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1 Introduction
The tailored �nite point method (TFPM) is a new approach to constructing discrete numerical schemes for
the solutions of the di�erential equations. Especially, TFPM is very e�cient for the solutions which are not
smooth enough, for example, when the solutions possess boundary/interior layers or the solutions are highly
oscillatory.

The TFPM provides a new point of view for designing the discrete numerical schemes for the solution of
a given di�erential equation with suitable boundary and/or initial conditions. At each given interior point,
the TFPM scheme is constructed based on the properties of the solution of the given problem. Therefore, the
main properties of the solution can be preserved in the numerical scheme of the TFPM in some sense.

At �rst, the tailored �nite point method was proposed by H. Han, Z. Huang and R. B. Kellogg [20, 21] for
solving the Hemker problem numerically. This is an open problem proposed by P. Hemker [27]. The interna-
tional conferenceBAIL2008awarded thePieterHemkerPrize toHan,HuangandKellogg for their contribution
to the goal of designing the best computational algorithm for the Hemker problem [21].

The Hemker problem is a typical singular perturbation problem of a second-order elliptic equation with
constant coe�cients in twodimensions. The solution of theHemker problempossesses boundary and interior
layers. The computational algorithm given by the TFPM for the Hemker problem can achieve good accuracy
with a very coarse mesh whenever the perturbed parameter ù is very small or large, and the numerical so-
lution can capture the boundary/interior layers, even though the mesh is very coarse. To solve numerically
singular perturbation problems of second-order elliptic equations, the TFPM was applied systematically by
Han and Huang [15–17, 19, 31], Shih, Kellogg and Chang [55], Shih, Kellogg and Tsai [56]. Han and Huang
proposed the TFPM scheme for the numerical solution of a singular perturbation problem of fourth-order el-
liptic equation [18], and an iterative TFPM scheme of which was given by Han, Huang and Zhang [23]. Hsieh,
Shih and Yang [29] proposed a TFPM scheme for solving the steady magnetohydrodynamic (MHD) Duct �ow
problem with boundary layers, which is a singularly perturbed system of second-order elliptic equations. A
uniformly convergent semi-discrete TFPM for a class of anisotropic di�usion problemswas proposed by Han,
Huang and Ying [22]. A parameter-uniform TFPM for a singularly perturbed linear ODE system with multiple
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perturbation parameters was obtained by Han, Miller and Tang [24]. Two parameter-uniform tailored �nite
point schemes for two-dimensional discrete ordinary di�erential equations with boundary layers and inter-
faces were given by Han, Tang and Ying [25], in which the problem can be treated as a singularly perturbed
problem of a system of ordinary di�erential equations.

In addition to singularly perturbed problems, TFPM has been applied to various other �elds as a new
approach for the numerical solution of di�erential equations. For example, a uniformly convergent TFPM for
the one-dimensional Helmholtz equation with high wave numbers in heterogenous medium was obtained
by Han and Huang [15], and a tailored �nite cell method for solving the Helmholtz equation in layered het-
erogenous medium appears in Huang and Yang [32]. The TFPM was applied to interface problems by Huang
[30] and the �rst-order wave equation byHuang and Yang [33]. Themulti-scale TFPM for second-order elliptic
equations with rough or highly oscillatory coe�cients was given by Han and Zhang [26], in which a class of
multi-scale problems was studied.

The TFPM provides new ideas and a new perspective when constructing numerical schemes for di�eren-
tial equations. The numerical scheme at each point is tailored/constructed based on some properties of the
solution of the given problem at that point. In many cases, the schemes given by TFPM preserve important
properties of the solution of the given problem. Therefore, even on a very coarse mesh, the numerical solu-
tions given by TFPM can still capture the important properties of the given problem. The TFPM is now at the
development stage. Further applications of the method are expected in the future.

The rest of this paper is organized as follows. First, we describe the principle of the TFPM in Section 2.
Then we review the TFPM for singular perturbation problems in Section 3, for wave problems in Section 4,
for transport equations in Section 5, and for multiscale elliptic problems in Section 6. Finally, we give a short
summary in Section 7.

2 The Principle of the Tailored Finite Point Method
In this section, a couple of examples are given to explain the principle of the tailored �nite point method.

At �rst, we start from the �ve-point and nine-point di�erence schemes for the Laplace equation

−Δu = 0, (2.1)

to explain the basic idea of the tailored �nite point method.
Take a point x0 and four points around it (cf. Figure 1):

x1 = (ℎ1, 0), x
2 = (0, ℎ2), x

3 = (−ℎ3, 0), x
4 = (0, −ℎ4),

where ℎi > 0 (i = 1, 2, 3, 4) are given and 0 < ℎi ≪ 1.
We try to �nd a �ve-point scheme for the Laplace equation (2.1) at the point x0, namely, �nd �ve numbers

ái (i = 0, 1, . . . , 4) such that
á0u0 + á1u1 + á2u2 + á3u3 + á4u4 = 0

approximates the Laplace equation at the point x0, where ui (i = 0, 1, . . . , 4) denote the approximate values of
u(x), the solution of Laplace equation (2.1), at the point xi. How do we �nd the constants ái (i = 0, 1, . . . , 4)?

The solution u(x) of the equation (2.1) can be expanded into a sum of harmonic polynomials around the
point x0 = (0, 0):

u(x) = c0 + c1x1 + c2x2 + c3(x
2
1 − x2

2) + c4x1x2 + c5(x
3
1 − 3x1x

2
2) + c6(x

3
2 − 3x2

1x2) + ⋅ ⋅ ⋅ .

At the cell Ω0 = {(x1, x2) | −ℎ3 ≤ x1 ≤ ℎ1, −ℎ4 ≤ x2 ≤ ℎ2}, the solution u(x) can be approximated by the �rst
few terms, for example,

u(x) − {c0 + c1x1 + c2x2 + c3(x
2
1 − x2

2) + c4x1x2} = O(ℎ3) for all x ∈ Ω0

with ℎ = max1≤i≤4 ℎi.
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Figure 1. The location of the points x0, x1, . . . , x8.

To �nd the constants ái (i = 0, 1, . . . , 4), we take the subspace of the harmonic polynomials

W4
I = {v(x) | v(x) = c0 + c1x1 + c2x2 + c3(x

2
1 − x2

2) for all ci ∈ ℝ, i = 0, 1, 2, 3}.

We then choose the constants ái (i = 0, 1, . . . , 4) such that

á0v(x
0) + á1v(x

1) + á2v(x
2) + á3v(x

3) + á4v(x
4) = 0 for all v(x) ∈ W4

I .

Taking v(x) = 1, x1, x2 and x2
1 − x2

2, respectively, we arrive at

á1 + á2 + á3 + á4 = −á0, ℎ1á1 − ℎ3á3 = 0, ℎ2á2 − ℎ4á4 = 0, ℎ21á1 − ℎ22á2 + ℎ23á3 − ℎ24á4 = 0. (2.2)

Solving system (2.2), we obtain

á1 = −
ℎ2ℎ3ℎ4

(ℎ1 + ℎ3)(ℎ1ℎ3 + ℎ2ℎ4)
á0, á2 = −

ℎ1ℎ3ℎ4
(ℎ2 + ℎ4)(ℎ1ℎ3 + ℎ2ℎ4)

á0,

á3 = −
ℎ1ℎ2ℎ4

(ℎ1 + ℎ3)(ℎ1ℎ3 + ℎ2ℎ4)
á0, á4 = −

ℎ1ℎ2ℎ3
(ℎ2 + ℎ4)(ℎ1ℎ3 + ℎ2ℎ4)

á0.

In practice, if we take ℎ1 = ℎ2 = ℎ3 = ℎ4 = ℎ, we have

áj = −
1
4
á0, j = 1, 2, 3, 4.

Letting á0 = 4/ℎ2, from a new point of view, we reconstruct the famous �ve-point di�erence scheme for the
Laplace equation (2.1),

−
u1 + u2 + u3 + u4 − 4u0

ℎ2
= 0.

Second, we design a �ve-point scheme (with ℎ1 = ℎ2 = ℎ3 = ℎ4 = ℎ) for the equation

−ùΔu + àx1u = 0 (2.3)

with a small perturbation parameter 0 < ù ≪ 1, which was considered in the Hemker problem [27]. For any
solution u(x1, x2, ù) of the equation (2.3), let

v(x1, x2, ù) = e−
x12ù u(x1, x2, ù).

Then v(x1, x2, ù) satis�es
−Δv +

1
ì2 v = 0 (2.4)

with ì = 1
2ù . The solution v(x1, x2, ù) of equation (2.4) can be expanded at x = x0 as

v(x1, x2, ù) = a0I0(ìr) +
∞

∑
n=1

In(ìr)(an cos nè + bn sin nè),

where (r, è) is the polar coordinate of x = (x1, x2) based at x0, and In is the n-th order modi�ed Bessel function
of �rst kind.
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Since the solution u(x1, x2, ù) of (2.3) satis�es

u(x1, x2, ù) = eìx1v(x1, x2, ù),

u can be expanded around x = x0 as

u(x) = b0 + eìr cos è{a0I0(ìr) +
∞

∑
n=1

In(ìr)(an cos nè + bn sin nè)}. (2.5)

We take the �rst few terms in (2.5) to construct a four-dimensional function space

W4
II = {u | u = b0 + eìr cos è[a0I0(ìr) + a1I1(ìr) cos è + b1I1(ìr) sin è] for all a0, a1, b0, b1 ∈ ℝ}.

We seek some constants ái (i = 0, 1, . . . , 4) to construct a �ve-point scheme for the equation (2.3) at the
�ve points x0, x1, . . . , x4, namely

á1u(x
1) + á2u(x

2) + á3u(x
3) + á4u(x

4) + á0u(x
0) = 0.

The constants ái (i = 0, 1, . . . , 4) are determined by

á1u(x
1) + á2u(x

2) + á3u(x
3) + á4u(x

4) + á0u(x
0) = 0 for all u ∈ W4

II . (2.6)

In equation (2.6), taking u = 1, eìr cos èI0(ìr), eìr cos èI1(ìr) cos è, eìr cos èI1(ìr) sin è, respectively, yields

á1 + á2 + á3 + á4 = −á0, I0(ìℎ)(e
ìℎá1 + á2 + e−ìℎá3 + á4) = −á0, á2 − á4 = 0, eìℎá1 − e−ìℎá3 = 0. (2.7)

Setting
â(ìℎ) =

cosh(ìℎ) − I0(ìℎ)
I0(ìℎ) − 1

,

then from (2.7) we have

á1 = −
e−ìℎ

2(cosh(ìℎ) + â(ìℎ))
á0 ≡ −á1(ìℎ)á0, á2 = −

â(ìℎ)
2(cosh(ìℎ) + â(ìℎ))

á0 ≡ −á2(ìℎ)á0, (2.8)

á3 = −
eìℎ

2(cosh(ìℎ) + â(ìℎ))
á0 ≡ −á3(ìℎ)á0, á4 = á2 ≡ −á4(ìℎ)á0, with á2(ìℎ) = á4(ìℎ). (2.9)

In this manner we obtain a new �ve-point scheme for equation (2.3), which has been called the �ve-point
tailored �nite point scheme for this equation:

−á1(ìℎ)u1 − á2(ìℎ)u2 − á3(ìℎ)u3 − á4(ìℎ)u4 + u0 = 0. (2.10)

The coe�cientsáj(ìℎ) (j = 1, 2, 3, 4) givenby (2.8) and (2.9) contain theBessel function I0(ìℎ) and exponential
functions eìℎ, e−ìℎ. By an integral representation of I0(x) (see [14]), we have

I0(x) =
1
ð

ð

∫
0

cosh(x cos è)dè and I0(x) − 1 > 0 for all x > 0.

Hence, â(ìℎ) > 0 for ìℎ > 0, and

áj(ìℎ) > 0 for ìℎ > 0, j = 1, 2, 3, 4 and
4

∑
j=1

áj(ìℎ) = 1.

Furthermore, a nine-point scheme of equation (2.3) can be constructed at the nine points xj (j = 0, 1, . . . , 8)
(see Figure 1). In this case we take the 8-dimensional function space

W8
II = {u | u = b0 + eìr cos è[a0I0(ìr) +

3

∑
n=1

In(ìr)(an cos nè + bn sin nè)] for all an, bn ∈ ℝ}.
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The nine-point scheme we seek is of the form

8

∑
j=0

âjuj = 0,

where the constants âj (j = 0, 1, . . . , 8) are determined by

8

∑
j=0

âjv(x
j) = 0 for all v ∈ W8

II . (2.11)

Set

A(ìℎ) = I0(√2ìℎ) − cosh(ìℎ), B(ìℎ) = cosh2(ìℎ/2) − I0(ìℎ),

C(ìℎ) = 2I0(√2ìℎ)(1 + cosh(ìℎ)) − 4I0(ìℎ) cosh(ìℎ).

Taking â0 = −1 in the linear equations (2.11), we obtain

â1 =
e−ìℎA(ìℎ)
C(ìℎ)

≡ â1(ìℎ), â3 =
eìℎA(ìℎ)
C(ìℎ)

≡ â3(ìℎ),

â2 = â4 =
A(ìℎ)
C(ìℎ)

≡ â2(ìℎ) = â4(ìℎ), â5 = â8 =
e−ìℎB(ìℎ)
C(ìℎ)

≡ â5(ìℎ) = â8(ìℎ),

â6 = â7 =
eìℎB(ìℎ)
C(ìℎ)

≡ â6(ìℎ) = â7(ìℎ).

Thus, we arrive at the following tailored nine-point scheme for equation (2.3):

u0 −
8

∑
j=1

âj(ìℎ)uj = 0. (2.12)

Remark 2.1. For î = ìℎ > 0, we have A(î) > 0, B(î) > 0 and C(î) > 0. That means âj(î) > 0 (j = 1, 2, . . . , 8) for
î > 0. Furthermore, we have∑8

j=1 âj(î) = 1 for î > 0.

For the second-order singularly perturbed elliptic equation (2.3), we obtain a �ve-point scheme (2.10) and a
nine-point scheme (2.12), which possess the following properties:
(i) Schemes (2.10) and (2.12) satisfy the maximum principle.
(ii) When 0 < ù ≪ ℎ, the schemes (2.10) and (2.12) naturally reduce to

u0 − u3
ℎ

= O(√
ì
ℎ
exp(−ìℎ)),

which is a good approximation of the upwind scheme of equation (2.3):

−ù
u1 + u2 + u3 + u4 − 4u0

ℎ2
+
u0 − u3

ℎ
= 0,

since the �rst term of the above equation is a higher-order term in the case 0 < ù ≪ ℎ.

Principles of TFPM

From the above examples, we can see the procedure for constructing a discrete scheme for a given di�erential
equation by TFPM.
(i) For a given point x0, choose several points xj (j = 1, . . . , k) around x0.
(ii) Construct a �nite-dimensional function space Wk, where the basis functions of the function space Wk

are tailored based on some properties of the solution of the given problem at point x0. For example, the
solutions of the approximate problem at point x0 could be used to construct the spaceWk.
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(iii) To construct a TFPM at x0 (with xj, j = 1, . . . , k) is equivalent to �nding constants áj (j = 1, . . . , k) such
that

u0 =
k

∑
j=1

ájuj,

where uj denotes the approximation of u(xj).
(iv) The constants áj (j = 1, . . . , k) are determined by requiring that

v(x0) =
k

∑
j=1

ájv(x
j) for all v(x) ∈ Wk.

3 TFPM for Singular Perturbation Problems
Let us consider the following model problems:

{{{
{{{
{

Lù,1u ≡ −ù2Δu + p(x)ux + q(x)uy + b(x)u = f(x) for all x = (x, y) ∈ Ω,

u|Γ = 0,

b(x) ≥ b0 > 0 for all x ∈ Ω,

(3.1)

{{{{
{{{{
{

Lù,2u ≡ ù2Δ2u − Δu = f(x) for all x = (x, y) ∈ Ω,

u|Γ = 0,
àu
àn

!!!!!!!Γ
= 0,

(3.2)

where Ω ⊂ ℝ2 is a bounded domain with boundary Γ, while p(x), q(x), b(x) and f(x) are four given smooth
functions onΩ.

When 0 < ù ≪ 1, problems (3.1) and (3.2) are two typical singular perturbation problems. Problem (3.1)
is a singularly perturbed second-order elliptic equation. Problem (3.2) is a singularly perturbed fourth-order
elliptic equation. The solutions of these problems possess some boundary layers on a portion of Γ, andmaybe
also have some interior layers in Ω. These layers are characterized by rapid transitions in the solutions. The
existence of these layers in the solution is a major di�culty for the numerical simulation of singular pertur-
bation problems.

The numerical solutions of similar singular perturbation problems have been studied by many mathe-
maticians, for example, one could refer to the books by Doolan, Miller and Schilders [9], Morton [46], Roos,
Stynes and Tobiska [51], and the review paper by Stynes [58]. Generally speaking, for capturing the boundary
layers and interior layers in the numerical solutions of those given problems, one usually need the �nestmesh
size ℎ ∼ O(ù2) in problem (3.1). One of the main goals in the study of numerical solutions of singular pertur-
bation problems is to construct “uniformly convergent methods”, which means that the numerical solution
converges to the true solution, uniformly in ù, in some norm. For problem (3.1) in the one-dimensional case,
exponentially �tted schemes on a uniformmesh are given, e.g., by Il’in [37], Miller [45], Berger, Han and Kel-
logg [5]. The uniform convergence of the numerical solutions was proved in those papers. On the other hand,
mesh re�nement is also used frequently for capturing the boundary layers in the numerical solutions; see,
for example, Shishkin meshes [57]. Shishkin meshes can give a uniformly convergent method, but they need
a prior knowledge of the position and behavior of the boundary layers (see [6, 42–44, 48, 57]).

For problem (3.2) in the one-dimensional case, there aremany results. For example, uniformly convergent
conforming�nite elementmethods (FEM) are givenbyRoos andStynes [50] andSemper [52]. Shishkinmeshes
are used in the FEM by Sun and Stynes [60, 61]. An exponentially �tted �nite di�erence scheme is proposed
by Shanthi and Ramanujam [53] and a high-order �nite volume method is given by Chen, He and Wu [7]. For
the two-dimensional case of problem (3.2), a nonconformingH2-element FEM is obtained by Nilssen, Tai and
Winther [47] and a modi�ed Morley element is developed byWang, Xu and Hu [66], in which they obtained a
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half order uniform convergence rate in an energy norm. The modi�ed Morley element for three-dimensional
problems with half order uniform convergence rate is given by Wang and Meng [65].

Recently, Han, Huang et al. applied the TFPM to a wide variety of such problems [16–18, 20, 21, 23, 30].
At each point, they choose the exact solutions of the local approximation problems as the basis functions
for constructing the discrete schemes. Therefore, good approximate solutions can be obtained by these new
schemes even on a uniform coarsemesh (ℎ ≫ ù) without any prior knowledge of the boundary/interior layers.

3.1 The Tailored Finite Point Scheme for Problem (3.1)

For the sake of simplicity, we assume thatΩ = [0, 1] × [0, 1]. Let ℎ = N−1 be the mesh size and

xi = iℎ, yj = jℎ, 0 ≤ i, j ≤ N.

Then Pi,j = (xi, yj) (0 ≤ i, j ≤ N) are the mesh points, i.e., one has a uniform mesh.
We now construct the tailored �nite point scheme for the �rst equation of problem (3.1) at mesh point

x0. Around x0, there are eight mesh points xi (i = 1, 2, . . . , 8). Then the cell Ω0 contains xi (i = 0, 1, . . . , 8); see
Figure 1.

First we approximate the �rst equation of problem (3.1) on the cellΩ0 by

−ù2Δu + p0ux + q0uy + b0u = f0

with p0 = p(x0), q0 = q(x0), b0 = b(x0), f0 = f(x0). Introduce a new function

v(x, y) = (u(x, y) −
f0
b0

) exp(−
p0x + q0y

2ù2
).

Then v satis�es −ù2Δv + d2
0v = 0 with d2

0 = b0 +
p20+q20
4ù2 .

Let ì0 = d0/ù and

H4 = {v(x, y) | v = c1e
−ì0x + c2e

ì0x + c3e
−ì0y + c4e

ì0y for all ci ∈ ℝ}.

Then we take the discrete scheme as

á1V1 + á2V2 + á3V3 + á4V4 + á0V0 = 0 (3.3)

with Vj = v(xj), such that (3.3) holds for all v ∈ H4. By the procedure given in Section 2, we have

á1 = á2 = á3 = á4 =
−á0

eì0ℎ + e−ì0ℎ + 2
≡

−á0
4 cosh2( ì0ℎ2 )

.

Choosing

á0 =
eì0ℎ + e−ì0ℎ + 2
eì0ℎ + e−ì0ℎ − 2

≡
cosh2( ì0ℎ2 )

sinh2( ì0ℎ2 )
,

we get
á1 = á2 = á3 = á4 = −

1
eì0ℎ + e−ì0ℎ − 2

≡ −
1

4 sinh2( ì0ℎ2 )
.

Then we have the following �ve-point scheme for problem (3.1):

U0 −
e−

p0ℎ2ù2 U1 + e−
q0ℎ2ù2 U2 + e

p0ℎ2ù2 U3 + e
q0ℎ2ù2 U4

4 cosh2( ì0ℎ2 )
=

f0
b0

(1 −
e−

p0ℎ2ù2 + e−
q0ℎ2ù2 + e

p0ℎ2ù2 + e
q0ℎ2ù2

4 cosh2( ì0ℎ2 )
) (3.4)

with
Uj = u(xj) =

f0
b0

+ Vj exp(
p0xj + q0yj

2ù2
).
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Finally, we get the following discrete problem of problem (3.1):

{{{{{{{
{{{{{{{
{

LℎUi,j ≡
bij

1 − çij
{Uij −

e−
pijℎ2ù2 Ui+1,j + e−

qijℎ2ù2 Ui,j+1 + e
pijℎ2ù2 Ui−1,j + e

qijℎ2ù2 Ui,j−1

4 cosh2( ìijℎ2 )
} = fi,j, 1 ≤ i, j ≤ N − 1,

Ui,0 = Ui,N = 0, i = 0, 1, . . . , N,

U0,j = UN,j = 0, j = 1, . . . , N − 1,

(3.5)

with

çij =
e−

pijℎ2ù2 + e−
qijℎ2ù2 + e

pijℎ2ù2 + e
qijℎ2ù2

4 cosh2( ìijℎ2 )
.

Lemma 3.1 (cf. [19]). It is easy to check that the discrete problem (3.5) satis�es the discrete maximum principle.

Remark 3.2 (cf. [19]). If ℎ ≪ ù2, i.e., ì0ℎ ≪ 1 and í0ℎ ≪ 1, we have

cosh2(
ì0ℎ
2

) = 1 +
(ì0ℎ)

2

4
+ O((ì0ℎ)

4), cosh2(
í0ℎ
2

) = 1 +
(í0ℎ)

2

4
+ O((í0ℎ)

4)

and

e±
p0ℎ2ù2 = 1 ±

p0ℎ
2ù2

+
(p0ℎ
2ù2 )2
2

±
(p0ℎ
2ù2 )3
6

+ O((
p0ℎ
2ù2

)
4
), e±

q0ℎ2ù2 = 1 ±
q0ℎ
2ù2

+
( q0ℎ2ù2 )2
2

±
( q0ℎ2ù2 )3
6

+ O((
q0ℎ
2ù2

)
4
).

If we omit the high-order terms, the tailored �nite point scheme reduces to the standard second-order �nite
di�erence scheme of the �rst equation of problem (3.1) at x0, i.e.,

−ù2
U1 + U2 + U3 + U4 − 4U0

ℎ2
+ p0

U1 − U3

2ℎ
+ q0

U2 − U4

2ℎ
+ b0U0 = f0.

Remark 3.3. For 0 < ù ≪ ℎ, the scheme (3.4) reduces to the upwind scheme.

3.2 Error Analysis of the Discrete Problem (3.5)

We only consider the simple case

Ω = (0, 1)2, p(x) ≡ p0 > 0, q(x) ≡ 0, b(x) ≡ b0 > 0, f(x) ∈ C2l,á(Ω) (3.6)

for some integers 3 ≤ l ∈ ℕ and some real numbers á ∈ (0, 1).

Theorem 3.4 (cf. [19]). Suppose that (3.6) holds and {Ui,j, 0 ≤ i, j ≤ N} is a solution of problem (3.5). Then the
following estimate holds:

|Ui,j| ≤ max0≤i,j≤N

|fi,j|
b0

, 0 ≤ i, j ≤ N.

Let
Ei,j = Ui,j − u(Pi,j), 0 ≤ i, j ≤ N,

then
LℎE = Tℎu = O{ℎ + ù−2e−

p0ℎù2 + e−â
ℎ2ù }.

By Theorem 3.4 and Lemma 3.1, we have the following result.

Theorem 3.5 (cf. [19]). Suppose that (3.6) and 0 < ù ≪ ℎ hold. Then we have the error estimate

|Ei,j| ≤ C{ℎ + ù−2e−
p0ℎù2 + e−â

ℎ2ù }, 0 ≤ i, j ≤ N.

Remark 3.6. Many numerical examples are given in [16, 17, 20, 21, 30], which show that the tailored �nite
point method works e�ciently and displaces the uniform convergence in ù. But the uniformly convergent
error analysis is still open for the general case.

Remark 3.7. We also proposed TFPM for the anisotropic di�usion problems [22] and the ODEs with di�erent
parameters [24]. We proved the uniform convergence of our TFPM for those problems.



H. Han and Z. Huang, The Tailored Finite Point Method | 329

3.3 TFPM for the Fourth-Order Singular Perturbation Problem

First, we discuss the decomposition of the fourth-order partial di�erential equation of problem (3.2). Let

v = Δu and w = u − ù2v. (3.7)

It is straightforward to check that the functions v, w satisfy the following system of two second-order elliptic
boundary value problems:

{{{{{{{{
{{{{{{{{
{

− ù2Δv + v = −f(x) for all x = (x, y) ∈ Ω,

− Δw = f(x) for all x = (x, y) ∈ Ω,

(w + ù2v)|Γ = 0,

à(w + ù2v)
àn

!!!!!!!Γ
= 0.

(3.8)

For problem (3.8), we have the following stability estimate:

Theorem 3.8 (cf. [18]). Suppose that (v, w) is a solution of problem (3.8) and v, w ∈ H1(Ω). Then the following
stability estimate holds:

∫
Ω

∇(w + ù2v) ⋅ ∇(w + ù2v) dxdy + ù2 ∫
Ω

v2 dxdy ≤ C∫
Ω

f2 dxdy,

where C is a constant independent of ù.

On the other hand,weknow that problem (3.2) has a solutionuù ∈ H2
0 (Ω) for all ù > 0; see [12]. By thede�nition

(3.7), we know (v, w) is a solution of problem (3.8). Therefore, from the above stability estimate, we obtain the
uniqueness of problem (3.8) directly:

Theorem 3.9. Problem (3.8) has a unique solution and is equivalent to problem (3.2).

From the view of �nding the numerical solution, using problem (3.8) is more convenient than problem (3.2).
We now construct the tailored �nite point scheme for problem (3.8).

3.3.1 TFPM in Interior Domain

For the sake of simplicity, we assume that Ω = [0, 1] × [0, 1] and we have a uniform mesh, i.e., let ℎ = N−1 be
the mesh size and

xi = iℎ, yj = jℎ, 0 ≤ i, j ≤ N.

Then Pi,j = (xi, yj) (0 ≤ i, j ≤ N) are the mesh points.
We now construct our tailored �nite point scheme for (3.8) on a cell Q0 (see Figure 1). First, we approxi-

mate the function f(x, y) by piecewise constants, i.e., we approximate f by f0 = 1
|Q0| ∫Q0 f(x, y) dxdy in cell

Q0.
For the second equation of problem (3.8), we can just use the standard �ve-point di�erence scheme:

−
W1 +W2 +W3 +W4 − 4W0

ℎ2
= f0 (3.9)

withWj = w(Pj).
For the �rst equation of problem (3.8), let ë = ù2v. Then ë satis�es

−ù2Δë + ë = ù2f. (3.10)

In cell Q0, let ÷ = ë + ù2f0. Then ÷ satis�es

−ù2Δ÷ + ÷ = 0. (3.11)
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Then we construct a scheme for (3.11) as

á1Ψ1 + á2Ψ2 + á3Ψ3 + á4Ψ4 + á0Ψ0 = 0

with Ψj = ÷(Pj), by the procedure given in Section 2, where we take

á0 =
eìℎ + e−ìℎ + 2
eìℎ + e−ìℎ − 2

≡
cosh2( ìℎ2 )

sinh2( ìℎ2 )
.

Then
á1 = á2 = á3 = á4 = −

1
eìℎ + e−ìℎ − 2

≡ −
1

4 sinh2( ìℎ2 )
. (3.12)

We �nally have the following �ve-point scheme for (3.10):

Λ 0 −
Λ 1 + Λ 2 + Λ 3 + Λ 4

4 cosh2( ìℎ2 )
= ù2f0(

1
cosh2( ìℎ2 )

− 1) (3.13)

with Λ j = ë(Pj) = Ψj − ù2f0.

3.3.2 TFPM on the Boundary

It is straightforward to implement the �rst boundary condition of problem (3.8). For example, if P3 ∈ àΩ, we
have

W3 + Λ 3 = 0. (3.14)

Furthermore, in terms of the function ë, we replace the second boundary condition of problem (3.8) by

à(w + ë)
àn

= 0. (3.15)

The boundary condition (3.15) can be discretized similarly to our procedure above. For example (cf. Figure 1),
suppose P3 is on the boundary àΩ. We want to approximate àw

àn (P3) by

àw
àn

(P3) ≈ á3W3 + á6W6 + á7W7 + á0W0. (3.16)

We expect that the approximation (3.16) has no error for all the functions in the space

W4 = {õ(x, y) = c1 + c2x + c3y + c4(x
2 − y2) for all cj ∈ ℝ, j = 1, 2, 3, 4}.

Then we obtain the coe�cients
á0 = −

1
ℎ
, á3 =

2
ℎ
, á6 = á7 = −

1
2ℎ

.

Next, we want to approximate àë
àn (P3) by

àë
àn

(P3) ≈ â3Λ 3 + â6Λ 6 + â7Λ 7 + â0Λ 0.

We arrive at

â0 = −
1

ù sinh ℎ
ù

, â3 =
1 + cosh ℎ

ù

ù sinh ℎ
ù

, â6 = â7 =
1
2
â0. (3.17)

Then we get the discretization of (3.15) as

â3Λ 3 + â6Λ 6 + â7Λ 7 + â0Λ 0 + á3W3 + á6W6 + á7W7 + á0W0 = 0. (3.18)

When ℎ ≫ ù (for example, ℎ > 5ù), it is easy to check that

â3 > |â6| + |â7| + |â0| + |á3| + |á6| + |á7| + |á0|. (3.19)

The discretization of the boundary condition (3.15) at other boundary points is similar.
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Remark 3.10. It is clear that the system of equations (3.9), (3.12) and (3.14) is diagonally dominant. When
ℎ ≫ ù, from (3.19), we know that (3.18) is also diagonally dominant. That means, in this case, our linear
system forWj and Λ j has a unique solution.

After solving this linear system, we get the approximation of u(Pj) = Uj by Uj = Wj + Λ j.

Remark 3.11. If ℎ ≪ ù, i.e., ìℎ ≪ 1, we obtain

cosh2(
ìℎ
2
) = 1 +

(ìℎ)2

4
+ O((ìℎ)4).

Omitting high order terms, the tailored �nite point scheme (3.13) reduces to the standard second-order �nite
di�erence scheme of the �rst equation of problem (3.8) at P0, i.e.,

−ù2
V1 + V2 + V3 + V4 − 4V0

ℎ2
+ V0 = f0.

Remark 3.12. When ù → 0, from (3.17), we obtain

â0, â6, â7 → 0, â3 → +∞,

i.e., we should have ë(P3) → 0. Thatmeans the second boundary condition of problem (3.8) reduces to ë|Γ = 0
as ù → 0. Therefore, by our discretization of the boundary conditions, when ù → 0, problem (3.8) is really
decomposed into two decoupled problems:

{
− Δw = f(x, y) for all (x, y) ∈ Ω,

w|Γ = 0,
(3.20)

{
− ù2Δë + ë = −ù2f(x, y) for all (x, y) ∈ Ω,

ë|Γ = 0.
(3.21)

It is straightforward to check that ë, the solution of (3.21), goes to zero when ù → 0. And the solution of
(3.20) is really the leading order approximation of the original problem (3.2) as ù → 0. That means, we can
get a good approximation of uù as ù → 0, i.e., our method is an asymptotic-preserving method.

Remark 3.13. We also propose an iterative method [23] to solve problem (3.8). At each step we only need to
solve twoboundary valueproblemsof second-order elliptic equationwhichare only coupledon theboundary.
We prove the convergence of our method on a disc. The convergence theory in the general case is still open.

4 TFPM for Wave Equation
Here we consider the inhomogeneous Helmholtz equation in the one-dimensional case:

{{{{
{{{{
{

d
dx

(c2(x)
du
dx

) + k2n2(x)u = f(x) for all x ∈ Ω = (a, b) ⊂ ℝ,

u(a) = 0, (cu� − iknu)(b) = 0,

u(x) and c2(x)u�(x) are continuous onΩ,

(4.1)

where i is the imaginary unit, k > 0,f ∈ L2(Ω), and c(x) and n(x) are two piecewise smooth functions, namely
the local speed of sound and the index of refraction, respectively, such that

0 < c0 ≤ c(x) ≤ C0 < ∞, 0 < n0 ≤ n(x) ≤ N0 < ∞.

The boundary value problem of the Helmholtz equation arises in many physical �elds, such as the
acoustic/electromagnetic/seismic wave propagation. It is well known that the numerical simulation of the
Helmholtz equation with high wave numbers in inhomogeneous medium is extremely di�cult [4, 35, 36, 38].
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In recent decades, many scientists presented e�cient methods for this class of problems with constant co-
e�cients, including the discrete singular convolution method [2], the hybrid numerical asymptotic method
[13], the spectral approximation method [54], the element-free Galerkin method [59, 63], the so-called ultra
weak variational formulation [34], and the hybrid numerical-asymptotic boundary integral method [8]. In
general, these methods need the restriction kℎ = O(1) for the mesh size ℎ in the simulation.

For problem (4.1), if we let

y(x) =
x

∫
a

1
c2(î)

dî, ó = y(b), s(y) ≡ c(x(y))n(x(y)), F(y) ≡ f(x(y)),

the function U(y) ≡ u(x(y)) shall satisfy the following problem:

{{{
{{{
{

U��(y) + k2s2(y)U(y) = F(y) for all y ∈ I = (0, ó),

U(0) = 0, U�(ó) − iks(ó)U(ó) = 0,

U(y) and U�(y) are continuous on I.

(4.2)

4.1 Stability Analysis for Analytical Solution

Without loss of generality, we assume that I = (0, ó) ≡ (0, 1). Let

L2(I) = {v | ∫
I

|v(y)|2 dy < +∞}

denote the space of all square-integrable complex-valued functions equipped with the inner product

(v, w) := ∫
I

v(y)w̄(y) dy

and the induced norm
‖v‖0,I := √(v, v).

Furthermore, form ∈ ℕ, let

Hm(I) = {v | v ∈ L2(I), v(j) ∈ L2(I), j = 1, . . . , m},

where v(j) are the derivatives of order j in the distribution sense. By the semi-norm |v|l,I := ‖v(l)‖0,I given in
Hl(I), one norm of the spaceHm(I) is de�ned as

‖v‖m,I = (
m

∑
j=0

|v|2j,I)
1/2

.

In addition, assume that the piecewise smooth function s(y) is also piecewise monotone, i.e., there are some
points yj (j = 0, 1, . . . , J) such that

0 = y0 < y1 < ⋅ ⋅ ⋅ < yJ = 1, Ij = (yj−1, yj), s|Ij is monotone, m ∈ C1( ̄Ij), j = 1, . . . , J.

Setting
M

0
j ≡ ‖s‖∞,Ij , M

1
j ≡ ‖s�‖∞,Ij , j = 1, . . . , J,

we obtain
n0 ≤ max1≤j≤J

M
0
j ≤ N0, M1 ≡ max1≤j≤J

M
1
j < +∞.

Then the following estimates for problem (4.2) hold (cf. [35, 36, 54]).

Lemma 4.1 (Stability analysis, cf. [15]). Suppose F ∈ L2(I) in the �rst equation of problem (4.2), s(y) is piece-
wise smooth and piecewise monotone, U is the solution of (4.2). Then U ∈ H2(I) ∩ C1( ̄I) and the estimates

|U|1,I + k‖U‖0,I ≤ C‖F‖0,I, |U|2,I ≤ C(1 + k)‖F‖0,I

hold for a positive constant C which is independent of F and k.
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4.2 TFPM for the Helmholtz Equation

First, we take a partition as
0 = î0 < î1 < ⋅ ⋅ ⋅ < îN = 1

with
ℎj = îj − îj−1, j = 1, 2, . . . , N, and ℎ = max

1≤j≤N
ℎj,

such that s(y) is smooth and monotone on each subdomainDj = (îj−1, îj) (see Figure 2).

Figure 2. The local mesh around points îj−1, îj, and îj+1.

Then we approximate the coe�cient s(y) by a piecewise constant function, i.e., we introduce a function
sℎ(y) de�ned by

sℎ(y) = sj ≡ s(î−j ) for y ∈ Dj, j = 1, . . . , N. (4.3)

Now we obtain an approximate problem of (4.2) for Uℎ:

{{{
{{{
{

U��
ℎ (y) + k2s2ℎUℎ(y) = F for all y ∈ Dj, j = 1, . . . , N,

Uℎ(0) = 0, U�
ℎ(1) − iksNUℎ(1) = 0,

Uℎ(î
−
j ) = Uℎ(î

+
j ), U�

ℎ(î
−
j ) = U�

ℎ(î
+
j ), j = 1, . . . , N − 1.

(4.4)

For y, z ∈ Dj, j = 1, . . . , N, let

Gj(y, z) =
1
ksj

{
{
{

eiksj(z−îj−1) sin(ksj(y − îj−1)), y ≥ z,

eiksj(y−îj−1) sin(ksj(z − îj−1)), z > y.

Then the solution of the �rst equation of problem (4.4) can be expressed as

Uℎ(y) = Aje
iksj(y−îj−1) + Bje

−iksj(y−îj−1) +
îj
∫
îj−1

f(z)Gj(y, z) dz for y ∈ Dj (4.5)

with some constants Aj, Bj ∈ ℂ, j = 1, . . . , N. From the boundary conditions and the interface conditions of
problem (4.4), we have

A1 + B1 + fs
1 = 0, −2iBN + fe

N = 0, (4.6)

Aje
iksjℎj + Bje

−iksjℎj + fe
j sin(ksjℎj) = Aj+1 + Bj+1 + fs

j+1, 1 ≤ j ≤ N − 1, (4.7)

Aje
iksjℎj − Bje

−iksjℎj − ife
j cos(ksjℎj) =

sj+1
sj

(Aj+1 − Bj+1 + fs
j+1), 1 ≤ j ≤ N − 1, (4.8)

with

fs
j =

îj
∫
îj−1

f(y)
ksj
sin(ksj(y − îj−1)) dy, fc

j =

îj
∫
îj−1

f(y)
ksj
cos(ksj(y − îj−1)) dy, fe

j = fc
j + ifs

j . (4.9)

Now we obtain a linear system of 2N equations for all 2N unknowns Aj, Bj (j = 1, . . . , N). Solving this linear
system (4.6)–(4.8), we can get our approximate solution Uℎ(y).

Remark 4.2. Certainly, in practice,weneed somequadrature rules to get the integrals in (4.9).When thewave
number k is large, it is not easy to get these integrals by standard quadrature rules. However, if we expand the
function F by a series of piecewise trigonometric functions or if we approximate F by piecewise polynomials,
we can get the approximation of these integrals explicitly with high accuracy (cf. [30]).
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4.3 Well-Posedness of TFPM

The following well-posedness theorem holds.

Theorem 4.3 (Uniqueness theorem, [15]). The linear system (4.6)–(4.8) has a unique solution.

Remark 4.4. From the proof of Theorem 4.3 (cf. [15]), we also give a procedure to solve our linear system
(4.6)–(4.8) very easily. That means, from (4.6), we have

(
Aj

Bj
) = (

áj âj
̄âj á̄j

)(
Aj+1

Bj+1
) + (

ìj
íj
) , j = 1, . . . , N − 1,

with
ìj = ájf

s
j+1 +
i
2
fe
j , íj = ̄âjf

s
j+1 −
i
2
fe
j+1.

Then we can get

(
A1

B1
) = (

á â
̄â á̄

)(
AN

BN
) + (

ì
í
)

by iteration. Combining with (4.6), we can get A1, B1, AN, BN immediately. Finally, we can get Aj, Bj (j =
2, . . . , N − 1) by recursion. The total cost of solving the linear system (4.6)–(4.8) is O(N).

4.4 Convergence Analysis of TFPM

From the de�nition (4.3) of sℎ, we have

|s2(y) − s2ℎ(y)| ≤ 2N0M1ℎ for all y ∈ I.

Suppose that U is the solution of problem (4.2), and Uℎ is the solution of problem (4.4). Set

E(y) ≡ U(y) − Uℎ(y), Rℎ ≡ k2(s2ℎ − s2)U.

Then we arrive at
{{{
{{{
{

E��(y) + k2s2ℎE(y) = Rℎ(y) for all y ∈ I,

E(0) = 0, E�(1) − iksNE(1) = 0,

E and E� are continuous on I.

Lemma 4.5 (Stability analysis for TFPM, [15]). Suppose F ∈ L2(I) and that s(y) is piecewise smooth and piece-
wise monotone on I. Then we have E ∈ H2(I) ∩ C1( ̄I) and the estimates

|E|1,I + k‖E‖0,I ≤ C‖Rℎ‖0,I, |E|2,I ≤ C(1 + k)‖Rℎ‖0,I

with a constant C independent of Rℎ and k.

Theorem 4.6 (Error estimate for TFPM, [15]). The error estimates

|E|1,I + k‖E‖0,I ≤ CM1kℎ‖F‖0,I, |E|2,I ≤ CM1k
2ℎ‖F‖0,I

hold with a constant C independent of ℎ and k.

Remark 4.7. From Theorem 4.6, we know that E(y) ≡ 0 if s(y) = c(y)n(y) is a piecewise constant function,
which implies that our method can get the exact solution in this case.

Remark 4.8. We extended the ideas of this section to higher-dimensional problems [33]. The algorithms and
the stability analysis are more complicated.

Remark 4.9. We also apply our TFPM to the �rst-order wave equation [32]. We get very good approximations
for the �rst-order wave equation and conservation laws, especially for the cases with high frequency waves
and discontinuities.
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5 TFPM for Discrete-Ordinate Transport Equations

5.1 The Discrete-Ordinate Transport Equations

The neutron transport equation is widely used in nuclear engineering, thermal radiation transport, charged-
particle transport and oil-well logging tool design, etc. Numericalmethods for the neutron transport equation
have been developed for decades [39–41] as an active area.

The discrete-ordinate transport equations are given by [41]

ù(cm
à
àx

÷m + sm
à
ày

÷m) + òT÷m = (òT − ù2 òa) ∑
n∈V

÷nwn + ù2q, m ∈ V, (5.1)

where V represents the index set V = {1, 2, . . . , 4M} with positive integerM,

cm = (1 − æ2m)
12 cos èm and sm = (1 − æ2m)

12 sin èm for |æm| ≤ 1, m ∈ V.

Let ÷m = ÷m(x, y) be an approximation of the density function ÷̃(x, y, æm, èm) for m ∈ V. For simplicity, we
assume that the spatial variables x, y satisfy x ∈ (0, a) and y ∈ (0, b) for two positive real numbers a and b,
that is,

D = {(x, y) | x ∈ (0, a), y ∈ (0, b)}

is the computational domain. At the boundary àD, the approximate particle density functions {÷m(x, y)}m∈V
satisfy the boundary conditions

{
÷m(0, y) = ÷Lm(y), cm > 0; ÷m(a, y) = ÷Rm(y), cm < 0; y ∈ [0, b];

÷m(x, 0) = ÷Bm(x), sm > 0; ÷m(x, b) = ÷Tm(x), sm < 0, x ∈ [0, a].
(5.2)

Here ÷Bm(x), ÷Tm(x), ÷Lm(y) and ÷Rm(y) (m ∈ V) are known functions. For any interface line á, we should
have the interface conditions

÷+m|á = ÷−m|á, m ∈ V. (5.3)

In order to have the discrete-ordinate equations (5.1) converge to the same di�usion limit equation, as
ù tends to zero (when the boundary conditions are independent of m), the quadrature set {cm, sm, wm}m∈V is
required to satisfy the conditions [62]

∑
n∈V

wn = 1, ∑
n∈V

wncn = 0, ∑
n∈V

wnsn = 0, ∑
n∈V

wncnsn = 0, ∑
n∈V

wn(c
2
n + s2n) =

2
3
. (5.4)

We choose a symmetric quadrature set {cm, sm, wm} by assuming

{{{{{{{{
{{{{{{{{
{

wm = wm+M = wm+2M = wm+3M > 0, m = 1, . . . ,M,

èm = èm+M −
ð
2
= èm+2M − ð = èm+3M −

3
2
ð ∈ (0, ð/2), m = 1, . . . ,M,

æm = æm+M = æm+2M = æm+3M ∈ [0, 1], m = 1, . . . ,M,

cm = (1 − æ2m)
12 cos èm, sm = (1 − æ2m)

12 sin èm, m ∈ V.

(5.5)

The requirement (5.4) indicates∑M
n=1 wn(1 − æ2n) =

1
6 and further

M

∑
n=1

wn æ
2
n =

1
12

. (5.6)

We can check that when the set {cm, sm, wm} is chosen by (5.5)–(5.6), the requirement (5.4) is satis�ed, so that
the discrete-ordinate system possesses the same di�usion limit as the original integral equation.

In this section, we consider the most commonly used Gaussian quadratures set

SN = {cm, sm, wm}m∈V
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withN a positive integer parameter [41]. In a quadrature set SN, each quadrant hasM = N(N+1)/2 ordinates
andN distinct æm ∈ (0, 1), which are the positive roots of the standard Legendre polynomial of degree 2N on
the interval [−1, 1]. The corresponding cm, sm, wm for S1, S2 are given in the following; for SN withN ≥ 3, they
can be found in [25]. It is easy to check that the Gaussian quadratures satisfy (5.5)–(5.6).
∙ Quadrature set S1: WhenN = 1 andM = N(N + 1)/2 = 1, æ21 = 1/3, è = ð/4, then

(c1, s1) = (
√3
3

,
√3
3

), (c2, s2) = (
−√3
3

,
√3
3

), (c3, s3) = (−
√3
3

, −
√3
3

), (c4, s4) = (
√3
3

, −
√3
3

),

and
w1 = w2 = w3 = w4 =

1
4
.

∙ Quadrature set S2: When N = 2 and M = N(N + 1)/2 = 3, the quadrature nodes and weights of the
quadrature set S2 are presented in Table 1.

æm èm cm sm 4wm

0.3399810 ð/8 0.8688461 0.3598879 0.3260726
0.3399810 3ð/8 0.3598879 0.8688461 0.3260726
0.8611363 ð/4 0.3594748 0.3594748 0.3478548 Table 1. The nodes and weights of the quadrature set S2.

From the view of mathematics, the discrete ordinate transport problem (5.1)–(5.3) is a singularly per-
turbed �rst-order partial di�erential system. We now discuss the numerical solution of the discrete ordinate
transport problem (5.1)–(5.3) using TFPM.

5.2 Special Solutions of the Homogeneous Discrete-Ordinate Transport Equations
with Constant Coe�cients

At �rst, we �nd the special solutions of the homogeneous discrete-ordinate equations

ù(cm
à
àx

+ sm
à
ày

)÷m + òT÷m = (òT − ù2òa) ∑
n∈V

øn÷n, m ∈ V, (5.7)

with constant coe�cients òT and òa. Let

Ψ(x) = (÷1(x), ÷2(x), . . . , ÷4M(x))T ∈ ℝ4M

with x = (x, y) ∈ ℝ2. Now we introduce an auxiliary function

C(x) = ∑
n∈V

øn÷n(x)

and rewrite system (5.7) in the following form:

(
L 0
0 1

)(
Ψ(x)
C(x)

) = (
0 e
wT 0

)(
Ψ(x)
C(x)

) . (5.8)

Here, L is a 4M × 4M diagonal matrix, whose m-th diagonal entry reads ù(cmàx + smày) + òT for m ∈ V. The
vectors e,w ∈ ℝ4M×1 are given by

e = (òT − ù2òa)(1, 1, . . . , 1)
T, w = (ø1, ø2, . . . , ø4M)T.

System (5.8) contains (4M + 1) unknown functionsΨ(z) and C(z).
In the following, we are going to �nd special solutions of system (5.8) in the form

(
Ψ(z)
C(z)

) = (
î
ç
) exp{

ëx + ìy
ù

}. (5.9)
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In order to determine the nonzero vector î = (î1, î2, . . . , î4M)T and scalar constant ç as well as ë and
ì, we substitute (5.9) into (5.8). This yields a matrix eigenvalue problem: �nd ë, ì ∈ ℂ and nonzero vector
(î, ç) ∈ ℂ4M × ℂ such that

(
A 0
0 1

)(
î
ç
) = (

0 e
wT 0

)(
î
ç
) . (5.10)

Here, A = A(ë, ì) is a 4M × 4M diagonal matrix, whosem-th diagonal entry reads cmë + sm ì + òT form ∈ V.
We de�ne (ë, ì) to be an eigenvalue pair of the problem, if there exists a nonzero solution ( îç ) to system (5.10).

The eigenvalue pairs. Note that the eigenvalue pair (ë, ì) is a zero point of the characteristic polynomial:

p4M(ë, ì) ≡ det (
A(ë, ì) −e
−wT 1

)

= ∏
m∈V

(cmë + sm ì + òT) − (òT − ù2òa) ∑
n∈V

[øn ∏
m ̸=n

(cmë + sm ì + òT)]. (5.11)

We have either
ð4M(ë, ì) ≡ ∏

m∈V
(cmë + sm ì + òT) = 0

or
q4M(ë, ì) ≡ 1 − ∑

n∈V

øn(òT − ù2òa)
cnë + sn ì + òT

= 0.

A few characteristic curves when ù = 0.1 for p4M(ë, ì) withM = 1, 3, 6, 10 can be found in [25].

The eigenvectors corresponding to (ë, ì). After (ë, ì) is obtained, the corresponding eigenvector (î, ç) is
given by the following two cases [24]:
(1) Suppose that cmë + sm ì + òT ̸= 0 for allm ∈ V. Then we get

îm =
òT − ù2òa

cmë + sm ì + òT
for allm ∈ V, and ç = 1.

(2) Suppose there is at least one m1 ∈ V with cm1ë + sm1 ì + òT = 0. There exists another m2 ∈ V such that
îm2 ̸= 0. Then the components of the eigenvector (î, ç) are given by

îm =
{{{
{{{
{

0 form ̸= m1, m2,
wm2 form = m1,
−wm1 form = m2

and ç = 0.

Now it is clear that after an eigenvalue pair (a zero point (ë, ì) of (5.11)) is found, the corresponding eigen-
vector (î, ç) can be obtained directly.

5.3 Tailored Finite Point Scheme

We now construct a �ve-point node-centered tailored �nite point scheme for the boundary value problem
(5.1)–(5.2) on the rectangular domainD.

On the rectangular domainΩ = [0, a] × [0, b], we have the grid nodes

zi,j = (xi, yj), i = 0, 1, . . . , I, j = 0, 1, . . . , J.

Here I and J are two positive integers. Let ℎ1 = a/I and ℎ2 = b/J be two mesh parameters, xi = iℎ1 with
i = 0, 1, . . . , I and yj = jℎ2 with j = 0, 1, . . . , J.

For each interior grid node zi,j, which is not on the domain boundary, let

Ei,j = {(x, y) | |x − xi| ≤ ℎ1, |y − yj| ≤ ℎ2}

be the rectangular patch centered at zi,j. The four adjacent grid nodes {zi+1,j, zi,j+1, zi−1,j, zi,j−1} are on the
boundary of patch Ei,j.
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Figure 3. TFPM stencil for the �ve-point node-centered scheme.

On each patch Ei,j, we choose the values for òT, òa and q by their local averages on Ei,j.
That is, the discrete ordinates equations (5.1) on Ei,j are approximated by the following �rst-order partial

di�erential equations with constant coe�cients:

ù(cm
à
àx

÷̃m + sm
à
ày

÷̃m) + òT ÷̃m = ù2q + (òT − ù2òa) ∑
n∈V

øn÷̃n form ∈ V. (5.12)

Let Ψ(0) = (÷(0)
1 , . . . , ÷(0)

4M)T = q
òa (1, 1, . . . , 1)T ∈ ℝ4M. Then Ψ(0) is a particular solution of the equations

(5.12), and the di�erenceΨ(z) = Ψ̃(z) −Ψ(0) satis�es the homogeneous equations

ù(cm
à
àx

÷m + sm
à
ày

÷m) + òT÷m = (òT − ù2òa) ∑
n∈V

øn÷n form ∈ V. (5.13)

Let K be a positive integer. We take K linearly independent special solutions of system (5.13) that have
the form

Ψ(k)(z) = î(k) exp{
ëk(x − xi) + ìk(y − yj) − max{ℎ1|ëk|, ℎ2|ìk|}

ù
} for k = 1, 2, . . . , K.

Here, as discussed in Section 5.2, (ëk, ìk) is a real eigenvalue pair of system (5.13) and î(k) is the eigenvector
associated with (ëk, ìk) for k = 1, 2, . . . , K.

For any constants ák (k = 1, 2, . . . , K), the vector-valued function

Ψ̃(z) = Ψ(0) +
K

∑
k=1

ákΨ
(k)(z) (5.14)

is a solution to the nonhomogeneous system (5.12).
For each patchEi,j, we choose four points zi+1,j, zi,j+1, zi−1,j, zi,j−1 on the boundary together with the center

zi,j to construct the �ve-point node-centered scheme for the local problem around zi,j (see Figure 3).
The discrete in-�ow boundary conditions for (5.12) are given by the K = 4 ⋅ (4M/2) = 8M values at the

four grid points zi+1,j, zi,j+1, zi−1,j, zi,j−1:

÷̃m(zi+1,j) with cm < 0, ÷̃m(zi,j+1) with sm < 0, ÷̃m(zi−1,j) with cm > 0, ÷̃m(zi,j−1) with sm > 0 (5.15)

for m ∈ V. Then the constants ák (k = 1, 2, . . . , K) in (5.14) are determined by the boundary conditions (5.15),
namely, form ∈ V,

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

÷(0)
m +

K

∑
k=1

ák÷
(k)
m (zi+1,j) = ÷̃m(zi+1,j) with cm < 0,

÷(0)
m +

K

∑
k=1

ák÷
(k)
m (zi,j+1) = ÷̃m(zi,j+1) with sm < 0,

÷(0)
m +

K

∑
k=1

ák÷
(k)
m (zi−1,j) = ÷̃m(zi−1,j) with cm > 0,

÷(0)
m +

K

∑
k=1

ák÷
(k)
m (zi,j−1) = ÷̃m(zi,j−1) with sm > 0.

(5.16)
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This is a system of 8M linear algebraic equations and the coe�cients ák (k = 1, 2, . . . , K) can be determined
by (5.15). Moreover, from (5.14), at the point zi,j,

Ψ̃(zi,j) = Ψ
(0) +

K

∑
k=1

ákΨ
(k)(zi,j). (5.17)

If we express the constants ák (k = 1, 2, . . . , K) in terms of the unknowns in (5.15) through solving (5.16), then
(5.17) becomes a �nite di�erence scheme that connects the unknowns at the grid node zi,j with those at the
four adjacent grid nodes. This is the �ve-point node-centered TFPM for the discrete ordinates equation.

Remark 5.1. If one of the grid nodes zi+1,j, zi,j+1, zi−1,j, zi,j−1 is on the physical boundary àD of the compu-
tational domain, we simply replace the corresponding component values ÷̃m with the physical boundary
conditions (5.2).

Remark 5.2. The numerical examples given in [25] show that the two TFPM schemes discussed in this section
are very e�ective, especially when the parameter ù is very small, when they can capture the boundary and
interior layers of the solutions on coarse meshes.

6 Multiscale TFPM for Multiscale Elliptic Problems

6.1 Introduction

Second-order elliptic boundary value problems with rough or highly oscillatory coe�cients arise in many
applied �elds, such as porous media and composite materials [1, 11, 64]. In this section, we discuss the nu-
merical solution of the multiscale elliptic boundary value problem given by

{
− ∇ ⋅ (Aù(x)∇uù(x)) + bù(x)uù(x) = fù(x) for all x = (x, y) ∈ Ω,

uù(x) = 0, x ∈ àΩ.
(6.1)

where Aù(x) is the given matrix function, the functions Aù(x), bù(x), fù(x) are highly oscillatory when the
parameter ù is small, andΩ ⊂ ℝ2 is a bounded domain.

In practical applications, equation (6.1) describes the steady state heat conduction through a composite
material, with uù(x) and Aù(x) interpreted as the temperature and the thermal conductivity. Equation (6.1) is
also the pressure equation in modeling two-phase �ow in porous media, with uù(x) and Aù(x) interpreted as
the pressure and the relative permeability tensor [28].

In fact, Aù(x) is a 2 × 2matrix function given by

Aù(x) = (aùij(x))2×2, x = (x, y) ∈ Ω.

Weassume that thematrixAù(x) is positive de�nitewith upper and lower bounds, namely, there exist positive
constantsm andM such that

m‖î‖2 ≤
2

∑
i,j=1

aùij(x)îiîj ≤ M‖î‖2, î = (î1, î2)
T ∈ ℝ2, x = (x, y) ∈ Ω.

Aù(x) = (aij(x, ù))2×2, bù(x) = b(x, ù) and fù(x) = f(x, ù) are oscillatory functions involving a small scale pa-
rameter ù. The main di�culty in �nding the numerical solution of the given problem (6.1) is that the solution
oscillates rapidly and requires a very �ne mesh ℎ = O(ù). This problem has attracted many researchers, for
instance, themultiscale �nite elementmethodwas given by Babuška and Osborn [3] for the one-dimensional
case, and by Hou andWu [28] for multidimensional cases. The heterogeneousmultiscale method (HMM) was
proposed by E and Engquist [10]. Wang, Guzman and Shu developed a multiscale discontinuous Galerkin
(DG) method [67].
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6.2 MsTFPM in Two-Dimensional Domain

We now discuss the numerical solution of problem (6.1) by the multiscale tailored �nite point method
(MsTFPM) in the two-dimensional case. Suppose that the domainΩ is [0, 1] × [0, 1].

Let H = 1/N denote the coarse mesh size, where N is a positive integer. We divide the domain Ω by a
set of lines parallel to the x,y-axis to form a coarse mesh grid. The crossing points setΩH is called the coarse
grid:

ΩH = {(xi, yj) | xi = iH, yj = jH, i = 0, . . . , N, j = 0, . . . , N}.

Suppose U = {uij | 0 ≤ i ≤ N, 0 ≤ j ≤ N} is a grid function de�ned on the coarse gird ΩH. We present two
multiscale tailored �nite point schemes to obtain the numerical solution of problem (6.1).

6.2.1 Numerical Scheme I

For each interior grid point (xi, yj) (1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1), we consider the local cell

Ωij = {(x, y) | (x − xi)
2 + (y − yj)

2 ≤ H2},

which is a disc with center x0 = (xi, yj) and radius H in the domain Ω. On the boundary of the local cell Ωij,
we take four points

x1 = (xi+1, yj), x2 = (xi, yj+1), x3 = (xi−1, yj), x4 = (xi, yj−1).

We try to �nd a numerical scheme for the numerical solution uij at the points x0, x1, x2, x3, and x4. From the
point of view of the TFPM, we only need to �nd four solutions of the homogeneous equation (6.1) and one
solution of equation (6.1) on each local cell Ωij, but in this problem, we need a new idea to �nd these �ve
solutions. A numerical method is used for this purpose.

First, on the circle àΩij, assume that the solution of equation (6.1) can be expanded as a Fourier series:

uù(x)|àΩij = uù(H, è) =
aù0(H)
2

+
∞

∑
n=1

(aùn(H) cos(nè) + bùn(H) sin(nè)),

where (H, è) is the ordered pair of polar coordinates of x = (x, y) ∈ àΩij with the pole at x0. On each local cell
Ωij, we consider the following cell problems:

{
{
{

− ∇ ⋅ (Aù(x)∇Uù
0(x)) + bù(x)Uù

0(x) = 0 for all x ∈ Ωij,

Uù
0(x) = 1, x ∈ àΩij,

(6.2)

{
{
{

− ∇ ⋅ (Aù(x)∇Uù
n(x)) + bù(x)Uù

n(x) = 0 for all x ∈ Ωij,

Uù
n(x) = cos(nè), x ∈ àΩij, n = 1, 2, 3, . . . ,

(6.3)

{
{
{

− ∇ ⋅ (Aù(x)∇Vù
n (x)) + bù(x)Vù

n (x) = 0 for all x ∈ Ωij,

Vù
n (x) = sin(nè), x ∈ àΩij, n = 1, 2, 3, . . . ,

(6.4)

{
{
{

− ∇ ⋅ (Aù(x)∇Uù
f(x)) + bù(x)Uù

f(x) = fù(x) for all x ∈ Ωij,

Uù
f(x) = 0, x ∈ àΩij.

(6.5)

The local cell problems (6.2)–(6.5) each have unique solutions. The solutionsUù
0(x),U

ù
n(x),V

ù
n (x), n = 1, 2, 3, . . .

of the local cell problems (6.2)–(6.4) form a complete basis for the homogeneous equation of problem (6.1) on
the local cellΩij. The solution Uù

f(x) comes from the inhomogeneous part, namely the forcing term fù(x).
Furthermore we can see that on the local cellΩij, the solution uù(x) of problem (6.1) is given by

uù(x)|àΩij = 1
2
aù0(H)Uù

0(x) +
∞

∑
n=1

(aùn(H)Uù
n(x) + bùn(H)Vù

n (x)) + Uù
f(x).
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In practical computations, for instance in the �ve-point numerical scheme, we only have the solution values
at the boundary grid points x = x1, x2, x3, x4. Therefore we take the solution in the space spanned by Uù

0(x),
Uù
1(x), V

ù
1 (x), U

ù
2(x) and Uù

f(x) to approximate the solution uù(x). Recall that

Uù
0(x)|àΩij = 1, Uù

1(x)|àΩij = cos(è), Vù
1 (x)|àΩij = sin(è), Uù

2(x)|àΩij = cos(2è).
We de�ne the basis function as follows. Let

Pù
1 (x) =

1
4
Uù
0(x) +

1
2
Uù
1(x) +

1
4
Uù
2(x), Pù

2 (x) =
1
4
Uù
0(x) +

1
2
Vù
1 (x) −

1
4
Uù
2(x),

Pù
3 (x) =

1
4
Uù
0(x) −

1
2
Uù
1(x) +

1
4
Uù
2(x), Pù

4 (x) =
1
4
Uù
0(x) −

1
2
Vù
1 (x) −

1
4
Uù
2(x).

Then at the boundary grid points x = x1, x2, x3, x4, we have Pù
i (x)|x=xj = äij. On the local cellΩij, let

uù,F(x) = uù(x1)P
ù
1 (x) + uù(x2)P

ù
2 (x) + uù(x3)P

ù
3 (x) + uù(x4)P

ù
4 (x) + Uù

f(x) (6.6)

denote the approximate solution based on the Fourier approximation. Moreover, let Eù(x) = uù(x) − uù,F(x)
denote the error function. It is easy to see that Eù(x) satis�es

−∇ ⋅ (Aù(x)∇Eù(x)) + bù(x)Eù(x) = 0, x ∈ Ωij, (6.7)

and
Eù(xk) = 0, xk ∈ àΩij, k = 1, 2, 3, 4. (6.8)

Therefore we use uù,F(x) to approximate the solution of problem (6.1) on the cell Ωij. Plugging x = x0 into the
equation (6.6), we arrive at

uù(x0) ≈ uù,F(x0) = uù(x1)P
ù
1 (x0) + uù(x2)P

ù
2 (x0) + uù(x3)P

ù
3 (x0) + uù(x4)P

ù
4 (x0) + Uù

f(x0). (6.9)

If we get all the solutions of the local cell problems (6.2)–(6.5), then from (6.9) we immediately obtain the
following discrete scheme for problem (6.1) on the coarse gridΩH:

{{{{
{{{{
{

uij = ui+1,jp
1
ij + ui,j+1p

2
ij + ui−1,jp

3
ij + ui,j−1p

4
ij + Uf

ij , i, j = 1, . . . , N − 1,

uij = 0, j = 0 or j = N,

uij = 0, i = 0 or i = N,

(6.10)

with pk
ij = Pù

k(x0) = Pù
k(xi, yj) (k = 1, 2, 3, 4) and Uf

ij = Uù
f(x0) = Uù

f(xi, yj).
In general, we cannot obtain the exact solutions of the local problems (6.2)–(6.5). Therefore the coe�-

cients pk
ij (k = 1, 2, 3, 4) and Uf

ij in the scheme (6.10) are unknown and we cannot directly use the discrete
scheme (6.10) to obtain the numerical solution of problem (6.1) on the coarse gridΩH. Therefore, we need to
solve the local problems (6.2)–(6.5) numerically to obtain the numerical approximations of {På

k(x), 1 ≤ k ≤ 4;
Uå
f(x)}. For example, if a �nite di�erence scheme is used, the approximate solutions are obtained by {På,ℎ

k (x),
1 ≤ k ≤ 4; Uå,ℎ

f (x)} with small mesh size ℎ ≪ H. Let pk,ℎ
ij = Pù,ℎ

k (x0) (k = 1, 2, 3, 4) and Uf,ℎ
ij = Uù,ℎ

f (x0). Using
{pk,ℎ

ij , 1 ≤ k ≤ 4; Uf,ℎ
ij } instead of {pk

ij, 1 ≤ k ≤ 4; Uf
ij } in (6.10), we obtain a �ve-point multiscale tailored �nite

point scheme for problem (6.1).

6.2.2 Numerical Scheme II

We propose another multiscale tailored �nite point scheme based on the Lagrange interpolation approxima-
tion. On the circle àΩij, we assume that the solution of equation (6.1) can be approximated by

uù(x)|àΩij = uù(H, è) ≈ uù(H, 0)L1(è) + uù(H,
ð
2
)L2(è) + uù(H, ð)L3(è) + uù(H,

3ð
2
)L4(è),
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where Lj(è) (j = 1, 2, 3, 4) are four piecewise linear Lagrange interpolation basis functions on è1 = 0, è2 = ð
2 ,

è3 = ð, è4 = 3ð
2 . That is, for j = 1, 2, 3, 4, Lj(è) are piecewise linear continuous functions of è, Lj(0) = Lj(2ð)

and

Lj(èi) =
{
{
{

0, i ̸= j,

1, i = j.
(6.11)

On each local cellΩij, we consider the following cell problems:

{
{
{

− ∇ ⋅ (Aù(x)∇Wù
k (x)) + bù(x)Wù

k (x) = 0 for all x ∈ Ωij,

Wù
k (x) = Lk(è), x ∈ àΩij, k = 1, 2, 3, 4,

(6.12)

{
{
{

− ∇ ⋅ (Aù(x)∇Wù
f(x)) + bù(x)Wù

f(x) = fù(x) for all x ∈ Ωij,

Wù
f(x) = 0, x ∈ àΩij.

(6.13)

The local cell problems (6.12) and (6.13) each have unique solutions. Let

uù,L(x) = uù(x1)W
ù
1 (x) + uù(x2)W

ù
2 (x) + uù(x3)W

ù
3 (x) + uù(x4)W

ù
4 (x) + Wù

f(x) (6.14)

denote the approximate solution based on the Lagrange approximation. Moveover, let Eù(x) = uù(x) − uù,L(x)
denote the error function. It is easy to see that Eù(x) also satis�es the equations (6.7)–(6.8). We use uù,L(x) to
approximate the solution of problem (6.1) onΩij. Plugging x = x0 into the equation (6.14), we arrive at

uù(x0) ≈ uù,L(x0) = uù(x1)W
ù
1 (x0) + uù(x2)W

ù
2 (x0) + uù(x3)W

ù
3 (x0) + uù(x4)W

ù
4 (x0) + Wù

f(x0). (6.15)

If we get all the solutions of the local cell problems (6.12) and (6.13), then from (6.15) we immediately obtain
the following discrete scheme for problem (6.1) on the coarse gridΩH:

{{{{
{{{{
{

uij = ui+1,jw
1
ij + ui,j+1w

2
ij + ui−1,jw

3
ij + ui,j−1w

4
ij + wf

ij , i, j = 1, . . . , N − 1,

uij = 0, j = 0 or j = N,

uij = 0, i = 0 or i = N,

(6.16)

with wk
ij = Wù

k (x0) = Wù
k (xi, yj) (k = 1, 2, 3, 4) and wf

ij = Wù
f(x0) = Wù

f(xi, yj). From the properties of the La-
grange interpolation basis functions (6.11) and the maximum principle [49], we obtain the following lemma.

Lemma 6.1. In the discrete scheme (6.16) for problem (6.1), we have the estimates

0 < wk
ij < 1, 1 ≤ k ≤ 4, 0 <

4

∑
k=1

wk
ij ≤ 1

for i, j = 1, . . . , N − 1.

From Lemma 6.1, we immediately �nd that the matrix of the linear equation system (6.16) is diagonal dom-
inant, thus it is invertible. Therefore the discrete scheme (6.16) for problem (6.1) has a unique solution U =
{uij | 0 ≤ i ≤ N, 0 ≤ j ≤ N}.

Before the scheme (6.16) is used, we need to obtain the approximate values of {wk
ij, 1 ≤ k ≤ 4; wf

ij} by
solving the local problems (6.12)–(6.13) as mentioned in Section 6.2.2.

In the multiscale tailored �nite point method (MsTFPM), the construction of the base functions and load
functions is fully decoupled from cell to cell; thus, thismethod is perfectly parallel and is naturally adapted to
massively parallel computers. At each cell, after we obtain the numerical solutions of the �ve local problems,
the MsTFPM scheme will be obtained directly.

7 Conclusion
In this paper, a review of the tailored �nite point method (TFPM) is given. The TFPM is a new approach for the
numerical solution of partial di�erential equations (PDEs). Essentially, the construction of a discrete scheme
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of a given PDE can be understood as a function approximation problem, in which the function is a solution of
the given PDE. The TFPM implement the approximation of the solution to the given PDEs at each point from a
di�erent point of view, using the solutions of the locally reduced problems to construct the �nite dimensional
function spaceWk (see Section 2). The tailored �nite point schemes preserve the important properties of the
original problems, such as discrete maximum principle, automatically. For singular perturbation problems,
the TFPM can also achieve good accuracy on all mesh points, even when the mesh size ℎ ≫ ù, in some cases
without any prior knowledge of the boundary layers. We also prove the uniform convergence of the TFPM for
the boundary value problem of the Helmholtz equation with high wave numbers in some cases. Applications
to the transport equation with interfaces and the multiscale elliptic problems are also reviewed. All of the
numerical results support our mathematical theory.

The development of TFPM is at its beginning. There are still many interesting possibilities that remain
to be explored, for example, the uniformly convergent analysis for singular perturbation problems or the
construction of schemes for singularly perturbed eigenvalue problems. Although many questions are still
open, we have seen that the framework of TFPM provides a basic idea for systematically designing discrete
schemes in a wide variety of applications. Thus the TFPM may apply to more problems successfully in the
future.
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supported by the NSFC projects no. 11322113, no. 91330203, and theNational Basic Research Programof China
under grant 2011CB309705.
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