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Abstract

PET is an established medical diagnostic imaging method. Continuous improvements are
aimed at refining image reconstruction, reducing the amount of radioactive tracer and combin-
ing with targeted therapy. TOF-PET provides the localization of the tracer through improved
time resolution, nuclear physics may contribute to this goal via selection of radioactive nuclei
emitting additional γ-rays. This additional radiation, when properly detected, localizes the de-
cay of the tracer at the line of response determined by two detected 511 keV quanta. Selected
candidates are presented. Some are particularly interesting, as they are strong candidates for
theranostic applications.

Nowadays, it is obvious that society largely benefits from
the large investments done in basic Nuclear Physics research.

Recent achievements in particle- and radio-therapy within
the new paradigm of theranostic approach are some of

the most striking examples of the benefits
from Nuclear Physics. [1]

1 Introduction

Positron Emission Tomography (PET) is nowadays a standard medical diagnostic imaging tech-
nique. The average range of a positron from the β+ decay of a radionuclide (tracer) is of the order
of mm in the tissue. The spatial range of positrons following β+ decay in water depends on the
emission spectrum and is well described by the sum of two exponents [2]. The compounds with
radioactive nuclei 18F are predominantly used (above 90% of performed scans), but other tracers
(containing 11C or 68Ga) are found to have superior imaging properties [3] in certain cases. For
18F the FWHM of the distribution is 0.102 mm [2]; the range is below 2.4 mm [4]. The annihilation
of the positron with the electron creates usually two gamma quanta of 511 keV energy, emitted
back-to-back, thus conserving null momentum of annihilating system. The mean free path of 511
keV photons in water is about 10.4 cm (computed from [5]). Detection of both 511 keV photons
in coincidence in scintillation crystals enables the possibility to obtain the Line of Response (LoR)
between the geometrical positions of fired detectors. The intersection of multiple LoRs provides,
in the first approximation, the location of the tracer.

This standard procedure augmented by additional corrections due to attenuation and scattering
of γ quanta) does not account for the position of the annihilation along LoR. This information is,
in principle, stored in the time difference between 511 keV quanta interaction in detectors. Time-
resolving power of detectors and associated electronic circuits are the key issue in this approach,
as 3 cm difference along LoR corresponds to 200 ps. Important progress has been observed in this
technology, as the time resolution of commercial scanners improved from 1000 ps two decades ago,
to 550 ps a decade ago and 220 ps in currently available devices (four-fold increase of the axial
dimension should also be noted). The Time-of-Flight (TOF) PET scanner, instead of full LoR,
employs the concept of segment of response, determined by the time bin. The improvement of
time-resolving power leads to the reduction of the background and allows the possibility to reduce
the dose of tracer, important in several cases [6]. Coincidence resolving time in 10 ps range would
lead to enormous improvement, allowing for on-line image reconstruction. The roadmap to achieve
this goal has been recently published [7].
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Figure 1: β+ branching ratio versus halflife of nuclei - candidates for β+γ PET.

The decay vertex (lying close to the LoR) might be determined from the radioactive (γ) decay
of the daughter nucleus, provided the lifetime is short enough to stay within a coincidence window.
The “third” photon should be detected via Compton scattering following the photoelectric absorp-
tion of the scattered γ quantum. This method provides localization of the decay vertex through
the intersection of the reconstructed Compton cone with LoR on an event-by-event basis. The
“third” photon should be around 1 MeV energy to increase the probability for Compton effect in
detector material. Improved localisation of the vertex in this β+γ technique leads to the reduction
of the global radioactive dose administered for the diagnosis, although some dose would come from
this “third” (and additional) gamma.

2 Candidates for radionuclides in β+γ PET

The β+γ PET technique has been under development for more than two decades [8]. The approach
seems to be more effective compared to the 3γ decay of ortho-positronium, as this process is rare
(typically below 1%) and requires more sophisticated treatment of the data. Suitable candidates
for radionuclides to be used in β+γ PET should fulfil several conditions:

1. Suitable lifetime (long enough for diagnostic procedure and short enough to reduce unwanted
irradiation of the body after the medical procedure),

2. High β+ branching ratio (electron capture as the natural concurring process),

3. Energy of the γ radiation favouring Compton scattering (i.e. ' 1MeV),

4. Multiplicity of other γ-rays should in principle be low.

The candidates for those radionuclides have been recently reviewed by M. Sitarz et al. [8].
The basic properties of those nuclei are visualized in Figures 1 and 3. Their lifetime is in the
order of hours. The β+ branching ratio of considered nuclei (see Fig.1) makes them prospective
candidates. Several of them have branching ratios well above 80%, so almost all radioactive decays
could contribute to the β+ emission, which is essential to the PET technique. The energy of the
γ radiation emitted after the decay from the excited state of the daughter nuclei is an important
factor for the envisaged technique. The lifetime of the excited state should allow for coincident
measurement, so lifetimes in the range of ps are needed. In fact, this is the case of all considered
nuclei. The γ-ray should be Compton-scattered, so ' 1MeV γ-rays are best suited. The energy
spectra (Fig.2) for 22Na and 137Cs calibration sources registered by LYSO detector (typical for PET
devices) shows how pronounced is the rise of Compton-scattering events when the γ-ray energy
increases from 511 keV (annihilation of β+ after the decay of 22Na) to 662 keV (after 137Cs decay).
The energy of the most abundant γ-ray emitted after the β+ decay of considered candidates is in
the region of ∼1 MeV (see Fig.3).

The branching ratio of β+ decay is the key factor for the standard PET operation method
(almost 100% for18F). For the β+γ PET, the product of β+ branching ratio and the fraction of
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Figure 2: Energy spectra of 5×5×20 mm3 LYSO crystal for 22Na and 137Cs radioactive sources.
The spectra are normalized at 511 keV and 662 keV peaks (from [9]).

Figure 3: Energy of most probable γ-ray versus halflife of nuclei - candidates for β+γ PET.

so-called ”third” γ emission in the decay of the daughter nucleus, determines the efficiency of the
process with respect to the dose of the tracer. Evidently (see Fig.4), 44Sc, 52mMn and 60Cu are
three most suitable candidates.

The three conditions mentioned above do not allow selection of the best nuclei for this technol-
ogy. Apart from making suitable radio-pharmaceutic (chemistry), key issues are other properties
of the decay and the method of producing the resulting sample. A very important aspect is the
purity of the sample - the amount of co-produced (usually unwanted) radionuclides. For example,
production of 34mCl requires α beam of ∼65 MeV kinetic energy, beyond the range available in
typical medical accelerators. Also, the decay of 34mCl populates many other excited states decay-
ing via energetic γ-rays, which complicates the analysis and generates unwanted radiation effects.
So, in spite of the high energy of emitted ”third” γ-ray and branching ratio above 50%, the 34mCl
isotope is not one of the most appropriate candidates.

The production of medically interesting radioisotopes might provide unwanted activities of
the same chemical element, especially in the case of non-monoisotopic targets, thus impossible to
separate chemically. Short lifetime of unwanted activity would make the sample clear after a time,
but this is rarely the case. Selective reactions, employing targets enriched with the appropriate
isotope, are commonly used and efficient methods that have been developed for re-use of the
target material. The production cross section for different reaction channels have been measured
intensively in the past decades and numerical tools have been developed to evaluate the expected
yields [10]. However, not all production routes have been fully experimentally verified or optimized
and experimental activity is welcome. The numerous commercially available accelerators (now
around 1500 worldwide [11]) provide the natural place to supply radioisotopes for this prospective

3



Figure 4: Branching ratio of the most probable γ-ray multiplied by β+ branching ratio versus
halflife of nuclei - candidates for β+γ PET.

PET technique. Their maximum energy is usually limited to ≤20 MeV protons, so those among the
perspective nuclei for β+γ PET, which can be produced with this beam (or appropriately scaled
in energy deuterons and α-particles) are naturally preferred. Among them are 44Sc, 48V (for slow
metabolic processes), 55Co, 60Cu, 66Ga, 94mTc and 124I (unfortunately low β+ branching ratio).
Some others may be obtained via nuclear generators, like 82Rb supplied from 82Sr (T1/2=25.4 d).
Several of those radionuclides were already used in diagnosis of certain diseases.

3 Nuclei for theranostic applications

The theranostic approach aims to combine diagnosis and therapy to provide effective treatment at
the very early stage of cancer [13]. The role of Nuclear Physics is to develop specific radioisotopes,
providing diagnostics functionality together with therapeutic effect, so this activity has gone beyond
standard 18F PET tracers. These requests can be met with single radionuclide for imaging and
therapy (like 117mSn) or by pairs of isotopes having the same chemical properties (like 44Sc/47Sc,
64Cu/67Cu and others) or similar (like 99mTc/188Re [14]). Evidently, 44Sc seems to be a natural
link between β+γ PET and theranostic approach. The 44Sc/47Sc pair is the subject of wide-front
research. The production of these radionuclides is studied intensively by very different methods
(reports from only 5 last years):

1. Photonuclear reactions [15, 16],

2. Neutron irradiation of natural calcium in reactor [17],

3. Low-energy proton and deuteron beams [18, 19, 20],

4. 3He reactions at low energies [21] and

5. Spallation reaction induced by ∼ 1GeV protons [22].

There is also important progress in chemistry and medical applications of this pair of nuclei.
The production, chemistry and in-vivo studies of Sc-isotopes were reviewed few years ago [23,
24]. Currently, around 20 papers are published yearly on the subject of production and medical
applications of this theranostic pair of scandium nuclei, so any review soon might become outdated.

The progress in the development of other important theranostic pairs is recently significant, in
particular concerning radioactive Cu isotopes. The photonuclear production of 67Cu was recently
found to be an efficient route [25]. In this case the final product is free of co-produced isotopes,
populated otherwise in proton, deuteron and alpha-induced reactions on zinc targets. The use of
highly-enriched targets limits the production of long-lived 64Cu, what was recently demonstrated
[26] in the measurement of deuteron-induced reactions on 70Zn. This progress is particularly
important, as the therapeutic application of 67Cu has recently been demonstrated [27] and found
efficacious in certain prostate cancers.
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4 Conclusions

Not only nuclear aspects would select the best radioisotope for β+γ PET, as many other properties
(e.g. chemistry) and technical restrictions would play a role. Special medical requests and imaging
properties are also of primary concern. The pure nuclear aspects favour 44Sc and 60Cu, as their
production is also possible in commercial PET-supplying cyclotrons. However, many others have
already been used in practical diagnosis procedures and deserve further studies. The progress
in theranostic application of 44Sc/47Sc pair is intensively studied and different production routes
were recently evaluated. Other dedicated combinations are also of interest, particularly as their
therapeutic efficiency was demonstrated. The demanding detection conditions of β+γ process can
be effectively realized in a total-body PET [28], where the large geometrical acceptance of the
device would be the key factor for making fast measurements with low-dose.
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