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Abstract:Wedevelop an arbitrary-order primalmethod for di�usion problems on general polyhedralmeshes.
The degrees of freedom are scalar-valued polynomials of the same order at mesh elements and faces. The cor-
nerstone of the method is a local (elementwise) discrete gradient reconstruction operator. The design of the
method additionally hinges on a least-squares penalty term on faces weakly enforcing thematching between
local element- and face-based degrees of freedom. The scheme is proved to optimally converge in the energy
norm and in the L2-norm of the potential for smooth solutions. In the lowest-order case, equivalence with the
Hybrid Finite Volume method is shown. The theoretical results are con�rmed by numerical experiments up
to order 4 on several polygonal meshes.
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1 Introduction
Let Ω ⊂ ℝd, d ∈ {2, 3}, denote an open bounded connected polygonal/polyhedral domain. In this work we
propose an arbitrary-order primal hybrid method for the model di�usion problem

−Δu = f inΩ,
u = 0 on àΩ,

(1)

where u denotes the potential and f a forcing term. More general boundary conditions and di�usion tensors
could be considered, but we stick to the simpler case (1) for ease of presentation. For X ⊂ Ω, we respectively
denote by (⋅, ⋅)X and ‖⋅‖X the standard inner product andnorm in L2(X), with the convention that the subscript
is omitted whenever X = Ω and that the same notation is used in L2(X)d. Classically, the weak formulation
of (1) consists, for f ∈ L2(Ω), in seeking u ∈ U0 := H1

0 (Ω) such that

(∇u,∇v) = (f, v) for all v ∈ U0. (2)

Approximation methods on general polyhedral meshes have received an increasing attention over the
last few years, motivated by applications (e.g., in geosciences) where the mesh cannot be easily adapted to
the needs of the numerical scheme. To handle general discretizations, a wide range of new numerical meth-
ods has been developed. We can cite, e.g., the Mimetic Finite Di�erence (MFD) [5], the Hybrid Finite Volume
(HFV) [14], and the Mixed Finite Volume (MFV) [11] methods, that have been proved in [12] to be closely re-
lated. Another example is the recent framework of Compatible Discrete Operator (CDO) schemes [4], forwhich
a correspondence is establishedwith nodalMFD discretizations for vertex-based CDO schemes andwithMFV
for cell-based CDO schemes. All these methods share the particularity of being lowest-order, which may be
su�cient for most practical cases. However, the emphasis has been recently set on the design of higher-order
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discretizations capable of handling comparably general meshes. Results in this direction include the polygo-
nal and extended Finite Element (FE) methods [16, 17] where nonpolynomial shape functions are considered.
Furthermore, high-order MFD schemes have been recently analyzed in [3]. Even more recently, the Virtual
Element Method (VEM) was introduced in [2], broadening the ideas underpinning the MFD approach and,
at the same time, allowing one to design arbitrary-order conforming �nite element methods on polyhedral
meshes, without the need to specify the additional nonpolynomial shape functions. The VEM also allows for
higher-order continuity conditions between neighboring elements.

In the present work, we show how the schemes based on local reconstruction operators, originally de-
veloped in the context of linear elasticity in [9], apply to the design of an arbitrary-order primal (as opposed
to the mixed case considered in [8]) method for the model di�usion problem (1). The resulting scheme can
be viewed as a high-order extension of the HFV method, or of the generalized Crouzeix–Raviart method in-
troduced in [10] in the context of linear elasticity. For a given polynomial degree k ≥ 0, we select as degrees
of freedom (DOFs) scalar-valued polynomials at mesh elements and faces up to degree k. The associated in-
terpolation operator maps potentials in H1(Ω) to their polynomial moments up to degree k at elements and
faces. Then, themethod is de�ned in two steps: (i) we devise a local discrete gradient reconstruction operator
of order k in terms of the local DOFs by solving an inexpensive problem inside each element; (ii) we design a
least-squares penalty term that is local to one element (i.e., it does not a�ect the stencil of the method), that
weakly enforces the matching between local element- and face-based DOFs, and that preserves the order of
the gradient reconstruction. A key ingredient in the design of the penalty term is a potential reconstruction of
order (k+1) obtainedby correcting elementDOFs by ahigher-order term inferred from thediscrete gradient re-
construction. Amajor di�erencewith respect to VEM is that nodal unknowns are not present, which results in
amore compact stencil (especially in three space dimensions). Additionally, as usual with the present choice
of DOFs, static condensation allows one to solve a global system in terms of face unknowns only.

The Hybrid Discontinuous Galerkin (HDG) method [6], which is devised on di�erent ideas, also hinges
on element- and face-based DOFs. Themain di�erence is that the present choice of DOFs only involves scalar-
valued polynomials attached to elements, which yields signi�cant computational savings in the static con-
densation, especially in three space dimensions. The present hybrid high-order method is also expected to
outperform Interior Penalty Discontinuous Galerkin (IPDG)methods. First, we notice that achieving the same
accuracy with IPDGmethods requires to use cell-based polynomials of order (k+1). Thus, for d = 3, the num-
ber ofDOFs is 1

6 (k+2)(k+3)(k+4) times thenumber of cells for IPDGmethods (growingas 1
6k

3), and 1
2 (k+1)(k+2)

times the number of faces for the present method after static condensation (growing as 1
2k

2). Blocking DOFs
at cells and faces, respectively, the stencil resulting from IPDG methods (consisting of cell neighbors in the
sense of faces) is approximately twicemore compact than that of the presentmethod (consisting of face neigh-
bors in the sense of cells), but, as mentioned above, the size of the blocks is (much) smaller for the present
method, especially with high polynomial orders.

The paper is organized as follows. In Section 2 we introduce the method: we recall the notion of admis-
sible mesh sequence, introduce the spaces of DOFs, derive the gradient reconstruction, present the discrete
problem, study its well-posedness, and link our scheme to the HFV method in the lowest-order case. In Sec-
tion 3 we perform the error analysis. We prove a convergence rate for smooth solutions of order (k + 1) in
the energy norm and of order (k + 2) in the L2-norm of the error, respectively. Incidentally, this latter result
provides an optimal L2-norm potential error estimate for HFV schemes with arbitrary penalty parameter (as
opposed to [10], where a speci�c choice yielding continuity of the potential reconstruction at face barycen-
ters is considered). Finally, in Section 4, we present numerical examples up to order 4 on various polygonal
meshes con�rming the theoretical predictions.
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2 Description of the Method

2.1 Admissible Mesh Sequences

We recall the notion of admissible mesh sequence of [7, Chapter 1]. Let H ⊂ ℝ+∗ denote a countable set of
meshsizes having 0 as its unique accumulation point. We consider ℎ-re�ned mesh sequences (Tℎ)ℎ∈H where,
for all ℎ ∈ H, Tℎ is a �nite collection of nonempty disjoint open polygons/polyhedra (the elements) Tℎ = {T}
such that Ω = ⋃T∈Tℎ T and ℎ = maxT∈Tℎ ℎT (ℎT stands for the diameter of the element T). We call a face any
hyperplanar closed connected subset F of Ω with positive (d−1)-dimensional measure and such that either
(i) there exist T1, T2 ∈ Tℎ such that F ⊂ àT1 ∩ àT2 (and F is an interface) or (ii) there exists T ∈ Tℎ such that
F ⊂ àT ∩ àΩ (and F is a boundary face). Interfaces are collected in the set Fiℎ, boundary faces in Fbℎ, and we
let Fℎ := Fiℎ ∪ Fbℎ. The diameter of a face F ∈ Fℎ is denoted by ℎF. For all T ∈ Tℎ, FT := {F ∈ Fℎ | F ⊂ àT}
denotes the set of faces lying on the boundary of T and, for all F ∈ FT, ⃗nTF is the unit normal to F pointing
out of T. Finally, the l-dimensional Lebesgue measure, 0 ≤ l ≤ d, is denoted by |⋅|l.

De�nition 1 (Admissible mesh sequence). The mesh sequence (Tℎ)ℎ∈H is admissible if, for all ℎ ∈ H, Tℎ ad-
mits a matching simplicial submesh Tℎ and there exists a real number ý > 0 independent of ℎ such that, for
all ℎ ∈ H, (i) ýℎS ≤ rS holds for all simplex S ∈ Tℎ of diameter ℎS and inradius rS, and (ii) ýℎT ≤ ℎS holds for
all T ∈ Tℎ and all S ∈ Tℎ such that S ⊂ T.

In what follows, we often abbreviate as a ≲ b the inequality a ≤ Cb with C > 0 independent of ℎ but possibly
depending on the mesh regularity parameter ý.

We next recall some basic results valid for admissible mesh sequences. First, according to [7, Lemma
1.42], for all ℎ ∈ H, all T ∈ Tℎ, and all F ∈ FT, ℎF is comparable to ℎT in the sense that

ý2ℎT ≤ ℎF ≤ ℎT. (3)

Moreover, [7, Lemma 1.41] shows that there exists an integerNà depending on ý and d such that

max
T∈Tℎ card(FT) ≤ Nà for all ℎ ∈ H. (4)

There also exist real numbers Ctr and Ctr,c depending on ý but independent of ℎ such that the following dis-
crete and continuous trace inequalities hold for all T ∈ Tℎ and F ∈ FT, cf. [7, Lemmata 1.46 and 1.49]:

‖v‖F ≤ Ctrℎ
− 12
F ‖v‖T for all v ∈ ℙld(T), (5)

‖v‖àT ≤ Ctr,c(ℎ
−1
T ‖v‖2T + ℎT‖∇v‖2T) 12 for all v ∈ H1(T), (6)

where, forX being an n-dimensional subset ofΩ (n ≤ d),ℙln(X) is spanned by the restrictions toX of n-variate
polynomials of total degree≤ l. Using [7, Lemma 1.40] togetherwith the results of [13], one canprove that there
exists a real number Capp depending on ý and l but independent of ℎ such that, for all T ∈ Tℎ, denoting by ðl

T
the L2-orthogonal projector on ℙld(T), the following holds: For all s ∈ {1, . . . , l + 1}, and all v ∈ Hs(T),

|v − ðl
Tv|Hm(T) + ℎ

12
T |v − ðl

Tv|Hm(àT) ≤ Cappℎ
s−m
T |v|Hs(T) for allm ∈ {0, . . . , (s − 1)}. (7)

Finally, the following Poincaré inequality is valid for all T ∈ Tℎ and all v ∈ H1(T) such that ∫T v = 0:

‖v‖T ≤ CPℎT‖∇v‖T, (8)

where CP = ð−1 for convex elements (cf. [1]). For more general element shapes, CP can be estimated in terms
of ý.

2.2 Degrees of Freedom

Let a polynomial degree k ≥ 0 be �xed. For all T ∈ Tℎ, we de�ne the local space of DOFs as follows:

Uk
T := ℙkd(T) × {×

F∈FT ℙ
k
d−1(F)}. (9)
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The global space of DOFs is obtained by patching interface values in (9):

Uk
ℎ := {×

T∈Tℎ ℙ
k
d(T)} × {×

F∈Fℎ ℙ
k
d−1(F)}. (10)

Boundary conditions can be embedded in the discrete space (10) by letting

Uk
ℎ,0 := {vℎ = ((vT)T∈Tℎ , (vF)F∈Fℎ ) ∈ Uk

ℎ | vF ≡ 0 for all F ∈ F
b
ℎ}. (11)

For all T ∈ Tℎ, we denote by LT : Uk
ℎ → Uk

T the restriction operator that maps the global DOFs in Uk
ℎ to

the corresponding local DOFs in Uk
T. The local interpolation operator IkT : H1(T) → Uk

T is such that, for all
v ∈ H1(T),

IkTv := (ðk
Tv, (ð

k
Fv)F∈FT), (12)

where ðk
F denotes the L2-orthogonal projector on ℙkd−1(F). The corresponding global interpolation operator

Ikℎ : H1(Ω) → Uk
ℎ is such that, for all v ∈ H1(Ω),

Ikℎv := ((ðk
Tv)T∈Tℎ , (ðk

Fv)F∈Fℎ).
When applied to functions in U0, Ikℎ maps onto Uk

ℎ,0.

2.3 Local Gradient Reconstruction

For all T ∈ Tℎ, we de�ne the local gradient reconstruction operator G⃗k
T : Uk

T → ∇ℙk+1,0d (T) (where, for l ≥ 1,
ℙl,0d (T) stands for the space of d-variate polynomial functions of total degree ≤ l that have zero average on T)
such that, for all v := (vT, (vF)F∈FT ) ∈ Uk

T and all w ∈ ℙk+1,0d (T),

(G⃗k
Tv,∇w)T = (∇vT,∇w)T + ∑

F∈FT(vF − vT,∇w ⋅ ⃗nTF)F. (13)

Since G⃗k
Tv ∈ ∇ℙk+1,0d (T) means that there is v ∈ ℙk+1,0d (T) such that G⃗k

Tv = ∇v, (13) corresponds to the local
(well-posed) Neumann problem

(∇v,∇w)T = (∇vT,∇w)T + ∑
F∈FT(vF − vT,∇w ⋅ ⃗nTF)F. (14)

Solving (14) requires to invert the local sti�ness matrix inside each element, which can be performed e�ec-
tively via a Cholesky factorization.

Remark 2 (Compatibility condition). Observing that the right-hand side of the (discrete) Neumann problem
(14) satis�es the usual compatibility condition for test functions in ℙ0d(T), we infer that (13) and (14) hold in
fact for all w ∈ ℙk+1d (T).

We next introduce the potential reconstruction operator pk
T : Uk

T → ℙk+1d (T) such that, for all v ∈ Uk
T,∇pk

Tv := G⃗k
Tv, ∫

T

pk
Tv := ∫

T

vT. (15)

In practice, the potential reconstruction pk
T is computed once (14) has been solved, since, recalling that v has

zero average on T, we infer that pk
Tv = v + 1/|T|d ∫T vT.

Lemma 3 (Approximation properties for pk
TIkT). There exists a real number C > 0, depending on ý but indepen-

dent of ℎT such that, for all v ∈ Hk+2(T),

‖v − pk
TIkTv‖T + ℎ

12
T‖v − pk

TIkTv‖àT + ℎT‖∇(v − pk
TIkTv)‖T + ℎ

32
T‖∇(v − pk

TIkTv)‖àT ≤ Cℎk+2T ‖v‖Hk+2(T). (16)
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Proof. Let v ∈ Hk+2(T). Integrating by parts the right-hand side of (13) and using the de�nition (15) of the
operator pk

T together with the de�nition (12) of the interpolation operator IkT yields, for allw ∈ ℙk+1d (T) (cf. Re-
mark 2),

(∇pk
TIkTv,∇w)T = (G⃗k

TIkTv,∇w)T = −(ðk
Tv,∇ ⋅ (∇w))T + ∑

F∈FT(ð
k
Fv,∇w ⋅ ⃗nTF)F

= −(v,∇ ⋅ (∇w))T + ∑
F∈FT(v,∇w ⋅ ⃗nTF)F,

since ∇ ⋅ (∇w) ∈ ℙk−1d (T) ⊂ ℙkd(T) and ∇w|F ⋅ ⃗nTF ∈ ℙkd−1(F). Performing a second integration by parts leads to

(∇v − ∇pk
TIkTv,∇w)T = 0 for all w ∈ ℙk+1d (T). (17)

The orthogonality condition (17) implies that

‖∇(v − pk
TIkTv)‖T = inf

z∈ℙk+1d (T)
‖∇v − ∇z‖T ≲ ℎk+1T ‖v‖Hk+2(T), (18)

where we have used the approximation property (7) of ðk+1
T (with s = k + 2 and m = 1). Then, from (18),

the fact that ∫T p
k
TIkTv = ∫T ð

k
Tv = ∫T v owing to the second relation in (15) and the de�nition (12) of the local

interpolation operator, and the Poincaré inequality (8), we infer that

‖v − pk
TIkTv‖T ≲ ℎk+2T ‖v‖Hk+2(T). (19)

The consecutive use of the continuous trace inequality (6) and (18)–(19) yields

ℎT‖v − pk
TIkTv‖

2
àT ≲ ‖v − pk

TIkTv‖
2
T + ℎ2T‖∇(v − pk

TIkTv)‖
2
T ≲ ℎ2(k+2)T ‖v‖2Hk+2(T).

Finally, the bound on ℎ
32
T‖∇(v−pk

TIkTv)‖àT is obtained by introducing ±ðk
T∇v inside the norm, using the triangle

inequality, and concluding with the approximation property (7) of ðk
T (applied componentwise to ∇v with

s = k+ 1 andm = 0), the discrete trace inequality (5), the bound (4) on card(FT), the mesh regularity property
(3), the fact that ∇pk

TIkTv ∈ [ℙkd(T)]
d so that ‖ðk

T∇v − ∇pk
TIkTv‖T ≤ ‖∇(v − pk

TIkTv)‖T, and (18).

2.4 Discrete Problem and Well-Posedness

To discretize the left-hand side of (2), we introduce the following bilinear forms on Uk
ℎ × Uk

ℎ:

aℎ(uℎ, vℎ) := ∑
T∈Tℎ aT(LTuℎ, LTvℎ), sℎ(uℎ, vℎ) := ∑

T∈Tℎ sT(LTuℎ, LTvℎ), (20)

where, for all T ∈ Tℎ, the local bilinear forms aT and sT on Uk
T × Uk

T are such that

aT(u, v) := (G⃗k
Tu, G⃗k

Tv)T + sT(u, v), sT(u, v) := ∑
F∈FT

1
ℎF

(ðk
F(uF − Pk

Tu), ðk
F(vF − Pk

Tv))F, (21)

where the local potential reconstruction Pk
T : Uk

T → ℙk+1d (T) is de�ned such that, for all v ∈ Uk
T,

Pk
Tv := vT + (pk

Tv − ðk
Tp

k
Tv). (22)

The term in parentheses can be interpreted as a higher-order correction of the element unknown vT derived
from the discrete gradient reconstruction operator (13) (note that this correction is independent of the second
relation in (15)). The stabilization bilinear form sT de�ned by (21) introduces a least-squares penalty of the L2-
orthogonal projection on ℙkd−1(F) of the di�erence between vF and (Pk

Tv)|F, cf. Remark 6 below. Introducing
the global discrete gradient operator G⃗k

ℎ : Uk
ℎ → ×T∈Tℎ ∇ℙk+1,0d (T) such that, for all vℎ ∈ Uk

ℎ,

(G⃗k
ℎvℎ)|T := G⃗k

TLTvℎ for all T ∈ Tℎ, (23)
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we can reformulate the bilinear form aℎ de�ned in (20) as

aℎ(uℎ, vℎ) = (G⃗k
ℎuℎ, G⃗

k
ℎvℎ) + sℎ(uℎ, vℎ).

We de�ne the local and global energy seminorms as follows:

‖v‖2a,T := aT(v, v) for all v ∈ Uk
T, ‖vℎ‖

2
a,ℎ := ∑

T∈Tℎ‖LTvℎ‖
2
a,T for all vℎ ∈ Uk

ℎ, (24)

and observe that, owing to (20),
aℎ(vℎ, vℎ) = ‖vℎ‖

2
a,ℎ. (25)

The forcing term in (2) is discretized by means of the linear form on Uk
ℎ such that

lℎ(vℎ) := ∑
T∈Tℎ(f, vT)T. (26)

The discrete problem reads: Find uℎ ∈ Uk
ℎ,0 such that, for all vℎ ∈ Uk

ℎ,0,

aℎ(uℎ, vℎ) = lℎ(vℎ). (27)

The stability of the method is expressed in terms of the followingH1
0 (Ω)-like discrete norm:

‖vℎ‖
2
1,ℎ := ∑

T∈Tℎ‖LTvℎ‖
2
1,T for all vℎ ∈ Uk

ℎ,0, ‖v‖21,T := ‖∇vT‖2T + |v|21,àT for all v ∈ Uk
T, (28)

where |v|21,àT := ∑F∈FT ℎ−1F ‖vF−vT‖
2
F. Since the homogeneous Dirichlet boundary condition is embedded in the

discrete space Uk
ℎ,0 de�ned in (11), the map ‖⋅‖1,ℎ de�nes a norm on Uk

ℎ,0. Using a discrete Poincaré inequality
in broken polynomial spaces, see [7, Corollary 5.4] and references therein, it is possible to show that for all
vℎ ∈ Uk

ℎ,0, ‖vℎ‖ ≲ ‖vℎ‖1,ℎ, where vℎ is the piecewise polynomial function such that vℎ|T := vT for all T ∈ Tℎ.

Lemma 4 (Norm equivalence). There exists ç > 0 such that, for all T ∈ Tℎ and all v ∈ Uk
T,

ç−1‖v‖21,T ≤ ‖v‖2a,T ≤ ç‖v‖21,T. (29)

Consequently, for all vℎ ∈ Uk
ℎ,

ç−1‖vℎ‖
2
1,ℎ ≤ ‖vℎ‖

2
a,ℎ ≤ ç‖vℎ‖

2
1,ℎ. (30)

Proof. Let T ∈ Tℎ and v ∈ Uk
T. Taking w = vT ∈ ℙkd(T) ⊂ ℙ

k+1
d (T) in (13) (cf. Remark 2) yields

‖∇vT‖2T = (G⃗k
Tv,∇vT)T − ∑

F∈FT(vF − vT,∇vT ⋅ ⃗nTF)F ≤ ‖G⃗k
Tv‖2T +

1
2
‖∇vT‖2T +NàC

2
tr|v|

2
1,àT, (31)

where we have used the Cauchy–Schwarz and Young’s inequalities, and applied the discrete trace inequality
(5) and the bound (4) on card(FT) for the face term. Owing to (31), we infer that

‖∇vT‖2T ≲ ‖G⃗k
Tv‖2T + |v|21,àT. (32)

Let now F ∈ FT. Adding and subtracting ðk
FP

k
Tv, and using the triangle inequality yields

ℎ−
12

F ‖vF − vT‖F ≤ ℎ−
12

F ‖ðk
F(vF − Pk

Tv)‖F + ℎ−
12

F ‖ðk
F(p

k
Tv − ðk

Tp
k
Tv)‖F, (33)

where we have used the fact that both vF and vT|F belong to ℙkd−1(F) together with the de�nition (22) of Pk
T.

The second term on the right-hand side of (33) can be estimated as

ℎ−
12

F ‖ðk
F(p

k
Tv − ðk

Tp
k
Tv)‖F ≤ Ctrℎ

−1
F ‖pk

Tv − ðk
Tp

k
Tv‖T ≤ CtrCappý

−2‖G⃗k
Tv‖T,

where we have used the discrete trace inequality (5), the approximation property (7) of ðk
T (with s = 1 and

m = 0), the de�nition (15) of ∇pk
Tv, and the mesh regularity property (3). Hence,

ℎ−
12

F ‖vF − vT‖F ≲ ℎ−
12

F ‖ðk
F(vF − Pk

Tv)‖F + ‖G⃗k
Tv‖T. (34)
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Squaring (34), summing over F ∈ FT, and using the bound (4) on card(FT) yields

|v|21,àT ≲ sT(v, v) + ‖G⃗k
Tv‖2T. (35)

The �rst inequality in (29) follows from (32) and (35). Turning to the second inequality, we deduce from (13),
the Cauchy–Schwarz inequality, the discrete trace inequality (5), and the bound (4) on card(FT) that

‖G⃗k
Tv‖T = sup

w∈ℙk+1,0d (T)

(G⃗k
Tv,∇w)T
‖∇w‖T ≤ ‖∇vT‖T + ∑

F∈FT Ctrℎ
− 12
F ‖vF − vT‖F ≲ ‖v‖1,T.

Moreover, for all F ∈ FT, the triangle inequality and the fact that ðk
F is a projector yield

ℎ−
12

F ‖ðk
F(vF − Pk

Tv)‖F ≤ ℎ−
12

F ‖vF − vT‖F + ℎ−
12

F ‖vT − Pk
Tv‖F,

and, owing to the de�nition (22) of Pk
T, the second term on the right-hand side is equal to ℎ−

12
F ‖pk

Tv − ðk
Tp

k
Tv‖F.

Using the mesh regularity property (3), the discrete trace inequality (5), and the approximation property (7)
of ðk

T (with s = 1 andm = 0), we infer that

ℎ−
12

F ‖pk
Tv − ðk

Tp
k
Tv‖F ≲ ℎ−1T ‖pk

Tv − ðk
Tp

k
Tv‖T ≲ ‖∇pk

Tv‖T = ‖G⃗k
Tv‖T.

Combining the above bounds yields the second inequality in (29). Finally, summing (29) over T ∈ Tℎ proves
(30).

Corollary 5 (Well-posedness). Problem (27) is well-posed.

Proof. Combining (25) with Lemma 4 yields aℎ(vℎ, vℎ) = ‖vℎ‖
2
a,ℎ ≥ ç−1‖vℎ‖

2
1,ℎ. Since ‖ ⋅ ‖1,ℎ is a norm on Uk

ℎ,0, the
well-posedness results from the Lax–Milgram Lemma.

Remark 6 (Stabilization). The design of the local stabilization bilinear form sT is tailored to ensure control of
the ‖ ⋅ ‖1,T-normas re�ected by the �rst inequality in (29), and, at the same time, to yield the same convergence
order as the gradient reconstruction, cf. the proof of Theorem 8 below, in particular (45). This is the reason
why sT is not set to be, e.g., sT(u, v) := ∑F∈FT ℎ−1F (uF − uT, vF − vT)F (this choice trivially ensures control of the
|⋅|1,àT-seminorm), but the (projections of the) high-order potential reconstructions ðk

FP
k
Tu and ðk

FP
k
Tv are used

in place of uT and vT, respectively.

2.5 Link with the HFV Method for k = 0
In the lowest-order case (k = 0), the proposed method shares strong links with the HFV method of [14]. We
assume in this section that, for all ℎ ∈ H and all T ∈ Tℎ, T is star-shaped with respect to its barycenter ⃗xT
and, for all F ∈ FT, one has

̃ýℎT ≤ dT,F ≤ ℎT, (36)

where dT,F denotes the orthogonal distance between ⃗xT and F, and ̃ý > 0 is a mesh regularity parameter
independent of ℎ. The HFV discretization of problem (1) reads: Find uℎ ∈ U0

ℎ,0 such that, for all vℎ ∈ U0
ℎ,0,

∑
T∈Tℎ|T|d(GTLTuℎ) ⋅ (GTLTvℎ) + ∑

T∈Tℎ ∑
F∈FT|TF|d(RT,FLTuℎ)(RT,FLTvℎ) = ∑

T∈Tℎ|T|dfTvT, (37)

where TF denotes the pyramid of base F and apex ⃗xT such that |TF|d = |F|d−1dT,F/d, fT := |T|−1d ∫T f for all
T ∈ Tℎ and, for all v ∈ U0

T, denoting by ⃗xF the barycenter of F ∈ FT,

GTv :=
1

|T|d
∑

F∈FT|F|d−1(vF − vT) ⃗nTF, RT,Fv :=
d

12
dT,F

(vF − vT − GTv ⋅ ( ⃗xF − ⃗xT)). (38)

Proposition 7 (Equivalence with the HFV discretization for k = 0). The discrete problem (37) coincides with
(27) for k = 0 and ⃗xT the barycenter of T, up to the (uniformly comparable) change of scaling dT,F ← ℎF in the
penalty term RT,F de�ned by (38).
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Proof. To derive an explicit expression for G⃗0
Tv, we notice that∇ℙ1,0d = [ℙ0d]

d = span{e1, . . . , ed},
where (ei)i∈{1,...,d} denotes the canonical basis of ℝd. Then, for any T ∈ Tℎ, testing (13) with wi ∈ ℙ

1,0
d (T) such

that ∇wi = ei for all i ∈ {1, . . . , d}, it is straightforward that, for any v ∈ U0
T, G⃗

0
Tv ≡ GTv. Additionally, for all

⃗x ∈ T, p0
Tv( ⃗x) ≡ GTv ⋅ ( ⃗x − ⃗xT) + |T|−1d ∫T vT ∈ ℙ1d(T), and hence P0

Tv( ⃗x) ≡ vT + GTv ⋅ ( ⃗x − ⃗xT), whose restriction
to F belongs to ℙ1d−1(F). As a consequence, for all F ∈ FT, we infer that

ð0
F(vF − P0

Tv) = vF − vT − GTv ⋅ ( ⃗xF − ⃗xT) = dT,Fd
− 12RT,Fv.

Plugging these expressions into (20), (21), and (26), and comparing (27) with (37), we observe that the only
di�erence between the two discretizations lies in the scaling choice for the least-squares penalty term (the
scaling is d−1T,F in (37) and ℎ−1F in (27)). The two choices are uniformly comparable owing to (36) and (3).

3 Error Analysis

3.1 Energy-Norm Error Estimate

Theorem 8 (Discrete error estimate). Let u ∈ U0 and uℎ ∈ Uk
ℎ,0 denote the unique solutions to (2) and (27)

respectively, and assume the additional regularity u ∈ Hk+2(Ω). Then, letting ûℎ := Ikℎu, there exists a real
number C > 0 depending on ý but independent of ℎ such that

ç−
12 ‖ûℎ − uℎ‖1,ℎ ≤ ‖ûℎ − uℎ‖a,ℎ ≤ Cℎk+1‖u‖Hk+2(Ω). (39)

Proof. The �rst inequality in (39) results from the �rst inequality in (30). Moreover, using (25), (30), and the
fact that ûℎ − uℎ ∈ Uk

ℎ,0 yields

‖ûℎ − uℎ‖a,ℎ ≤ ç
12 aℎ(ûℎ − uℎ, ûℎ − uℎ)

‖ûℎ − uℎ‖1,ℎ
≤ ç

12 sup
vℎ∈Ukℎ,0 , ‖vℎ‖1,ℎ=1 aℎ(ûℎ − uℎ, vℎ).

Owing to (27), we infer that
‖ûℎ − uℎ‖a,ℎ ≤ ç

12 sup
vℎ∈Ukℎ,0 , ‖vℎ‖1,ℎ=1Eℎ(vℎ), (40)

where Eℎ(vℎ) := aℎ(ûℎ, vℎ) − lℎ(vℎ) is the consistency error. We derive a bound for this quantity for a generic
vℎ ∈ Uk

ℎ,0. Recalling that f = −Δu a.e. inΩ, an elementwise integration by parts in (26) yields

lℎ(vℎ) = ∑
T∈Tℎ(∇u,∇vT)T + ∑

T∈Tℎ ∑
F∈FT(vF − vT,∇u ⋅ ⃗nTF)F, (41)

where we have used the fact that the �ux is continuous at interfaces and that the homogeneous Dirichlet
boundary condition is embedded in Uk

ℎ,0 (cf. (11)) to introduce vF in the second term on the right-hand side
of (41). Choosing w = ǔT := pk

TLTûℎ = pk
TIkT(u|T) in the de�nition (13) of G⃗k

TLTvℎ for all T ∈ Tℎ (recall from
Remark 2 that the zero-mean condition is not needed on w), and owing to (15) and (23), we infer that

(G⃗k
ℎûℎ, G⃗

k
ℎvℎ) = ∑

T∈Tℎ(∇ǔT,∇vT)T + ∑
T∈Tℎ ∑

F∈FT(vF − vT,∇ǔT ⋅ ⃗nTF)F. (42)

Combining (42) with (41), we arrive at

Eℎ(vℎ) = ∑
T∈Tℎ(∇(ǔT − u),∇vT)T + ∑

T∈Tℎ ∑
F∈FT(vF − vT, (∇ǔT − ∇u) ⋅ ⃗nTF)F

+ ∑
T∈Tℎ sT(LTûℎ, LTvℎ) =: T1 + T2 + T3. (43)
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To estimate T1 and T2, we use the Cauchy–Schwarz inequality followed by the approximation property (16)
of pk

TIkT (and also the bound (4) on card(FT) for T2). Recalling (28), we infer that

|T1| + |T2| ≲ ℎk+1‖u‖Hk+2(Ω)‖vℎ‖1,ℎ. (44)

To estimate T3, let T ∈ Tℎ and F ∈ FT. We observe that

ℎ−
12

F ‖ðk
F(ûF − Pk

TLTûℎ)‖F = ℎ−
12

F ‖ðk
F(u − ǔT) − ðk

T(u − ǔT)‖F

≤ ℎ−
12

F ‖u − ǔT‖F + ℎ−1F Ctr‖u − ǔT‖T
≲ ℎk+1T ‖u‖Hk+2(T), (45)

where we have used the de�nitions (22) and (12) of Pk
T and IkT, respectively, the fact that ðk

F ∘ ð
k
T = ðk

T on F, the
discrete trace inequality (5), the approximation property (16) of pk

TIkT, and the mesh regularity property (3).
Finally, using the Cauchy–Schwarz inequality with (45), the bound (4) on card(FT), (24), and (30), we infer
that

|T3| ≤ sℎ(ûℎ, ûℎ)
12 sℎ(vℎ, vℎ) 12 ≲ ℎk+1‖u‖Hk+2(Ω)‖vℎ‖a,ℎ ≲ ℎk+1‖u‖Hk+2(Ω)‖vℎ‖1,ℎ. (46)

The conclusion of the proof then follows from (40), (43), (44), and (46).

Corollary 9 (Error estimate on the exact gradient). Under the assumptions of Theorem 8, the following holds:

‖∇u − G⃗k
ℎuℎ‖ ≤ Cℎk+1‖u‖Hk+2(Ω).

Proof. The triangle inequality and de�nition (24) yield

‖∇u − G⃗k
ℎuℎ‖ ≤ ‖∇u − G⃗k

ℎûℎ‖ + ‖G⃗k
ℎ(ûℎ − uℎ)‖ ≤ ‖∇u − G⃗k

ℎûℎ‖ + ‖ûℎ − uℎ‖a,ℎ.

Use (16) and (39) to estimate the terms on the right-hand side and conclude.

3.2 L2-Norm Error Estimate

Adapting the techniques of [9, Section 4.2], we can also prove an optimal L2-error estimate for the potential.
To this end, we assume elliptic regularity in the following form: For all g ∈ L2(Ω), the unique solution z ∈ U0
to

(∇z,∇v) = (g, v) for all v ∈ U0 (47)

satis�es the a priori estimate
‖z‖H2(Ω) ≤ Cell‖g‖, (48)

with a constant Cell > 0 only depending onΩ.

Theorem 10 (L2-error estimate for the potential). Under the assumptions of Theorem 8, assuming elliptic reg-
ularity (48) for problem (1) and that f ∈ H1(Ω) for k = 0, there exists a real number C > 0 depending on the
mesh regularity parameter ý but independent of ℎ such that, for k ≥ 1,

‖ûℎ − uℎ‖ ≤ Cℎk+2‖u‖Hk+2(Ω),

and for k = 0,
‖ûℎ − uℎ‖ ≤ Cℎ2‖f‖H1(Ω),

where ûℎ, uℎ are piecewise polynomial functions such that ûℎ|T := ûT = ðk
Tu and uℎ|T := uT for all T ∈ Tℎ.
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Proof. Weonly sketch theproof, referring to [9, Section4.2] for further insight. Let z solve (47)withg := ûℎ−uℎ.
Set ̂zℎ := Ikℎz and eℎ := ûℎ − uℎ. A straightforward computation shows that ‖ûℎ − uℎ‖

2 = T1 + T2 with

T1 := ∑
T∈Tℎ{(∇eT,∇z)T + ∑

F∈FT(eF − eT,∇z ⋅ ⃗nTF)F − aT(LTeℎ, LT ̂zℎ)},

T2 := ∑
T∈Tℎ{−(f, ð

k
Tz)T + aT(LTûℎ, LT ̂zℎ)}.

To bound T1, we observe that, with äT := z|T − pk
TIkTz|T,

T1 = ∑
T∈Tℎ{(∇eT,∇äT)T + ∑

F∈FT(eF − eT,∇äT ⋅ ⃗nTF)F − sT(LTeℎ, LT ̂zℎ)},

whence we infer that

|T1| ≤ {‖eℎ‖
2
1,ℎ + sℎ(eℎ, eℎ)}

12 { ∑
T∈Tℎ[‖∇äT‖2T + ℎT‖∇äT‖2àT] + sℎ( ̂zℎ, ̂zℎ)}

12
≲ ℎk+1‖u‖Hk+2(Ω)ℎ‖z‖H2(Ω) ≲ ℎk+2‖u‖Hk+2(Ω)‖ûℎ − uℎ‖,

owing to the energy-norm error estimate and elliptic regularity, while the bound on äT and sℎ( ̂zℎ, ̂zℎ) is shown
as in the proofs of Lemma 3 and Theorem 8, respectively. Turning to T2, we observe that (f, ðk

Tz)T = (ðk
Tf, z)T

and since (f, z) = (∇u,∇z), we infer that

T2 = (f − ðk
ℎf, z) − ∑

T∈Tℎ{(∇u,∇z)T − (∇pk
TIkTu,∇pk

TIkTz)T} + sℎ(ûℎ, ̂zℎ),

where ðk
ℎ denotes the global version of the local L2-projector ðk

T. Denote by T2,1,T2,2,T2,3 the three terms on
the right-hand side. If k ≥ 1, we can write (f − ðk

ℎf, z) = (f − ðk
ℎf, z − ð1

ℎz) so that

|T2,1| ≲ ℎk‖f‖Hk(Ω)ℎ
2‖z‖H2(Ω) ≲ ℎk+2‖u‖Hk+2(Ω)‖ûℎ − uℎ‖,

while for k = 0, we write (f − ð0
ℎf, z) = (f − ð0

ℎf, z − ð0
ℎz) so that

|T2,1| ≲ ℎ‖f‖H1(Ω)ℎ‖z‖H1(Ω) ≲ ℎ2‖f‖H1(Ω)‖ûℎ − uℎ‖.

Concerning T2,2, we exploit the orthogonality property (17) to infer that

T2,2 = − ∑
T∈Tℎ(∇u − ∇pk

TIkTu,∇z − ∇pk
TIkTz)T,

whence |T2,2| ≲ ℎk+2‖u‖Hk+2(Ω)‖ûℎ − uℎ‖. Finally, proceeding as above, T2,3 is bounded similarly, and this con-
cludes the proof.

4 Numerical Tests
We solve the Dirichlet problem in the unit square with

u = sin(ðx1) sin(ðx2),

and corresponding right-hand side f = 2ð2 sin(ðx1) sin(ðx2) on the four mesh families depicted in Figure 1.
The triangular, Cartesian, and Kershawmesh families correspond, respectively, to the mesh families 1, 2, and
4.1 of the FVCA5 benchmark [15], whereas the (predominantly) hexagonalmesh family was �rst introduced in
[10]. The implementation framework corresponds to the one described in [9, Section 5], to which we refer for
further details. Figure 2 displays convergence results for the variousmesh families andpolynomial degrees up
to 4. Themeasure for the gradient error is ‖ûℎ−uℎ‖a,ℎ (in case of a nontrivial di�usion coe�cient or tensor, this
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Figure 1. Triangular, Cartesian, Kershaw, and hexagonal-dominant meshes for the numerical tests of Section 4.

10´3 10´2
10´12

10´9

10´6

10´3

100

1

2.02

3.02

3.99

4.98

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(a) Gradient error, triangular meshes
10´3 10´2

10´14

10´11

10´8

10´5

10´2

2

3

3.99

4.99

5.87

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(b) Potential error, triangular meshes

10´3 10´2

10´12

10´9

10´6

10´3

100

1.99

2.94

3.99
4.02

4.81

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(c) Gradient error, Cartesian meshes
10´3 10´2

10´14

10´11

10´8

10´5

10´2

1.99

3.02

3.99

4.99

5.53

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(d) Potential error, Cartesian meshes

10´2.2 10´2 10´1.8

10´7

10´6

10´5

10´4

10´3

10´2

10´1

1.81

3.47

4.28

4.56

k “ 0
k “ 1
k “ 2
k “ 3

(e) Gradient error, Kershaw meshes
10´2.2 10´2 10´1.8

10´9

10´7

10´5

10´3
1.97

3.58

4.65

5.68

k “ 0
k “ 1
k “ 2
k “ 3

(f) Potential error, Kershaw meshes

10´2.5 10´2 10´1.5
10´11

10´9

10´7

10´5

10´3

10´1

1.31

2.63

3.11

4.09

5.19

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(g) Gradient error, hexagonal meshes
10´2.5 10´2 10´1.5

10´12

10´9

10´6

10´3 1.9

2.98

4.02

4.99

5.94

k “ 0
k “ 1
k “ 2
k “ 3
k “ 4

(h) Potential error, hexagonal meshes

Figure 2. Errors vs. ℎ.
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quantity is actually to be interpreted as a �ux error), whereas the potential error is estimated as ‖ûℎ − uℎ‖. In
all cases, the numerical results show asymptotic convergence rates that match those predicted by the theory.
The apparent super-convergence on the Kershaw mesh family (cf. Figures 2e–2f) is linked to the fact that
the mesh quality improves when re�ning. Genuine super-convergence is on the other hand observed for the
gradient on the Cartesian mesh family up to polynomial degree 2, cf. Figure 2c. For k = 4, round-o� errors
start to surface in the last re�nement iteration for the Cartesian mesh family, as con�rmed by a convergence
rate slightly lower than expected, cf. Figure 2d.
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