, Schleburg et al. [10] used additional knowledge

about the process from Computer Aided Engineering

Exchange (CAEX) files to support a rule-based approach

for alarm grouping. The causal relationships between

process variables were obtained using nonparametric

multiplicative regression models with the incorporation of

CAEX connectivity information [34], to decide whether the

found causal dependencies are justifiable.

Notably, all approaches mentioned in this subsection

were designed and evaluated within the process industry.

Some of the concepts are only applicable to continuous

processes and an adaption of those methods for other pro-

cess types is likely to require extensive changes or is even

impossible. One example is fault propagation carriers as

temperature or pressure, that describe how different fault

types propagate along a continuous product flow [33].

Alarms in manufacturing and intralogistics are usually

generated instantly by discrete failure events, without a

warning state. Those faults have the potential to propa-

gate to other interconnected machines, by starving them

of materials or blocking the output of finished products,

leading to prolonged downtimes and reducing the overall

plant efficiency [35]. Vuković and Thalmann [36] provide a

review on causal discovery in manufacturing and integra-

tion of engineering knowledge. The similarity of causal dis-

covery to AF-RCAmethodsmakes an adaption to alarmanal-

ysis conceivable. Besides, in manufacturing, model-based

AF-RCA approaches were enriched by knowledge obtained

from interviews [37, 38].

In [39], explicit models of process knowledge for the

automated prediction of quality parameters were created

using the example of a hybrid timber particle board pro-

duction presented in Section 3.4. A statistical process opti-

mization and control approach was extended by expert

knowledge from interviews and card sorting which was

formalized in cause-effect graphs [40]. Another approach

considering interview-based expert knowledge is presented

in [38] with a hybrid bottle filling module used for evalua-

tion. Considering a hybrid hot strip mill process, Dong et al.
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[41] use a hierarchical causal graph to divide the production

process into sub-blocks based on process knowledge. They

perform fault detection, causal and propagation analysis

using causal feature long short-term memory (CF-LSTM)

networks.

Most approaches incorporating further knowledge

solely rely on expert interviews which are costly, time con-

suming and prone to mistakes or operator bias. Despite the

limited availability of AF-RCA methods in other domains

than the process industry, the growing complexity of today’s

intralogistics and manufacturing systems leads to a rising

demand of such approaches [42]. However, regarding the

development and applicability of AF-RCA methods in dis-

crete and hybrid processes, the significant gap in research

underlines the importance of developing and evaluating

novel interdisciplinary AF-RCA methods [43].

3 Plants for varying production

process types

Highly variable production process types are presented

below: continuous chemical production, discrete manufact-

uringwith buffers, discrete intralogistics, and hybrid timber

particle board production, which includes batch, continu-

ous, and discrete processes. These examples were chosen to

identify and illustrate different production processes’ char-

acteristics and their effects on alarm sequences (Section 3.5

and Table 5). This forms the base for deriving interdisci-

plinary AF-RCA requirements in Section 4.

3.1 Tennessee-Eastman Process (TEP)

The Tennessee-Eastman Process (TEP) has been recognized

as a benchmark for chemical plant simulation, in alarm

management and for AF-RCA [4, 33, 44–46]. As a continuous

process based on a real-world chemical plant, the TEP’s flat

process hierarchy consists of a two-phase chemical reac-

tor, a condenser, a vapor-liquid-separator, a stripper, and

a steam reboiler. Pipes, two pumps, and one compressor

transport material between above-mentioned components

[47]. Necessitated by the TEP’s unstable nature, automatic

control valves in 17 control loops are used for process stabi-

lization [48]. A full overview of the process operations and

phases is provided in [47, 49]. The considered revised TEP

model [47], which enables extended monitoring of process

variables, including flow, pressure, temperature, level, and

chemical component concentration, is considered within

this paper. Among these variables, the chemical component

concentration has a deadtime and a delay. As a result, the

current value of the concentration is available with a time

lag from 10 to 15 min.

Regarding alarm sequences, a sudden variation in at

least one variable can propagate throughout the TEP and

cause AFs [46]. As an example, two sequences “A” and “B”

(Table 1), were generated using some random variations

of an identical root-cause, namely a step change in the

inlet flow of material feed A, by manipulating “XMV3” and

raising alarm “XMV3_H” (XMV: manipulated variable; H:

high alarm). The sequences show the activated alarms and

their respective timestamps of activation during the first 3 h

of the propagating abnormal situation. For better under-

standability, the start of both sequences is shifted to time

zero. The red-marked alarm variable “XMEAS1_L” (XMEAS:

process variable, L: low alarm) directly corresponds to the

underlying root-cause. As indicated in both sequences, this

disturbance propagates and affects numerous other process

variables. However, due to set alarm thresholds and random

effects on corresponding process values, the alarm variable

“XMEAS1_L” is only activated in alarm sequence “A”.

Relevant phenomena are demonstrated: Thefirst alarm

does not necessarily represent the underlying root-cause

and the real causal alarm is not necessarily included in the

sequence. This can lead to ambiguous alarm sequences for

the same root-cause.

For example, in sequence “B”, alarm variable

“XMEAS10_L” corresponds to a low flow in the TEP’s

purge, which is located on the other side of the plant and is

sensitive to changes in the reactor’s inlet.

Secondly, despite having the same root-cause, the

sequences “A” and “B” have considerable differences in

their alarmorders (indicated by black lines connecting pairs

of identical alarm variables in Table 1). Thus, data-driven

causality analysis methods that solely rely on the alarm

order may yield erroneous causal relationships [4].

3.2 Modular manufacturing plant MPS500

The MPS500 is a highly modular, discrete manufacturing

plant consisting of seven stations, which can perform inde-

pendent manufacturing steps (Figure 1). All stations are

connected via a conveyor system which transports parts on

workpiece carriers. Two product types – thermostats and

cylinders – each with multiple subvariants, are made from

a cylindrical base part that is processed at the drilling sta-

tion according to the desired product type. At the assembly

station, an industrial robot mounts additional components

to the base part. The order of necessarymanufacturing steps

is planned via a Manufacturing Execution System (MES),

which tracks the products using RFID tags on the workpiece

carrier.
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Table 1: Two TEP alarm sequences “A/B” from [49]. Red-marked variables: correspond to underlying

root-cause.

Alarm Sequence “A” Alarm Sequence “B”
Activation TimeAlarm Variable

Not ActivatedXMEAS1_L

00:00:00XMEAS10_L

00:02:40XMV3_H

00:57:30XMEAS38_H

01:18:20XMEAS49_H

01:48:10XMEAS23_L

01:55:00XMEAS33_H

01:57:00XMEAS29_L

01:57:20XMEAS31_H

01:57:40XMEAS27_H

02:13:50XMEAS36_L

02:15:50XMEAS25_H

Activation TimeAlarm Variable

00:00:00XMEAS1_L

00:35:20XMV3_H

01:26:00XMEAS38_H

01:44:20XMEAS31_H

01:46:40XMEAS49_H

01:54:20XMEAS23_L

01:58:10XMEAS27_H

02:15:40XMEAS25_H

02:20:30XMEAS29_L

02:35:00XMEAS33_H

02:37:30XMEAS36_L

03:10:50XMEAS32_H

Figure 1: Layout of the modular manufacturing plant with seven

stations.

Alarms during manufacturing are raised if product

characteristics do not meet the expected ones, i.e., product

type (thermostat or cylinder) at the assembly station, height,

and material (metal or plastic) at the drilling station, and

color of the base part at the inspection station. Unlike in

the TEP, these alarms are based on discrete events, usually

with multiple software conditions using input from binary

sensors instead of checks against a limit of a continuous

variable. Alarm sequences (Table 2) can occur, for example,

if two base parts – one for a thermostat and one for a cylin-

der – are accidentally swapped. As both parts traverse their

manufacturing sequences, alarms are successively raised at

different stations. For each base part, the height does not

match the expected value (Height Check). If the color differs

from the expectation, a color mismatch is detected (Color

Check). These two alarms inform the operator about the

deviation without aborting the manufacturing process. At

the assembly station, the base parts are checked for instal-

lation notches, which identify the base part type. If the type

does not match, another alarm is activated (Ass. Check) and

the production is aborted.

The resulting alarm sequences’ (“A” and “B” in Table 2)

different characteristics pose challenges to their interpre-

tation. Although both sequences have the same root-cause,

they show variations in their order. The occurrence of some

alarms, like the color mismatch, is influenced by statistical

effects depending on the (random) color of the base parts.

While the order of alarms for a single workpiece is almost

completely determined by the fixed order of manufacturing

steps, the alarmorder can vary considerably acrossmultiple

products because the conveyor system allows round trips of

a product if a station is busy. Alarm timings are influenced

by the possibility to temporarily store the unfinished prod-

uct in a storage rack. A shortest plausible time span between

two alarms, corresponding to a direct, nonstop route from

one station to the next, exists. However, deviations from

this timespan occur due to wait times at busy stations and

storage with no upper time limit.

3.3 Intralogistics small load carrier
transport plant

The industrial small load carrier (SLC) transport plant

(Figure 2) represents common intralogistics properties,
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Table 2: Two exemplary alarm sequences of the MPS500 with the same root-cause (marked red).

Alarm Sequence “A” Alarm Sequence “B”
Activation 

Time
Workpiece

Alarm 

Variable

UnobservedBothRoot Cause

00:00:00ThermostatHeight Check

00:00:32ThermostatColor Check

00:00:45CylinderHeight Check

00:01:17CylinderColor Check

00:01:49ThermostatAss. Check

00:02:23CylinderAss. Check

Activation 

Time
Workpiece

Alarm 

Variable

UnobservedBothRoot Cause

00:00:00ThermostatHeight Check

00:00:48CylinderHeight Check

00:01:13CylinderAss. Check

00:01:16ThermostatColor Check

00:02:01ThermostatAss. Check

Figure 2: Layout and basic modules with sensors and actuators of the intralogistics plant.

including multiple available material flow paths and a high

degree of modularity [13]. The plant can transport SLCs on

modular roller conveyors bymaking use of 35 basicmodules

organized in two straight (row 100/200) and one curved

row (row 300). Determined by a scanned QR code, the SLC

is either transported straight down the row 200 or trans-

posed onto the curved section (row 300). The basic modules

are of two basic types (Figure 2): The transport modules

(102–113, 202–204, 206–209, 211–213, 301–307) can transport

SLCs in one spatial direction, the diverting modules (114,

201, 205, 210, 214, 101) can move SLCs in a second spatial

direction using an ejection mechanism. Both module types

are equipped with three light-barriers (LB_End, LB_Mid,

LB_Front) to detect the SLC position and a motor to power

movement in the first spatial direction. The diverting mod-

ule has an additional motor and light-barrier (LB_Gap).

The transport process of the intralogistics plant is

loosely coupled because interfaces between standardized

modules are simple with limited signal flow (e.g., just mate-

rial in/out or conveyor speed). Hardware and software com-

position follow the ISA-88 standard [50], as the plant is

divided into units (rows), equipment modules (e.g., trans-

port and diverting modules), and control modules (actua-

tors and sensors). The basicmodule names indicate both the

location and material flow direction, e.g., 103 and 105 are

neighboring modules of 104 in row 100, whereby SLCs pass

these modules in ascending or descending numerical order.

Alarm messages are raised by individual hardware

modules, rows, or the entire intralogistics plant. Conceptu-

ally, an upward and downward propagation of alarms by

the control software is observed as, e.g., a module shutdown

is followed by a row shutdown and vice versa.
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Table 3: Two exemplary alarm sequences of the intralogistics plant. Red-marked variables: correspond to

underlying root-cause.

Alarm Sequence “A” Alarm Sequence “B”

Activation TimeAlarm Variable

00:00:00
Motor Rolls 205 

Torque low

00:03:20
LB_205_end not 

reached

00:05:30
LB_301_front not 

reached

00:12:25
Modul 301: 

Handover Error

00:16:50

LB_205_mid 

permanently 

interrupted

00:21:34
Modul 205: SLC 

jammed

00:22:45
FG 200: „Shutting

Down“ 

00:34:56

„Shutting Down“ 

error, SLC in 

Lightbarrier

Activation TimeAlarm Variable

00:00:00
Motor Rolls 205 

Torque low

00:03:20
LB_205_end not 

reached

00:05:00
LB_206_front not 

reached

00:09:20
Modul 206: 

Handover Error

00:15:50

LB_205_mid 

permanently 

interrupted

00:20:25
Modul 205: SLC 

jammed

00:27:40
FG 200: „Shutting 

Down“ 

00:34:30

„Shutting Down“ 

error, SLC in 

Lightbarrier

Alarm sequence “A” (Table 3) is caused by lubricant

placed on the rolls at module 205 (e.g., after maintenance

work). The reduced friction leads to the first alarmof “Motor

Rolls 205 Torque Low”, which corresponds to the underlying

root-cause. If the remaining friction is too low, the SLC does

not move, resulting in subsequent alarms after software-

defined wait times (LB_205_end not reached, LB_206_front

not reached, Module 206 Handover Error, LB_205_mid per-

manently interrupted, andModul 205: SLC jammed). Finally,

the control software recognizes a non-recoverable failure

in row 200, leading to a complete shutdown of the respec-

tive row (FG200: “Shutting down”), which triggers the auto-

mated removal of all remaining SLCs on this row. How-

ever, due to the stuck SLC at module 205, the automatic

shutdown fails (“Shutting Down” error, SLC in Lightbarrier).

The respective row is now in an error state waiting for

operator response. In the case of sequence “B”, the ejection

mechanism of module 205 is activated to transport the SLC

to the curved section (module 301). Themodular plant struc-

ture with variable routes, however, leads to similar alarm

sequences raised by varying modules for the same root-

cause. High modularity often results in similar sequences

despite differing transport routes.

3.4 Hybrid timber particle board production

The hybrid timber particle board production process [15]

consists of a batch material preparation (drying and glue

preparation), a continuous forming and press process with

up to 80 press frames for pressure and temperature control,

and a discrete board splitting and handling. For simplifica-

tion, this paper focuses on the batch and the continuous pro-

cess parts (Figure 3). A time-correct assignment of process

data, warnings, and alarms to one specific fiber board seg-

ment using the durations of production steps is necessary. In

Figure 4 exemplary process parameters and corresponding

timestamps of one board are depicted. The material’s den-

sity, humidity, and mass depend on its retention time in the

buffers. This retention time can be estimated for a known

filling level, buffer volume and throughput. The throughput

again is indicated by measurements of the outfeed velocity

using colored material at the buffer infeed. Understand-

ing these parameter relations, the retention time can be

determined for different filling levels, buffer volumes and

throughputs. The duration of the batch processes I and

II need to be estimated by experts. At the conveyor belt

(Figure 3), time-correct assignment depends on the thick-

ness of the board which influences the conveyor speed,

i.e., thinner boards are produced with higher velocity. An

inline quality assessment continuously measures the thick-

ness at five different positions across the board near the

press outfeed.Moreover, a cut of the fiber board is examined

using destructive material lab testing. These lab results are

obtained with a time delay.

For time-correct assignment of the material weight

measured by the scales 𝑤B1 and 𝑤B2 (Figure 3) to one fiber
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Figure 3: Highly simplified schematics for hybrid timber particle board production (not to scale). Units based on ISO3511.

Figure 4: Exemplary times and process parameters for hybrid timber particle board production to project lab quality (inspired by [15]).

board at the outfeed, knowledge about the distances and

velocities of the conveyor belt is required. The weights at

𝑤B1 and 𝑤B2 in turn depend on storage processes in the

buffers, material properties, and the weight measured at

wII. This results in the following dependencies:

𝑤Bi = f

(
f
(
fBi
(
𝜌Bi

(
tbuff ,i

)))
, f

(
Mblend

)
,𝑤II

(
d
𝑤II−Bi
𝑣II−Bi

))

(1)

with i = 1, 2 and

tbuff ,i = f
(
V̇buff ,i

)
(2)

denoting the estimated retention time of the material in the

buffer based on the throughput. These dependencies must

be considered for time-correct assignment between wII and

wB1 or 𝑤B2. Finally, the weight wII is a function of dryer

infeed parameters, the durations of batch process I and II,

which depend on the Moisture (MI,in) of the infeed:

𝑤II = f

(
tII,

dI,out−𝑤II
𝑣I,out−𝑤II

, tI (MI,in), TI,in, tI,in,𝑤I,in

)
. (3)
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Table 4: Two exemplary alarm sequences of hybrid timber particle board production with the same root-cause (marked red).

Alarm Sequence “A” Alarm Sequence “B”
Activation 

Time
Alarm Variable

00:00:00Moisture too high

02:00:00Weight too high

02:02:10Density too high

02:02:30Density too high

02:05:55Weight too high

02:06:45Weight too high

Activation 

Time
Alarm Variable

00:00:00Moisture too high

02:01:10Weight too high

02:04:10Density too high

02:04:37Density too high

02:06:33Weight too high

02:08:52Weight too high

The influences in (3) have to be taken into account for

time-correct assignment in the batch processes an exem-

plary alarm sequence “A” of a faulty product segment

traversing through the plant is shown in Table 4. A weight

above the tolerated range is first recognized by the scale

𝑤B2, raising an alarm (Weight𝑤B2 too high). Through time-

correct assignment as described above, previously raised

alarms are mapped to the faulty product segment, identi-

fying a too-high moisture at the dryer inlet (Moisture MI,in

too high) as a possible root-cause.

After a varying duration of the batch process I in the

dryer, the scale 𝑤II indicates an exceeding weight (Weight

𝑤II too high). Due to material transport to buffer 1 and 2

respectively, alarms indicating an elevated density in each

buffer are raised (Density 𝜌B1∕2 too high). After a varying

retention time in the buffers 1 and 2 (formula (2)), the scales

𝑤B1 and 𝑤B2 recognize a weight (Weight 𝑤B1∕2 too high)

above the threshold as well. Alarm messages in and after

the buffers highly depend on the filling level and furnish

material properties in the buffer. The alarm sequences “A”

and “B” (Table 4) show that the alarm order of buffers and

scales 𝑤B1 or 𝑤B2 may differ within sequences having the

same root-cause and are thus ambiguous.

Within the continuous press itself, process parame-

ters at the press frames depend on pressure and distances

of any preceding and succeeding frame [15], leading to a

tightly coupled processwith high interconnection of process

parameters.

Within one frame, material properties are recorded by

analog sensors transverse to the working direction. Due

to locally varying material properties (e.g., higher, inho-

mogeneous moisture caused by a short-time malfunction

of the dryer motor, interrupting the tumble dry process)

faulty particle board segments might remain undetected.

No alarm during production is raised, because the averaged

material properties (e.g., weight) of the segment stay closely

below the alarm raising threshold in the subsequent pro-

cess. The fault is, however, detected in the lab cut. In this

case large non-constant timespans between related alarms

(e.g., lab cut and alarm of the dryer motor) make AF-RCA a

challenging task.

3.5 Properties of the considered plants

Plant properties influencing alarm patterns are grouped

in four categories (Table 5, marked bold). The first cat-

egory “Structure” describes the overall structure of the

plant differentiating between modular plants, and the

plants’ hierarchical structure. The second category con-

cerns “Connections” within the plant which influence alarm

propagation. It is distinguished between tightly and loosely

coupled processes, types of material flow, physical rela-

tions, and energy flow. Thirdly, the plants’ sensor types

influence the properties of the alarm log (“Alarm Type”).

In contrast to binary sensors, a continuous measurement

of process variables enables multiple alarm states, log-

ging alarm deactivations (RTN: Return-to-Normal) and is

prone to chattering (fluctuating variables that cause multi-

ple alarm activations). The last category considers influence

on the alarm “Timing” since timespans between alarms can

change depending onmaterial-flow speed, and varying time

delays.

4 Requirements for AF-RCA for

varying production process types

Based on the previously identified influencing properties

on alarm sequences (Table 5), this section derives relevant

requirements for interdisciplinary AF-RCAmethods. A sum-

mary of the requirements is shown in Table 6.
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Table 5: Overview of influencing properties on alarm sequences for varying production process types.

Process type Structure Connection Alarm type Timing

Modularity &

hierarchy

Material

flow/coupling

Energy flow Physical

relations

L/H alarms RTN &

chattering

Timing

influences

Buffer

Continuous (TEP) Individual

sensors

Pipes/tightly coupled Yes Yes, e.g.,

temperature-

pressure,

flow-level

Yes Yes Material-flow

speed, control

relations,

buffer

Yes, reactor

tanks

Discrete

manufacturing

(MPS)

Different

modules

Conveyor/loosely

coupled

No No No No Conveyor

speed, buffer,

wait times

Yes, on

conveyor

Discrete

intralogistics

(SelfX)

Different

modules

Conveyor/loosely

coupled

No Yes, e.g., SLC

weight-speed

(via friction)

No No Conveyor

speed, wait

times

No

Hybrid (particle

board production)

Individual

sensors

Pipes and press

frames/tightly

coupled

Environmental

influence

Yes, e.g.,

density-weight;

moisture-time,

temperature-

moisture

Only in

material

prepara-

tion

Yes Conveyor

speed, buffer,

moisture,

density

material

Only in

material

preparation

Rhierarchy: Alarms from closely related plant compo-

nents are more likely to be causally related [10]. Thus, the

multi-level hierarchical composition of the structure of a

plant (see column ‘Modularity & Hierarchy’ in Table 5) can

provide valuable information for alarm propagation and

should be considered in AF-RCA. All sensors of the TEP

and the particle board production are individual units that

together comprise the full plant [50] and consequently form

a flat hierarchy. The hierarchy of the MPS500 and the intral-

ogistics plant is further divided, as both comprise process

cells incorporating fully separablemodules that again entail

sensors.

Rmodularity: The level of modularity should also be con-

sidered. The degree ofmodularity defines howencapsulated

software andhardware are and thus reconfigurability of the

plant layout [1]. Both theMPS500 and the intralogistics plant

consist of different modules, while the modules differ in

their degree of linkage. For example, knowing the number,

type, and sequence of basic modules in the intralogistics

plant can assist the justification of found alarm sequences.

The TEP and the hybrid particle board production follow

a more monolithic design. Modular design, e.g. by using

module type packages (MTPs) [51], is growing in importance

in the process industry and should be considered in the

design of AMS.

Rmaterial−flow: Alarms can propagate through the produc-

tion process, e.g., by a SCL blocking the conveyor in the

intralogistics plant. The consideration of material flow can

thus support finding causally coherent alarm propagation

paths [10]. Applications in intralogistics pose the challenge

of bidirectional material flow due to two conveying direc-

tions. For theMPS500, thematerial flow is unidirectional. In

discrete applications like manufacturing and intralogistics,

alarm sequences are often closely tied to a specific product

and its flow through the production process. In the TEP and

the hybrid particle board production,most alarms are based

on physical material properties exceeding safe operation

limits. As the material moves through the pipes to subse-

quent sensors an alarm propagation is likely. The material

flow is therefore relevant in all production processes (see

column ‘Material Flow/Coupling’ in Table 5).

Rinfo−flow: Overcompensation of control loops can cause

propagation of alarm sequences leading to a chain reaction

in which one controller tries to compensate the overcom-

pensation of the other. The information flow can therefore

provide valuable information about the propagation and

causal relations of alarms due to the underlying software

structure [1]. Both the TEPand thehybrid particle boardpro-

duction feature multiple control loops and corresponding

information can enrich AF-RCA methods. The underlying

software structure directly influences alarm propagation

since an alarm in one module can propagate to a software

triggered shutdown of the whole row (Table 3).

Renergy−flow: Especially in process industry, AF-RCA rele-

vant properties are influenced by energy flows caused by

spatial proximity or environmental interactions (see col-

umn ‘Energy-flow’ in Table 5) [10]. A change in environmen-

tal conditions may lead to varying heat transfer between

components and their environment. For instance, parts of
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a plant that are close to an open window or gate are sig-

nificantly impacted by outside temperature conditions. As

heat transfer between components with spatial proximity is

more likely than between components that are far apart, the

physical component location provides valuable information

about energy flows and consequent alarm propagation. In

the TEP an exothermic reaction exchanges energy with two

cooling water supplies and a steam heater, which makes

energy flowwithout the existence of material flow possible.

Regarding hybrid particle board production, a change in

environmental temperature may result in a too fast or too

slow cooling process of the hybrid particle board production

in turn yields to diminished stability causing alarms. Since

the different modules of the MPS500 and the intralogistics

plant operate independently, energy flow between these

modules is limited to common power supply.

Rphysical: Alarms can also be related by physical laws

[33], i.e., pressure and temperature inside a tank in the

TEP (Section 3.1), and the continuous part of the hybrid

particle boardproduction (Section 3.4). Furthermore,within

the intralogistics plant and the MPS500, physical laws are

employed to elucidate the causal relationships of alarms.

For example, the input current of the drive and the velocity

of the conveyor are directly coupled by a physical equation

(see column ‘Physical relations’ in Table 5). Known physical

relations should be considered in the AF-RCA directly, as

they can reduce the degrees of freedom in alarm analysis

and directly coupled alarms.

Ralarm-limit∕RRTN∕Rchatter: Alarms in the process industry
are usually raised based on the upper or lower limits of pro-

cess variables. Further alarm types (e.g. high-high alarms)

are applied to more extreme values, usually corresponding

to a more severe alarm [52]. Recorded RTNs can assist in

identifying the process state as well as related alarm mes-

sages [5]. Alarm logs thus provide valuable insight into the

historic production process. However, for threshold-based

alarms, fluctuating variables can cause chattering, hinder-

ing the analysis of alarm sequences due to changes in count

and order of raised alarms. AF-RCA thus need chattering

countermeasures. When analyzing the TEP and the hybrid

particle board production, all three requirements should be

considered (see columns ‘L/H Alarms’/‘RTN & Chattering’ in

Table 5). Abnormal events of the MPS500 and the intralogis-

tics plant are discrete and detected by a logic which is set in

the software and triggered bymultiple binary sensors. Chat-

tering describes the fluctuation around the threshold and

a continuous instability. Discrete processes like the MPS500

and the intralogistics plant are thus not susceptible to con-

tinuous alarm chattering. RTN timestamps are not known

for the MPS500 and the intralogistics plant.

Rtime-simple∕Rtime-complex: The MPS500, the intralogistics

plant, and the hybrid particle board production, com-

prise conveyer belts with a set speed, defining the veloc-

ity of alarm propagation along with a conveyed product.

Thus, the simple and analytically resolvable relationship(
Rtime − simple

)
between conveyor speed and the length of

the conveyor belt should be considered to exclude alarm

sequences with impossible time-deltas [53]. In continuous

processes, however, these interrelations are more complex.

Since the time of an alarm activation does not necessar-

ily correspond to the point in time of the disturbance,

not analytically describable time relations
(
Rtime−complex

)
can occur. For example, material flow is interrupted by

batch and buffer processes or wait times, which also cause

an interruption to the material-bound alarm propagation.

Effects like these are observed in the TEP, the MPS500 and

the hybrid particle board production (see columns ‘Timing

Influences’ and ‘Buffer’ in Table 5). Additionally, changing

process speeds and varying data sampling rates increase the

difficulty of time-correct assignment of alarms to process

data in the TEP and the hybrid particle board production.

While some variables in the TEP are checked once per sec-

ond, other values are only sampled every 15 min, with an

equal measurement delay, and therefore lag significantly

behind the current value of the process variable. This phe-

nomenon can also be observed in the hybrid particle board

production, considering the assessment of a lab cut. In gen-

eral, delays due to lab procedures and slow sampling rates

are a type of retention time and should be incorporated

into time-correct assignment, including the calculation and

estimation of complex timing relationships
(
Rtime−complex

)
,

which is crucial for AF-RCA methods in continuous and

hybrid plants (Section 3.4).

Rambiguous-order: Even equivalent alarm sequences with a

common root-cause may exhibit an ambiguous order (see

Section 3), which AF-RCA methods must consider during

analysis [22]. Themechanisms that cause such order switch-

ing differ between the process types. In the process indus-

try, alarm thresholds together with stochastic variations

in sensor measurements influence the activation order of

alarms [29, 54]. As a result, the root-case alarmmaybe raised

after the subsequent influenced alarm. In a manufactur-

ing plant comprising multiple disjunct subprocesses (like

MPS500), product specifications are fulfilled sequentially by

the subprocesses. Thus, the specification dictates the order

of possible alarms. However, order switchingmay still occur,

if independent or redundant subprocesses are reordered to

improve the overall process efficiency. Alarm orders of the

hybrid particle board production are ambiguous, especially
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in the material preparation section, caused by changing

material retention times in the buffers.

Rdynamic-causality: Propagating abnormal situations can

change over time and thus, cause-and-effect relationships

do as well [4]. Disturbing influences or state changes may

increase, decrease, or even invert the causal impact of cer-

tain variables on other process variables. Thus, the dynam-

ically emerging causal behavior must be tracked. Especially

for tightly coupled processes changing causality should be

considered in AF-RCA.

Rvariable-processes: While some systems are designed for

one specific production task, others allow the production

products with varying characteristics. The induced changes

in the production process can have an influence on the

alarm sequences and timings. While the TEP was designed

to perform a single production process, the MPS500, the

intralogistics plant and the hybrid particle board produc-

tion show different behavior based on manufacturing or

transport instructions. The effects on the timing and order

of the alarm sequences ought to be assessed in AF-RCA.

To fulfill the above-mentioned requirements additional

information about the plant is needed. It can originate from

the operators running the plant or from engineers who

designed it. Operator knowledge is usually compiled in time-

consuming expert interviews and is often limited, as even

an expert will likely not be aware of every causal relation

in a complex production plant [55]. Engineering knowledge,

in contrast, is usually already available in the form of engi-

neering documents, with the possibility of their automatic

analysis saving time and cost.

5 Assessment of requirements

satisfaction by selected AF-RCA

methods

In this section, the presented methods for AF-RCA incorpo-

rating engineering knowledge (Section 2.2) are evaluated

for compliance with the previously defined requirements

defined in Section 4. This selection was made to pay tribute

to the previously identified need for further knowledge.

Rmodularity∕Rhierarchy: Information about the plant struc-
ture and hierarchy are considered using engineering knowl-

edge of the production process and of the plant’s compo-

sition in [41]. That information was used to divide process

variables into sub-groups which were evaluated separately.

Rmaterial-flow∕Rinfo-flow∕Renergy-flow: To incorporate mate-

rial and information flows, connectivity information is

provided in P & IDs or Control Logic Diagrams (CLDs)

[33], supporting the assessment of causal relations [29] or

grouping alarms with the same root-cause [10]. Manca and

Fay [4] assigned knowledge about the material flow to pro-

cess variables and in [30, 38] this knowledge is included in

MFM and a first principle model, respectively. Energy flows

were considered as connection type in [30, 33].

Rphysical: Physics-based relations between different pro-

cess variables are establishedusingfirst order physical prin-

ciples [33, 38] and included in an MFM [30]. Furthermore,

Schleburg et al. [10] define characteristics and limitations of

alarm propagations in a plant based on physical effects.

Ralarm-limit: In the presented methods, the incorporation

of alarm limits was achieved by considering different alarm

types directly [33], by normalizing high and low alarms

using known thresholds [4], or by creating directed causal

trees including the alarm state [30].

RRTN∕Rchatter: The approaches in [4, 30, 37] contemplate
the active time of alarms, by keeping track of the alarm types

and/or the active alarm periods. Disruption in AF-RCA by

chattering alarms are avoided by removing them out of the

alarm log as a preprocessing step [29, 33], by using other

data-sources instead of the alarm log [4], or by comparing

causal relations on currently active alarms [30].

Rtime-simple∕Rtime-complex: Time relations were considered
by setting expecteddelays betweenalarmsdepending on the

process type in [33, 41]. Schleburg et al. [10] considered a

maximum possible time between alarms during grouping.

Besides, inconsistent timing behavior is described by an

uncertainty scorewhenmatching alarmpatterns [37]. Based

on Taken’s delay embedding theorem,which provides away

to reconstruct the underlying dynamics of a system, the

AF-RCA method by Manca and Fay [4] dynamically adjusts

for varying time delays in order to account for complex time

dependencies between pairs of process variables.

Rambiguous-order∕Rdynamic-causality: Some of the presented

methods are robust to changes in the alarm order [4, 30].

The approach in [4] determineswhether the prediction of an

alarm improves with the knowledge about past alarms and

thus does not rely on the specific alarm order. Kirchhübel

et al. [30] use MFM of different operating situations in the

plant to investigate alternative behaviors.

Kottre et al. [37] compare sequences with the same

root-cause applying a decision function which allows order

switching of alarms. Rodrigo et al. [29] allow small differ-

ences in the alarm order. However, only the methods in

[4, 30, 37] keep track of dynamical changes in causality,

using sliding windows for change tracking, dynamic gener-

ation of propagation paths, and adaptive decision functions,

respectively.

Rvariable-processes: Varying production processeswere con-

sidered by multiple predefined states in an MFM [30], and
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by use of preselected pattern descriptionsmatching the cur-

rent process [37].

Altogether, no method fulfills all formulated require-

ments (see lower part of Table 6). Most methods were

designed towards a certain process type without consider-

ation of transferability.

6 Engineering knowledge for

AF-RCA methods in varying

production process types

Tomeet the requirements (Section 4), AF-RCAmethods need

to be enriched with additional process information. There-

fore, this section provides useful engineering knowledge

and corresponding domain-specific documents (Table 7)

– without claim to completeness.

Information about the modularity (Rmodularity) of the

intralogistics plant and the MPS500, which includes the

number and types of basic buildingmodules as well as their

arrangement next to each other, is obtained from a layout

plan. The hierarchy description (Rhierarchy) should describe

the different hardwaremodules and submodules. The hard-

ware hierarchy is extracted from a CAD model. Such infor-

mation for continuous processes like the TEP, as well as the

association of sensors to units of machinery, is structured in

the P & IDs.

Table 7: Exemplary overview of useful engineering knowledge and

documents for AF-RCA.

Requirements Documents/knowledge

Rmodularity Layout plan

Rhierarchy Labeling conventions (IEC 81346-2), CAD, P & ID

Rmaterial-flow Labeling conventions (IEC 81346-2), layout plan, P & ID

Rinfo-flow PLC-SW, P & ID

Renergy-flow CAD, layout plan, P & ID

Rphysical Analytical formulae, heuristics, process data

data-driven, P & ID

Ralarm-limit/RRTN Alarm log, AMS documentation, PLC-SW, P & ID

Rchatter Alarm log, process data, sensor metadata

Rtime-simple Analytical formulae, PLC variables, CAD, device

documentation, process data

Rtime-complex Process data, expert knowledge

Rambiguous-order Material flow models, product specification, process

data, alarm thresholds

Rvariable-processes MES, PLC-SW, PLC variables, layout plans

Rdynamic-causality Process data, expert knowledge

Predecessor-successor relations of components result

directly from the material flow directions (Rmaterial-flow).

From equipment labeling according to classification

schemes with defined object classes, as standardized

in ISO/IEC 81346-2 [56], material flow relations of a

system’s components are derived (e.g., module 102 is a

neighboring module of module 103 in the intralogistics

plant). Limits of labeling conventions (like information

about the cross-row connections at the diverting modules

in the intralogistics plant) are overcome by examining a

layout plan. Furthermore, P & IDs are used for hybrid and

continuous processes to find material flow connections

and differentiate between different piping systems, e.g.,

material and cooling water systems in the TEP [57], as

well as branching paths of material flow in the buffers

(Figure 3).

To fulfill the requirement Rinfo-flow an analysis of call

sequences and implemented control loops in PLC source

code can display information about the information flow [1].

Furthermore, P & IDs often show the information flow as a

dashed line [10].

Closely located components or components interact-

ing with the environment are influenced by energy flows

(Renergy-flow). The exact location, including distances, are

extracted from a CAD file, where for example close com-

ponents might exchange thermal energy. Layout plans may

provide a rough location and allow to distinguish between

components near and far apart while thermal contact

equipment like condensors in P & IDs indicate possible

energy transfer between connected pipes. To distinguish

material transporting connections frompurely thermal con-

nections, e.g., cooling water pipes connected to the reactor,

CAD files are evaluated.

Physical relations (Rphysical) can either be described as

an analytical formula, obtained by expert knowledge in

form of known heuristics, or can be learned using process

data. In P & IDs, the type of sensor gives information about

the type of physical relation. The type can be retrieved from

standardized naming conventions [58, 59], e.g., TIR100 being

a temperature sensor.

Information on whether alarm limits (Ralarm−limit) exist

and if alarm deactivations (RRTN ) are tracked can either

be obtained directly from the alarm log, or from the AMS

documentation. Furthermore, the number of implemented

alarm limits and their thresholds can be obtained from PLC

software. Moreover, instrument abbreviations in P & IDs

may provide knowledge about the type of alarms imple-

mented for a sensor, e.g., high, or high-high.

The detection of chattering alarms (Rchatter) can be sup-

ported by identifying sensor types from alarm data, sensor

metadata or process data, to decide if a sensor is prone to
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cause chattering alarms. For instance, a continuous temper-

ature sensor is more likely to generate chattering than a

discrete light barrier on a conveyor.

Simple, analytically resolvable timing relations

(Rtime-simple) are calculated using formulae considering e.g.,

speed, distances, and software-defined timeouts. Distances

are given in an accurate CADmodel. The material transport

speed by PLC variables, process data or the drive device’s

documentation.

For complex timing behavior (Rtime-complex), a direct ana-

lytic relationship usually cannot be formulated. Timing

deviations between the alarm sequences can be high (see

Section 3.4). Thus, a combination of documents, like the

production recipe, process data, engineering information,

expert knowledge, and process data support an accurate

estimation of time constraints.

The causes of changing alarm orders (Rambiguous-order)

depend on the process type. For continuous process vari-

ables, such changes in order can be understood from pro-

cess data combined with alarm thresholds. In discrete

industries such as manufacturing or intralogistics, this vari-

ability can arise due to diverse production recipes or rout-

ings. These variations can be identified by leveraging pro-

cess data or material flowmodels, like MFM, which provide

insights into the currently produced product.

To deal with varying production processes

(Rvariable-processes) detailed information about the current

process is necessary. For manufacturing plants, the bill of

processes, which details the production steps and involved

machinery, can often be extracted from the MES. For the

intralogistics plant and hybrid particle board production,

different routing options can be extracted from the PLC

software/variables or layout plans.

Dynamic tracking of causal relations (Rdynamic-causality)

is not bound to a single document, but rather requires

constant reevaluation of existing causal relations. However,

access to timing information, e.g., process data, and infor-

mation about an alarm’s RTN are important for this task.

Expert knowledge can help to decide if dynamic relations

exists and if so, identify boundary conditions between dif-

ferent dynamics.

Overall, available documents vary in type and informa-

tion content for different plants and process types. Since

those documents contain the necessary knowledge to ful-

fill each requirement, they can be used to enrich existing

AF-RCA methods. To avoid excessive manual work, engi-

neering knowledge should be automatically parsed from

the documents, if possible. Intermediary formats may be

needed (e.g., export standardized data formats instead of

proprietary project files) and manual analysis can serve to

verify the automatic procedure.

7 Conclusion and future work

This paper presents challenges of AF-RCA to support the

continued improvement of AMS systems, highlighting that

most current methods are limited to a single process type.

AF-RCAmethods for continuous processes have been exten-

sively studied. In contrast, other process types are mostly

neglected in AF-RCA research such that their requirements

are not yet well-understood. Four comprehensive case stud-

ies are conducted to reveal needs for future research: A

continuous chemical, a discrete manufacturing, a discrete

intralogistics, and a hybrid process. Based on the analy-

sis of distinctive characteristics in the alarm dynamics of

these plants, requirements for AF-RCAmethods are derived.

These requirements can serve as a guideline for the devel-

opment of novel AF-RCA approaches for varying produc-

tion process types in future contributions. Notably, AF-RCA

methods for hybrid processes must address the require-

ments of its combined process types. Thus, the development

of hybrid AF-RCAmethods is an important challenge as such

methods are likely to be applicable in both discrete and

continuous production processes.

Furthermore, the usage of formalized engineering

knowledge in novel AF-RCA methods is suggested to

increase their performance and accuracy. However, the inte-

gration of such knowledge is still an ongoing challenge, as

knowledge extraction, formalization, and usage pose obsta-

cles to overcome. Promising advancements in the domain

of engineering knowledge formalization were made in [60,

61]. This paper suggests a selection of relevant knowledge

and corresponding documents. Furthermore, engineering

information already available inmachine readable formats,

such as AutomationML, MTPs, or via an Asset Administra-

tion Shell in the context of Digital Twins, can also be inte-

grated into the knowledge formalization process by skip-

ping the information extraction step [60]. Thereby, due to

the heterogeneity of the considered plants, engineering doc-

uments heavily differ in informational content and avail-

ability. Since real-world plants can additionally impose the

challenge of missing, outdated, and inconsistent informa-

tion, the combination of different documents is a promis-

ing approach. Consequently, methods for AF-RCA should be

designed flexibly enough to deal with varying input data

and be robust to missing information.

For future contributions towards interdisciplinary

AF-RCA using formalized engineering knowledge, novel

methods meeting the presented requirements should be
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developed. Subsequently, the effectiveness of those meth-

ods should be assessed in comparison to traditional, highly

customized solutions revealing remaining shortcomings.

Operator trust in the findings of AF-RCA methods may be

increased by presenting excerpts of the engineering knowl-

edge that underly the analysis [62].

Research ethics: Not applicable.

Author contributions: The authors have accepted responsi-

bility for the entire content of thismanuscript and approved

its submission.

Competing interests: The authors state no conflict of

interest.

Research funding: This research is part of the project

“Causal Alarm pattern analysis by the Integration of Techni-

cal Information from Engineering Documents (CausAlITI)”,

funded by the German Research Foundation (DFG) under

the project number 455823267.

Data availability: Not applicable.

References

[1] B. Vogel-Heuser, J. Fischer, S. Feldmann, S. Ulewicz, and S. Rösch,

“Modularity and architecture of PLC-based software for

automated production Systems: an analysis in industrial

companies,” J. Syst. Softw., vol. 131, pp. 35−62, 2017..

[2] B. Vogel-Heuser, D. Schütz, and J. Folmer, “Criteria-based alarm

flood pattern recognition using historical data from automated

production systems,” Mechatronics, vol. 31, pp. 89−100, 2015..

[3] Management of Alarm Systems for the Process Industries, ANSI/ISA

18.2, 2016, Research Triangle Park, NC, ANSI/ISA: International

Society of Automation, 2016. Available at: https://www.isa.org/

products/ansi-isa-18-2-2016-management-of-alarm-systems-for.

[4] G. Manca and A. Fay, “Off-line analysis of dynamic causal

dependencies in evolving industrial alarm floods,” in 2022 IEEE

ICPS, UK, 2022, pp. 1−8.

[5] M. Lucke, M. Chioua, C. Grimholt, M. Hollender, and N. F. Thornhill,

“Advances in alarm data analysis with a practical application to

online alarm flood classification,” J. Process Control, vol. 79,

pp. 56−71, 2019..

[6] J. Folmer, D. Pantförder, and B. Vogel-Heuser, “An analytical alarm

flood reduction to reduce operator’s workload,” in 14th HCI

International, vol. 6764, Springer, 2011, pp. 297−306.

[7] G. Manca, M. Dix, and A. Fay, “Clustering of similar historical alarm

subsequences in industrial control systems using alarm series and

characteristic coactivations,” IEEE Access, vol. 9,

pp. 154965−154974, 2021..

[8] K. Ahmed, I. Izadi, T. Chen, D. Joe, and T. Burton, “Similarity

analysis of industrial alarm flood data,” IEEE Trans. Automat. Sci.

Eng., vol. 10, no. 2, pp. 452−457, 2013..

[9] J. Folmer and B. Vogel-Heuser, “Computing dependent industrial

alarms for alarm flood reduction,” in IEEE SSD, Chemnitz, Germany,

2012, pp. 1−6.

[10] M. Schleburg, L. Christiansen, N. F. Thornhill, and A. Fay,

“A combined analysis of plant connectivity and alarm logs to

reduce the number of alerts in an automation system,” J. Process

Control, vol. 23, no. 6, pp. 839−851, 2013..

[11] H. S. Alinezhad, H. M. Roohi, and T. Chen, “A review of alarm root

cause analysis in process industries: common methods, recent

research status and challenges,” Chem. Eng. Res. Des., vol. 188,

pp. 846−860, 2022..

[12] Batch Control − Part 1: Models and Terminology, IEC61512-1, Geneva,

Switzerland, International Electrotechnical Commission (IEC),

1997.

[13] L. Overmeyer, K. Ventz, S. Falkenberg, and T. Krühn, “Interfaced

multidirectional small-scaled modules for intralogistics

operations,” Logist. Res., vol. 2, nos. 3−4, pp. 123−133, 2010..

[14] M. Barker and J. Rawtani, Practical Batch Process Management, 1st

ed. Oxford, Elsevier, 2005.

[15] B. Vogel-Heuser, “Automation in the wood and paper industry,” in

Springer Handbook of Automation, Berlin, Heidelberg, Springer,

2009, pp. 1015−1026.

[16] S. Charbonnier, N. Bouchair, and P. Gayet, “A weighted

dissimilarity index to isolate faults during alarm floods,” Control

Eng. Pract., vol. 45, pp. 110−122, 2015..

[17] A. Noroozifar and I. Izadi, “Root cause analysis of process faults

using alarm data,” in 27th ICEE, 2019.

[18] A. W. Al-Dabbagh, W. Hu, S. Lai, T. Chen, and S. L. Shah, “Toward

the advancement of decision support tools for industrial facilities:

addressing operation metrics, visualization plots, and alarm

floods,” IEEE Trans. Automat. Sci. Eng., vol. 15, no. 4, pp. 1883−1896,

2018..

[19] S. Guo and W. Guo, “Process monitoring and fault prediction in

multivariate time series using bag-of-words,” IEEE Trans. Automat.

Sci. Eng., vol. 19, no. 1, pp. 230−242, 2022..

[20] S.-K. S. Fan, C.-W. Cheng, and D.-M. Tsai, “Fault diagnosis of wafer

acceptance test and chip probing between front-end-of-line and

back-end-of-line processes,” IEEE Trans. Automat. Sci. Eng., vol. 19,

no. 4, pp. 3068−3082, 2022..

[21] J. Kinghorst, M. F. Pirehgalin, and B. Vogel-Heuser, “Graph-based

grouping of statistical dependent alarms in automated production

systems,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 395−400,

2018..

[22] M. Fahimipirehgalin, I. Weiss, and B. Vogel-Heuser, “Causal

inference in industrial alarm data by timely clustered alarms and

transfer entropy,” in IEEE ECC, Saint Petersburg, Russia, 2020,

pp. 2056−2061.

[23] D. D. Pezze, C. Masiero, D. Tosato, A. Beghi, and G. A. Susto,

“FORMULA: a deep learning approach for rare alarms predictions

in industrial equipment,” IEEE Trans. Automat. Sci. Eng., vol. 19,

no. 3, pp. 1491−1502, 2022..

[24] J. Folmer, F. Schuricht, and B. Vogel-Heuser, “Detection of

temporal dependencies in alarm time series of industrial plants,”

IFAC Proc., vol. 47, pp. 1802−1807, 2014..

[25] M. Fullen, P. Schüller, and O. Niggemann, “Validation of similarity

measures for industrial alarm flood analysis?” in Technologies for

Intelligent Automation, IMPROVE, Berlin, Heidelberg, Springer, 2018,

pp. 93−109.

[26] F. Yang, P. Duan, S. L. Shah, and T. Chen, Capturing Connectivity and

Causality in Complex Industrial Processes, [Online], 1st ed. Cham,

Springer International Publishing, 2014.

https://www.isa.org/products/ansi-isa-18-2-2016-management-of-alarm-systems-for
https://www.isa.org/products/ansi-isa-18-2-2016-management-of-alarm-systems-for


B. Vogel-Heuser et al.: Exploring challenges of alarm root-cause analysis — 385

[27] J. Kinghorst, H. Bloch, A. Fay, and B. Vogel-Heuser, “Integration of

additional information sources for improved alarm flood

detection,” in IEEE 21nd INES, Larnaca, 2017, pp. 19−26.

[28] Y. Laumonier, J.-M. Faure, J.-J. Lesage, and H. Sabot, “Towards

alarm flood reduction,” in 22nd IEEE ETFA, 2017, pp. 1−6.

[29] V. Rodrigo, M. Chioua, T. Hagglund, and M. Hollender, “Causal

analysis for alarm flood reduction,” IFAC-PapersOnLine, vol. 49,

no. 7, pp. 723−728, 2016..

[30] D. Kirchhübel, X. Zhang, M. Lind, and O. Ravn, “Identifying

causality from alarm observations,” in International Symposium on

Future Instrumentation and Control for Nuclear Power Plants, 2017

[Online]. Available at: https://www.researchgate.net/publication/

329389596_Identifying_Causality_from_Alarm_Observations.

[31] S. Sierla, B. M. O’Halloran, T. Karhela, N. Papakonstantinou, and

I. Y. Tumer, “Common cause failure analysis of cyber−physical

systems situated in constructed environments,” Res. Eng. Des.,

vol. 24, no. 4, pp. 375−394, 2013..

[32] N. Papakonstantinou, S. Proper, B. O’Halloran, and I. Y. Tumer,

“Simulation Based Machine Learning for Fault Detection in

Complex Systems Using the Functional Failure Identification and

Propagation Framework,” in ASME CIE, Buffalo, New York, USA,

2014.

[33] E. Arroyo, Capturing and Exploiting Plant Topology and Process

Information as a Basis to Support Engineering and Operational

Activities in Process Plants, Dissertation, Helmut-Schmidt-Universität

Hamburg, 2017.

[34] R. Landman and S.-L. Jämsä-Jounela, “Hybrid causal analysis

combining a nonparametric multiplicative regression causality

estimator with process connectivity information,” Control Eng.

Pract., vol. 93, p. 104140, 2019..

[35] Z. Guo, Y. Zhang, X. Zhao, and X. Song, “CPS-based self-adaptive

collaborative control for smart production-logistics systems,” IEEE

Trans. Cybern., vol. 51, no. 1, pp. 188−198, 2021..

[36] M. Vuković and S. Thalmann, “Causal discovery in manufacturing:

a structured literature review,” JMMP, vol. 6, no. 1, p. 10, 2022..

[37] A. Kottre, T. Schöler, and C. Legat, “Applying engineering

knowledge in alarm flood reduction to reduce machine

downtime,” IFAC-PapersOnLine, vol. 55, no. 2, pp. 54−59, 2022..

[38] P. Wunderlich and O. Niggemann, “Structure learning methods for

Bayesian networks to reduce alarm floods by identifying the root

cause,” in 22nd IEEE ETFA, Limassol, 2017, pp. 1−8.

[39] G. Bemardy and B. Scherff (now: Vogel-Heuser), “SPOC-process

modelling provides on-line quality control and predictive process

control in particle and fibreboard production,” in 24th IEEE IECON,

Aachen, Germany, 1998, pp. 1703−1707.

[40] B. Vogel-Heuser, V. Karaseva, J. Folmer, and I. Kirchen, “Operator

knowledge inclusion in data-mining approaches for product

quality assurance using cause-effect graphs,” IFAC-PapersOnLine,

vol. 50, no. 1, pp. 1358−1365, 2017..

[41] J. Dong, K. Cao, and K. Peng, “Hierarchical causal graph-based

fault root cause diagnosis and propagation path identification for

complex industrial process monitoring,” IEEE Trans. Instrum. Meas.,

vol. 72, pp. 1−11, 2023..

[42] J. Wilch, B. Vogel-Heuser, J. Mager, et al., “A distributed framework

for knowledge-driven root-cause analysis on evolving alarm data

− an industrial case study,” IEEE Robot. Autom. Lett., vol. 8, no. 6,

pp. 3732−3739, 2023..

[43] A. Vodencarevic and T. Fett, “Data analytics for manufacturing

systems,” in 20th IEEE ETFA, Luxembourg, 2015, pp. 1−4.

[44] G. Manca and A. Fay, “Identification of industrial alarm floods

using time series classification and novelty detection,” in 20th IEEE

IES, 2022, pp. 698−705.

[45] J. Thambirajah, L. Benabbas, M. Bauer, and N. F. Thornhill,

“Cause-and-effect analysis in chemical processes utilizing XML,

plant connectivity and quantitative process history,” Comput.

Chem. Eng., vol. 33, no. 2, pp. 503−512, 2009..

[46] Y. Xu, J. Wang, and Y. Yu, “Alarm event prediction from

historical alarm flood sequences based on bayesian estimators,”

IEEE Trans. Automat. Sci. Eng., vol. 17, no. 2, pp. 1070−1075, 2020..

[47] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee

eastman process model,” IFAC-PapersOnLine, vol. 48, no. 8,

pp. 309−314, 2015..

[48] N. Lawrence Ricker, “Decentralized control of the Tennessee

eastman challenge process,” J. Process Control, vol. 6, no. 4,

pp. 205−221, 1996..

[49] G. Manca, “Tennessee-Eastman-Process alarm management case

study,” IEEE DataPort, 2020, https://doi.org/10.21227/326K-QR90.

[50] ISA88, Batch Control- ISA, [Online], Available at: https://www.isa

.org/standards-and-publications/isa-standards/isa-standards-

committees/isa88 [accessed: Mar. 23, 2023].

[51] L. Bittorf, J. Oeing, T. Kock, R. Garreis, and N. Kockmann, “Design

of module type package services for modular downstream units

and process analytic Technology,” Chem. Eng. Technol., vol. 46,

pp. 1502−1510, 2023..

[52] J. Liu, K. W. Lim, W. K. Ho, K. C. Tan, R. Srinivasan, and A. Tay, “The

intelligent alarm management system,” IEEE Softw., vol. 20, no. 2,

pp. 66−71, 2003..

[53] J. W. Vásquez, L. Travé-Massuyès, A. Subias, F. Jimenez, and C.

Agudelo, “Alarm management based on diagnosis,”

IFAC-PapersOnLine, vol. 49, no. 5, pp. 126−131, 2016..

[54] M. H. Roohi, P. Ramazi, and T. Chen, “Towards accurate root-alarm

identification: the causal bayesian network approach,” in IEEE

SysTol, 2021.

[55] S. Charbonnier, N. Bouchair, and P. Gayet, “Fault template

extraction to assist operators during industrial alarm floods,” Eng.

Appl. Artif. Intell., vol. 50, pp. 32−44, 2016..

[56] DIN EN IEC 81346-2:2020-10, 2020, Berlin, Beuth Verlag GmbH.

Available at: https://dx.doi.org/10.31030/3146080.

[57] E. Arroyo, M. Hoernicke, P. Rodríguez, and A. Fay, “Automatic

derivation of qualitative plant simulation models from legacy

piping and instrumentation diagrams,” Comput. Chem. Eng., vol. 92,

pp. 112−132, 2016..

[58] Graphical Symbols for Diagramms, ISO 14617-1, 2005. [Online].

Available at: https://www.iso.org/standard/41838.html.

[59] ISA5.1, Instrumentation Symbols and Identification, [Online],

Available at: https://www.isa.org/products/ansi-isa-5-1-2022-

instrumentation-symbols-and-iden [accessed: May 23, 2023].

[60] F. Ocker, B. Vogel-Heuser, and C. J. J. Paredis, “Applying semantic

web technologies to provide feasibility feedback in early design

phases,” J. Comput. Inf. Sci. Eng., vol. 19, no. 4, p. 12, 2019..

[61] A. Kocher, C. Hildebrandt, L. M. Da Vieira Silva, and A. Fay,

“A formal capability and skill model for use in plug and produce

scenarios,” in 25th IEEE ETFA, Vienna, Austria, 2020.

[62] A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, and

A. Potschka, “XAI for operations in the process industry

− applications, theses, and research directions,” in AAAI Spring

Symposium Combining Machine Learning with Knowledge

Engineering, 2021.

https://www.researchgate.net/publication/329389596_Identifying_Causality_from_Alarm_Observations
https://www.researchgate.net/publication/329389596_Identifying_Causality_from_Alarm_Observations
https://doi.org/10.21227/326K-QR90
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa88
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa88
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa88
https://dx.doi.org/10.31030/3146080
https://www.iso.org/standard/41838.html
https://www.isa.org/products/ansi-isa-5-1-2022-instrumentation-symbols-and-iden
https://www.isa.org/products/ansi-isa-5-1-2022-instrumentation-symbols-and-iden


386 — B. Vogel-Heuser et al.: Exploring challenges of alarm root-cause analysis

Bionotes

Birgit Vogel-Heuser

Institute of Automation and Information

Systems, Department of Mechanical

Engineering, TUM School of Engineering and

Design, Technical University of Munich,

Boltzmannstr. 15, 85748 Garching, Germany;

Core Member of MDSI and Lead of Sector

Work of MIRMI, Technical University of

Munich, Munich, Germany; and Munich

Institute of Integrated Materials, Energy and

Process Engineering, Technical University of

Munich, Garching, Germany

vogel-heuser@tum.de

Prof. Dr.-Ing. Birgit Vogel-Heuser received a Diploma degree in Electrical

Engineering and a Ph. D. degree in Mechanical Engineering from RWTH

Aachen. Since 2009, she is a full professor and director of the Institute of

Automation and Information Systems, Department of Mechanical

Engineering, TUM School of Engineering and Design, Technical University

of Munich. Her current research focuses on systems and software

engineering. She is member of the acatech (German National Academy

of Science and Engineering), fellow of IEEE, editor of IEEE T-ASE, and

member of the science board of MIRMI at TUM.

Alexander Fay

Institute of Automation Technology, Helmut

Schmidt University, Holstenhofweg 85, 22043

Hamburg, Germany

alexander.fay@hsu-hh.de

Prof. Dr.-Ing. Alexander Fay (born 1970) is Director of the Institute of

Automation Technology at Helmut Schmidt University Hamburg. His

main research interests are models, methods, and tools for the efficient

engineering of distributed automation systems. Prof. Fay also heads the

division ‘‘Methods of automation’’ and the Technical Committee

‘‘Engineering and operation of automated systems” in the German

association for Measurement and Automation (VDI-/VDE-GMA) and is

member of acatech − National Academy of Science and Engineering and

of the Scientific Advisory Board of the German Platform ‘‘Industrie 4.0’’.

Bernhard Rupprecht

Institute of Automation and Information

Systems, Department of Mechanical

Engineering, TUM School of Engineering and

Design, Technical University of Munich,

Boltzmannstr. 15, 85748 Garching, Germany

gianluca.manca@de.abb.com

Bernhard Rupprecht received an M.Sc. in Automotive Engineering from

Technical University of Munich (TUM), Munich, Germany in 2021. He is

currently pursuing a Ph.D. at the Institute of Automation and Information

Systems, Department of Mechanical Engineering, TUM School of

Engineering and Design, Technical University of Munich. His main

research interests are data-driven fault detection and algorithm

performance benchmarking with focus on low power embedded and

edge devices.

Franz Kunze

Institute of Automation Technology, Helmut

Schmidt University, Holstenhofweg 85, 22043

Hamburg, Germany

franz.kunze@hsu-hh.de

Franz Kunze was born 1992 in Frankfurt a. M., Germany. He received his

M.Sc. degree in physics from the Carl von Ossietzky University of

Oldenburg. Currently he is a research fellow and is pursuing a Ph.D. in

engineering at the Helmut-Schmidt-University, Hamburg, Germany.His

main research interest is the use of engineering knowledge for causal

analysis and root-cause detection for industrial alarm floods.

Tom Westermann

Institute of Automation Technology, Helmut

Schmidt University, Holstenhofweg 85, 22043

Hamburg, Germany

tom.westermann@hsu-hh.de

Tom Westermann M.Sc. (born 1992) is a Research Associate at the

Institute of Automation Technology at Helmut Schmidt University

Hamburg. His research interests include the semantic description of

engineering information as well as methods for the analysis of process

data, especially with regard to time.

mailto:vogel-heuser@tum.de
mailto:alexander.fay@hsu-hh.de
mailto:gianluca.manca@de.abb.com
mailto:franz.kunze@hsu-hh.de
mailto:tom.westermann@hsu-hh.de

	1 Introduction
	2 Related work in alarm flood root-cause analysis for varying production process types
	2.1 Data-driven AF-RCA methods
	2.2 AF-RCA methods incorporating engineering knowledge

	3 Plants for varying production process types
	3.1 Tennessee-Eastman Process (TEP)
	3.2 Modular manufacturing plant MPS500
	3.3 Intralogistics small load carrier transport plant
	3.4 Hybrid timber particle board production
	3.5 Properties of the considered plants

	4 Requirements for AF-RCA for varying production process types
	5 Assessment of requirements satisfaction by selected AF-RCA methods
	6 Engineering knowledge for AF-RCA methods in varying production process types
	7 Conclusion and future work
	Bionotes


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


