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1 Introduction
We consider the stationary Oseen problem in a bounded connected domain Ω ⊂ ℝd (d = 2, 3) with Lipschitz
continuous boundary àΩ. Throughout the paper, we use the following notation: n denotes the outward unit
normal vector to the boundary àΩ; the space of scalar valued square summable functions with zero mean
is denoted by L̃2(Ω); S0(Ω) denotes the closure of smooth solenoidal functions with compact supports in Ω
with respect to the norm of V(Ω) := H1(Ω, ℝd); and V0(Ω) denotes the subspace of V(Ω) that consists of the
functions with zero traces on àΩ.

Also, we use spaces of tensor valued functions Σ(Ω) := L2(Ω,Md×d), whereMd×d is the space of d × d-
matrices (tensors). I denotes the unit element ofMd×d. The L2-norms of scalar and vector valued functions
are denoted by ‖⋅‖ and the corresponding inner products are denoted by ( , ). The scalar product of tensors
is denoted by two dots (:), and the norm of Σ is denoted by ‖⋅‖Σ. By div and Div, we denote the divergence of
vector and tensor �elds, respectively. Finally, we introduce the Hilbert space

Σ(Div, Ω) := {w ∈ Σ(Ω) | Div w ∈ L2(Ω, ℝd)},

which can be viewed as a tensor analogous to the vector spaceH(Ω, div) containing L2 vector functions with
square summable divergence.

The classical formulation of the stationary Oseen problem is to �nd the velocity �eld u ∈ S0(Ω) + uD and
the pressure function p ∈ L̃2(Ω), which satisfy the relations

−Div(í∇u) + Div(a ⊗ u) = f − ∇p inΩ, (1.1)
div u = 0 inΩ, (1.2)

u = uD on àΩ, (1.3)

where a, uD, and f are given vector valued functions. It is assumed that

∫
àΩ

uD ⋅ n dx = 0, (1.4)

that the viscosity í is a positive bounded function, i.e., 0 < í ≤ í(x) ≤ ̄í for all x ∈ Ω, and that a ∈ S0(Ω) is a
bounded vector function.
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The generalized solution of (1.1)–(1.4) is a function u ∈ S0(Ω) + uD such that

∫
Ω

(í∇u : ∇w − (a ⊗ u) : ∇w) dx = ∫
Ω

f ⋅ w dx for all w ∈ S0(Ω). (1.5)

Existence and uniqueness of generalized solutions to the Stokes and Oseen problems are well established
(see, e.g., [9]). In essence, the corresponding results are based on the following lemma.

Lemma 1.1. For any function g ∈ L̃2(Ω), there exists a function v ∈ V0(Ω) satisfying the condition div v = g such
that

‖∇v‖Σ ≤ êΩ‖g‖.

Here êΩ is a positive constant depending only on the domainΩ.

We note that the constant inverse to êΩ arises in the so-called Ladyzhenskaya–Babuška–Brezzi (LBB) con-
dition (see, e.g., [2, 4]), which can be viewed as a di�erent form of Lemma 1.1. Also, these results guarantee
boundedness of the energy norm of the exact solution, namely, |||u||| := ‖í1/2∇u‖Σ ≤ c, where the constant c
depends on the problem data and on the constant CFΩ in the Friedrichs type inequality

‖w‖ ≤ CFΩ‖∇w‖Σ for all w ∈ V0.

The constants CFΩ and êΩ play an important role in our analysis because they control distances between
a vector valued function and the set of solenoidal �elds evaluated in di�erent norms (see [12, 15–17]). In
particular, Lemma 1.1 implies an important corollary: for any v ∈ V0(Ω) there exists v0 ∈ S0(Ω) such that

‖∇(v − v0)‖Σ ≤ êΩ‖div v‖. (1.6)

A similar estimate holds for v ∈ V0(Ω) + uD with some v0 ∈ S0(Ω) + uD.
If functions vanish on the whole boundary, then a guaranteed upper bound of CFΩ is easy to �nd. For

some domains the constant CLBB = ê−1Ω or computable bounds for it can be found if the �eld satis�es some
additional requirements (see, e.g., [5, 8, 13, 18, 20]).

In [16, 17], guaranteed and fully computable bounds of the distance between the exact solution of the
stationary Stokes problemandany function inV0(Ω)+uD were derivedby transformations of integral relations
similar to (1.5). If the function compared with u is an approximation, then these estimates yield robust and
e�cient a posteriori error bounds (for the Stokes problem, they were numerically tested in [6, 7], see also
[11]). In [20], analogous estimates were derived for the generalized Stokes problem. In Section 2 of the present
paper, we use the same ideas in order to derive estimates of the distance to the exact solution of (1.1)–(1.4).
We obtain estimates for the velocity, pressure, and stress �elds. In Section 3, similar estimates are derived
for the combined error norm, which encompasses errors of approximations related to all �elds. In Section 4,
the estimates are applied to approximations generated by the Uzawa algorithm. Section 5 contains results of
numerical tests, which con�rm practical applicability and e�ciency of the estimates.

2 Estimates of Deviations from the Exact Velocity Field
Theorem 2.1. Let v ∈ V0(Ω) + uD. Then for all q ∈ L̃2(Ω) and ó ∈ Σ(Ω) we have

|||u − v||| ≤ í−1/2‖r(ó)‖−1,Ω + ‖í−1/2d(v, ó, q)‖Σ + (2 ̄í1/2 + CΩ)êΩ‖div v‖ := M⊕(v, ó, q), (2.1)

where
r(ó) := f + Div ó, CΩ = CFΩ‖í

−1/2a‖∞,Ω, d(v, ó, q) := ó − í∇v + a ⊗ v + Iq,

and

‖r(ó)‖−1,Ω := sup
w∈V0(Ω)

∫
Ω
(f ⋅ w − ó : ∇w) dx

‖∇w‖Σ
.
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Proof. For any v0 ∈ S0(Ω) + uD, we have

|||u − v||| ≤ |||u − v0||| + |||v0 − v|||. (2.2)

First, we estimate from above the �rst term of the right-hand side of (2.2). Let w ∈ S0(Ω). By subtracting the
integral

∫
Ω

(í∇v0 : ∇w − (a ⊗ v0) : ∇w) dx

from both sides of (1.5), we obtain

∫
Ω

(í∇(u − v0) : ∇w − (a ⊗ (u − v0)) : ∇w) dx = ∫
Ω

(f ⋅ w − í∇v0 : ∇w + (a ⊗ v0) : ∇w) dx. (2.3)

For any ó ∈ Σ(Ω) and q ∈ L̃2(Ω) we rewrite the right-hand side and estimate it as follows:

∫
Ω

(f ⋅ w − ó : ∇w + (ó − í∇v0 + a ⊗ v0 + Iq) : ∇w) dx

= ∫
Ω

(r(ó) ⋅ w + d(v0, ó, q) : ∇w) dx

≤ ‖r(ó)‖−1,Ω‖∇w‖Σ + ‖í−1/2d(v0, ó, q)‖Σ‖í
1/2∇w‖Σ

≤ (í−1/2‖r(ó)‖−1,Ω + ‖í−1/2d(v0, ó, q)‖Σ) ‖í
1/2∇w‖Σ. (2.4)

Set w = u − v0. Since
∫
Ω

(a ⊗ (u − v0)) : ∇(u − v0) dx = 0,

the estimates (2.4) and (2.3) yield

|||u − v0||| ≤ í−1/2‖r(ó)‖−1,Ω + ‖í−1/2d(v0, ó, q)‖Σ. (2.5)

Now, we estimate the second term in the right-hand side of (2.5). We have

‖í−1/2d(v0, ó, q)‖Σ ≤ ‖í1/2∇(v0 − v)‖Σ + ‖í−1/2d(v, ó, q)‖Σ + ‖í−1/2a ⊗ (v0 − v)‖Σ.

Note that
‖í−1/2a ⊗ (v0 − v)‖Σ ≤ ‖í−1/2a‖∞,Ω‖v0 − v‖,

where
‖í−1/2a‖∞,Ω := max

i=1,...,d
sup
x∈Ω

{í−1/2ai}.

We �nd that
‖í−1/2d(v0, ó, q)‖Σ ≤ ( ̄í1/2 + CΩ)‖∇(v0 − v)‖Σ + ‖í−1/2d(v, ó, q)‖Σ.

Hence,
|||u − v||| ≤ (2 ̄í1/2 + CΩ)‖∇(v0 − v)‖Σ + ‖í−1/2d(v, ó, q)‖Σ + í−1/2‖r(ó)‖−1,Ω.

In view of (1.6), we �nally obtain (2.1).

Remark 2.2. If ó ∈ Σ(Div, Ω), then it is easy to show that

‖r(ó)‖−1,Ω ≤ CFΩ‖r(ó)‖.

In this case, (2.1) is reduced to the majorant derived for the Oseen problem in [17].
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3 Estimate of Deviations from the Exact Pressure and Stress Fields
Let q ∈ L̃2(Ω) be a function considered as an approximation of the exact pressure p. Then (p − q) ∈ L̃2(Ω) and
due to Lemma 1.1 there exists a function w̄ ∈ V0(Ω) such that

div(w̄) = p − q (3.1)

and
‖∇w̄‖Σ ≤ êΩ‖p − q‖. (3.2)

As in the case of the Stokes problem (see [16, 17]), this fact allows us to deduce computable majorants of
‖p − q‖.

Theorem 3.1. Let q ∈ L̃2(Ω). Then for all ó ∈ Σ(Ω)

1
êΩ

‖p − q‖ ≤ Ca,í|||u − v||| + ‖d(v, ó, q)‖Σ + ‖r(ó)‖−1,Ω, (3.3)

where Ca,í := ( ̄í1/2 + í−1/2CFΩ‖a‖∞,Ω) and |||u − v||| is estimated by (2.1).

Proof. From (3.1) we have

‖p − q‖2 = ∫
Ω

div w̄(p − q) dx = ∫
Ω

(div w̄p − qI : ∇w̄) dx. (3.4)

Multiplying (1.1) by w̄ and integrating overΩ, we obtain

∫
Ω

div w̄p dx = ∫
Ω

(í∇u : ∇w̄ − (a ⊗ u) : ∇w̄ − f ⋅ w̄) dx. (3.5)

From (3.4) and (3.5), we obtain

‖p − q‖2 ≤ ∫
Ω

((í∇v − ó − a ⊗ v − Iq) : ∇w̄) dx + ‖r(ó)‖−1,Ω‖∇w̄‖ + ∫
Ω

(í∇(u − v) : ∇w̄ − a ⊗ (u − v) : ∇w̄) dx.

Here

∫
Ω

(í∇(u − v) : ∇w̄ − a ⊗ (u − v) : ∇w̄) dx ≤ ̄í1/2|||u − v|||‖∇w̄‖Σ + ‖a‖∞,Ω‖u − v‖‖∇w̄‖Σ

≤ êΩ( ̄í1/2 + í−1/2CFΩ‖a‖∞,Ω)|||u − v|||‖p − q‖

and in view of (3.2) we have

∫
Ω

d(v, ó, q) : ∇w̄ dx ≤ ‖d(v, ó, q)‖Σ‖∇w̄‖Σ ≤ êΩ‖d(v, ó, q)‖Σ‖p − q‖.

Thus, we arrive at the estimate (3.3).

The exact solution generates the tensor

ò := í∇u − a ⊗ u − pI.

Assume that v ∈ V0(Ω) + uD, ç ∈ Σ(Ω), and q ∈ L̃2(Ω) approximate u, ò, and p, respectively. Then,

‖ç − ò‖Σ = ‖ç − í∇u + a ⊗ u + pI‖Σ ≤ ‖ç − í∇v + a ⊗ v + qI‖Σ + ‖í∇(u − v)‖Σ + ‖a‖∞,Ω‖u − v‖ + √d‖p − q‖

≤ ‖d(v, ç, q)‖Σ + Ca,í|||u − v||| + √d‖p − q‖.

By (3.3) we obtain

‖ç − ò‖Σ ≤ √dêΩ‖d(v, ó, q)‖Σ + ‖d(v, ç, q)‖Σ + √dêΩ‖r(ó)‖−1,Ω + (1 + √dêΩ)Ca,íM⊕(v, ó, q), (3.6)

where Ca,í is de�ned in Theorem 3.1.
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Remark 3.2. If we choose ç = í∇v − a ⊗ v − qI, then ‖d(v, ç, q)‖Σ = 0.

Also, we can measure the error in terms of the norm of the product space

W:= (V0(Ω) + uD) × L̃2(Ω) × Σ(Ω),

which is
‖(v, q, ç)‖W := |||v||| + ‖q‖ + ‖ç‖Σ.

Combining the estimates (2.1), (3.3) and (3.6) we �nd that

‖(u − v, p − q, ç − ò)‖W ≤ c⊕M⊕(v, ó, q) + ‖d(v, ç, q)‖Σ,

where
c⊕ := 1 + (êΩ + √dêΩ)(Ca,í + max{1, CFΩ}).

4 Error Estimates for Approximate Solutions Generated by
the Uzawa Algorithm

Uzawa type algorithms are commonly used for solving various saddle point problems (see, e.g., the survey
article [3]). They are widely used in numerical analysis of incompressible media. In our case, the algorithm
can be used in the following form:
(1) Set k = 0 and p0 ∈ L̃2(Ω).
(2) Find uk ∈ V0(Ω) + uD such that

∫
Ω

(í∇uk : ∇w − (a ⊗ uk) : ∇w) dx = ∫
Ω

(f ⋅ w + pk div w) dx for all w ∈ V0. (4.1)

(3) Find
pk+1 = pk − ñ div uk, where ñ ∈ (0, ̄ñ). (4.2)

(4) Set k = k + 1 and go to step (2).
It is well known (see, e.g., [21]) that approximations generated by the Uzawa algorithm converge (as

k → ∞) in the sense that

uk → u in V(Ω,ℝd), pk → p weakly in L2(Ω)

provided that
0 < ñ < ̄ñ := 2í.

Our �rst goal is to deduce computable and realistic estimates of uk−u and pk−p in terms of the respective
norms.

For this purpose, we use results of previous sections. We set

v = uk, q = pk, ó = í∇uk − a ⊗ uk − Ipk.

In this case,
d(v, ó, q) := ó − í∇uk + a ⊗ uk + Ipk = 0

and in view of (4.1),

‖r(ó)‖−1,Ω := sup
w∈V0(Ω)

∫
Ω
(f ⋅ w − (í∇uk − a ⊗ uk − Ipk) : ∇w) dx

‖∇w‖Σ
= 0.

We use the estimate (2.1) and arrive at the following result.
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Theorem 4.1. Let uk be the exact solution computed in the k-th step of the Uzawa algorithm. Then

|||u − uk||| ≤ (2 ̄í1/2 + CΩ)êΩ‖div u
k‖ := MUz

⊕ (uk) (4.3)

and
‖p − pk‖ ≤ êΩCa,íM

Uz
⊕ (uk). (4.4)

Remark 4.2. Since
|||uk − u|||2 ≥

1
d
í ‖div uk‖2 =: MUz

⊖ (uk),

we �nd that
MUz
⊖ (uk) ≤ |||u − uk||| ≤ MUz

⊕ (uk). (4.5)

Thismeans that the e�ciency index of themajorant is boundedby an explicitly computable constant, namely

Ie�(MUz
⊕ (uk)) :=

MUz
⊕ (uk)

|||u − uk|||
≤ Ie�⊕ , (4.6)

where

Ie�⊕ :=
MUz
⊕ (uk)

MUz
⊖ (uk)

≤
2 ̄í1/2 + CFΩ‖í

−1/2a‖∞,Ω

í1/2
√dêΩ.

We note that êΩ ≥ 1
√d

, so that Ie�⊕ ≥ 1 (which of cause also follows directly from (4.5) and (4.6)).
In particular, for the Stokes problem with constant í the ratio is smaller than 2√dêΩ. The estimate (4.5)

shows that the quantity ‖div uk‖ reliably controls convergence of uk to u in V.

The estimates (4.3) and (4.4) are of theoretical relevance. In practice, the problem (4.1) is solved numerically
on a certain mesh Tℎ, whose cells have the characteristic size ℎ. For this case, we need an advanced form of
the error majorant, which is derived below.

Let V0ℎ(Ω, ℝd) and L̃2
ℎ(Ω) be �nite dimensional subspaces of V0(Ω) and L̃2(Ω), respectively. We also as-

sume that the spaces are constructed so that the corresponding numerical problem is stable and satis�es the
discrete LBB-condition.

Let ukℎ ∈ V0ℎ + uD be an approximation of uk calculated in the k-th step (4.1) of the Uzawa algorithm
and pk

ℎ, p
k+1
ℎ ∈ L̃2

ℎ(Ω) be approximations of the pressure related to step (4.2). Our goal is to derive a fully
computable error majorant for the pair (ukℎ, p

k
ℎ) generated in step k.

Theorem 4.3. For any ç ∈ Σ(Ω, Div),

|||u − ukℎ||| ≤ E
ℎ(ukℎ, p

k
ℎ, ç) + MUz

⊕ (ukℎ) := MUz
⊕ (ukℎ, p

k
ℎ, ç),

where the �rst term
E(ukℎ, p

k
ℎ, ç) = í−1/2(CFΩ‖r(ç)‖Ω + ‖d(ukℎ, ç, p

k
ℎ)‖Σ)

is related to the approximation error and the second term presents the error associated with the Uzawamethod.
Analogously,

1
êΩ

‖p − pk
ℎ‖ ≤ (1 + Ca,í)E(u

k
ℎ, p

k
ℎ, ç) + Ca,íM

Uz
⊕ (ukℎ).

Proof. We set
v = ukℎ, q = pk

ℎ, ó = í∇ukℎ − a ⊗ ukℎ − Ip
k
ℎ

and use the estimate (2.1). In this case, d(ukℎ, ó, p
k
ℎ) = 0 and

‖r(ó)‖−1,Ω := sup
w∈V0(Ω)

∫
Ω
(f ⋅ w − (í∇ukℎ − a ⊗ ukℎ − Ip

k
ℎ) : ∇w) dx

‖∇w‖Σ
.

Let ç ∈ Σ(Div, Ω). Then,

‖r(ç)‖−1,Ω = sup
w∈V0(Ω)

∫
Ω
((f + Div ç) ⋅ w − (d(ukℎ, ç, p

k
ℎ)) : ∇w) dx

‖∇w‖Σ
≤ CFΩ‖f + Div ç‖Ω + ‖d(ukℎ, ç, p

k
ℎ)‖Σ.
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Hence, we arrive at estimate (4.3). Now, we use (3.3) and �nd that

1
êΩ

‖p − pℎ‖ ≤ Ca,í|||u − ukℎ||| + CFΩ‖f + Div ç‖Ω + ‖d(ukℎ, ç, p
k
ℎ)‖Σ.

Remark 4.4. Analogously to (4.5), we �nd that

MUz
⊖ (ukℎ) ≤ |||u − ukℎ||| ≤ MUz

⊕ (ukℎ) + E(ukℎ, p
k
ℎ, ç), (4.7)

whichmeans that the guaranteed e�ciency index of the errormajorant is subject to similar estimates, namely

Ie�(MUz
⊕ (ukℎ)) ≤ Ie�⊕ + Ie�k , (4.8)

where the second term

Ie�k :=
E(ukℎ, p

k
ℎ, ç)

|||u − ukℎ|||

represents the e�ciency index associated with the approximation error.

We end up this section with a short comment on practical applications of the estimate (4.7). First we note
that it has the form which is natural to expect. It is clear that the quality of error estimation related to solv-
ing the boundary value problem (4.1) by means of a certain numerical method should enter the estimate and
increase the overall value of the majorant (cf. (4.8)). In the numerical tests presented below, we indeed ob-
served this e�ect. In these examples, the function ç was de�ned by means of very simple (and very cheap)
reconstructions of the numerical stress (based on local averaging) and, therefore, the term E(ukℎ, p

k
ℎ, ç)made

a considerable contribution to the overall error bound. Nevertheless, the majorant correctly re�ects the de-
creasing of the error in the process of the Uzawa iterations. Certainlymore sophisticated stress reconstruction
procedures (e.g., global minimization) would lead to much better results (see a consequent discussion of the
corresponding methods in [11]). However, even if the approximation error would be de�ned sharply, for suf-
�ciently large k the right-hand side of (4.7) will not decrease because the mesh Tℎ is too coarse for getting
approximations with a required accuracy. In practice, this “saturation” phenomenon is easily detected by
comparing the values of two terms forming the majorant (in our tests this phenomenon was observed). This
means that fully reliable computations based on the Uzawa type methods require “modeling-discretization”
adaptive algorithms in the spirit of, e.g., [19].

5 Numerical Experiments
Below we present results from numerical computations performed to test the majorants and minorants. Ap-
proximations for model problem were calculated with MINI-elements [1] for the velocity �eld, linear triangu-
lar elements for the pressure �eld, and linear Raviart–Thomas elements [14] for the stress �eld.

We consider the Oseen problem with í = 1 in Ω = [0, 1] × [0, 1] and homogeneous Dirichlet boundary
conditions. The exact velocity

u(x, y) = (
20x2y(2y − 1)(x − 1)2(y − 1)
−20xy2(2x − 1)(x − 1)(y − 1)2

)

and the pressure p(x, y) = 2x−1 generate the right-hand side of the equation. The iterationswere startedwith
p0 = 0 in Ω. Computations were performed with the help of FEniCS Project open source software [10]. Uni-
form re�nements of the mesh were performed if the majorant for the velocity �eld shows that practically the
error does not decrease (if the absolute value of di�erence between the values computed for two consecutive
iterations was less than 10%). At the very beginning we had 512 elements. At every re�nement one triangle
element was divided into four similarly shaped triangles (so that we had 2048 degrees of freedom after the
�rst re�nement, and then 8192 after the second re�nement). The algorithm was stopped after the third mesh
re�nement.
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k M⊕(v,ó,q)
|||v|||

‖div v‖
|||v|||

‖d(v,ó,q)‖
|||v|||

‖r(ó)‖
|||v|||

‖(u−v,p−q,ç−ò)‖W
‖(v,q,ç)‖W

c⊕M⊕(v,ó,q)
‖(v,q,ç)‖W

6 0.814861 0.108033 0.186701 6.14041×10−5 0.18877 3.3947
9 0.394441 0.0533815 0.0840590 3.76671×10−6 0.0921263 1.61059
12 0.197608 0.0266837 0.0424575 2.34323×10−7 0.0509854 0.798602

Table 1. Components of the majorant, a = (1, 0).

Figure 1. Behavior of the majorants, a = (1, 0).

Figure 2. Divergence of the approximate velocity, a = (1, 0).
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k M⊕(v,ó,q)
|||v|||

‖div v‖
|||v|||

‖d(v,ó,q)‖
|||v|||

‖r(ó)‖
|||v|||

‖(u−v,p−q,ç−ò)‖W
‖(v,q,ç)‖W

c⊕M⊕(v,ó,q)
‖(v,q,ç)‖W

6 0.816497 0.108253 0.187053 6.13097×10−5 0.187327 3.36203
9 0.394957 0.0534651 0.0840883 3.76496×10−6 0.0913371 1.59401
12 0.197734 0.0267046 0.0424624 2.34283×10−7 0.0505014 0.78988

Table 2. Components of the majorant, a = (1, 1).

Figure 3. Behavior of the majorants, a = (1, 1).

Figure 4. Divergence of the approximate velocity, a = (1, 1).
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k M⊕(v,ó,q)
|||v|||

‖div v‖
|||v|||

‖d(v,ó,q)‖
|||v|||

‖r(ó)‖
|||v|||

‖(u−v,p−q,ç−ò)‖W
‖(v,q,ç)‖W

c⊕M⊕(v,ó,q)
‖(v,q,ç)‖W

5 0.78383 0.114972 0.182948 6.12371×10−5 0.219877 3.03241
8 0.372967 0.0553391 0.0837532 3.76496×10−6 0.102283 1.39201
11 0.185204 0.0273769 0.0421268 2.34320×10−7 0.0542261 0.680833

Table 3. Components of the majorant, a = (0, 0).

Figure 5. Behavior of the majorants, a = (0, 0).

Figure 6. Divergence of the approximate velocity, a = (0, 0).
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We tested the algorithm for di�erent a. Below, we focus attention on three examples, which present typ-
ical results. We set a = (1, 0), a = (1, 1) and a = (0, 0) (this case corresponds to the Stokes problem). Values
for majorants and exact errors are shown in Figure 1 for a = (1, 0), Figure 3 for a = (1, 1) and Figure 5 for
a = (0, 0). In Figures 2, 4 and 6 we show how the norm of the divergence decreases in the process of Uzawa
iterations. For the velocity �eld, errors are calculated in the energy norm and for the pressure in the L2-norm.
Values of themajorants and exact errors for the velocity and pressure are normalized with the norms |||v||| and
‖q‖, respectively. Dotted vertical lines mark the iterations after which mesh re�nements were done. In the
examples, the “free” function ó was computed by minimization of the majorant on the same mesh that was
used for the velocity �eld. Also, we can compute guaranteed bounds on the errors in terms of stresses and the
combined primal-dual norm (see Table 1 for a = (1, 0), Table 2 for a = (1, 1) and Table 3 for a = (0, 0)). We see
that the estimates indeed provide guaranteed upper bounds of errors in the functions computed by means
of the Uzawa iterations. These bounds correctly re�ect decrease of the corresponding errors and indicate the
moment when adaptation of the mesh is required.
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